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MAXIMAL QUOTIENT RINGS OF GROUP RINGS

EDWARD FORMANEK

Let F[G] be the group ring of a group G over a field
F, and 4 the subgroup of G consisting of those elements with
only finitely many conjugates. Let Q(R) denote the maximal
(Utumi) quotient ring of a ring R. This paper proves: (1)
If H is a subnormal subgroup of G, Q(F[H]) is naturally
embedded as a subring of Q(F[G]). (2) Q(F[4]) contains the
center of Q(F[G]). (8) If F[G] is semiprime with center C,
Q(C) is the center of Q(F[G]). These results are analogues
of theorems of M. Smith and D.S. Passman for the classical
(Ore) quotient ring.

1. Introduction. Rings are associative and have a unit, and
modules are unitary. Group rings will always be over fields, and
we follow the definitions and notation of [5] for group rings and
of [3] for quotient rings. In particular, if F[G] is the group ring
G over F, then

4 = A(G@) = {g € G: g has finitely many conjugates};
4T = 47(G) = torsion subgroup of G;
0: F[G] — F[4] is the natural projection.

If Ris a ring, Q = Q(R) is the maximal quotient ring of R.

There are many quotient rings which can be associated with a
ring R. The two which have received the greatest attention are the
classical (Ore) quotient ring and the maximal (Utumi) quotient ring.
The classical quotient ring has a relatively straightforward description,
but it is only defined for rings which satisfy the so-called Ore con-
dition. In contrast the maximal quotient ring is less easy to describe
but is defined for all rings. In both cases there are distinct notions
of left and right quotient rings and we will always consider left
quotient rings.

For group rings the classical quotient ring has been studied by
Herstein and Small [2], Passman [5, 6], M. Smith [7], and P. F. Smith
[8], and the maximal quotient ring has been studied by Burgess [1].

This paper investigates the relationship of the maximal quotient
rings of group rings, subgroup rings, and the centers of group rings.
The object is to obtain for the maximal quotient ring analogues of
theorems of Passman and M. Smith on the classical quotient ring.
Their techniques are used for the group ring arguments while the
quotient ring arguments reflect the formalism of the maximal quotient
ring.
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If R is a subring of S, there is in general no relation between
Q(R) and Q(S). Thus to say that Q(R) is a subring of Q(S) for a
given R and S has little meaning unless accompanied by a precise inter-
pretation, and this will be given in the body of the paper. Modulo
this interpretation, the main results are summarized by the following
theorem.

THEOREM. Let F[G] be a group ring with center C.

(1) If H is a subnormel subgroup of G, Q(F[H]) ts a subring
of QFIG]).

(2) Q(F[4]) contains the center of Q(F[G]).

(38) If FIG] is semiprime, Q(C) is the center of Q(F[G]).

I do not know if the hypothesis that F[G] be semiprime is
required in (3). Passman [6] has proved the analogue of (3) for the
classical quotient ring without this hypothesis.

2. Dense ideals and the maximal quotient ring. With each
ring R is associated a larger ring @ = Q(R), called the maximal quo-
tient ring of R. There are several equivalent constructions of @.
We will use the original one which is based on dense ideals and is
due to Utumi [9, see 3, p. 96-99].

A left ideal D of R is dense if for each a ¢ R the right annihilator
of Da™' is zero, where Da™' = {re Rirac D}. (Note that if a is
invertible, Do has the usual meaning.) Some of the basic properties
of dense left ideals are (see [3, p. 96-98]):

(1) If D, is dense and D, & D, then D, is dense.

(2) If Dis dense and ¢ € R, then Da™" is dense.

(3) If D, and D, are dense, so is D, N D,.

(4) If D and D, are dense and f:D,— R is a homomorphism,
then f7'(D,) is dense.

(5) If R is commutative, D is dense iff it has zero annihilator.

The maximal (left) quotient ring of R is the set of all pairs
(f, D) where D is a dense left ideal of R and f:D— R is a homo-
morphism of left R-modules, modulo the equivalence relation (f,,
D) ~ (f,, Dy if f, and f, agree on D, N D,. The sum and product
of (f,, D) and (f,, D,) are represented by the homomorphisms f, +
faDiND,—R, f.f,: f7(D)— R. Each a e R defines 2 homomorphism
T..R— R by T, (r) =%a and the map o+ T, identifies R with a
subring of Q.

If R is a subring of S, then Q(R) is not in general a subring
of Q(S) and in general there is little relation between Q(R) and Q(S).
However, there is a natural attempt to define a homomorphism
Q(R) — Q(S) and when it succeeds it is automatically an injection



MAXIMAL QUOTIENT RINGS OF GROUP RINGS 111

of rings and then Q(R) can be considered a subring of @(S). Namely,
if f:D— R represents an element of Q(R), one tries to extend f
to an S-homomorphism f,: SD— S. f, is unique if it exists but in
general it does not exist. Even if f, exists, SD may not be a dense
ideal of R. If it happens that for every (f, D)e Q(R), SD is dense
in S and the extension f, exists, then (f,, SD)c Q(S) and the map
(f, D)— (f,, SD) identifies Q(R) with a subring of Q(S). It turns
out that this procedure works at least for some subrings of group
rings.

3. Dense ideals in group rings.

THEOREM 1. Let H be a normal subgroup of G. If D is a dense
ideal of F[H], then F[G]D is a dense left ideal of F[G].

Proof. Leta =ag9, + - + a,9,¢€ F[G] where ;€ F, a, # 0, g, €
G. We have to show that the right annihilator of (F[G]D)a™" in
F[G] is zero. But for each a,g,

(FIG]D)a.9)™" = F[G]Dg;* 2 9.Dg:" .

D is dense in F[H] so each g¢,Dg;* is dense in F[H] since con-
jugation by g, is an automorphism of F[H]. Thus

(FIGID)™ 2 N(FIGIDNe.9)" 2 Ng. Dy = J,

where J is dense in F[H] since it is a finite intersection of dense
left ideals of F[H]. J has zero right annihilator in F[H] so it has
zero right annihilator in F[G] since F[G] is a free left F[H]-module.
Hence (F[G]D)a™" also has zero right annihilator which shows that
F[G]D is dense.

REMARK., Theorem 1 is false if H is not normal in G. For
example, let G be the free group generated by ¢ and % and let H
be the subgroup generated by h. Then D = F[H](h — 1) is dense
in F[H] but D' = F[G]D = F[G}(h — 1) is not dense in F[G]. E.g.
D(g—1)" =0 since g — 1 and 7 — 1 do not have a common left
multiple. In this case F[H] is a commutative domain and Q(F[H])
is just its classical quotient ring, a field. But no nonunit of F[H]
becomes invertible in Q(F[G]).

Assume now that H is normal in G and let {g,} be a set of coset
representatives of H in G. If f:D-— F[H] represents an element
of Q(F[H]), then F[G]D = ®¢,D, a direct sum of abelian groups, so
defining f: F[G]D — F[G] by f(C 9.d,) = >, 9.1 (d,) gives a well-defined
map. To verify that f is in fact F[G]-linear it suffices to show that
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if_a e F[G], g; is a coset representative, and de D, then f(ag.d) =
af(g.d). Letting ag, = >, g;a;, where a; € F[H] (a finite sum), we have

flag.d) = (3 9,a,d) = 3 9;f(a,d)
= 3. 9,0;f(d) = ag.f(d) = af(g.d) .

It is clear that f — f defines a ring monomorphism of F[H] into
F[G] which is natural. We summarize this below, noting that it is
enough for H to be subnormal in G.

THEOREM 2. Let H be a subnormal subgroup of G. Then Q(F[H])
8 natz_wally identified with a subring of Q(F[G]) via the map (f,
D) —(f, F[G]D), where f: D— F[H] represents an element of Q(F[H]).

From now on we will consider Q(F'[H]) a subring of Q(F[G]) when
Theorem 2 applies. If G is abelian (or more generally, nilpotent)
this means that Q(F[G]) contains Q(F[H]) for every subgroup H of G.

4. The center of Q(R). Suppose f: D— R represents a central
element of Q(R). Then f commutes with the image of B in Q(R),
namely with all the homomorphisms T,, a € R, where T,: R— R is
defined by T,.(r) = ra. fT,is defined on 7;°(D) = Da™* and T,f is
defined on D. Since f is central fT, and T,f agree on DN Da™.
Hence for any ae R and de DN Da™*

f(da) = fTyd) = T.f(d) = f(da .

LEMMA 3. Suppose f:D— R represents a central element of
Q(R). Then f can be extended to a map f: DR— R by

fda, + -+ +d,a,) = fd)a, + -+ + fld.)a,

ford, ---,d,eD,a, ---,a,c R. Hence every central element of Q(R)
18 represented by a map f: D— R where D is a two-sided ideal and
S is @ homomorphism of R-bimodules—i.e., f(rds) = rf(d)s for r, s€
R,deD.

Proof. The ony problem is to show that the extension of f is
well-defined-we must show that if > d,a; = 0, then 3 f(d,)a;, = 0.
Suppose > d;a; = 0 and let E be the dense left ideal E = N D(d.a,)".
If be E, then bd, e D, bd,a, € D, so

0 = f(Xbdia;) = 3. f(bd.a)) = 3 f(bd)a; = b 3 fd)a .

Hence 3, f(d,)a; = 0, since it is a right annihilator of the dense left
ideal E.
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Returning to group rings, the center of F[G] is the set of
finite sums >, x,0 which are constant on conjugacy classes and hence
is a subring of F[4]. Since 4 is normal in F[G], Q(F'[4]) is a subring
of Q(F[G]) and it is reasonable to suppose that it contains the center
of Q(F[G]). We will show this but first we need some preliminaries
on 6: f|G] — F[4].

Let {g.} be a set of coset representatives of 4 in G, with ¢, =
1. If a=a, + g, + -+ + g,a;,, where a,c F[4], then 6(gi'a) = a..
From this the following lemma is routine (see [1, 4.5-4.6] for more
general results).

LEMMA 4. Let D be a left ideal of F[G]. Then

(1) 0(D) s a left ideal of F[4].

(2) FIG]o(D) =2 D.

(3) If D is demnse in F|[G], 6(D) is dense in F[4].

(4) If D is a two-sided ideal, so are (D) and F(G)I(D).

The next result has had widespread use in the study of group
rings.

LEMMA 5. (M. Smith [7, Lemma 2.3], [5, Lemma 1.3]). Suppose
a, b, ¢, de F[G] and agb = cgd for all ge G. Then ad(d) = ci(d).

LEMMA 6. Any central element of Q(F[G]) can be represented
by @ map f:D— F[G] where D is a two-sided ideal of F[G], (D) =
D, and f(6(D)) S F[4].

Proof. By Lemma 3, any central element can be represented by
a bimodule homomorphism f: D— F[G], where D is a two-sided ideal
of F[G], so we will be done if we can extend f to a homomorphism
fi: D, — F[G], where D, = F[G]0(D) and f.(0(D)) & F[4].

Suppose a € D, and let @ = a, + g0y + ++ = + 910y, f(a) = b, + g:b, +
«oo + g,b, where a,, b, € F[4], (possibly some a;, b, are zero). 6(D) is
the set of all such a,, as a varies over D, so if we can define
[ FIG1o(D) — F[G] by f.(ga,) = gb, for any ¢ € G, this f, will be the
required extension. The only difficulty is to verify that f, is well-
defined-it will then automatically be an F[G]-module homomorphism,
extend f, and map the dense ideal (D) of F[4] into F[4].

This amounts to showing that if @, = 8(a) = 0, then b, = 6(f(a)) =
0. To see this, suppose 6(a) = 0 and let de D. Then for any g G

dgf(a) = f(dga) = f(d)ga since f is a bimodule homomorphism.
do(f(a)) = f(d)0(a) = 0, by Lemma 5.
D6(f(a)) =0, so 6(f(a)) = 0 since D is dense in F[G] .
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Since 4 is normal in G, Theorem 2 says that Q(F[4]) is (identified
with) a subring of Q(F[G]). In the notation of Lemma 6, f,|6(D):
(D) — F'[4] is identified with f,: F[G]0(D) — F[G] which represents
the same element of Q(F[G]) as f: D— F[G]. Thus we have shown:

THEOREM 7. The center of Q(F[G]) 1s a subring of Q(F[4]).

5. Semiprime group rings. In this section, the following data
is fixed. F is a field, G is a group, 4 = 4(G). We assume that
47(G) has no elements of order p if F' has characteristic p. This is
equivalent to assuming that F[G] is semiprime by a theorem of
Passman [5, Theorem 3.7]. It implies that F[H] is semiprime whenever
H is a subgroup of 4. Let C denote the center of F[G].

Passman used the following lemma in his work on the classical
quotient ring of group rings. It plays a similar role with respect
to the maximal quotient ring. Because we have the additional hy-
pothesis that F[H] is semiprime we get the additional conclusion
(over [6]) that F[Z]'F[H] is semisimple.

LEMMA 8. (Passman [6, Lemma 1]). Let HS 4 be a finitely
generated normal subgroup of G. Then
(1) H has a torsion-free centiral subgroup Z of finite indes
which s normal in G.
(2) The ving of froctions FIZ7'F[H] obtaired by inverting
the monzero elements of the central domain FlZ] is a finite-dimen-
1

veits
. 3 = —1 7 ]
stonal semisimule algebra over the field FIZTHIZ].

LEMMA 9. Let [0 be a G-twvariant ideal of F[4d]l. Then
InC=0.

Proof. Let HZ 4 be a finitely generated normal subgroup of
Gwith I, =1IN F[H] # 0, and let Z beasin Lemma 8, A = F{Z]| 'F[H],
J=AI. G acts on A which is semisimple Artinian and J is a G-
invariant ideal of A, so J is generated as an A-module by a G-
invariant idempotent ¢ = a/b, where ac I, be F[Z], b+ 0. Let b =
b, by, +++, b, be the finitely many G-conjugates of b. Then

¢ =alb=aby, --b,/b, ---b
e and b, --- b, are centralized by G, so ab,--- b, is central in F[G].

Thus 0 £ ¢b,---b,cINC, as required.

Lemma 10. Suppose D is a dense ideal of C and f:D—C isa
C-homomorphism. Then
(1) FIG]D is dense in F[G].
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(2) f has a unique extension to an F|G]-homomorphism
f: FIG]D — FIG].
(3) f represents a central element of Q(F[G)).

Proof. (1) Since D is central (F[G]D)a™" 2 F[G]D for all ac
F[G] so to show that F[G] is dense in F[G] it suffices to show that
A = Anng(D) = 0. But if A 0, Lemma 9 says that AnC =0,
which contradicts the hypothesis that D is dense in C.

(2) If f has such an extension f it is clearly unique and is
defined by

f(a1d1 + -+ akdlc) = alf(dl) o aluf(dlc)

for a,, -+-, a,€ F[G], d,, ---, d, € D.

The only problem is to show that f is well-defined-we must show
that if 3, a,d, =0, then 3, f(a,)d, = 0. Suppose 3, a,d, =0 and let
deD. Since d is central

A2 a.f(d)) = X edf(d) = X a.f(dd;)
=2l a.f(dd) = (X ad)f(d)=0.

Hence > a,f(d,) = 0, since it annihilates the dense ideal F[G]D on
the right.

(3) First note that f: F{G]D— F[G] is 2 bimodule homomorphism
and suppese g: D, — F[G] represents any element of Q(F[G]). Then
for any de D and d,c D,

fo(dd)) = f(dg(d) = f(d)g(d,) = 9(F(d)d.) = gf(dd,) .

Thus fg and ¢f are defined and agree on DD,. It is easy to see that
DD, is a dense left ideal of F[G], so fg and ¢gf represent the same
element of G(F[G]) and so f is central in Q(F[G]).

As in §8, (f, D)— (f, FIG]D) is a ring momomorphism and we
obtain a result analogous to Theorem 2.

THEOREM 11. Let F[G] be a semiprime group ring with center
C. Then Q(C) 1is naturally teentified with a central subring of
QFIG]) via the map (f, D)— (f, FIG]D).

Now that we can consider Q(C) a subring of the center of Q(F[G])
the final step is to show that it is the whole center. We already
know that the center of Q(F[H]) is contained in Q(F[4]), by Theorem 7.

LemmaA 12. If deC, Ann,,(d) = F[Gle for some central idem-
potent e of F[G].
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Proof. Let B = Anngy(d), A = Anny(B). A is an annihilator
ideal of F[G] and de A so a theorem of M. Smith [7, Corollary 5.6]
[5, Theorem 25.4] says that there is a central idempotent ¢ of F[G]
such that ec A and de = d. Then B = Anng(d) = F[G](1 — e).

LEmMA 18. Let D be a two-sided ideal of F[4] which is demnse
as a left ideal in F[4] and invariant under conjugation by elements
of G. Then DN C s dense in C.

Proof. Since C is commutative, to show that DN C is dense in
C it suffices to show that Ann/(DNC)=0. Let ceC,¢c+ 0. Then
Ann;s(c) = F[G]e for some central idempotent ¢ of F[G] by Lemma
12. Since D is dense, D(1 —¢) = 0 and by Lemma 9, D1 —e)NC
contains a nonzero d. Now dc¢ == 0 since otherwise we would have
de =d,d(l — ¢) = d, whence d = 0.

Now consider a central element of Q(F[G]). By Lemma 6, it is
represented by a map f: D— F[G] where D is a two-sided ideal of
F[G], 6(D) < D, and f(6(D)) = F[4]. By Theorem 7 and the remarks
preceding, it lies in Q(F[4]) where it is represented by f|6(D) : (D) —
F[4]. 6(D) satisfies the hypothesis of Lemma 18, so (D) N C is dense
in C. f maps DN C into C since f(97'dg) = g~'f(d)g for all de D.

Thus f|(0(D) N C): (D) N C — C represents an element of Q(C) and we
have shown

THEOREM 14. Let F[G] be a semiprime group ring with center
C. Then Q(C) is the center of Q(F[G]).
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