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Let S be a semigroup with zero. The extended central-
izer QM) of a right S-set My is defined. Necessary and
sufficient conditions are given for Q(M;) to be a regular semi-
group. In particular, Q(S;) is shown to be a regular semigroup
when S is regular. We also show that whenever the singular
congruence on S is the identity, then Q(S;) is the injective
hull of S5 and is right self injective.

1. Introduction. In [3], R. E. Johnson developed the extended
centralizer Q(Mz) of an R-module M and noted that Q(M) is always
a (Von Neumann) regular ring. In this paper, we analogously define
the extended centralizer Q(M;) of a right S-set M. McMorris [4]
gave an example which illustrated the fact that Q(Ss) is not always
a regular semigroup. We give a necessary and sufficient condition
for Q(Ms) to be regular and show that when S is regular, Q(Ss) is
also regular.

Johnson showed that the ring R is embedded in Q(R;) when the
singular ideal is zero. Analogously we define the singular con-
gruence on an S-set and show that when the singular congruence
is the identity, S is embedded in Q(Ss). In this case we also note that
Q(Ss) is the injective hull of S considered as a S-set and that, more-
over, Q(Ss) is self injective.

2. Preliminaries. Throughout this paper each semigroup will
contain a zero (0) unless otherwise specified. Let S be a semigroup.
A (centered right) S-set M is a set M, with an associative scalar
operation on M by elements of S, which contains an element (neces-
sarily unique) # such that ¢ = 6s = m0 for all me M and for all
se S. The symbol 6 will be called the zero of M. Since the distine-
tion between the zero of M and the zero of S is clear from the
context, we shall denote both by the same symbol 0. Note that if
R is a right ideal of S then R becomes an S-set R under ordinary
multiplication. A sub S-set Ng of an S-set M, is a subset N of M
such that NS N. If m, ne My and if E < S we shall say that
mkE is pointwise equal to nE when ms = ns for each se E. This
will be denoted as mE = nkE.

Let My and N be S-sets. A function f: My — Ny is an S-homo-
morphism if for each me M and se S, f(ms) = f(m)s. The collec-
tion of all such S-homomorphisms will be denoted by Homg (M, N).
If there exists f e Homg (M, N) which is 1 — 1 and onto, we say M
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is S-isomorphic to Ny and write M INj.

If f is an S-homomorphism the domain of f will be denoted by
D; and the range of f by R,. The zero map from M; will be
denoted by 0,, and the identity map on M by 1,. If f: M;-— Ng
and if Ag & N then f(A) = {me M: f(m)e A}.

An S-congruence v on My is an equivalence relation on M such
that whenever (m, n) e, then (ms, ns)e z for all se S. The identity
S-congruence on My will be denoted by ¢,.

If S has an identity 1 the S-set Mj is said to be wunital when
ml = m for each me M. For each semigroup S we shall define S*
by S*= S U {1} where 1 is a symbol not in S and where multiplication
on S is extended to S' by defining 1z = 1 = x for each x ¢ S'. With
the operation so defined, S* is a semigroup. Note that this definition
for S differs from the standard one. However, with the definition
given here each S-set M; becomes a unital S'-set by defining ml = m
for each me M.

The following definitions and theorem are due to Berthiaume
[1]. A sub S-set Ny of M is said to be large (essential) in My if
for each f € Hom (M, K) such that f|N is 1 — 1 then fis 1 --1. In
this case M, is called an essential extension of N;. The following
lemma characterizes large sub S-sets in terms of S-congruences.

LEMMA 2.1. Ny is large in Mg iff for every S-congruence O on
M such that p + ¢, we have p|N +# ¢.

An S-set My is injective if for each Ay & Bs and for each fe
Homg (A4, M) there exists f’e Homg (B, M) such that f'|A = f. If
M, & Ny and if Ny is injective then Ny is called an injective extension
of M. The following theorem due to Berthiaume [1] guarantees the
existence of a minimal injective extension which is unique up to S-
isomorphism.

THEOREM 2.2. The S-set M 1s a maximal essential extension of
N off M 1s ¢ minimal injective extension of N;. FEwvery S-set Ny
has such an extension which 1s unique up to S-tsomorphism over Ng.

The minimal injective extension of Ny given in the above theorem
is called the injective hull of Ngs. Note that My is the injective hull
of Ny iff Ny is essential in My and M, is injective.

A semigroup S will be called self injective if Ss is injective.

The S-set My is weakly injective if for each right ideal R of S
and for each f e Hom; (R, M) there exists me M such that f(s) =
ms for each se R. In ring theory it is well-known that the corres-
ponding concepts of “injective” and “weakly injective” are equivalent.
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However, for semigroups Berthiaume proved the following lemma and
gave a counterexample for the converse.

LEMMA 2.3. If the S-set Mg 1is injective then Mg is weakly
injective.

3. The singular congruence on an S-set. The following defini-
tion is a generalization of a corresponding concept in ring theory.
A sub S-set Ng of My is intersection large in My if for each 0 ==
me M there exists se€ S' such that 0 = mse N. Note that Ny is
intersection large in M, if and only if the intersection of N with
any nonzero sub S-set of My is always nonzero. Properties of
intersection large S-sets are given by the following lemmas which
are immediate from the definition.

LEMMA 8.1. If X, & Y, & Zs are S-sets then X is intersection

large in Zs if and only if X ts intersection large in Yy and Y is
intersection large in Zs.

LEMMA 3.2, Let Mg and Ng be S-sets and let ¢<€ Homg (M, N).
If A is intersection large in Ny then ¢ '(A) is intersection large in Ms.

Note that if Ny is intersection large in My then m™N = {se S:
ms e N} is intersection large in Sy for all me M. In order to show
this, define ¢,:S— M by é.(s) = ms. Then ¢, HomyS, M) and
6. (N) = m™'N is intersection large in Sy by the lemma.

The class of all intersection large sub S-sets of the S-set Mj
will be denoted by .Z7(M;). This class is closed under finite inter-
sections since A N B = 17;%(B) where A, Be F(My).

Let &7 = . Z2(Ss) and for each S-set define

I = Pp(Ms) = {(m,, my)e M x M: m,D=m,D for some De .F7}.

It is easily seen from the properties noted above that + is an
S-congruence on Mg which is a two-sided congruence if M = S. The
S-congruence + is called the singular congruence or P-torsion con-
gruence on Ms. When + = ¢, we say that My is FA-torsion free.

Feller and Gantos [2] showed that every large sub S-set of an
S-set M is intersection large in My. The converse is not generally
true. For, consider the semilattice S = {0, ¢, 1} which has 0 <e <1
under the natural partial ordering. The right ideal eS is clearly

intersection large in S. Define f: S— S by f(z) = {8 lé foe:{e(’) 1 }
Then feHomg(S, S) and f|eSis 1 — 1. However, f is not 1 — 1.

Therefore, eS is not large in Sg.
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The following proposition gives a sufficient condition for the
converse to be true.

ProproSITION 8.3, Let Mg be a right S-set such that Mg is F-
torsion free. Then (M) is the set of large sub S-sets of Ms.

Proof. Let Age (M) and let f e Homg (M, B) such that f|A4
is 1 —1 where Bg is an S-set. Suppose f(z) = f(x;). Let D=
AN a'A = {seS:xsec A and x,s€ 4}). Then De 2(S) and since
fz) = f(z,), we have f(x;s) = f(x,s) for all se D. However, zs,
a,s€ A for all seD and f|Aisl — 1. Thus 2D = 2,D and it follows
that z, = «, since My is FP-torsion free.

It was noted in §2 that an injective S-set M, is always weakly
injective but that a weakly injective S-set is not necessarily injective.
In the following proposition we show that the two concepts are
equivalent whenever M, is .“7-torsion free.

PrOPOSITION 3.4. Let Mg be a weakly injective S-set such that
M is P-torsion free. Then Mg is injective.

Proof. Let As & Bs and let fe Homg (4, M). Let M* be the
injective hull of M. Then M is large in M7 and hence is inter-
section large in M¥. Also, by Lemma 2.1 we see that M} is 7-
torsion free since (M) | My = +(Ms) = ¢,,. Thus, since M is injective,
there exists f’e Homg (B, M*) such that f'|A = f. We claim that
S'e Homg (B, M). Let be B and let f'(b) = n. By the note following
Lemma 3.2 we have D = n'Me .Z2(S). Define ¢: n M — M by ¢(s) =
ns. Thus we have ¢ € Homy(n'M, M) and since M; is weakly injective
there exists m e M such that ¢(s) = ms for each se n M. Therefore,
mD = nD and since v (M$) = ¢y. it follows that n = me M.

4. The extended centralizer of an S-set. The construction of
the extended centralizer @ of an S-set M; is similar to that given
by Johnson [3] for rings over modules and is outlined as follows:

Let & = Z?(M;) be the class of intersection large sub S-sets of
the S-set My. Let F = Up..Homg (D, M) and define multiplication
on S by fg = h where h:D,n g (D;) — M by h(x) = f(g(x)). Then
under this multiplication F is a semigroup. Define a binary relation
® on the semigroup F by (f, 9)€ w if there exists De.Z” such that
fID = g|D. Then w is a two-sided congruence on F. The semigroup
Q =Q(M;) = Flow is called the extended centralizer of M. The
elements of @ will be denoted by f where fcF.

In ring theory the extended centralizer is always (von Neumann)
regular. An example given by McMorris in [4] shows that this is not
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the case for semigroups. We can however give a necessary and
sufficient condition for @ to be regular in terms of splitting S-homo-
morphisms, which were studied by Feller and Gantos in [2]. Recall
that an S-homomorphism f which maps an S-set My onto an S-set Ny
is said to split if there exists g € Homg (N, M) such that fg = 1,.

THEOREM 4.1. The semigroup Q(Ms) is regular if and only if
each equivalence class f of QM) = Flo contains an element which
splits.

Proof. Assume first that Q(Ms) = Q is regular and let fe Q.
Then there exists g @ such that fgf = f. Hence if E = {ze D,
fo9f(x) = f(x)} then Ec <” Let f'= f|FE and g'=g|R;. LetyecD,
and let «’ = g(y). Since y is also an element of R,, there exists
x € E such that f(x) = y and we see that y = f(x) = fo9f(x) = fo(y) =
f(@). Furthermore, f(x') = f(x) = f9f(®) = fgf(x) and it follows
that '€ E. Therefore, ¥ = f9(y) = f(&') = f'(&') = f'g'(y) and we
see that f’ splits.

Conversely, for f ¢ Q there exists f’ ¢ f such that f’ splits. Hence,
there exists ¢': B, — Dy such that f'g’ = ¢z,. By Zorn’s lemma there
is a maximal sub S-set N5 of My such that D, N N = 0. It easily
follows that D= D, UNe.Z” in this case. The S-homomorphism
g’ can be extended to an S-homomorphism g € Homg (D, M) by defining
g(x) =0 if 2e N and g(x) = ¢'(x) if xe D,. Hence we have ge F.
Let e Dy. Then f'9f'@) = f'9'f'(®) = 1z, f'(x) = f'(x). Therefore,
fof =f'gf' =f" =f and it follows that @ is regular.

In the case where M = S we have the following theorem.

THEOREM 4.2. If S is a regular semigroup then Q(S) is regular.

Proof. By the previous theorem it is sufficient to show that each
equivalence class f of Q(Ss) contains an element which splits. Let
feQ and let & = {(D,, 9.): D, is a right ideal of S in D; such that
Sfa = f|D. splits on D, and g.: R, = fu(D.) — D, such that f.g. =15.
The set % is nonempty since ({0}, 0)e & where the zero in the
second coordinate is the zero map. Define a partial order < on
by (D., 9.) < (D, 95) if D, < D, and ¢;|R, = g.. By an application
of Zorn’s lemma, & contains a maximal element (Dy, g,). Tocomplete
the proof it is sufficient to show that D, e .?(Ss). Suppose this
is not true. Then D, is not intersection large in D,. Hence there
exists e D; such that ¢S 0 and ¢S N D, = 0. Since S is regular,
we may assume that e = e. Let x = f(e) then xe = f(e)e = f(¢?) =
f(e) = x. We now consider two cases.
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Case 1. Suppose zeSN Ry # 0. Then there exists s ¢ S such that
0 = wese Ry,. Consider esS<eS. Let D' = D, UesS and let f’ =
FiD'. Then f'(D)=Ry. If yeR, then f'9,(¥) = fuou(y)=y.
Hence (D', gy)e.# and (D, 9x) < (D', g) which contradicts the
maximality of (D, gx).

Case 2. Suppose zeSN B, = 0. Let 2’ be an inverse of x and

define g: R = R, UxeS— D' = D, UeS by ¢'(y) = {go’;’,(;/)ﬁ}fyyeexgsﬂf}.
Note that ¢’ce Hom (R, D). Now let f' = f|D’ and let ye R'. If
ye Ry then f'¢'(y) = fu9u(y) = 1z, (¥) = y. On the other hand, if
yewxeS, say y = xes, then f'g'(y) = f'g'(wes) = f'(ex'xes) = xa'xes =
xes = y. Hence it follows that f’¢’ = 1. Thus, (D', ¢')e & and
clearly (Dy, 9x) < (D', 9') which again contradiets the maximality of
(D, 9u)-

Therefore, D, must be intersection large in S and the theorem
follows.

An S-set Mg is intersection uniform if every nonzero sub S-set

of M is intersection large.

THEOREM 4.3. The semigroup Q = Q(M;) is a right cancellative
semigroup with zero if and only if Mg is intersection uniform.

Proof. Suppose that Q is a right cancellative semigroup with
zero and let Ny be a nonzero sub S-set of My. Using Zorn’s lemma
to find a maximal sub S-set N’ of M such that NN N’ = 0, define a
function f on NUN' by f(z) =« if xe N and f(z)=0 if zeN'.
Then f*= f and feF. If f =0 then there exists De . F?(M;) such
that DS D; and f(D)=0 which implies that D& N’. Hence
N'e F(Ms). But this is impossible since N\ N’ = 0. Thus we have
7 0. Since 1,f =f = ff and since each nonzero element of @ is
right cancellable, it follows that 1, = f. Therefore, there exists
De &” such that D < N and it follows that Ne & (Ms). The proof
of the converse is immediate.

5. The injective hull of a . Z-torsion free semigroup. Through-
out this section we shall consider the semigroup S as an S-set over
itself. For se S define ¢,: S— S by ¢,(t) = st. Then ¢,€ F' and it
easily follows that the map ¢: S— @ by ¢(s) = &, is a representation
of Sin @ = Q(Ss). Note also that we can regard @ as a centered
right S-set by defining fs = f¢, for each fe@ and for each seS.
The following lemmas are easy consequences of the above remarks.

LEMMA 5.1. (Ss) = ¢7'og.
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LEMMA 5.2. For each feF and for each s€ Dy, fé, = ¢z

When (Ss) = ts we shall assume that S is embedded in Q@ =
Q(S) under the identification s{—>@,. From Lemma 5.2 we see
that fs = f(s) for each fe Q.(S) and for each se D, under the iden-
tification described above. Thus we see that Sg is intersection large
i Qs. In addition, the next lemma shows that Qg is FP-torsion free.

LEMMA 5.3. If S is FP-torsion free then Qg 1s F-torsion free.

Proof. Let (f, f) e ¥(Qs). Then there exists Ee & such that
fE=f,E. Let E'=EnND; ND;ecs” Then for each scE’, we
have f.(s) = fis = f:s = f4(s) and it follows that f, = f.

The following lemma is immediate from Lemma 2.1 and the
remarks preceding the above lemma.

LEMMA 5.4. If S is P-torsion free then Sg is large in Qs.

We now can show that @ is the injective hull of S and fur-
thermore @ is injective as a Q-set.

THEOREM 5.5. If S is FP-torsion free then Qs = Q(Ss) tis the
injective hull of Ss.

Proof. Since S; is large in Qs by Lemma 5.3, we need only show
that Q; is injective. By Lemma 5.3 and Proposition 3.4 it suffices
to verify that Q; is weakly injective. Let R be a right ideal of S
and let @ ¢ Hom; (R, Q). Since S; is intersection large in Qg R =
0(S)e. 7 and f = @|R'e F. We claim that @(r) = fr for each re
R. For each ser™'R' = {s: rse R’} we have O(r)s = O(rs) = f(rs) =
(fr)s. Thus, since r'R'e &7, it follows that (@(r), fr) € ¥(Qs) which
is the identity S-congruence on Q. Therefore, @(r) = fr for each
re R and the result follows.

THEOREM 5.6. If S is .P-torsion free thern @ = Q(Ss) ts self
injective.

Proof. Let A, S B, be Q-sets and let @ ¢ Hom, (4, B). Then
@' ¢ Homg (4, Q). Since Qg is the injective hull of S, there exists
® ¢ Homy(B, Q) such that ®|A = @'. We claim that @ is a Q-homo-
morphism. Let be Band fe Q. Then for each se D,; we have &(bf)s =
D(bfs) = D(bf(s)) = O(b)f(s) = O(b)fs. Thus ((bf), P(b)f) € ¥(Qs) which
is the identity congruence on Q. Therefore, it follows that @(bf) =
o(b)f.



170 C. V. HINKLE, JR.

REFERENCES

1. Berthiaume, The injective envelope of S-sets, Canad. Math. Bull., 10 (1967), 261-273.
2. E. H. Feller and R. L. Gantos, Indecomposable and injective S-systems with zero,
Math. Nach., 41 (1969), 37-48.

3. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer,
Math. Soc., 2 (1951), 891-895.

4. F. R. McMorris, The singular congruence and the maximal quotient semigroup,
Canad. Math. Bull., to appear.

Received July 19, 1973. This paper represents a portion of the author’s doctoral
dissertation written under the supervision of Professor D. R. LaTorre. The author
wishes to thank Professor LaTorre and Professor John K. Luedeman for their assistance
and encouragement. Research for this work was supported by a National Science
Foundation Traineeship and by a Faculty Fellowship from the Virginia Military Institute.

CLEMSON UNIVERSITY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by Intarnational Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 53, No. 1 March, 1974

Martin Bartelt, Strongly unique best approximates to a function on a set, and a finite

SUDSEL TRETEOS . . .« v oot e e e 1
S. I. Bernau, Theorems of Korovkin type for L-spaces........................... 11
S. J. Bernau and Howard E. Lacey, The range of a contractive projection on an

Lp-SPace . ....oooo 21
Marilyn Breen, Decomposition theorems for 3-convex subsets of the plane . . . ...... 43
Ronald Elroy Bruck, Jr., A common fixed point theorem for a commuting family of

NONEXPANSIVE TAPPINGS « + o o v e e ettt et ettt et e et aaieee e 59
Aiden A. Bruen and J. C. Fisher, Blocking sets and complete k-arcs ............... 73
R. Creighton Buck, Approximation properties of vector valued functions . .......... 85
Mary Rodriguez Embry and Marvin Rosenblum, Spectra, tensor products, and

linear operator eqUALIONS . ... ...........uuuuuuiiu i, 95
Edward William Formanek, Maximal quotient rings of group rings................ 109
Barry J. Gardner, Some aspects of T-nilpotence ...................ccciiiiiio... 117
Juan A. Gatica and William A. Kirk, A fixed point theorem for k-set-contractions

defined in @ CONe. ... .. ... e e 131
Kenneth R. Goodearl, Localization and splitting in hereditary noetherian prime

FIILZS e e e et et e e et e e e e e e e e e 137

James Victor Herod, Generators for evolution systems with quasi continuous
TFAJECTOTIOS . o o v o ettt e e e et e e e e e et e e et e e e et 153

C. V. Hinkle, The extended centralizer of an S-set .............
I. Martin (Irving) Isaacs, Lifting Brauer characters of p-solvabl

Bruce R. Johnson, Generalized Lerch zeta function . . .........
Erwin Kleinfeld, A generalization of (—1, 1) rings ............
Horst Leptin, On symmetry of some Banach algebras . . .......|
Paul Weldon Lewis, Strongly bounded operators ..............

Arthur Larry Lieberman, Spectral distribution of the sum of self
OPEFALOTS .\ i ettt et e e e e e ettt

I. J. Maddox and Michael A. L. Willey, Continuous operators o
spaces and matrix transformations . .....................

James Dolan Reid, On rings on groups ......................
Richard Miles Schori and James Edward West, Hyperspaces of

William H. Specht, A factorization theorem for p-constrained g
Robert L Thele, Iterative techniques for approximation of fixed

nonlinear mappings in Banach spaces ...................
Tim Eden Traynor, An elementary proof of the lifting theorem . .
Charles Irvin Vinsonhaler and William Jennings Wickless, Com,

decomposable groups which admit only nilpotent multiplic
Raymond O’Neil Wells, Jr, Comparison of de Rham and Dolbe

proper SUrjective mappings .. .........ueeeueenennnnnn.
David Lee Wright, The non-minimality of induced central repre
Bertram Yood, Commutativity properties in Banach *-algebras .


http://dx.doi.org/10.2140/pjm.1974.53.1
http://dx.doi.org/10.2140/pjm.1974.53.1
http://dx.doi.org/10.2140/pjm.1974.53.11
http://dx.doi.org/10.2140/pjm.1974.53.21
http://dx.doi.org/10.2140/pjm.1974.53.21
http://dx.doi.org/10.2140/pjm.1974.53.43
http://dx.doi.org/10.2140/pjm.1974.53.59
http://dx.doi.org/10.2140/pjm.1974.53.59
http://dx.doi.org/10.2140/pjm.1974.53.73
http://dx.doi.org/10.2140/pjm.1974.53.85
http://dx.doi.org/10.2140/pjm.1974.53.95
http://dx.doi.org/10.2140/pjm.1974.53.95
http://dx.doi.org/10.2140/pjm.1974.53.109
http://dx.doi.org/10.2140/pjm.1974.53.117
http://dx.doi.org/10.2140/pjm.1974.53.131
http://dx.doi.org/10.2140/pjm.1974.53.131
http://dx.doi.org/10.2140/pjm.1974.53.137
http://dx.doi.org/10.2140/pjm.1974.53.137
http://dx.doi.org/10.2140/pjm.1974.53.153
http://dx.doi.org/10.2140/pjm.1974.53.153
http://dx.doi.org/10.2140/pjm.1974.53.171
http://dx.doi.org/10.2140/pjm.1974.53.189
http://dx.doi.org/10.2140/pjm.1974.53.195
http://dx.doi.org/10.2140/pjm.1974.53.203
http://dx.doi.org/10.2140/pjm.1974.53.207
http://dx.doi.org/10.2140/pjm.1974.53.211
http://dx.doi.org/10.2140/pjm.1974.53.211
http://dx.doi.org/10.2140/pjm.1974.53.217
http://dx.doi.org/10.2140/pjm.1974.53.217
http://dx.doi.org/10.2140/pjm.1974.53.229
http://dx.doi.org/10.2140/pjm.1974.53.239
http://dx.doi.org/10.2140/pjm.1974.53.239
http://dx.doi.org/10.2140/pjm.1974.53.253
http://dx.doi.org/10.2140/pjm.1974.53.259
http://dx.doi.org/10.2140/pjm.1974.53.259
http://dx.doi.org/10.2140/pjm.1974.53.267
http://dx.doi.org/10.2140/pjm.1974.53.273
http://dx.doi.org/10.2140/pjm.1974.53.273
http://dx.doi.org/10.2140/pjm.1974.53.281
http://dx.doi.org/10.2140/pjm.1974.53.281
http://dx.doi.org/10.2140/pjm.1974.53.301
http://dx.doi.org/10.2140/pjm.1974.53.307

	
	
	

