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It is shown that if a closed convex subset C of a Banach
space has both the fixed point property and the conditional
fixed point property for nonexpansive mappings and C is either
weakly compact or bounded and separable, then any commut-
ing family of nonexpansive self-mappings of C has a common
fixed point. The set of common fixed points is a nonexpansive
retract of C.

Introduction. Let E be a real or complex Banach space and C
a nonempty closed convex subset of . Our purpose is to prove the
following generalization of the DeMarr-Browder-Belluce-Kirk-Lim [8,
4, 1, 2, 15] fixed point theorem:

THEOREM 1. Suppose C has both the fixed point property and
the conditional fized point property for NONerPANsive MaAPPINGS,
and C is either weakly compact or bounded and separable. Then
for any commuting family S of nonexpansive self-mappings of C,
the set F(S) of common fized points of S 1s a nonempty nonerpansive
retract of C.

(A mapping f: C— E is nonexpansive if || f(x) — f() | < |z — v ]|
for all », ye C; C has the fized point property for nonexpansive
mappings (abbreviation: FPP) if every nonexpansive f: C— C has a
fixed point; C has the hereditary fived point property for nonex-
pansive mappings (abbreviation: HFPP) if every nonempty bounded
closed convex subset of C has the FPP; finally, C has the condi-
tional fized point property for nonexpansive mappings (abbreviation:
CFPP) if every nonexpansive f: C— C satisfies

either f has no fixed points in C, or f has a fixed point in
(CFPj): every nonempty bounded closed convex f-invariant subset
of C.

This condition was introduced in [6]. A subset F of C is a non-
expansive retract of C if either F'= ¢ or there exists a retraction
of C onto F which is a nonexpansive mapping; this was introduced
in [5, 7]. For the definition of normal structure see Brodskii-Milman
[3], Kirk [12], or Belluce and Kirk [1].)

The existence of a common fixed point was established by DeMarr
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[8] when C is compact, by Belluce and Kirk [1] when C is weakly
compact and has normal structure and S is finite, by Belluce and
Kirk [2] when C is weakly compact and has complete normal struec-
ture, by Browder [4] when E is uniformly convex and C is bounded,
by Bruck [6] when C is weakly compact and has the HFPP and S
is finite, and finally by Lim [15] when C is weakly compact and has
normal structure. The principal difficulty in the noncompact case
has been proving the theorem for infinite families. In the compact
case, on the other hand, the requirement that S be commutative has
been relaxed to the assumption that S be a left reversible semigroup.
See Takahashi [17], Mitchell [16], Holmes and Lau [9, 10].

Our approach to Theorem 1 is very different from that of these
references (except [6]) in that we completely avoid the use of nor-
mal structure. The increase in generality is slight (normal structure
surely suffices for any applications) but we feel that our proof cuts
closer to the geometric structure which underlies Theorem 1. The
key to that structure is:

THEOREM 2. Suppose f:C— C is nonerpansive and satisfies
(CFP), and C is either locally weakly compact or separable. Then
F(f), the fized point set of f, is a monexpansive retract of C.

Theorem 2 was proven in [6] for the case when C is locally
weakly compact (i.e., every bounded closed convex subset of C is
weakly compact). An earlier version was announced in [5].

We shall prove Theorem 2 from the more general:

THEOREM 3. Let X be a Hausdorff topological space and S a
semigroup of mappings on X. Suppose that either (a) S is compact
in the topology of pointwise convergence or (b) X is a separable
complete metric space and S 1s equicontinuous. Then there exists
in S a retraction of X onto F(S) iff the following condition is
satisfied:

each nonempty closed S-invariant subset of X contains a

(FP): fized point of S,

or equivalently,

(FP): whenever x€ X then Cl(Sz) contains a fized point of S.

(S denotes the closure of S in X* in the topology of pointwise
convergence; a fixed point of S is a point x such that s(x) = « for
all seS; Cl denotes closure; and the set of fixed points of S is
denoted by F(S).)
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1. Proofs. First we prove Theorem 1 from Theorem 2 and a
sequence of lemmas; then we prove Theorem 2 from Theorem 3;
finally, we prove Theorem 3.

The crucial result which permits the extension of [6, Theorem
7] to infinite families is:

LEMMA 1. If C is bounded and {F,} is a descending sequence
of nmomempty monexpansive retracts of C, then [\, F, is the fixed-
potnt set of some nonexpansive r: C— C.

Proof. For each n choose a nonexpansive retraction », of C
onto F,. Choose a sequence {\,} with 0 < ,, 3.1, =1, and

(1) lim > A/2 2 =0.
n j=Enl i=n
(For example, we may take A, = 1/n! —1/(n + 1)! for n=1,2, --+.)
Put » = 3 A7
Now it is obvious that we have defined a nonexpansive mapping
r:C— C with N, F,C F(r). To prove the reverse inclusion, let x
be a fixed point of ». Then

(2) o=@ = 7@ — @l
Snln@ - r@l| = Snllne - n@ .

Now for 1 < j < m, r.(v)e F,C F; so r;r,(x) = r,(x) and

| 7i(@) — r@) | = [lri®@) — rir@) || £ [lo — ru) ] 5
for j = n, ||ri(x) — r.(2)|| = 0; finally, for j > =, || r;() — ()] = d,
the diameter of C. Thus (2) implies

e =@l = Znlle = r@ll+d 5 .

Since >)2\; = 1, this in turn implies

le —r.@ [ =d 3 N/
j=n+1 j=n
By (1), therefore, »,(xv) — x strongly as n — oo. But {F,}is descend-
ing, hence r,(x)e F, for n = m; and F, is strongly closed because
it is the fixed point set of the continuous mapping r,. Therefore,
lim, 7,(x) = « belongs to F, for m =1, 2, ---, so that F(r)c N, F..

Our approach to Theorem 1 is through intersections of non-
expansive retracts.
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LeMMA 2. Suppose C is bounded, separable, and has both the
FPP and the CFPP. Then for any family & of nonempty non-
expansive retracts of C which is directed by D, H= N {F|Fe &}
1S a nonempty nonexpansive retract of C.

Proof of Lemma 2 from Lemma 1 and Theorem 2. There is a
countable subfamily & of & such that H = N {F|Fe .~ '} (other-
wise {C\F'|Fe Z} is an open cover of C\H with no countable sub-
cover, which is impossible because C\H is a separable metric space).
Using the fact that & is directed by D we can therefore find a
descending sequence {F,} in & with N,F,=H. By Lemma 1,
H = F(r) for some nonexpansive r:C— C; since C has the CFPP,
Theorem 2 implies H is a nonexpansive retract of C; finally, since
C has the FPP, H+ .

Lemma 2 is much more difficult to prove when C is weakly
compact instead of separable.

LEMMA 3. Lemma 2 remains valid if C is weakly compact
wnstead of bounded and separable.

Proof of Lemma 3 from Lemma 2 and Theorem 3. Define
S = {s: C— C]|s is nonexpansive and H C F(s)},
S = {se S|Fc F(s) for some Fe #}.

Both S and S are convex semigroups on C: If 0 <A =<1 and s, s,
belong to S (resp. S), then s;s, and As, + (1 — \)s, belong to S (resp.
S). (For S this uses the fact that .# is directed by D.) We shall
show that F(S) = H, S is compact in the topology of weak pointwise
convergence, and S satisfies (FP). When this is done, Theorem 3
implies the existence of a retraction ecS of C onto H (which is
therefore nonempty). But since S is compact, S = S, so ¢ is a non-
expansive retraction of C onto H.

Now it is clear from the definition of S and S that Hc F(S)c
F(S). Suppose zeF(S). For each Fe. % choose a nonexpansive
retraction 7, of C onto F; then 7, S, hence r#(x) = x, hence x ¢ F,
for each Fe #. That is, F(S)c H, so H = F(S) = F(S).

Give C the weak topology, so it is compact. By Tychonoff’s
theorem C¢ is compact. But it is clear from the weak lower semi-
continuity of the norm that S is closed in C¢ hence compact in the
topology of (weak) pointwise convergence.

We finally come to the most difficult verification: That S has a
fixed point in each Cl(Sz). Now Sz = {s(x)|s e S} is convex (because
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S is convex), S-invariant (because S is a semigroup), and bounded
(because Sz C and Cis bounded). Therefore, Cl (Sz) = weak-Cl (Sx)=
strong-Cl (Sz) is nonempty, strongly closed, convex, and S-invariant.
Since S8, Cl(Sxz) is also S-invariant, so Zorn’s lemma and the
weak compactness of closed convex subsets of C imply the existence
of a minimal nonempty closed convex S-invariant subset K of Cl(Sz).
We shall show that K consists of a single point y*, which must be
a fixed point of S (and hence of S) because K is S-invariant. The
proof of the lemma will then be complete. N

It is convenient to introduce three definitions. First, if S'c S
and M is a nonempty closed convex subset of K, the S'-extension
of M is the smallest closed convex S'-invariant subset of K which
contains M.

Second, if S’ S then S’ is augmented provided for each se S’
there is at least one Fe.&# such that r,¢8 and FCF(s), and
{Fe & |rp,e S} is directed by D.

Third, a subset S’ of S is almost transitive on a subset D of K
if for each p, ¢ in D there exists a sequence {s,} S with s,(p)—
g strongly.

We make three important remarks on these definitions. First,
if M is a separable closed convex subset of K and S’ is a countable
subset of S, then the S’-extension of M is also separable. Second,
any countable subset of S is contained in a countable augmented
subset of S. These remarks are easy to verify. Finally, if D is
any countable subset of K then there exists a countable subset of
S which is almost transitive on D. To see this, first note that if
pe K then Cl(Sp) = K because Cl(Sp) is a nonempty closed convex
S-invariant subset of K, and K is minimal with respect to these
properties. Because the strong and weak closures of Sp coincide,
given any p, ¢ in D there exists {s,} C S such that 8.(p) — ¢ strongly.
Taking the union of such sequences as p and ¢ run through D yields
a countable subset of S which is almost transitive on D.

Suppose, in order to reach a contradiction, that K consists of
more than one point. Then there exists a nontrivial closed line
segment K, in K. Find a countable augmented subset S, of S which
is almost transitive on K, and let K, be the Siextension of X,.
This is possible by our preceding remarks and K, is a separable,
closed convex subset of K with K,cC K,.

In general, once a separable closed convex K, has been defined
for some n =1, choose a countable dense subset D, of K, with
D, ,c D,, and a countable augmented subset S, of S which is almost
transitive on D,, with S,_,C S,; then let K,., be the S,-extension

of K,. Thus K,,, is a separable closed convex subset of K and
K,cK,..
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Having defined the ascending sequences {K,}, {D,}, and {S,}, let
K*=ClU.K,, D*=U.D, and S*=U,S,. Obviously K* is a
separable closed convex subset of K, D* is a countable dense subset
of K*, and S* is a countable augmented subset of S which is almost
transitive on D*. Since |, K, is S*-invariant, so is K*.

Define & * = {Fe & |rpe S*}and # *NK* = {FNK*|Fe &7 *}.
Since K* is S*-invariant, for Fe & * the restriction 7;| k. is a non-
expansive retraction of K* onto the (necessarily nonempty) set
FNK* Thus &#*NK* is a family of nonempty nonexpansive
retracts of K* which is countable (because S* is countable) and
directed by D (because S* is augmented). It is tempting to apply
Lemma 2 to conclude that M {FN K*|Fe .~ *} is nonempty, but
while K* is separable we do not know that it has the FPP. How-
ever, the method of proof of Lemma 2 shows that N {FNK*|Fe & *}
is the fixed point set of a nonexpansive mapping f*: K* — K* defined
as some convex linear combination

fr= > I AR
Fes*
While K* may not have the FPP in general, it does for this par-
ticular nonexpansive mapping because f* = f|x., where

f= Z ApTr

FeF*

while C has the FFPP and the CFPP. Therefore, F(f*) #+ @. But
F(f*)=N{K*NF|FeZF"},

hence there exists y*e N {K* N F|rye S*}. Since rx(y*) = y* when
rr»€ S* and S* is augmented, therefore y* e F(S*).

But S* is almost transitive on D*; for any », ¢ in D* there
exists {s,} < S* such that s,(p) —¢. Since y* e F(S*), s, (y*) = y* for
all », hence

18a(®) — y* || = | sa(0) — 8. | = |2 — ¥*l»

so in the limit ||g — y*|| =< ||p — y*]|- Of course the symmetric in-
equality also holds, so ||¢ — y*|| = ||p — y*|| for all p, ¢ in D*. But
D* is dense in K*, hence all points of K* are equidistant from y*.
Since y* itself is in K*, all points in K* are at distance 0 from y*,
i.e., K* is a single point. This is a contradiction since K, is a non-
trivial line segment and K,c K*.

We are not aware of any shorter proof of Lemma 3, although
one is obviously desirable.
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Proof of Theorem 1 from Lemma 2, Lemma 3, and Theorem 2.
First we shall show that if s, ---, s, are commuting nonexpansive
self-mappings of C, then M, F(s;) is 2 nonempty nonexpansive re-
tract of C. The proof is by induction on =.

If » =1, then F(s,) is a nonexpansive retract of C by Theorem
2 and the assumption that C has the CFPP; F(s) # @ by the as-
sumption that C has the FPP.

Now suppose ()i, F(s;) is a nonempty nonexpansive retract of
C and s,,, commutes with s, ---, and s,. Put F, = (i F(s;) and
let » be a nonexpansive retraction of C onto F,. We claim that
F(sp0m) = M2 F(s;). The inclusion 32! F(s;) C F(s,.,7) is trivial;
to prove the reverse inclusion, suppose s,,,r(®) = . Now r(x)e F,,
and since s,,, commutes with s, ---, and s,, F, is s,.-invariant;
therefore, s,, r(x)e F,. Butx = s,,,r(x), therefore x ¢ F,. But then
(@) =2, 80 & = 8,,..7(®) = s,..(x). We have shown xze F, N F(S,:1),
80 F(s,07) = M2 F(s;).

The fixed-point set of a nonexpansive self-mapping of C is, by
Theorem 2 and the assumptions on C, a nonempty nonexpansive re-
tract of C. Thus 2! F(s;) is a nonempty nonexpansive retract of
C, which completes the induction.

Now let . be the family of the finite intersections of fixed
point sets of mappings in the commutative family S. We have just
shown that & is a family of nonempty nonexpansive retracts of
C, and & is obviously directed by 2. By Lemma 2 or Lemma 3,
depending on whether C is weakly compact or bounded and separa-
ble, N{F|Fe .} is a nonempty nonexpansive retract of C. But
this intersection is obviously F(S).

Proof of Theorem 2 from Theorem 3. We may suppose F(f) #
@. Put S = {s: C— C]|sis nonexpansive and F(f) < F(s)}. We claim
that S is a semigroup on C, F(S) = F(f), and S satisfies (FP)'.

Obviously S is a semigroup and F(f)c F(S); since feS the
reverse inclusion is also true.

For zeC, Sz is clearly nonempty, convex, and f-invariant. If
Y,.€ F'(f) then s(y,) = 9, hence

Is@) — woll = I s(@) — s | = l|& — %l ,

for all se S, therefore Sz is bounded. Since f is continuous, Cl (Sx)
is a nonempty bounded closed convex f-invariant subset of C, and
since F(f)+# @ and f satisfies (CFP), f has a fixed point in CI (Sx).
But F(f) = F(S), therefore S satisfies (FP)'.

Theorem 2 has already been proven in [6] for the case when
C is locally weakly compact, so we may assume C is separable in
the metric topology induced by the norm. Then C is a separable
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complete metric space and S is fquicontinuous, 80 Theoren:_t 3 implies
the existence of a retraction ec S of C onto F(S). Since S = S and
F(S) = F(f), ¢ is a nonexpansive retraction of C onto F(f).

Proof of mnecessity in Theorem 3. A retraction of X onto F(S)
is simply a mapping ¢: X — X with range (e) = F(S), for which ¢* =
e. Continuity of e is not required.

Suppose ec S is a retraction of X onto F(S), and suppose M is
a nonempty closed S-invariant subset of X. Then M is obviously
invariant under S, so e(M)c M. Since e is a retraction onto F(S),
also e(M)c F(S). Thus F(S)N M contains at least the set e(M)
and is therefore nonempty, i.e., (FP) is satisfied.

Proof of sufficiency in Theorem 3. Our strategy here is to
show that S is a semigroup on X and then to construct a one-
element left ideal {¢} of S; for in that case ¢ must be a retraction
of X onto F(S). To see this, observe that F(e¢) Crange (e) (true
of any mapping), range (¢)  F(S) (because se = ¢ for all s¢ S implies
e(x)e F(S) for all ze X), F(S)< F(e) (because ecS), and F(S) =
F(S) (recall X is Hausdorff). Thus range (¢) = F(e) = F(S), which
implies ¢ is a retraction of X onto F(S).

S is a semigroup under hypothesis (a) because S=S. On the
other hand, under (b) composition is jointly continuous on S x S
and since S is a semigroup, S must also be a semigroup.

It is easier to construct a one-element left ideal of S under
hypothesis (a), for by an elementary compactness-Zorn argument
there must then exist a minimal closed left ideal J of S. If z,e X
then Ju, = {j(x,)|jeJ} is compact (it is the image of the compact
set J in S under the continuous projection s —s(x,) of S into X).
Jx, is S-invariant because J is a left ideal of S; by condition (FP),
Jx, must contain some fixed point u, of S. Define I = {j e J|j(x,) = w}.
I is nonempty because u,c Jw, I is closed in S (in the topology of
pointwise convergence); and I is a left ideal of S (because J is a
left ideal and u,€ F(S)). Since I J and J is a minimal closed left
ideal of S, therefore I =J, i.e., Jx, = {u,}. We have shown that
for each z,¢ X, Ju, is a one-point subset of X. This implies that J
contains but a single mapping, which by our earlier remarks must
be a retraction of X onto F(S).

Next, suppose (X, d) is a separable complete metric space and
S is equicontinuous. Then S is also an equicontinuous semigroup
on X (this follows from [11, p. 232]). We will show that S is to-
pologically complete, then construct a one-element left ideal of S
as the intersection of a descending sequence of closed left ideals
whose diameters tend to 0.
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The topology of pointwise convergence on S can be metrized by
choosing a dense sequence {p,} in (X, d) and defining a metric o by

(3) o(s, 1) = 2‘{ 27%d(s(py), tP)/IL + d(s(py), tp.))] -

It is immediate that (S, o) is complete.
For we F(S) and &k a positive integer, define

Ny(u) = {z e X|d(s(z), u) < 1/k for all se€ S and
also for s = identity on X} .

We claim

(4) Ny(w) is a closed S-invariant neighborhood of » with
diam N, (u) < 2/k .

Indeed, N,(u) is: closed because each se S is continuous; S-invariant
because S is a semigroup; a neighborhood of % because S is equicon-
tinuous and e F(S); of diameter = 2/k because d(v, ) < 1/k for
all xe N, (u).

The crucial observation is:

if J is any closed left ideal of S, xe X, and k is a positive
(5) integer, then there exists a closed left ideal J'cJ and a
fixed-point % of S with J'z < N(u) .

We construct J’ as follows: First, Jx is S-invariant because J
is a left ideal, hence Cl(Jx) is S-invariant. By (FP), Cl(Jx) con-
tains a fixed point w of S. In particular the neighborhood N,(u)
must intersect Jx. Put J' = {e J|j(x) € N,(u)}. We have just shown
that J’ is nonempty; J’ is a closed left ideal of S because J is a
closed left ideal and N,(w) is closed in X. We have proven (5).

Now let =, n,, --- be a sequence of positive integers in which
every positive integer appears infinitely often. Inductively define
a sequence {J;} of closed left ideals of S as follows: J, = S; having
chosen, for some % =1, the closed left ideal J,_,, choose J, to be
a closed left ideal of S, J,c J,_,, and u, e F(S), to satisfy

(6) JiPa, C Ni(us) «

This is possible by (5).

Now fix a positive integer ¢. For infinitely many k, 7 = n,,
and for such %, (6) implies J,p, C N,(u;). Thus (4) implies
(7) diam J,p, < 2/k for infinitely many % .

Since the ideals J, are descending, for fixed ¢ the sequence of di-
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ameters of J,p; is nonincreasing. Thus (7) implies lim, diam J,p, =
0 for each 7. It follows from (3) that lim, diam J, = 0.

The sets J, are closed, nonempty, descending, and have p-diam-
eters tending to 0 in the complete metric space (S, p), therefore
N.J. consists of a single element e. But each J, is a left ideal of
S, hence so is MN.J. = {¢}. By our initial remarks, ¢ must be a
retraction of X onto F(S).

Proof of equivalence of (FP) and (FP). First, (FFP) implies
(FP) because a nonempty closed S-invariant set M contains CI (Sx)
for each we¢ M, and hence a fixed point of S if (FP) is satisfied.

Conversely, under either hypothesis (a) or (b), Cl(Sx) is S-in-
variant for each ¢ X. (In case (a), Cl (Sx) = Sz because S compact
implies Sx compact; in case (b), Sz is S-invariant and each se S is
continuous.) If (FP) holds then Cl(Sxz) must contain a fixed point
of S, so (FP) holds.

2. Examples and remarks.

ExaMpPLE 1. Some hypothesis such as (CFP) is necessary to
guarantee the conclusion of Theorem 2. We give an example of a
bounded separable closed convex C and a nonexpansive f:C—C
whose fixed point set is not a nonexpansive retract of C.

Let C be the closed unit ball in the continuous-function space
C[0, 1} and let 2:[0, 1] —[0, 1] be a continuous function for which
) =1 for 1/2<t¢t =<1 but 2() <1 for 0 <¢<1/2. Define f by
Sf(@)(t) = 2(t)x(t). Obviously f maps C into C and is nonexpansive,
and F(f) ={xeC|at) =0for 0 <t <1/2}. Nevertheless, there does
not exist a nonexpansive retraction of C onto F(f). To see this,
let z, denote the constant function 1/2. If F(f) were a nonexpansive
retract of C, there would exist y, ¢ F with ||y, — y|| < ||, — ¥ || for
all ye F(f). But since %,(1/2) =0, for some ¢ (1/2 1) we have
y.(t;) < 1/2. Choose ye F(f) with y() =0 for all ¢ and y(t,) = 1.
Obviously [[#, — vl = 1/2, but ||y, — ¥l = |v.(t) — y(t) | > 1/2.

ExAMPLE 2. On the other hand, (CFP) itself is not a necessary
condition for F(f) to be a nonexpansive retract of C. Consider the
set C of the previous example and define g: C — C by g(®)() = t-2(t).
Then F(g) consists of only the zero mapping, and is obviously a
nonexpansive retract of C; but {x e C|x(1) = 1} is a bounded separable
closed convex g-invariant subset of C which does not contain a fixed
point of g¢.

REMARK 1. If F(f)+ @&, the nonexpansive retraction e con-
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structed in Theorem 2 can be chosen to satisfy: Every closed convex
Jf-invariant subset of C is also e-invariant. This is because the proof
of Theorem 2 still works if we set

S = {s: C— C]|s is nonexpansive and every closed convex f-invariant
subset of C is also s-invariant} .

The existence of a retraction having this additional property is
easily seen to be equivalent to (CFP).

REMARK 2. The device of forming a convex linear combination
of mappings r = 3\, (not necessarily nonexpansive retractions)
and showing F(r) = N, F(r,) has been used in [6], [14], and espe-
cially [13]. We do not know whether (1) is really needed to prove
Lemma 1.

REMARK 3. It is an open question whether the commutativity
of S in Theorem 1 can be replaced by the assumption that S is a
left reversible semigroup (i.e., that any two right ideals of S in-
tersect). It is interesting to note that if & is a family of nonempty
nonexpansive retracts of C which is linearly ordered by D, then
S = {r|r is a nonexpansive retraction of C onto some Fe. 7} is a
left reversible semigroup.

REMARK 4. The relationships among the FPP, the HFPP, and
the CFPP are unknown, except for the trivial implication HFPP —
CFPP. This is remarkable, because the most general sufficiency
condition is still that of Kirk [12]: C has the FPP if C is weakly
compact and has normal structure. Since these properties are in-
herited by closed convex subsets, C also has the HFPP and the
CFPP.

REMARK 5. We have stipulated in Lemma 2 that C is bounded
because this is necessary to apply Lemma 1, but also because it is
not clear that a set having the FPP must be bounded.

REMARK 6. The method used to prove Lemma 3 also establishes:

ProrosiTiON. If C is locally weakly compact and has the CFPP
and Z is a family of nmonexpansive retracts of C directed by D,
then N{F|Fe %} is a nonexpansive retract of C.

Cf course, the intersection may be empty. In [6] we proved
the proposition under the assumption that each Fe & is weakly
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closed (but without assuming C has the CFPP). The distinction is
sharp, for it was ewxactly the uncertainty over the compactness
properties of the fixed point set of a nonexpansive mapping which
caused such a delay in the generalization of the Belluce-Kirk theo-
rem to infinite families. That uncertainty continues, Lemma 1 not-
withstanding.

REMARK 7. It is clear that a nonexpansive retract of C is
pathwise connected. Even more is true (6, Theorem 3]): A nonexpan-
sive retract of C is metrically convex. Thus in Theorem 1 the com-
mon fixed-point set F(S) is metrically convex.

REMARK 8. We wish to thank Professor W. A. Kirk for point-
ing out an oversight in the proof of Lemma 3 in the first version
of this paper.

Added in proof. Since this paper was submitted, T. C. Lim
has proven the equivalence of normal structure and complete normal
structure for weakly convex sets (Characterizations of normal struc-
ture, Proc. Amer. Math. Soc., 43 (1974), 313-319). Thus the problem
of whether a lgft reversible semigroup of nonexpansive self-mappings
of a weakly compact convex set having normal structure has a fixed
point has been settled in the affirmative. We still do not know
whether normal structure can be replaced by HFPP.

Also, Lemma 1 is true without the hypothesis that C is bounded.
The difference is only technical, involving more stringent restrictions
on {\,.}.

REFERENCES

1. L. P. Belluce and W. A. Kirk, Fized-point theorems for families of contraction
mappings, Pacific J. Math., 18 (1966), 213-217.

2. , Nomexpansive mappings and fized-points in Banach spaces, Illinois J.
Math., 11 (1967), 474-479.

3. M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk
SSSR (N.S.), 59 (1948), 837-840.

4. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat.
Acad. Sci. U.S.A., 54 (1965), 1041-1044 .

5. R. E. Bruck, Jr., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc.,
76 (1970), 384-386.

6. , Properties of fizxed-point sets of nonexpansive mappings, to appear Trans.
Amer. Math. Soc., 179 (1973), 251-262.

7. D. G. DeFigueiredo and L. A. Karlovitz, On the extension of contractions on nor-
med spaces, Nonlinear Functional Analysis, Proc. Symp. in Pure Math., 18 part I,
American Math. Soc., Providence, 1970.

8. R. E. DeMarr, Common fixed-points for commuting contraction mappings, Pacific
J. Math., 13 (1963), 1139-1141.




A COMMON FIXED POINT THEOREM 71

9. R. D. Holmes and A. T. Lau, Asymptotically nonexpansive actions of topological
semigroups and fized points, Bull. London Math. Soc., 3 (1971), 343-347.

10, ————, Nonexpansive actions of topological semigroups and fized points, J.
London Math. Soc., (2), 5 (1972), 330-336.

11. J. L. Kelly, General Topology, Van Nostrand, Princeton, 1955.

12. W. A. Kirk, 4 fized point theorem for mappings which do not increase distances,
Amer. Math. Monthly, 72 (1965), 1004-1006.

18. ————, A fized point theorem for mappings with ¢ nonexpansive iterate, Proc.
Amer, Math. Soc., 29 (1971), 294-298.
14, ———, On successive approximations for nonexpansive mappings in Banach

spaces, Glasgow Math. J., 12 (1971), 6-9.

15. T. C. Lim, A fized point theorem for families of monexpansive mappings, to
appear Pacific J. Math.

16. T. Mitchell, Fized points of reversible semigroups of monexpansive mappings,
Kodai Math. Sem. Rep., 22 (1970), 322-323.

17. W. Takahashi, Fized point theorem for amenable semigroup of nonerpansive
mappings, Kodai Math. Sem. Rep., 21 (1969), 383-386.

Received July 6, 1973. Partially supported by NSF grants GP-30221 and GP-38516.

UNIVERSITY OF SOUTHERN CALIFORNIA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by Intarnational Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 53, No. 1 March, 1974

Martin Bartelt, Strongly unique best approximates to a function on a set, and a finite

SUDSEL TRETEOS . . .« v oot e e e 1
S. I. Bernau, Theorems of Korovkin type for L-spaces........................... 11
S. J. Bernau and Howard E. Lacey, The range of a contractive projection on an

Lp-SPace . ....oooo 21
Marilyn Breen, Decomposition theorems for 3-convex subsets of the plane . . . ...... 43
Ronald Elroy Bruck, Jr., A common fixed point theorem for a commuting family of

NONEXPANSIVE TAPPINGS « + o o v e e ettt et ettt et e et aaieee e 59
Aiden A. Bruen and J. C. Fisher, Blocking sets and complete k-arcs ............... 73
R. Creighton Buck, Approximation properties of vector valued functions . .......... 85
Mary Rodriguez Embry and Marvin Rosenblum, Spectra, tensor products, and

linear operator eqUALIONS . ... ...........uuuuuuiiu i, 95
Edward William Formanek, Maximal quotient rings of group rings................ 109
Barry J. Gardner, Some aspects of T-nilpotence ...................ccciiiiiio... 117
Juan A. Gatica and William A. Kirk, A fixed point theorem for k-set-contractions

defined in @ CONe. ... .. ... e e 131
Kenneth R. Goodearl, Localization and splitting in hereditary noetherian prime

FIILZS e e e et et e e et e e e e e e e e e 137

James Victor Herod, Generators for evolution systems with quasi continuous
TFAJECTOTIOS . o o v o ettt e e e et e e e e e et e e et e e e et 153

C. V. Hinkle, The extended centralizer of an S-set .............
I. Martin (Irving) Isaacs, Lifting Brauer characters of p-solvabl

Bruce R. Johnson, Generalized Lerch zeta function . . .........
Erwin Kleinfeld, A generalization of (—1, 1) rings ............
Horst Leptin, On symmetry of some Banach algebras . . .......|
Paul Weldon Lewis, Strongly bounded operators ..............

Arthur Larry Lieberman, Spectral distribution of the sum of self
OPEFALOTS .\ i ettt et e e e e e ettt

I. J. Maddox and Michael A. L. Willey, Continuous operators o
spaces and matrix transformations . .....................

James Dolan Reid, On rings on groups ......................
Richard Miles Schori and James Edward West, Hyperspaces of

William H. Specht, A factorization theorem for p-constrained g
Robert L Thele, Iterative techniques for approximation of fixed

nonlinear mappings in Banach spaces ...................
Tim Eden Traynor, An elementary proof of the lifting theorem . .
Charles Irvin Vinsonhaler and William Jennings Wickless, Com,

decomposable groups which admit only nilpotent multiplic
Raymond O’Neil Wells, Jr, Comparison of de Rham and Dolbe

proper SUrjective mappings .. .........ueeeueenennnnnn.
David Lee Wright, The non-minimality of induced central repre
Bertram Yood, Commutativity properties in Banach *-algebras .


http://dx.doi.org/10.2140/pjm.1974.53.1
http://dx.doi.org/10.2140/pjm.1974.53.1
http://dx.doi.org/10.2140/pjm.1974.53.11
http://dx.doi.org/10.2140/pjm.1974.53.21
http://dx.doi.org/10.2140/pjm.1974.53.21
http://dx.doi.org/10.2140/pjm.1974.53.43
http://dx.doi.org/10.2140/pjm.1974.53.73
http://dx.doi.org/10.2140/pjm.1974.53.85
http://dx.doi.org/10.2140/pjm.1974.53.95
http://dx.doi.org/10.2140/pjm.1974.53.95
http://dx.doi.org/10.2140/pjm.1974.53.109
http://dx.doi.org/10.2140/pjm.1974.53.117
http://dx.doi.org/10.2140/pjm.1974.53.131
http://dx.doi.org/10.2140/pjm.1974.53.131
http://dx.doi.org/10.2140/pjm.1974.53.137
http://dx.doi.org/10.2140/pjm.1974.53.137
http://dx.doi.org/10.2140/pjm.1974.53.153
http://dx.doi.org/10.2140/pjm.1974.53.153
http://dx.doi.org/10.2140/pjm.1974.53.163
http://dx.doi.org/10.2140/pjm.1974.53.171
http://dx.doi.org/10.2140/pjm.1974.53.189
http://dx.doi.org/10.2140/pjm.1974.53.195
http://dx.doi.org/10.2140/pjm.1974.53.203
http://dx.doi.org/10.2140/pjm.1974.53.207
http://dx.doi.org/10.2140/pjm.1974.53.211
http://dx.doi.org/10.2140/pjm.1974.53.211
http://dx.doi.org/10.2140/pjm.1974.53.217
http://dx.doi.org/10.2140/pjm.1974.53.217
http://dx.doi.org/10.2140/pjm.1974.53.229
http://dx.doi.org/10.2140/pjm.1974.53.239
http://dx.doi.org/10.2140/pjm.1974.53.239
http://dx.doi.org/10.2140/pjm.1974.53.253
http://dx.doi.org/10.2140/pjm.1974.53.259
http://dx.doi.org/10.2140/pjm.1974.53.259
http://dx.doi.org/10.2140/pjm.1974.53.267
http://dx.doi.org/10.2140/pjm.1974.53.273
http://dx.doi.org/10.2140/pjm.1974.53.273
http://dx.doi.org/10.2140/pjm.1974.53.281
http://dx.doi.org/10.2140/pjm.1974.53.281
http://dx.doi.org/10.2140/pjm.1974.53.301
http://dx.doi.org/10.2140/pjm.1974.53.307

	
	
	

