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The purpose of this paper is to introduce a localization
corresponding to any collection X of maximal right ideals in
an hereditary noetherian prime ring E. The localized ring
Ry has only as many simple right modules (up to isomorphism)
as R has simple right modules of the form R/M, where M€ X.
In particular, for a single maximal right ideal A the ring R,
has exactly one simple right module (up to isomorphism). These
localizations satisfy a globalization property in that a sequence
of R-homomorphisms is exact if and only if it is exact when
localized at each maximal right ideal of R. These localizations
are also the most general possible, for it is shown that every
ring between R and its maximal quotient ring has the form
Ry for suitable X. The relationship between these localiza-
tions and other previously introduced localizations for heredi-
tary noetherian prime rings is discussed, and then this
localization technique is applied to the question of when an
hereditary noetherian prime ring R can be a splitting ring
(i.e., a ring such that the singular submodule of every right
module is a direct summand). Such a ring is shown to be an
iterated idealizer from a ring over which all singular right
modules are injective. Finally, hereditary noetherian prime
splitting rings are characterized by the properties of possessing
a minimal two-sided ideal and having all faithful simple right
modules injective.

All rings in this paper are associative with unit, and all modules
are unital. We use the abbreviation HNP ring to stand for a ring
R which is right and left hereditary, right and left noetherian, and
prime. We shall need a number of standard properties of an HNP
ring R, which we now list for reference. It follows from [18,
Theorem 4] that every cyclic singular R-module is artinian, and in
particular every proper factor ring of R is right and left artinian.
It also follows that every cyclic singular R-module has 2 composition
series, and consequently every singular R-module has essential socle.
We note from [5, Lemma 1.1] that the module R, has nonzero socle
if and only if R is simple artinian. According to [5, Theorem 2.1],
all finitely generated nonsingular right R-modules are projective; in
particular, this holds for finitely generated R-submodules of the
maximal quotient ring of R. As a consequence of this result, we
note that all nonsingular right R-modules must be flat.

Our notation for singular submodules coincides with that used
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in [8]: ““(R) stands for the set of essential right ideals of R, Z(A)
or Zx(A) stands for the singular submodule of an R-module A, and
S°R stands for the maximal right quotient ring of R. Also, we use
E(A) to denote the injective hull of a module A.

2. Localization. Given any collection X of maximal right ideals
of an HNP ring R, we define &% to be the set of those essential
right ideals I of R for which R/I has no composition factors iso-
morphic to any of the modules R/M, where Mec X. [We do allow
the possibility that X is empty, in which case .4 = .9”(R).] We check
that .&% satisfies the right-ideal analogues of [7, Theorems 2.1, 2.5],
hence we obtain an idempotent kernel functor Ty (i.e., a torsion
theory) defined as follows:

Ty(A) ={xec A|2l =0 for some Iec.%%}.

Note that since &% & .¢“(R), all nonsingular right R-modules are
T .-torsion-free.

To each right R-module A4 is associated a module of quotients
with respect to Ty [7, §3], and we shall denote this module by A,.
The assignment of A, to A is the object map of the localization
functor associated with Ty, which we refer to as localization at X.
Since R, is Ty-torsion-free, the ring of quotients R is a quotient
ring of R and so may be identified with a subring of S°R:

R, ={xeSR|x2I < R for some [c.%4}.

PRrROPOSITION 1. Let R be an HNP ring, X any collection of
maximal right ideals of R.

(a) Every right Ry-module is Ty-torsion-free (s an R-module).

(b) IR, = Ry for every I[e 5%.

(¢) Localization at X is naturally equivalent to the functor

(—) @: Ex.

Proof. According to [7, Theorem 4.3], it suffices to show that
localization at X is right exact and commutes with direct sums.
These properties follow from [7, Theorems 4.4, 4.5] because R is
right noetherian and right hereditary.

We need to know that the ring R, is again an HNP ring. This
is in fact true of any ring between R and S°R, as the next propo-
sition shows.

PROPOSITION 2. Let R be an HNP ring, and let T be any subring
of S°R which contains R.
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(a) T is an HNP ring with maximal quotient ring S°R.

(b) =T and Ty are both flat, and the natural map TQr T — T
1S an 1S0morphism.

(¢) For any right (or left) T-modules A and B, Hom, (4, B) =
Hom, (4, B).

(d) For any right T-module A, the natural map AQ,T— A
18 an isomorphism, and similarly for left T-modules.

(e) Zy(A) = Zy(A) for any T-module A.

Proof. (a) Clearly S°R is the maximal right and left quotient
ring of T, whence T is right and left finite-dimensional. Since
[10, Proposition 1.6] shows that R is right and left hereditary, [16,
Corollary 2 to Theorem 2.1] says that R is also right and left
noetherian. Finally, since R is a prime ring which is essential in
T, we infer that 7 must be prime.

(b) is [10, Proposition 1.5].

(¢) and (d) follow from (b) by [17, Corollary 1.3].

(e) follows from (a) and (c) and the fact that over either ring,
Z(A) is the intersection of the kernels of all homomorphisms from A
into the maximal quotient ring S°R. (See [8, Proposition 1.18].)

The usefulness of localization at X is due to the fact that the
ring R has only as many isomorphism classes of simple right modules
as there are isomorphism classes of simple right R-modules of the
form R/M, where M e X. Thisis the content of the following theorem.
In particular, when X contains exactly one maximal right ideal M,
it follows that R, has exactly one simple right module (up to
isomorphism). In this case, we write R, for R, etc.

THEOREM 3. Let R be an HNP ring, X any nonempty collection
of maximal right ideals of R.

(a) For any Me X, MRy is a maximal right ideal of Ry and
the natural map f: R/M— R,/MR, is an essential monomorphism.

(b) For any M, Ne X, Ry/MR, = Ry/NR; if and only if
R/M = R/N.

(c) Any simple right Ry-module A s isomorphic to Ry/MR,
Sfor some Me X.

Proof. (a) Observing that MR,/M is Ty-torsion while R/M is
Ty-torsion-free, we see that (R/M)N (MRy/M) = 0, from which it
follows that f is a monomorphism. Given any xe R, such that
¢ MRy, we have xJ & R for some Je .%%. Inasmuch as JR; = R,
by Proposition 1, we see that «J & M and so tR N RZ M. Therefore,
f(R/M) is essential in R;/MR,.
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Now f(R/M) is a simple, essential R-submodule of R,/MR, and
thus is contained in every nonzero R-submodule of R,/MR.. It
follows easily that R,/MR; is simple as an R,-module.

(b) If R/M = R/N, then clearly R;/MR; = Ry/NR,. The con-
verse follows from the fact that R,/MR, (R,/NRy;) has a unique
simple R-submodule, which is isomorphic to R/M (R/N).

(c¢) If R, is simple artinian, then all simple right R,-modules
are isomorphic and we are done because X is nonempty. Otherwise
Ry has zero right socle, whence the simple right module A must be
singular. According to Proposition 2, 4 is also singular as an R-module,
whence A must contain a simple R-submodule. Inasmuch as A is
Ty-torsion-free by Proposition 1, this simple R-submodule must be
isomorphic to R/M for some Me X. Utilizing Proposition 2 again,
we obtain a monomorphism R,/ MR,— A X, Ry — A, and this map
must be an isomorphism.

THEOREM 4. Let R be an HNP ring, and let E: A5 B2C be
any sequence of right R-homomorphisms. Then E is exact if and

only if the localized sequence E,: AM&BM%CM 18 exact for every
maximal right ideal M of R.

Proof. The localization E, is just the tensor product of E with
the flat left R-module B,, hence if FE is exact it follows that every
FE,, must be exact.

Now assume conversely that every E, is exact.

Case I. C=0.

The exactness of E, says that each f, is an epimorphism, i.e.,
By, = (fA);. Thus (B/fA), =0 for each M, whence B/fA is T,-
torsion for every M. Given any xze€ B/fA, it now follows that R
has a composition series with no composition factors isomorphic to
R/M for any M. Therefore, B/fA =0, i.e., f is an epimorphism.

Case II. General case.

Since g, fy = 0 for all M, (9fA), = 0 for all M, whence gfA =0
as in Case I. As in the commutative proof, we now obtain
[(ker g)/fA]l;; = O for all M, and thus ker g = fA.

Inasmuch as Proposition 2 shows that all rings between an HNP
ring R and its quotient ring S°R are again HNP ring, the question
arises whether all such intermediate rings are of the form R, for



LOCALIZATION AND SPLITTING 141

suitable X. The following theorem provides an affirmative answer
to this question.

THEOREM 5. Let R be an HNP ring which s not artinian, and
let W be a collection of maximal right ideals of R such that each
stmple right R-module is isomorphic to R/M for exactly one Me W.
Then the assignment X+ Ry gives a 1 — 1 order-reversing corre-
spondence between the set F of subsets of W and the set 2 of
subrings of SR which contain R.

Proof. For any Pe 9%, let 4(P) denote the set of those Me W
such that R/M is not isomorphic to any composition factors of any
submodule of P/R. The maps ¢ and X+ R, are clearly order-
reversing.

Given any Xe ., it follows from the definition of R, that no
composition factor of any submodule of R,/R can be isomorphic to
R/M for any Me X. Therefore X & ¢(Ry;). Now consider any Ke W
which does not belong to X. Inasmuch as R is not artinian,
soc (Rz) =0 and so Exth(R/K, K)+ 0. However, K is a finitely
generated projective right R-module, hence it follows that
Ext, (R/K, R)+ 0. Thus there exists a map f: K— R which does
not extend to a map R— R. Now f must be left multiplication by
some % € @ such that u ¢ R, hence we obtain (vR + R)/R= R/K. Since
K¢ X, (uR + R)/R 2 R/M for all Me X, and thus we R,. But now
R/K is isomorphic to a submodule of R;/R, whence K¢ ¢(R;). There-
fore X = ¢(Ry).

Given any Pe . 2, it follows from the definition of ¢(P) that no
composition factor of any submodule of P/R can be isomorphic to
R/M for any Me ¢(P), and thus P < R,,. Conversely, we must
show that any xe€ R, belongs to P, and we proceed by induction
on the length % of the module (xR + R)/R. If k =0, thenxec RS P,
so now let £ >0 and assume that ye P whenever ye R, and
(yR + R)/R has length less than k.

Choose a submodule H/R of (R + R)/R with length ¥ — 1, and
note from the induction hypothesis that H< P. Now (2R + R)/H =
R/M for some Me W, and since ze R, we must have M¢ 4(P).
Thus there must exist a submodule of P/R with a composition factor
isomorphic to R/M, hence we can find finitely generated right R-
modules C, D with R C< D< P such that D/C= R/M. As observed
in the introduction, D is projective, hence the isomorphism D/C —
(@R + R)/H lifts to a map f:D—«xR + R such that fC< H and
fD+ H=2R + R. Now f must be left multiplication by some
u € S°R, and since uR<S fC< HS P we have u e P. However, D, HS P
as well, and so 2R + R = uD + HZ P. Therefore, the induction
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works and we obtain P = R, ).

For a given maximal right ideal M of R, Theorem 3 shows that
at least all simple right R,-modules are isomorphic, but this is not
enough to show that R, is local in any sense of the term. For
example, if R is the ring of differential polynomials constructed in
[4, Theorem 1.4], then R is a simple HNP ring such that all simple
right R-modules are isomorphic. Then R, = R for any maximal
right ideal M of R, but R modulo its Jacobson radical is not even
artinian.

On the other hand, we can show that R, is local in a certain
sense provided that M contains a nonzero maximal two-sided ideal,
and that R is a Dedekind prime ring, i.e., an HNP ring which is a
maximal order in its quotient ring (or equivalently [6, Theorem 1.2]
an HNP ring with no nontrivial idempotent two-sided ideals). We
proceed via the the following lemma, which is also needed later.

LEMMA 6. Let R be an HNP ring, X any collection of maximal
right ideals of R. Let Me X, and let f:R/M— R;/MR, be the
natural map. If S is any simple R-submodule of (Ry/MRy)/f(R/M),
then S # R/K for any Ke X.

Proof. Suppose on the contrary that S= R/K for some Kec X,
and let A denote the submodule of Ry/MR, containing f(R/M) such
that A/f(R/M) = S. Then we have an exact sequence 0 — R/M —
A— R/K—0. Localizing this sequence at X gives another exact
sequence 0 > R,/ MRy — Ay — Ry/KR,— 0, from which we infer that
Ay has length 2 as an R,-module. However, we also have a
monomorphism A; — (Ry/MR;)y = Ry/MR,, which is absurd because
R,/ MR, is simple.

THEOREM 7. Assume that R is a Dedekind prime ring. Let P
be a nonzero maximal two-sided ideal of R, and let M be any maximal
right ideal of R which contains P. Then PR, is the Jacobson radical
of Ry, and Ry/PR, is a simple artinian ring.

Proof. We first claim that the natural map f: B/M— R,/MR, is an
isomorphism. If not, then Theorem 3(a) shows that (R, /MR,)/f(R/M)
is a nonzero singular module, hence R,/MR, has a submodule 4
containing f(R/M) such that A/f(R/M) is simple. Inasmuch as
Sf(R/M) is essential in A, A must be indecomposable, whence [5,
Theorem 3.9] says that A is either completely faithful or else un-
faithful. Now f(R/M) is annihilated by P and hence is unfaithful,
so A cannot be completely faithful. Thus A is unfaithful, and
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consequently A/f(R/M) must be unfaithful. Choosing a maximal
right ideal K such that R/K = A/f(R/M), we thus see that K is
bounded, i.e., the two-sided ideal H = {re R| Rr < K} is nonzero.
Now R/H is an artinian primitive ring, hence simple. Inasmuch as
R/K # R/M by Lemma 6, it follows that H & P. According to [6,
Proposition 2.8], HP = H( P, whence R/HP is 2 semisimple ring.
Therefore A, which is an (R/HP)-module of length 2, must be a
direct sum of two simple modules, which contradicts the observation
above that A is indecomposable.

Thus f is an isomorphism, whence P is the annihilator in B of
R,/MR,. Inasmuch as all simple right R,-modules are isomorphic
to R,/MR, by Theorem 3, the annihilator of R,/MR, in R, is the
Jacobson radical J of R, and we obtain JN B = P. We now have a
monomorphism R/P— R,/J, which induces a monomorphism R, /PR, —
(Ry/J) Rz By — Ry/J. Therefore PR, = J. Since J = 0 and R, is
an HNP ring by Proposition 2, the factor ring R,/J must be artinian.
Also, all simple right R,-modules are isomorphic, and this forces
Ry/J to be a simple ring.

3. Relation to other localizations. In [1], K. Asano introduced
a localization at a maximal two-sided ideal P in a type of ring R
which is now known as a “bounded Asano order”. Specifically, an
Asano order (in a simple artinian ring Q) is a right and left noetherian
prime ring R which is an order in @ such that the two-sided frac-
tional R-ideals form a group, while a bounded Asano order is one in
which every essential one-sided ideal contains a nonzero two-sided
ideal. Asanoand other later authors have shown that such a bounded
Asano order R is a right and left hereditary ring (the simplest proof
is due to T. H. Lenagan in [13]). Thus R is in particular an HNP
ring.

The localized ring introduced by Asano, which we shall refer to
as A for the moment, consists of all elements x in the quotient
ring S°R such that 7/ & R for some two-sided ideal I of R not
contained in P. If M is any maximal right ideal of R which contains
P, then it is easy to check that A = R, in the notation of the present
paper. Since R is clearly a Dedekind prime ring, the fact that A
is a local ring [1, Satze 3.4, 3.5] (in the sense used above) is now
also a consequence of Theorem 7.

In [10], J. Kuzmanovich introduced a localization at a maximal
two-sided ideal M in a Dedekind prime ring R, and later [11] gener-
alized this to the situation where R is an HNP ring and M is
maximal among the invertible two-sided ideals of R. This localized
ring L (denoted R, in [10] and Q; in [11]) consists of all xe S°R
such that no composition factor of (xR + R)/R is annihilated by M
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[11, p. 149]. It is automatic from our definitions that L. = R,, where
X denotes the set of those maximal right ideals of R which contain
M. Kuzmanovich also defines an additional localization S [10] (denoted
@, in [11]) consisting of those xe SR for which (xR -+ R)/R is
annihilated by an invertible two-sided ideal. It is easy to check that
S = Ry, where Y denotes the set of those maximal right ideals of
R which do not contain an invertible two-sided ideal. Kuzmanovich
shows that the collection of these localizations L, together with S,
satisfy a globalization property analogous to Theorem 4 [10, Theorem
4.4 and Proposition 4.6], [11, Theorem 3.12]. These globalization
results are fairly direct consequences of our Theorem 4, simply because
the sets X and Y described above partition the collection of maximal
right ideals of R.

Finally, J. C. Robson in [15] introduced a localization as an inverse
to the process of forming idealizers. Given a nonzero idempotent
two-sided ideal A in an HNP ring R, the right order of Ais O.(4) =
{xe S’R| Ax < A}. If R/A is a semisimple ring, then A is a semi-
maximal right ideal of O,(A) and R is the idealizer of A in O,(4)
[15, Theorems 5.2, 5.3]. Letting X be the collection of those maximal
left ideals of R which do not contain A, we check that R, = O,(4).
Thus the inverse to taking right-hand idealizers is most naturally
expressed as a left-hand localization, although in view of Theorem 5
it is also possible to express 0,(4) as a right-hand localization.

4. Applications to splitting rings. We say that a ring R is
a (right) splitting ring provided that for every right R-module A,
Z(A) is a direct summand of A. In this section we use the locali-
zation techniques developed in § 2 to answer the question of which
HNP rings are splitting rings.

PROPOSITION 8. If R is an HNP splitting ring, then every ring
betweer. R and S°R is an HNP splitting ring.

Proof. Any ring T between R and S°R is an HNP ring by
Proposition 2. In view of Proposition 2(b), it follows immediately
from [3, Proposition 1.9] that 7T is also a splitting ring.

In order to describe the structure of HNP splitting rings, we
need the theory of idealizers developed by Robson in [15]. We now
sketch the concepts involved, and refer to [15] for details. Given
a right ideal I in a ring T, the idealizer of I in T is the subring
S={teT|tI = I}. In general S is unrelated to T except for the
case when I is a semimawximal right ideal of T, i.e., a finite inter-
section of maximal right ideals of 7. A subring R of T is an
iterated tdealizer from 7T provided there is a chain of subrings
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R,=R& R &S :--<S R, =T such that each R, is the idealizer of a
semimaximal right ideal of R,,,. There are theorems such as [15,
Theorem 6.3] stating conditions under which an HNP ring R can
be obtained as an iterated idealizer from a certain type of HNP ring
T, and in these results the ring T is always subring of the quotient
ring S°R.

THEOREM 9. Awn HNP ring R is a splitting ring if and only
if R is an tterated idealizer from an HNP ring T over which all
singular right modules are injective.

(For a study of rings over which all singular right modules are
injective, see [8, Chapter III].)

Proof. First assume that R is such an iterated idealizer.
Inasmuch as T is clearly a splitting ring, it suffices to consider the
case where R is the idealizer of a semimaximal right ideal M in an
HNP splitting ring T. If Mis an essential right ideal of T, then [9,
Theorem 10] says that R is a splitting ring. Otherwise soc (T7) # 0
and T is a simple artinian ring. Consequently M = ¢T for some
idempotent ec T, and then R =¢e¢T + T — ¢). Inasmuch as R is
prime, the nilpotent two-sided ideal ¢ T(1 — ¢) must be zero, and since
T is prime also we therefore have either ¢ = 0 or ¢ = 1. In either
case R = T and so R is a splitting ring.

For the converse, we proceed via several lemmas. Our method
is to show that at least one simple R-module is injective, and to
use the localizations of R to relate this fact to the other simple
R-modules.

LEMMA A. If R is an HNP splitting ring, then at least one
stmple right R-module 1s imjective.

Proof. We obviously may assume that R is not semisimple.

Inasmuch as R is right hereditary, every factor of the injective
right R-module @ = S°R must be injective, hence it suffices to prove
that Q, has a maximal submodule.

Since R is not semisimple it must have a proper essential right
ideal, and this essential right ideal must contain a nonzero-divisor
p. Thus we obtain a properly descending chain pR > p*R > --- of
essential right ideals of B. Noting that the module R/( p"R) is
not artinian, we see that M p"R¢ <“(R). We also define submodules
A A, --- of @ by setting A, = R and A4,,,/4, = soc(Q/4,) for
all n. Inasmuch as every cyclic submodule of Q/R has a composition
series, we infer that U 4, = Q.
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Set B, = A,/p"R for each n, and let z, =1 in B,. Since R/p"R
has a composition series, it follows from the definition of the A4,
that every nonzero submodule of B, has a2 maximal submodule.
Clearly the module B = [[7., B, has the same property, hence we
will be done if there exists a nonzero homomorphism of Q into B.
Inasmuch as R is a splitting ring, the module B/Z(B) is isomorphic
to a direct summand of B, and thus it suffices to show that
Hom, (Q, B/Z(B)) + 0.

The elements x,¢ B, are the components of an element xz¢ B
whose annihilator in R is the right ideal (}p"R. Since N p"R¢ &(R),
we have x ¢ Z(B) and thus fx # 0, where f: B— B/Z(B) is the natural
map.

For any given positive integer k we can define an element y,€ B
by setting y,, =2, forn =1, --., k—1and y,, = 0 for n = k. Noting
that the modules B, are all singular, we see that in fact v, € Z(B).
Inasmuch as A, < A, for all n =k, there are maps ¢,,: 4,— B,
for each n = k such that g,,r =2,r forall re R. Forn=1, ---, k—1
we let g¢,,: A,— B, denote the zero map, and then the maps g,,
induce 2 map g,: A, — B such that g,r = (x — y,)r for all re R.

We now have maps fg,: A, — B/Z(B) for each k such that
far = (fx)r for all »re R. Inasmuch as B/Z(B) is nonsingular while
the modules A,/R are all singular, we infer that fg, must be an
extension of fg; whenever j < k. This compatibility ensures that
the maps fg, induce a map h from |J A4, = Q into B/Z(B), and we
observe that hl = fx == 0.

LEMMA B. Let R be an HNP splitting ring. If S is any
simple right R-module, then Extk (S, S) = 0.

Proof. Choose a maximal right ideal M such that R/M = S,
and recall from Theorem 3 that all simple right E,-modules are
isomorphic to R,/MR,. Inasmuch as R, is an HNP splitting ring
by Proposition 8, Lemma A says that R,/MR, is an injective
R,-module. Since R, is a flat left R-module, we now see from
[12, Proposition 8, p. 131] that R,/MR, is also injective as an R-
module. Therefore, R,/MR, is the injective hull of f(R/M), where
f denotes the natural map R/M— R,/MR,.

If Exth (S, S) + 0, then there exists a nonsplit extension of S
by S, whence E(S)/S contains a submodule isomorphic to S. But
then (R,/MR,)/f(R/M) contains a submodule isomorphic to B/M, which
contradicts Lemma 6.

LEMMA C. If R is an HNP splitting ring, then any faithful
simple right R-module A is injective.
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Proof. Case I. R has exactly two simple right modules (up to
isomorphism).

If we assume that A is not injective, then according to Lemma
A the other simple right R-module B must be injective. Inasmuch
as Ext} (4, A) =0 by Lemma B, E(A)/A has no submodules isomorphic
to A, hence all its simple submodules are isomorphic to B. Now
E(A)/A has essential socle because it is singular, hence we infer
from the injectivity of B that F(A)/A must be isomorphic to a direct
sum of copies of B. This direct sum is nonzero because A # E(4),
and thus there exists an epimorphism of E(A) onto B.

Choosing a maximal right ideal M such that R/M = A, we infer
as in Lemma B that R,/MR, = E(A). Thus there exists an epimor-
phism of R,/MR, onto B. By definition of R,, the right R-module
Ry/R has no submodules isomorphic to A, hence it follows as with
E(A)/A above that R, /R must be isomorphic to a direct sum of copies
of B. Therefore, there exists an epimorphism f: T— R,/R, where
T is a suitable direct sum of copies of R,/MR,.

Since A is not injective, R is not semisimple and thus soc (Rz) = 0.
Thus M must be essential in R and so A is singular. Then R,/MR, =
E(A) is a singular R-module, hence ker f is singular too. Now
Ext} (Ry, ker f) = 0 because R is a splitting ring, whence the natural
map g¢g: Ry,— Ry/R lifts to a map h:R,— T such that fh =g.
According to Proposition 2, & is also an R,-homomorphism, hence
K = ker h is a right ideal of R,.

Inasmuch as T'is a singular R-module whereas R, is a nonsingular
R-module, we must have K = 0. Observing that K = kerg = R, we
see that K is contained in the two-sided ideal P = {x € R|zR, & R},
and so P = 0. On the other hand, we have R, # R because these
two rings have different numbers of simple right modules, and thus
P=+ R.

The R,-module R,/K is isomorphic to a submodule of the
semisimple module T and hence is semisimple itself. Observing that
P is a right ideal of R,, we see that R,/P is a semisimple right
R,-module too. Now R, /P must be a direct sum of simple R-modules,
each of which must be isomorphic to R,/MR,. Inasmuch as R,/MR,
has an essential R-submodule isomorphic to B/M (and thus isomorphic
to A), we infer that R,/P must have an essential R-submodule
which is isomorphic to a direct sum of copies of A. Now R/P =0,
and thus R/P must have an R-submodule isomorphic to A. Since P
is a two-sided ideal of R, it follows that AP = 0, which contradicts
the faithfulness of A.

Case II. General case.
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If A is not injective, then E(A)/A is a nonzero singular module
and so contains a simple submodule B. Obviously Extk (B, A) = 0,
hence Lemma B says that A 2 B. Choosing maximal right ideals
M, N of R such that R/M = A and R/N = B, we see from Theorem 3
that R, y has exactly two simple right modules (up to isomorphism).
According to Proposition 8, R, v is an HNP splitting ring.

Inasmuch as R, ,/MR, ,y has an R-submodule isomorphic to A,
it must be faithful as an R-module. Since R is essential in R, ,,
it follows that R, /MR, , is also faithful as an R, y-module, hence
we see from Case I that R, /MR, , is an injective R, y-module.
As in Lemma B, we now infer that R, y/MR, , is the injective hull
of f(R/M), where f:R/M— R, y/MR, , is the natural map. But
then (Ry v/MR, )/ f(R/M) has a submodule isomorphic to B, which
contradicts Lemma 6.

LEMMA D. If R is an HNP splitting ring, then R has only
Sinitely many mawimal two-sided ideals, all of which are idempotent.

Proof. Assume to the contrary that there is an infinite sequence
M, M, --- of distinet maximal two-sided ideals of R. For each
positive integer =, set A, = R/M,, which must be a singular right
R-module because M, = 0. Setting z, =1¢ A4,, we note that x, ¢ A,M,
for all k = n.

If A=TIy., A, then A = Z(A)@ B for some B. The elements
xz.€ A, are the components of an element xe A, and the annihilator
K = {re R|xr = 0} is just the two-sided ideal M\ M,. The ring R/K
has infinitely many maximal two-sided ideals and is therefore not
artinian, whence K =0 and z¢ Z(A). Thus x=a + b for some
a € Z(A) and some nonzero bec B.

We must have b, == 0 for some k. Define z¢ A by setting 2z, = =,
and z, = 0 for all » + k. Then ze Z(A) and (x — #2).€ A, M, for all
%. Since M, is a finitely generated left ideal of E, we obtain
x — z¢ AM,, from which it follows that be BM,. But then b, =0,
which is a contradiction.

Therefore, R has only finitely many maximal two-sided ideals.
If M is one of them, then either M = 0 (in which case M is auto-
matically idempotent) or else M = 0 and R/M is a simple artinian
ring. In this case the ring R/M* has exactly one simple right module,
say S, and R/M and M/M? are each finite direct sums of copies of
S. Inasmuch as Ext% (S, S) = 0 by Lemma B, we obtain Ext} (R/M,
M/M?*) = 0, from which it follows that M/M* = 0.

We now return to the proof of Theorem 9. If R is an HNP
splitting ring, then in view of Lemma D we see from [15, Theorem 6.3]
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that R is an iterated idealizer from a Dedekind prime ring 7. Now
T is an HNP splitting ring by Proposition 8, and T has no nontrivial
idempotent two-sided ideals by [6, Theorem 1.2], hence it follows
from Lemma D that all maximal two-sided ideals of T must be zero.
Therefore, T is a simple ring.

Now all simple right T-modules are faithful and hence injective
by Lemma C. For any essential right ideal I of T, T/I has a compo-
sition series and so must now be semisimple. According to [8,
Proposition 3.1}, it follows that all singular right T-modules are
injective.

According to [3, Theorem 2.1], a commutative ring R is a
splitting ring if and only if all singular R-modules are injective,
whereas Theorem 9 allows a noncommutative HNP splitting ring to
be a finite number of idealizations aways from a ring over which all
singular modules are injective. We now construct an example to
show that there is a real distinction between these two situations.
First let T be the ring constructed in [4, Theorem 1.4]: T is a
principal right and left ideal domain, T is a simple ring but not a
division ring, and all simple right T-modules are injective. As shown
in [8, pp. 54, 55], all singular right T-modules are injective as well.
We now choose a maximal right ideal M of T, and let R be the
idealizer of M in T. Inasmuch as T is not a division ring, M is
essential in T and in particular M = 0. Then TM = T because T
is simple, so [15, Theorem 5.3] shows that B is an HNP ring and
Theorem 9 says that R is a splitting ring. According to [15, Theorem
1.3], the right R-module T/M has a unique composition series given
by T/M > R/M > 0, hence R/M is a singular right R-module which
18 not injective.

THEOREM 10. Let R be an HNP ring. Then R 1is a splitting
ring if and only if

(a) R contains a minimal (nonzero) two-sided ideal.

(b) All faithful simple right R-modules are injective.

Proof. If R is a splitting ring, then we have (b) by Lemma C.
In case R is simple, then R itself is a minimal two-sided ideal, hence
in proving (a) we need only consider the case when R is not simple.

According to [11, Theorem 2.24], R is the intersection of two
subrings S and T of S°R such that S is a bounded HNP ring, while
T is an HNP ring with no proper invertible two-sided ideals. We
claim that 7' = R, and to show this it suffices to prove that S = S°R,
i.e., that S is a simple artinian ring.

Inasmuch as S is a splitting ring by Proposition 8, Lemma A
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says that S has a maximal right ideal M such that S/M is injective.
The injectivity of S/M implies that (S/M)p = S/M for all non-zero-
divisors p € S, from which we infer that (S/M)I = S/M for all nonzero
two-sided ideals I of S. Therefore, M cannot contain any nonzero
two-sided ideals of S. However, S is bounded, hence we infer from
this that M is not essential in S. Thus soc(Ss) # 0 and so S is
indeed a simple artinian ring.

Now T = R as claimed, hence R has no proper invertible two-
sided ideals. According to Lemma D, R has only finitely many
maximal two-sided ideals, say M, ---, M,, and these ideals are all
nonzero because R is not a simple ring. If M= M, N --- N M,, then
[6, Proposition 4.3] shows that M" is idempotent, and we observe
that M™ + 0. Now for any nonzero two-sided ideal H of R, the
factor ring R/H is artinian, hence its radical N/H is nilpotent and
is an intersection of maximal two-sided ideals. Then M & N, so
the nilpotence of N/H and the idempotence of M"™ combine to show
that M* & H. Therefore, M" is a minimal (in fact minimum) two-
sided ideal of R.

Conversely, assuming that (a) and (b) hold, we must show that
Extl (4, C) = 0 for any nonsingular A, and any singular C,. Letting
H denote a minimal two-sided ideal of R, we infer from the fact
that R is prime that H = H*® and that H is contained in all nonzero
two-sided ideals of R. Thus all unfaithful R-modules are anni-
hilated by H.

If ' = {xeC|zH = 0}, then from H = H* we see that no nonzero
elements of C/C’ are annihilated by H. Therefore, all nonzero
submodules of C/C’ are faithful, hence we see from (b) that all
simple submodules of C/C’ are injective. Now C/C' has essential
socle because it is singular, hence we infer that C/C’ is injective.
Therefore Exth(A4, C/C') =0 and so it suffices to show that
Exti(4, C") = 0.

As observed above, all nonsingular right R-modules are flat,
hence the right-hand version of [2, Proposition 4.1.3, p. 118] says
that Exti (4, C') = Ext} z (A/AH, C’). Now R/H is an artinian ring
because H = 0, and A/AH is a flat (R/H)-module because A, is flat,
whence (A/AH)y; must be projective. Therefore, Exth -(A/4H, C)=0
and so Exth (4, C') =0.

Note added in proof. Many of the results in §2 have also been
proved (independently) for the case of a Dedekind prime ring by H.
Marubayashi.
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