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Suppose (X, Σ, μ) is a measure space, 1 ^ p < °o and p Φ
2. Let Lp — LP(X, Σ, μ) be the usual space of equivalence
classes of ^-measurable functions/such that \f\p is integrable.
A contractive projection on Lp is a linear operator P: Lp -»
Lp such that P 2 = P and \\P\\ ^ 1. In this paper we give a
complete description of such contractive projections in terms
of conditional expectation operators. We also show that a
closed subspace M of Lv is the range of a contractive projec-
tion if and only if M is isometrically isomorphic to another
Lp-space. Another sufficient condition shows, in particular,
that every closed vector sublattice of an Lp-spaee is the range
of a positive contractive projection.

Most of our results are known. The case of finite μ was treated,
for p = 1, by Douglas [2] and for 1 < p < co by Ando [1] who
showed how to reduce this case to that of p = 1. These authors
obtained our necessary and sufficient condition. Grothendieck [4]
considered p ~ 1 and general μ and showed that the range of a
contractive projection on L1 is isometrically isomorphic to another
Li-space. Wulbert [11] showed that a positive contractive projection
on Lλ which is also LM contractive is a conditional expectation, and
pointed out that his proofs applied for p > 1. Tzafriri [10] showed
that for general μ the range of a contractive projection on Lp is
isometrically isomorphic to another I^-space. In [5] we gave an
outline, based on Tzafriri's, of another proof of this fact.

We obtain complete generalizations of the Douglas-Ando results
to the case of an arbitrary measure μ. We have chosen to give
our proofs in detail. It seems easier not to reduce the case p > 1
to the case p = 1. The proofs for p > 1 often use duality arguments
which are just not available for p = 1. By giving such proofs,
generalizations to reflexive Banach function spaces may be possible.
Some such generalizations have been tried by Rao [8] but his reduction
from arbitrary norms to the Lx case is faulty and his Theorem 2.7
is false in general (see Remark 4.4). Duplissey [3] considers Banach
function spaces but requires HP/iU ^ li/IU as well as P contractive.
We also avoid reducing to the case of finite measures. This device
turns out to be unnecessary, and needlessly complicated.

We have deliberately omitted the cases 0 < p < 1, except in the
appendix, and the case p = 2. A contractive projection on Hubert
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space is an orthogonal projection and every closed subspace is the
range of a unique one. For 0 < p < 1 the arguments for p — 1
will work or can be modified to work. We no longer have a norm,
however, and it seemed best to ignore this case.

We have included a section in which we discuss the proof of
the famous theorem that if 1 ^ p < oo, a Banach space is an Lp-
space, if and only if it is an =S^,; for all λ > 1, if and only if
it contains an increasing set of finite dimensional subspaces whose
union is dense and each of which is isometrically isomorphic to a
finite dimensional Zp-space of appropriate dimension. This result is
a combination of work of Zippin [12] and of Lindenstrauss and
Pelczynski [7]. We discussed the real case in [5]. There seems to
some value in going over the results again here because both [5]
and [7] really consider only the real case. The extensions to the
complex case are technically more difficult than is admitted in [7].
Also we have had many questions about some of the details omitted
in [5].

In our final appendix we have given two technical results used
by Ando [1] and Tzafriri [10]. Our proofs seem a little easier and
Ando's result has been generalized to arbitrary measure spaces.

1* Notation and definitions* We consider complex Lp-spaces
throughout. Our proofs are valid, with obvious modifications in the
real case too. We use, for complex z, the version of the signum
function, sgn z defined by

/121 if ZΦO

if , = o .

We modify some standard vector lattice terminology to apply in
the complex case. A closed vector sublattice of Lp is a closed subspace
M such that if / e M, Re / e M, and if / e M and / is real-valued,
f+ = f VOeM.

If feLp write S(f) = {xeX: f(x) Φ 0} and call S(f) the support
of / . This only determines the support of / to a set of ^-measure
zero. However, this will either not matter, or we will want all
possible determinations for the support of / . If Mc.Lp, the polar
of M, M1, is defined by

M1 = {geLP:\g\ A \m\ = O(meikf)} .

(By \g\ A \m\ — 0 we mean //-almost everywhere of course.) If M =
M11 we call M a band (or polar subspace). If M is a band Lp =
Mζ&M1, and the, natural, band projection JM of Lp onto M is given,
for positive h e Lp, by
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JMh = sup {g e M: 0 ^ g ^ h) .

If f e LP9 and M = fλl, we write Jf for the band projection on / L J

and note that, if 0 ^ he Lp

Jfh = sup {fe Λ wI/1: n = 1, 2, } ,

(indeed, by dominated convergence, h A n \ f \ —» J/fo in L^-norm) while
for any h e Lp, Jfh = χS(f)h. The following lemma is easy to prove.

LEMMA 1.1. If M is a subspace of LP{X, Σ, μ), he LP, and J is
the band projection on Λf j, then there is a sequence (/J in M such
that Jh = lim χs(fn)h.

Proof. Choose a sequence (fn) in M such that

IIZ*</>llp > sup {||χS(/)fe||p: / e l ) ,

We omit the remaining details.

REMARK 1.2. This lemma can be strengthened, in case M is
closed, to say that for each he Lp there exists f e M such that Jh =
Jfh = %s(f)h. This depends essentially on the fact that the set of
supports of functions whose equivalence classes are in M is closed
under countable union. This is proved by Ando [1, Lemma 3] for
finite μ, and we give a rather easier alternative proof in our appendix.

2* Preliminary results* In this section the cases p = 1, and
1 < p < co, p Φ 2, are treated separately. Our first lemma is based
on an argument of Douglas [2, p. 452].

LEMMA 2.1. Let P be a contractive projection on Lt(X, Σ, μ)
and suppose f e &(P); then

( i ) PJf = JfPJ/,
(ii) P(h sgn /) - I P(h sgn /) | sgn / (0 ^ h e LL);
(iii) | |P(fcsgn/)|| =

Proof. Suppose 0 <Ξ h ^ | / | , then

H/ll- ||

= | | / -P(λsgn/) | |

- ||P(Λsgn/)||

- | |λsgn/| | .

This gives equality throughout so (iii) is valid for 0 <̂  h ^ | / | . In
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addition we have 0 <Ξ | / - P(Asgn/)| = | / | - [P(Asgn/)| μ-almost
everywhere, and (ii) also follows for 0 ̂  h g | / | . We extend imme-
diately to he Lλ such that 0 ̂  h ̂  n\f\ for some n, and since linear
combinations of such h are dense in f11 we have (ii) and (iii) for
0 ^ h e f11. If feeii and h ̂  0, (J/A) sgn f = h sgn / so (ii) and (iii)
are proved.

For (i) take ge L1 and put A — (Re (g sgn/))+ sgn/, by (ii) PAe
/ 1 J so PA = JfPh. We conclude easily that

P(Jfg) - JP((flr sgn/) sgn /) - JfPJfg

and (i) is proved.
Suppose 1 < p < oo then identify the dual of LP(X, Σ, μ) with

Lq(X, Σ, μ) in the usual way (1/p + 1/q = 1). Let P be a contractive
projection on Lp. The conjugate operator P* is defined uniquely on
Lq by the equation

(feLP,geLq).

Clearly P* is a contractive projection on Lq.

LEMMA 2.2. [1, Lemma 1]. Suppose 1 < p < °° and let P be a
contractive projection on LP(X, Σ, μ), then f e &(P) if and only if

Proof. Suppose / e ^ ( P ) ; by Holder's inequality

11/115 = \\f\'dμ - \Pf'\fr^gnfdμ

= \f P*Qf\-ι*g*f)dμ

= ιι/ιuιι/ιι; / g

= 11/115.

The conditions for equality in Holder's inequality lead to

P*(|/risgn/) = I/I'"1 sgn/

as required. This proves necessity. Sufficiency follows dually.
We next generalize an argument in Ando's Theorem 1 [1].

LEMMA 2.3. Suppose l < p < oo, p φ 2; and let P be a contrac-
tive projection on LP(X, Σ, μ); if f e &(P) then,

( i ) I/I sgn ge^(P) (g
(ii) PJf = JfP,
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(iii) P(h sgn /) = I P(h sgn /) | sgn / (0 ^ h e L,).

Proof, (i) Suppose first that p > 2, let λ e U, 0 < | λ | < 1, and
let ge&(P). By Lemma 2.2,

gλ — λ Wf + λ^|p * sgn (/ + λ#) —

Since p > 2,

0* = λ-^d/ + λflr|M - |/Γ2)(T

+ λsrΓ2 - l/I^XZ + Xfif)] + l/l"-2^ .

Recall, that for real λ and complex w, z, d/dX | w + Xz 11; =
Re [z sgn {w + λ«)], provided w + λz ^ 0. It follows that as X —> 0,

Λ (P - 2) I / 1 " " 3 Re (fir sgn / ) • / + ! / Γ*9

at all points of X where / Φ 0.
If 2|λff| < I/I we have |/|/2 < 1/ + ^λ^| < 2 | / | if 0 < θ < 1;

and, by the mean value theorem there exists θ, 0 < θ < 1 such that

| Re(firsgn(/

^ (p - 2)2i'-'|/|'-|flr| 2 I/I + | / Γ 2 | ί / |

If 2|λflr| ^ I/I, | / + λflr| ^ 3|λflr| and

lfif;|^λ-1[(3|λflr|ri

= (3"-1 + 2p-ι)|flΊ'~1|λ|

The penultimate line above shows that gλ —> 0(λ —• 0) if / = 0.
This shows that gr̂  converges to

g0 = (p - 2 ) | / r 2 s g n / R e ( s r s g n / ) + \f\'~'g ,

pointwise almost everywhere on X and that the convergence is
dominated by an element of Lq. Hence \\gλ — g0\\g —* 0 and gr0ε &(P*)
because ^ ( P * ) is closed.

By the same argument, applied to — ΐfir, we have, using
Re — iz = Im z,

Ao = (P - 2) I / r"2 sgn /Im (</ sgn /) + i |/1»-^ e

Now,

- ik0 = (p - 2 ) | / r 2 s g n / ( 0 sgn/)

= (P -
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(Note that this last is valid in the real case too.)
Using Lemma 2.2 again, we conclude that | \f Y^gl^1 sgn \f\p~2g ~

\fr{q-l)\g\q~ιsgnge^(P). Set

K - \fΓiQ-1)n\g\{9-ί)nsgng ( u = 1, 2 .-•) .

We have just shown that kγ e &(P) and the same method, applied
inductively, gives kn e &(P) for all n. Since 0 < q — 1 < 1,

\ k n \ ^ m s L x { \ f \ f \ g \ } ^ \ f \ + \ g \ e L p ,

so (kn) is dominated in Lp. Since kn—> | / | sgn# ^-almost everywhere
on X, we have \\kn — \f\ sgn g||p —>0 and since &(P) is closed |/1 sgn# e
&{P) which proves (i) for p > 2.

Suppose 1 < j> < 2; as we have already stated P* is a contractive
projection on Lq, and q > 2. By Lemma 2.2, / t = I/Γ^sgn/ and

are in ^ ( P * ) . By our proof above |/i|sgnflr1 =
), and, by Lemma 2.2 again, \f\sgnge&(P).

This completes the proof of (i).
For (ii) we have by (i), that | /1 sgn Pk e &(P) (keLP). By (i)

again,

JfPk = \Pk\ sgn ( I / I sgn Pk) e

Thus JfP — PJfP. Further, since P* is a contractive projection on
Lq, and I/I'-1 sgn feέ&(P*) we have J.P* - P*JgP* with

In addition Jg — J*, since J"̂  and Jf are each multiplication by the
same characteristic function. We conclude

JfP = PJfP = (P*JfP*)* = (P*JgP*)* = (JgP*)* - PJf ,

which is (ii).
(iii) The proof is like the proof of Lemma 2.1(ii). Suppose 0 ^

h ^ | / | . By (i), | / | sgn P(hsgnf) e &(P), so by Lemma 2.2,

I /1*-1 sgn P(h sgn /) e

Hence,

I P(h sgn /) I I / \*-*dμ - \P{h sgn /) -1 / Γ 1 sgn P(hsgnf)dμ

= \^h sgn / I / Γ 1 sgn P{hsgnf)dμ

Also
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Hence,

= j I P(Λ sgn /) + P((| /1 - h) sgn f)\\f \^dμ

sgn /) | | / Γ ι d μ + j | P((|/1 - h) sgn /1 | / \'~ιdμ

- h)\fΓ'dμ

We have equality at each stage and hence, (/ -̂almost everywhere),

/I = | P ( | / | s g n / ) | - \P(hsgnf)\ + \f - P(h sgn / ) | .

This proves (iii) for 0 ^ h ^ | / | . The extension to 0 ^ fee LP is the
same as in the proof of Lemma 2.1(ii) and (iii) so we are done.

3* Contractive projections and conditional expectations* In
this section we describe the contractive projections on LP(X, Σ, μ)
(1 g p < oo, p φ 2) in terms of conditional expectation.

We first need the necessary σ-subring.

LEMMA 3.1. Suppose 1 :S p < CXD, p ^ 2, απd ieί P be a contractive
projection on LP(X, Σ, μ). Define ΣQ to be the set of supports of all
functions whose equivalence classes are in &(P)\ then

(i) PJJ = JJ (f,ge&(P));
(ii) Σo is a σ-subring of Σ.

Proof, (i) By Lemma 2.3(ii), (i) is valid if p Φ 1. We give a
proof that uses only the identity JgPJg = PJg valid for 1 ^ p < ©o,
p =£ 2 (Lemma 2.1(i) or 2.3(ii) weakened). Since f-Jgfegι and
Jgf - PJgfegL1, we have

\\P(f -
= \\f-

- JJW + \\J,f -

Thus P/,/ - /,/ which is (i).
(ii) By (i), S(f) - S(<7) = S(/ - J,/) = S(P(f - J,f)) e Σo. Thus

Σo is closed under differences. If (/J is a sequence of nonzero elements
in 3£{P) such that S(/w) Π S(/m) = 0(m ^ n) then

and S(/) = U S(/w). This proves (ii).
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COROLLARY 3.2. Let P be a contractive projection on LP(X, Σ, μ)
(1 ^ p < oo, p Φ 2). If he &{Έ>YL there exists f e &{P) such that
hef11.

Proof. By Lemma 1.1 there is a sequence (/Λ) in &(P) such
that h = \imn^χS{fn)h. Choose / e ^ T ( P ) such that S(f) = \J S(fn),
then hef11.

Observe now that if / e Lp the measure \f\pμ restricted to any
σ-subring, Σo, of Σ, is finite. By the Radon-Nikodym theorem we
may define the conditional expectation operator, &f = ̂ {ΣQj \f\v), for
the measure \f\pμ relative to ΣQ. ί?f is uniquely determined by the
equation

ί h\f\'dμ
JA

μ (AeΣ0)

for he Lλ{Xy Σ, \f\vdμ), and the condition that g*/fe is Jo-measurable.

LEMMA 3.3. Suppose 1 ̂  p < co, p φ 2; let P be a contractive
projection on LV{X, Σf μ) and let Σo be the σ-subring of Σ, consisting
of supports of functions in &{P). If Mf = f~ιJf&{P) = {f^J/Q- 9 €
^ (P )} then Mf - L9(S(f), Σo \ S(f), \f\pμ) where Σo \ S(f) = {AeΣ0:Aa
S(f)} and we make the obvious identification of functions on S(f) and
functions on X which vanish off S(f). In addition the map h—*f~Ίι is
an isometric isomorphism between Jf&(P) and Lp(S(f), ΣQ\S(f), \f\pμ).

Proof. Observe that 1/1*7* is finite on S(f), and that the isometry
claim is obviously true. If AeΣQ\S(f) then A = S(g) for some ge
&(P). By Lemmas 2.1 and 3.1 (if p = 1) or 2.3 (if p > 1) we have
Jgf = PJgf so that χA = f~xJgf e Mf. Let h be a simple function
with respect to Σ0\S(f). Then heMf and hfe&{P). In addition

\ h \ p \f\pdμ= \\hf\'dμ.
)S(f)

We conclude that

MfiiLP(S(f),ΣQ\S(f),\f\*μ).

Conversely, let heMf, then h e Lp(S(f), Σ\S(f), \f\pμ) and it is
enough to show that h is 2Vπieasurable. Let g = (Re /?)", then
gfe Lp(Xf Σ, μ). By Lemma 2.1(ii) or 2.3(iii)

P(9f) = P(\ Of I sgn /) = I P(| gf \ sgn /) | sgn /

so ΓιP(gf) = \f\-1\P(\gf\ sgn /) | e Mf. It follows that
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Reh = /-\P((Re h)+f) - /-'PtfRe h)~f) e Mf .

Since each of these functions is nonnegative it is sufficient to consider
0 <£ h G M/. Suppose α > 0 and put k = h V aχsιf). Arguing as above,
we have fιP{kf) ^ λ and f~ιP{kf) ^ αχS ( / ) so that f~ιP{kf) ^ k ̂
0. Since P is contractive we have

HOT ^ lliW)llp = IIW) -kf + kf\γ

This gives P(kf) = kf, so that & 6 Λf/. This shows, incidently, that
Mf is a lattice. For our purpose, however, we have

{ί G S(f): h(t) >a} = {te S(f): (k - aχS[f))(t) Φ 0}

- S(kf - α/) e I'o .

Thus Mf consists of immeasurable functions and we are done.

THEOREM 3.4. Suppose l ^ p < oo, p φ 2 α^id that P is a con-

tractive projection on LP(X, Σ, μ). If f e &(P) and hef1L then

Ph = f&(ΣQ,\f\*)(hf-1).

Proof. Since f~λPh e Mf we know f~λPh is Jo-measurable. Thus

we have only to show

( f-1Ph\f\pdμ= \ hf-^\f\*dμ (AeΣQ).

Choose g e &(P) such that A = S(g). By Lemma 3.1(i), u = Jgf e
P).
Suppose p = 1 and 0 ̂  ke L,. By Lemma 2.1(ii) and (iii),

ί ksgnf'f-ί\f\dμ= \ kdμ = \\Juk\\ = \\P(ksgnu)\\

= ( tιP(Jaksgnf) \f\dμ.
JA

Putting v = f — u = / — Jgf G &(P), we have, by Lemma 2.1(1),

P(k sgn /) - JuP(Juk sgn /) + J,P(Jwfc sgn /) .

Hence

( ΓiP(J9ksgnf).\f\dμ= \ f'Pik sgn f)-\f\dμ.
JA }A

We conclude that
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\hf-1 \f\dμ= \ Γ
JA JA

for all hef11 and all AeΣ0 so we are finished for p = 1.
If p > 1 we have PJg - JgP by Lemma 2.3(ii) and \f\p~ι sgn/e

by Lemma 2.2. Hence,

\
i

PJMfl'-'agnfdμ
x

= ( f-ιPh \f\'dμ (

Thus

-1) (h e

as claimed.
Our theorem has useful consequences.

THEOREM 3.5. Suppose l^p<oofp^2, let P be a contractive
projection on LP(X, Σ, μ) and let Jhe the hand projection on ^(P)11;
then PJ is the unique contractive projection on Lp which satisfies
&(PJ) = ^?(P) and PJ^(P)1 - {0}. If p Φ 1, P = PJ so P is uni-
quely determined by its range. If p = 1, and A is a linear contraction
on L1 which satisfies PA = A and AJ — 0, then PJ + A is a contractive
projection on Lx with the same range as P.

Proof. Let Q be a contractive projection on LP such that
and Q^(Py = {0}. Then Q = QJ and if heLP there exists,

by Corollary 3.2, / e ^ ( P ) - JS?(Q) such that Jh = Jfh. By Theorem
3.4, Q& - QJA - /-'gfC^o, I/ΓK^Λ /"1) = ίVfe. Thus Q - PJ. (It is
clear that PJ satisfies the stated conditions.)

If p Φ 1 take h, f as above and put u — Ph — PJh — Ph — PJfh =
Pft — J/Pfc, by Lemma 2.3(ii). Since band projections commute and
u e &(P) Π f1, Juh = JJh = ΛJ/fe = 0. By Lemma 2.3(ii) again,

^ = j u U = JwPfc - ΛPJyfe = P J ^ - ΛJ/P/^ = 0 - 0 = 0.

Hence P = P J as required.

If p = 1, PA = A, and AJ = 0, we have AP = AJP = 0 and A2
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APA = 0. Also (PJ + A)2 = PJPJ + PJA + APJ + A2 = PPJ +
PJPA + 0 + 0 = PJ + A. Thus PJ + A is a projection. Observe that

A) = &(PJ + PA) c &(P) = &(PJP + AP)

+ A)P) c £%{PJ + A) .

It remains to show that if A is contractive, PJ + A is contractive.
If A 6 Lu

\\{PJ+ A)h\\x = \\PJh + A(h - Jh)\l

^ \\Jh\\, + \\h - Jh\l

= \\Jh + h - JhW,

4* Contractive projections and isometric isomorphisms* In this
section we prove the equivalence of various conditions on a subspace
of Lp so that it is the range of a contractive projection.

Let SS(X, Σ) denote the set of Immeasurable functions h such
that S(h) is σ-ίinite. By a multiplication operator on S*(X, Σ) we
mean a map h—+kh defined for functions h in some subset of S^(X,
Σ) and some fixed Immeasurable function k. If k satisfies \k\ = 1 on
S(k) we will call k a unitary multiplication.

A multiplication operator on S*(X, Σ) preserves equality almost
everywhere and hence induces a multiplication operator on each LP(X,
Σ, μ) into £*(X, Σ) modulo null functions (1 ^ p < oo). Further, kλ

and k2 will induce the same such multiplication operator on Lp if kx

and k2 agree locally almost everywhere.
Suppose that SΓ is a set of J-measurable functions such that if

k» kze^T and kx Φ k2, μ(S(k,) Π S(fca)) = ° If / e S^{X9 Σ) then,
because S(f) has σ-finite measure, S(f) meets at most countably
many S(k), with k e SίΓ, in a set of positive measure. Enumerate
these as (kn), then there is a unique set NeΣ such that, NcS(f)
and each t e S(f) — N lies in at most one set S(kn). (In fact N =
Uii«<m<« (S(fcJ Π S(fcJ).) On S(/) - N the series Σ?=i /(*)M*) ̂ s at
most one nonzero term. Thus 3ίΓ determines a map Ό,χΛ S^{X, Σ)—»

, Σ) by taking, for / as above, U^f(t) = ΣϊW /(«)&»(*) f o r * e

N and U^f{t) = 0 elsewhere. We call C7̂  the cZΐrβcί s^m of
the (disjoint) multiplication operators induced by the elements of ^Γ.
If Ujr maps LP to Lp(l <; p < oo) it is not hard to check that the
net of finite sums of the multiplication operators in J ^ is strongly con-
vergent to Ujr.

We can now state our theorem. The equivalence of (i) and (ii)
generalizes [1, Theorem 4] and extends [10, Theorem 6].
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THEOREM 4.1. Suppose 1 ^ p < °o and p Φ 2 and let M be a
subspace of LP(X, Σ, μ). The following conditions on Mare equivalent.

( i ) M is the range of a contractive projection on LP.
(ii) There is a measure space (Ω, Ξ, λ) such that M is isomet-

rically isomorphic to LP(Ω, Ξ, λ).
(iii) There is a direct sum of unitary multiplication operators

U: LP(X, Σ, μ) —* LP(X, Σ, μ) such that U is an isometry and UM is
a closed vector sublattice of LP(X, Σ, μ).

Furthermore, in (ii) we can always choose Ω = X, Ξ a σsubring
of Σ, λ absolutely continuous with respect to μ, and the isometry a
direct sum of multiplication operators.

If μ is σ-finite the direct sums of multiplication operators can
be taken to be ordinary multiplications.

Proof. Assume (i). By Zorn's lemma there is a maximal subset
3ίΓ of M consisting of functions / e M, such that jw(s(/i) Π S(f2)) =
0 if fx Φ f2. If g 6 M, S(g) is σ-finite and there is countable subset
{/J of ST such that if / e J T ~ {/J, μ(S(f) n S(g)) = 0. By Lemma
3.1, Σo is a α-ring so, there exists he M such that S(h) = S(g) ~ \J S(fn)
and by maximality of SΓt h = 0. Define a measure λ on 2Ό by λA =
Σ/ejr I i / Γ ^ This definition is meaningful since A has σ-finite

JA

/^-measure and at most countably many of the integrals are nonzero.
For fe^T define f~ι by

and let V be the direct sum of the multiplications f~\f 6 ^ ^ ) . By
Lemma 3.3 J/fe —• f~ιh{h e Λί) is an isometric isomorphism of J/ikf with
LP(S(f), Σ0\S(f), | / | 7 0 . It is routine to check that Fis an isometric
isomorphism of M with LP(X, Σo, λ). (M is the direct sum of its
subspaces JfM(f e 5ίΓ) and similarly for the Z/p-spaces.)

It μ is (7-finite 3ίΓ will be countable, say 3ίΓ= {fn} and we can find
feM such that S(/) = \JS(fn). Then 2Ό consists entirely of subsets
of S(f) and sets of measure zero so that Mf = LP(X, ΣQ, \f\pμ), JfM =
ikf, and F can be multiplication by f~ι.

Assume (ii) and let T: LP(Ω, Ξ, λ) —> ^(X, I7, ^) be a linear isometry
with range M. Suppose a, be LP{Ω, Ξ, λ) and \a\ Λ |δ | = 0, we claim
that I Ta\ A | Tb\ = 0. This is essentially proved by Lamperti [6],
Since |α | Λ |6| - 0, \\a + δH' + \\a - b\\p = 2\\a\\p + 2||δ|Γ Since T
i s a n i s o m e t r y , \ \ T a + Tb\\p + \\Ta - Tb\\p = 2\\Ta\\p + 2\\Tb\\p. S i n c e
p Φ 2, the equality condition for Clarkson's inequality [6, Corollary
2.1] shows that | Tα| Λ | Tb\ = 0.

Take a maximal subset of Ξ consisting of sets of nonzero finite
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λ-measure which intersect pairwise in sets of λ-measure zero and let
5$Γ be the corresponding set of characteristic functions. Let a e SΓ
and suppose BeΞ and Bc:S(a). Write b = χB, then T(a - b), Tb are
disjoint in M so we have Tb — \ Tb | sgn Ta. This extends to non-
negative simple functions δ in α 1 1 and then to all nonnegative be
a11. Define U: LP(X, Σ, μ)~*Lp{X, Σ, μ) to be the direct sum of the
unitary multiplications sgn Ta{a e ^%Γ). It is easy to see that U is an
isometry of M such that UT is positive and hence UM = UT LP(Ω, Ξ, λ)
is a closed vector sublattice of LP(X, Σ, μ) (compare the proof
in Lemma 3.3 where we showed that functions in Mf were im-
measurable).

Assume (iii) and let Σo be the set of supports of functions (whose
equivalence classes are) in M. Then ΣQ is a σ-subring of Σ. (If (fn)
is a sequence in M, S(fn) = S(Ufn) = S(\Ufn\) so

Ίif,ge M, Jg = JUg; Jg\Uf\ = \im\Uf\ Λn\Ug\e UMand S(f) ~ S(g) =
S(U"\\Uf\ - Jg\Uf\)).) Let f,geUM and suppose / is real, g ^ 0
and / e g11, then {ί 6 X: (f/g)(t) > a} = S((f - ag)+) e Σo. Thus f/g
is 2Ό-measurable. This extends to all fe UMf] g11 and hence Jgf/g
is 2Ό-measurable if /, g e UM and g ^ 0. This now extends to all
f,ge UM and, since U~ιJgfjU~ιg — Jgf/gf we have f/g, Immeasurable
for /, geM and feg1L. It follows that M is the set of all
elements in LP(X, Σ, μ) which can be written in the form hf with
h, Jo-measurable and f e M. (If h = χs{g) with ge M, hf — JJ —
U^JUgUfe U~1(UM) = M.)

Let J be the band projection on ML1, let he LP(X, Σ, μ), choose
feM such that Jh — Jfh, (such an / exists by the arguments used
in Corollary 3.2) and define

Ph = f&(Σf>\f\')(hf-1).

Then Phe M and this definition is independent of the choice of / in
M such that hef11. To see this suppose geM and hegλL. Then
h is zero outside S(f) n S(g)eΣ0 and so is &(ΣOf I/ΓXΛ/""1), ^-almost
everywhere. Let B = S(f) n S(g), then ft = χBf e M and

11 / \*dμ = ( ft/"11 / Γ # - ί hfT11Λ \pdμ (A e ΣQ),

so that fί?(Σ0, \f\v){hf-1) = f^(Σ0, | Λ |')(λ/r ι). Thus we may as-
sume S(f) = S(g). Now

eLtX, Σo, \g\*μ) ,
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so we have, for A e Σo,

g\'^(Σ,, \f\p)(hf-ι)\fγdμ .

Because g'1/ and f~ιg are Immeasurable and the integrals are finite,
the second integral is

\g-1f\Γ1g\PhΓ1\f\pdμ - \hg-ι\g\'dμ.

Thus

and our definition of Ph is unambiguous. If hlf h2 e Lp we can take
/ e M such that Jh1 = Jfh1 and Jh2 = Jfh2. Thus P is linear. Since
f-iph = &(Σ09 ifΠihf-1) we see P 2 = P. Finally, if p > 1, write
u= &(Σ0, \f\p)(hr% we have

\\Ph\\l= ^uΓ'sgnΰ.&ίΣo, \f\v){hΓι)\f\vdμ.

Since ^ is J0-measurable, this is

^ul^sgnΰ hf-'lfl'dμ = [\Ph\v~ι$gnfΰ hdμ

£\\\PhΓ%\\h\\,

= \\Ph\\y\\h\\9.

(We used Holder's inequality and q for the conjugate index to p.)
We conclude that \\Ph\\P g \\h\\P.

Since Ph = h(h e M) we have shown that M is the range of the
contractive projection P.

REMARK 4.2. The results (iii) implies (i) (with the same proof)
and (i) is equivalent to (ii) are valid if p = 2; in fact (i) and (ii) are
equivalent for any Hubert space. If we assume the projection P, is
positive as well as contractive the proof in Lemma 3.3 that Mf is a
lattice shows ,^{P) is a sublattice of L2 and Theorem 4.1 is valid
for L2 with the projection and the isometry both required to be
positive and in (iii) M required to be a closed vector sublattice. We
use this remark in our next result.

COROLLARY 4.3. If M is a closed vector sublattice of Lp (1 ̂
p < co) then M is the range of a positive contractive projection.
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Proof. Clearly M satisfies condition (iii) with U = I. In the
definition of Ph we may always choose a positive f e M such that
hefλl. Positivity of P follows from positivity of conditional expec-
tation.

REMARK 4.4. In the introduction we referred to Rao's paper [8]
and claimed that its treatment of contractive projections contained
errors. In particular, his Theorem II. 2.7 asserts that if M is the
range of a contractive projection P on a Banach function space LP(Σ)
there is, under suitable conditions, a unitary multiplication U such
that UPU~ι is a positive contractive projection.

The conditions are all satisfied if M is the subspace of Ϊ2(3) = C3

spanned by (1, 1, 1) and (1, 2, —3). Rao's theorem now claims the
existence of a unitary multiplication, say by u — (λ1? λ2, λ3), such that
uM is a vector sublattice of C3. This is impossible, as we show.
First, uM contains the elements (0, λ2, — 4λ3), (λlf 0, 5λ3), and (4λlf 5λ2,
0). If Re λ2λ3 = 0 we have λaλg"1 = λ2λ3 = ±i and uM contains Im(0,
λ2λ3, -4) = (0, ± 1 , 0); so that (0, 1, 0)euM, and uM = Cz. If all
Reλp^ Φ 0 (i Φ j), then uM contains Re(0, 1, — 4λ3λ2) and Re(l, 0,
δλgλj; hence, taking a multiple of their infimum, (0, 0, 1) e uM and
again uM = C3.

Exactly the same counterexample vitiates the proof of Rao's
Theorem II. 2.8 see p. 177 lines -15 to - 1 1 .

The error in both cases seems to be the reduction of the general
case of LP(Σ) to the Lx situation. Vital to this reduction, but invalid,
is the assertion that if LP(Σ) c Lι(Σ, G) and || ||lfff ^ p( ) then a
contraction on LP(Σ) for the p-norm can be extended to the closure
of LP(Σ) in U{Σ, G) with the 1, G-norm and that the extension is
contractive for the 1, G-norm.

5* The theorem of Lindenstrauss, Pelczynski, and Zippiru
We begin by recalling some definitions.

If E, F are isomorphic Banach spaces, d(E, F) = inf {||L|| U-Z/"1!):
L is a linear isomorphism between E and F}.

A Banach space E is an £fPtX space (for 1 <̂  p ^ oo and λ ̂  1)
if for each finite dimensional subspace F of E there is a finite dimen-
sional subspace G of E such that FaG and d{G, ^(dim (?)) ̂  λ.

We shall say that a Banach space E is a Zp-space (for 1 ̂  p ^ °o)
if there exists a set % of finite dimensional subspaces of E such
that:

( i ) % is upwards directed by set inclusion;
(ii) clUJr = #;
(iii) each F e ^ is linearly isometric to ^(dimi*7).
Our definitions apply, of course, over the real or complex number
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fields.
We now state the theorem of Lindenstrauss-Pelczynski-Zippin,

[5], [7], [12].

THEOREM 5.1. Let E be a Banach space and suppose 1 ^ p < oo,
then the following are equivalent.

(1) There is a measure (X, Σ, μ) such that E is isometrically
isomorphic to LP(X, Σy μ).

( 2 ) E is a Zp space.
(3) E is an j*fPtrspace for all λ > 1.
As outlined in the introduction we discuss some details of the

proof for the complex case.
Observe first that (3) is a trivial consequence of (1). Simply

identify E with LP(X, Σ, μ) and take for % the subspaces spanned
by finite sets of (pih power)-integrable characteristic functions.

The proof that (3) implies (2). This result is certainly part of
the folklore. It can be obtained quite efficiently as follows.

LEMMA 5.2. Let xl9 *"9xn be n linearly independent elements
of a normed space E then there exists ε > 0 such that if yt e E, and
\\Xi — Vi\\ < ε(i — 1, 2, , n) then {yu , yn} is a linearly independent
subset of E.

Proof. (This is standard but our proof may be novel.) Let K
denote the scalar field and S the unit sphere in Kn, S = {XaKn: \\X\\ =
1}. The map g: S x E* — E defined by g((\, , λ j , (y19 -, yn)) -
\Vι + + ^nVn is continuous. By linear independence, the compact
set S x (xlf •••,#„) does not meet the closed set ^(O). Hence there
are open neighborhoods Ut of xif i = 1, , n, such that (S x Uι x
••• x ί / J ί l ^ ( O ) = 0. If yt e Ui(ί = 1, , u) it follows that {y19

• - , Vn) is linearly independent.

LEMMA 5.3. Let E be a Zv-space, then E is an JzfPj-space for
every λ > 1.

Proof. Let F be a finite dimensional subspace of E. Let {xlf

• , xn) be a basis for F, such that H^H = l(i = 1, , n). Let xf,
• , x* G E* be such that x}(xj) - δij9 and let M = Σ?=i IK* H Choose
ε > 0 such that Me < 1 and | | ^ — yt\\ < ε for i = 1, , n implies
that {yl9 •••,!/»} is linearly independent. By the Zp-hypothesis there
is a finite dimensional subspace H of E and points yί9 --,yn in H,
such that H is isometrically isomorphic to ^(dim H), and \\%i — yΛl <
ε(ΐ = 1, , w). Then {̂ /i, •••,!/»} is a linearly independent subset of
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H. If

Σ aiVi e ή
i=i i=i

then

Σ
3=1

= Σ
3 = 1

Since itfε < 1 we conclude that at = 0 for each ΐ. Thus we can
extend 2/1, , 2/» to a basis, say ylf , #Λ, α?n+1, •••,#*, of H with
the property that {xn+u -, xp) c fl?=i ^ ( « * ) .

Let G be the subspace of E spanned by xu , xn, xn+1, , av
Then F c G . If y = Σ? = 1 aiVi + JJ=n+1 a,x, e Hdefine Ty = Σ?=i«A +
Σf=n+i ^ A e G. We have

1 1 1 / -

Σ

This gives (1 - Me)\\ Ty\\ ̂  \\y\\ ̂  (1 + ikZε)|| Ty\\(ye H); so that T
is an isomorphism between F and if such that || Γ|| || T~ι\\ S
(1 + Me)l(l - ikfε). If λ > 1 we can choose ε such that (1 + Me)/(I - Me) <
λ. Thus E is an ^^-space for all λ > 1.

The proof that (2) implies (1). Here the plan is first to embed
E, isometrically, in an Lp-space, and then to use the theory of con-
tractive projections of Lp-spaces.

This is carried out in detail for the real reparable case in [7]
and for the real nonseparable case in [5] The generalizations to
cover the complex case are mostly obvious. For 1 < p < 00 our
Theorem 4.1 is used. For p = 1, it follows as in the real case that E*
is a ^ space whence by the complex version of Grothendieck's
theorem [9] E is an Lλ{μ) space.

There is an aspect of the construction which needs a little elabora-
tion. At one stage of the proof we have a complex vector space,
say V, consisting of complex valued functions on a set U. V is a
vector sublattice of the space of all complex functions on U. There
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is a seminorm π on V such that π(f) ^ π(g) whenever | / | ^ \g\f and

π(f + #)*> = 7r(/y + π(g)p whenever | / | Λ |flf| = 0. We then need to
embed the quotient V/N, where N = {f e V:π(f) = 0}, isometrically
in a concrete, complex, Lp-space. For this, let VB and NR denote
the spaces of real-valued functions in V and N respectively. The
quotient VB/NR with the norm induced by π is then linearly and
lattice isomorphic, and isometric, to a vector sublattice of real
LP(X, Σ, μ) just as in [7]. Let hL denote the composition of the quotient
map UR —•> VBjNR and the isometric isomorphism into real LP(X, Σ, μ).
Then h,1 is a linear and lattice homomorphism and ||/&i/|| = π(/)(/ £ VR).
We construct the required embedding of V/N into complex LP(X, Σ, μ)
by defining

h(f + N) - ^(Re /) + i^ίlrn /) .

Then h is clearly well defined. To verify that h is an isometry we
need the next lemma.

LEMMA 5.4. The map h constructed above satisfies h\f\ — \hf\,

Proof. F o r a n y r e a l θ \f\ ^ R e (eiθ f) s o

h\f\ = hlfl ^ h^Ree*'/) - Reh(eiθf) - Reeiθhf .

Hence h\f\ ^ |fe/|. For the converse, let ft) be a complex wth root
of unity and observe that for any complex z

max {Re ωrz: r = 1, 2, , n) ̂  cos (τr/w) 121 .

Hence,

cos (7r/w)λ I /1 ^ &(sup {(Re ωrf): r = 1, , n})

= sup {Re ωr/^/: r = 1,

Letting n—> co we have ft|/| = |fe/| as required.
This completes our discussion of the proof of Theorem 5.1. We

add a comment. It seems that a more elementary proof that a space
which is an ^ >rspace for all λ > 1, is an Lp(μ) space, should be
possible. Certainly the result should not depend on the entire theory
of contractive projections for such spaces. Indeed if p = 2 the ^f2j

condition already implies the parallelogram law and this makes the
space a Hubert space. For p Φ 2 we can see that the Clarkson
inequalities are valid and these with enough finite dimensional lp-
subspaces might give a more elementary proof.



THE RANGE OF A CONTRACTIVE PROJECTION ON AN LP-SPACE 39

6* Appendix* We prove two technical results used in [1], [10].
The first is also an extension of that in [1].

LEMMA 6.1. [1]. Suppose 0 < p < co and let M be a closed subspace
of LP(X, Σ, μ). If (fn) is a sequence in M, then there exists f e M
such that S(f) = U~=i S(fn). In particular if μ is finite or M is
separable there exists f e M such that Jf = JM .L i that is, f is a function
in M of maximum support.

Proof. If f,ge Lp and a is a scalar, the zero sets {t e I : (/ -f
ag)(t) = 0} have disjoint intersection with S(f) U S(g) for differing
values of a. Since S(f) U S(g) is σ-finite, μ(S(f) U S(g) ~ S(f + ag)) =
0 except, perhaps for countably many values of a.

Assume, as we may, that \\fn\
v = 1 for all n. We define, induc-

tively, two sequences {an), (en) of positive real numbers such that, if

we write gn = aj, + -. - + ajnf An = {te X: \gn(t)\ £ εn}, and Bn =

{teX:\an+1fn+1(t)\^en/2}, then
( i ) an+ί < 2 - " and εn+1 < eJ2;
(ii) μ(S(gn) U S(fn+1) - S(gn+1)) = 0;

(iii) \ \fi\
pdμ<2~n (i = l, 2, « , rc) .

Start with αx = 1. Suppose αx, , αw; ε1? , εn^ have been chosen.

Note that MS(Λ) - S(flrw)) = 0(i = 1, - , w) so if C. = { k l : |flfn(ί)| S

s), ( IΛ Γrfj"-> 0(e-> 0 + ) for ΐ = 1, ••-, n. Also if

Thus we choose εn such that 0 < en < εn_J2, and I \fι\
pdμ < 2 n ι{i ~

1, 2, , w); then choose rj such that 1 \f%\pdμ < 2~w~1(ΐ = 1, 2, , ̂ ) ,

and an_,1 such that 0 < an+1 < 2~Λ/?), (ii) is satisfied, and an+ιη < εΛ/2.
Since Bn c D^ we also have (iii) satisfied.

By (i) (gn) converges in LP to an element / e l , and S(f) c U S(fn).
Let E = lim sup (An U J5J = Π»=i UΓ=. (>4W U 5W). Fix i and let ΛΓ >
i, then, by (iii)

\fι\
Pdμ

0 (N > « )
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Thus μiEnStft) = 0 for all i and μ(E f] \JS(fn)) = 0. We complete
our proof by showing that X~ EcS(f). If te X~ E choose the
smallest integer n such that £g \Jΐ=n (Ak U Bk), then \gn(t)\ > εn and
\<*kfk(t)\ < sk_J2 < εJ2k~n(k ^n + 1). Hence

1^(01 ^ \g«(t)\ - \an+1fn+1(t)\ \akfk{t)\

> \gn(t)\ - εn(2~i + ••• +2" t f c-*>)

Thus | / ( 0 | - Hm,^ \gk(t)\ ^ | <?„(£) I - εH > 0, and we are done.

LEMMA 6.2. [10]. Let M be a separable subspace of LP(X, Σ, μ)
(p Ξ> 1) and T a bounded linear operator on Lp. Then there is a
o-finite set Xoe Σ and a σ-subring Σo of Σ such that ΣQ consists of
subsets of Xo and LP(XO, Σo, μ) is separable, T-invariant and contains
M.

Proof. The subspace M + TM is separable, Γ-invariant and
generates a separable vector sublattice Mx of Lp. Inductively con-
struct separable vector sublattices Mn such that Mn + TMn c Mn+1.
Then cl U Mn is a separable T-invariant closed vector sublattice of
Lp. Writing Kλ = cl U Mn we have Kλ closed under all band projec-
tions Jx with x e ZΊ. Let Σ1 — {S(x): x e K,} then Σλ is a σ-subring of
Σ and if x, y e K± with xey11 then x/y is immeasurable. If (fn) is
dense in Ku f = Σ2-*\\fn\\-ί\fn\eKί and μ(S(x) - S(f)) = 0(x e Kx).
Consider Lp(S(f), Σu μ). It is easy to see that this is the closure of
the vector sublattice spanned by Kx and the functions %/-i(*fOβ] with
a positive rational. Thus, writing Xx — S(f) we have

K, c L9(Xl9 Σu μ)

with Lp(Xίy ΣL, μ) separable. Continue inductively, we obtain a sequence
ί c I ϊ C c I ^ c of (7-finite subsets of X and a sequence
Σ1(zΣ2d'''C:Σnc:-'- of σ-subrings of Σ> such that each Σn con-
sists of subsets of Xn, Lp(Xn, ΣnJ μ) + TLp(Xn, Σn, μ) c LP(Xn+1, Σn+1, μ)
and each Lp(Xn, Σn, μ) is separable.

Let KQ = cl U«=i Lp(Xn, Σn, μ). Then KQ is a separable Γ-invariant
closed vector sublattice of LP(X, Σ, μ). Define Σo = {S(f): f e KQ}
and find, as for Kl9 f e Ko such that μ(S(x) - S(f)) = 0(x e Ko). It is
routine to show that Ko = Lp(S(f), ΣQ, μ). This proves our lemma
with Xo - S(f).

Added in Proof (October 1974). In a manuscript, "A local
characterization of complex Banach lattices with order continuous
norm," submitted to Studia Math., the authors have given a necessary
and sufficient condition for a complex Banach space to admit a lattice
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structure so that it is a complex Banach lattice with order continuous
norm. The condition is automatically satisfied if the Banach space
is an Sfv>ι space for every λ > 1. This does provide an elementary
proof that such spaces are Lp-spaces.
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