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CONTINUOUS OPERATORS ON PARANORMED
SPACES AND MATRIX TRANSFORMATIONS

Ivor J. MADDOX AND MICHAEL A. L. WILLEY

The concept of a paranormed S-space is defined and some
theorems of Banach-Steinhaus type are proved for sequences
of continuous linear functionals on such a space. For example,
necessary and sufficient conditions are given for a sequence
(A.(x)) of continuous linear functionals to be in the space of
generalized entire sequences, for each 1z belonging to a
paranormed S-space. The general theorems are then used to
characterize matrix transformations between generalized [,
spaces and generalized entire sequences.

1. In 82 we present theorems which generalize some results in
[10]. These theorems are applied in § 8 to characterize some classes
of matrix transformations. By N, R and C we denote respectively,
the sets of natural numbers, real numbers, and complex numbers.
By a sequence (x,) we mean (x,a, ---), and by 2.z, we mean
Dir=1 e

X will denote a nontrivial complex linear space of elements z,
with zero element 6 and with paranorm g¢, i.e. g: X — R satisfies
9(6) =0, g(®) = g(—x) on X, ¢ is subadditive, and, for ne Cand z¢ X,
r—x, and g(x — x,)—0 imply gOwr — \ax,) — 0, where ),eC and
x,€ X,

Extending the definitions of Sargent in [8], we can define a
paranormed B-space as follows. Let (X,) be a sequence of subsets
of X such that e X, and such that if z, ye X, then v = ye X,
for ne N; then (X,) is called an a-sequence in X. If we can write
X= U X,., where (X,) is an a-sequence in X and each X, is nowhere
dense in X, then X is called an a-space; otherwise X is a B-space.
Clearly, every a-space is of the first category, whence we see that
any complete paranormed space is a S-space.

If Y= X then we denote the closure of Yin X by Y. We write,
for any ac X and 6 >0, S(a, d) ={z: 2 X and g(x —a) <d}. A
subset G of X is calleda fundamental set in X if [. hull (G), the set
of all finite linear combinations of elements of G, is dense in X.
A sequence (b,) of elements of X is said to be a basis in X if for
each ze X there is a unique complex sequence (A,) such that
g — 37, Mby) — 0(m — o). Thus any basis in X is also a funda-
mental set in X.

We denote the set of continuous linear funectionals on X by X*.
A linear functional 4 on X is an element of X™* if and only if

217



218 IVOR J. MADDOX AND MICHAEL A. L. WILLEY
| Allx = sup {[A(x)l: g(x) < i} < oo for some M >1.

If X is a space of complex sequences % = (%), then we denote the
generalized Kothe-Toeplitz dual of X by X', i.e.

X' = {(ap): 2,2, converges for every ze X} .

We now list some sets of complex sequences due to Maddox [4].
If »p = (p.) is a sequence of strictly positive real numbers, then

(D) = {w: sup, | @, [** < o},
c(p) = {x: lim, | @, |P¢ = 0},

c(p) = {x: lim, |2, — I |** = 0 for some leC},
Up) = fo Ty | m[7% < o0} .

We write ¢ = (0,0, ---,1,0,0, ---), the 1 occurring in the k™ place,
foreach ke N,ande = (1,1, 1, --+), and we write [, = l..(e), ¢, = cie),
¢ = cle), and I, = l(e).

The case p = (1/k) of ¢,(p) is of particular interest, since the
function defined by X7, a,2*, z€ C, is an entire function if and only
if (ax)ecfl/k). Work on the space of entire functions has been
carried out, by V. Ganapathy Iyer in [2] and in other papers, and
by other authors, using this correspondence with c¢,(1/k). It is shown
in [2] that c(1/k)" = I.(1/k).

Now we collect some known results which will be useful in what
follows.

LeMmA 1. U(p) s a linear space if and only if p is bounded.
(See [4], Theorem 1, and [7], Theorem 1.)

LEMMA 2. If p is bounded with H = max(supp 1), then
9(®) = (T |z [P)"" defines a paranorm on l(p), l(p) is complete under
g, and () is a basis in l(p). (See [5], Theorem 1 and Corollary 1,
and [7].)

LemmA 3. (1) Ifl<p,< H and p;t+ syt =1 for each k< N,
then
Up) = {(an): T | @, |% - M~k < oo for some M > 1} .

(ii) If 0 < p, £1 for all ke N then U(p) = l.(p).
(See [6], Theorem 1, and [9], Theorem 7.)

LEMMA 4. If either 1 <p, < H for all k, or 0<p, =1 for all
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k, then every Acl(p)* may be written as A(x) = X,a,x, on U(p) for
some (o) € Up)!, and conversely A(x) = X ,a,x, defines an element of
Up)* for each (a)el(p)'. (See [6], Theorem 2, and [9], Theorem 7.)

Given sets Y and Z of sequences and a matrix 4 = (a,,;) of
complex numbers (n, k =1, 2, ...) we say that Ae (Y, Z) if and only
if 5,0,y converges for every ¥ = (y,) € Yand ne N, and (2,0, ,.¥:) € Z
for every ye Y.

We shall frequently use the following inequalities. Take z, y € C;
if 0<p<1 then

e —lylP=le+ylP=|oP+]yl”,
and if p > 1 and p™' + s =1 then

oy | =< |@]” + |y ]

2. For the remainder of this paper, ¢ = (qg,) will denote a
sequence of strictly positive real numbers. If ¢ is bounded with
H = max (sup ¢,, 1) then it follows by Lemma 1 of [4] that ¢(q) =
c(Hq); similarly 1 (q) = l.(H'q) and ¢(q) = ¢(H™'q).

THEOREM 1. Let X be a paranormed space and let (4,) be a
sequence of elements of X*, and suppose q vs bounded. Then

(1) sup, (|| 4, L) < = for some M > 1
wmplies
(2) (4., (%)) e l.(q) for every zc X,

and the converse is true if X is a B-space.

Proof. In view of the remarks at the beginning of this section,
we may without loss of generality assume that ¢, < 1 fore all ne N.
First let (1) hold, and choose any € X. By the continuity of scalar
multiplication in a paranormed space, there is a K =1 such that
g(K'x) £ 1/M, where the M is that of (1). Then we have for any
n, since ¢, = 1,

| Au(@) | = | KA(K ) ™ = K™(|| A, |[)™
< Ksup, (|| A, |[x)™ ,

so that (2) holds.
Now let (2) hold, with X a B-space, and define for any me N,

X, ={z:xc X and | A4,(x) | < 2™ for all ne N}.

Then (X,) is an a-sequence in X, for obviously ¢ X,, and if for
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some m =1, z, y € X,, then, since ¢q, < 1 for every =,

(A, @ £ y) | = [A) | + [ A (y) [ = 277

for any ne N. Also X =J;-, X,,, so since X is a S-space there
exists a Be N such that X, is not nowhere dense. Using the conti-
nuity of the A,, it is not difficult to show that X, = X, for every
m, whence there is a sphere S(a, 0) © X;. Thus if g(z — @) < 6 we
have | 4,(z)|™ < 2% for all n, so if g(z) <o we have

[A,() | = | Az + a) ™ + | A(a) > < 257 for all n.
Taking M > 67! we obtain (1).

THEOREM 2. Let X be a paranormed space and let (4,) be a
sequence of elements of X*.

(i) If X has fundamental set G and if q ts bounded, then the
following propositions

(3) (A,(0)) € cq) for every be @G,
(4) limy lim sup, (|| A, |[[x)™ =0,

together 1mply

(5) (4,.(x)) € c(q) for every xe X.

(ii) If q,— 0(n — o) then (4) implies (5).
(iii) Let X be a pB-space; then (5) implies (4) even if q 1is
unbounded.

Proof. (1) Again, we may without loss of generality assume
that ¢, < 1 for every ne N. Let X have fundamental set G, and
suppose (3) and (4) hold. Choose any xz€ X and any ¢ > 0. There
exist M > 1 and =, such that (]| 4,]|x)" < ¢/2 for all n = n,, by (4).
Since l-hull (G) is dense in X there exist N\, Ay <+, Mp€C and
by, by -+, by G such that gz — >\, Aby) < 1/M, and we write L =
max (N, =+, | M|, 1). Then by (8) there is an n, = n, such that
| A, (00| < e¢/@Lm), k=1,2, -+, m, if nw =mn, whence if n = n,
we have

m ™ ‘o
4@ = Ao = Zub) + 304,00

VRCED BN RS A IPHCATL
< (| Aullu)s + mL - f2Lm) < ¢

<

thus (5) holds.
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(ii) Suppose (4) holds and g€ ¢, and choose any xe X and any
€>0. There is an M >1 and an =, such that (|| 4, <¢&/2 if
n = n, and since scalar multiplication is continuous on X there is a
K =1 such that g(K'2) < 1/M. Then we can choose 7, = n, such
that K% < 2 if n = n, whence if n = n,

[ A (@) | = K™ | A (K 'w) | < ¢,

so that (5) is true.

(iii) Let X be a B-space and suppose (5) is true. We define
sequences (B,), (C,) of elements of X* and sequences » = (r,), s = (s,)
of strictly positive real numbers as follows. If ¢, =1 then define
B,=A4,¢C,=0,7,=q,,and s, = 1; if ¢, <1 write B, =0,C, = 4,,
r. =1, and s,=gq,. Then (B,@))ecc(r) and (C.(z))e€c(s) on X;
sup,s, <1, and r, =1 for all ne N. Also, (|4l = (|| B.|lx)™ +
(1 C, llx)» for all large enough M, n =1, 2, ---, whence

lim, lim sup, (|| 4, ||x)™ < lim, lim sup, (|| B, ||)™
+ lim,, lim sup, (|| C, ||:)*" -

Choose any ¢ > 0, and define for each me N
Xn={w:ze X and |27"C,(z) | < —;- for all » = m} .

Clearly 6e¢ X,, and if for some me N we have x, ye X,, then for
n=m-+1

|27 C, (0 = ) ' < (|27, ()| + | 27" C,(w) )
< (2max (27" C,(0) |, | 27C, (1) D)

= max (|27C,(e) [, |27C.W) ") <

thus (X,) is an a-sequence in X. Also X = -, X, and X, = X,,
for all m e N whence, since X is a g-space, some X, contains a sphere
S(a, 6). Then if g(x) <6 we deduce that |272C,(x)[|*» < ¢ for n = B.
Write o = 2729 and choose M > p7'; then by the subadditivity of ¢
we have g(2°x) < ¢ if g(x) < p. Hence if g(x) < 1/M we have

| Co(@) | = | 27PC(2%0) " < ¢ if n =B,

and since ¢ > 0 was arbitrary we obtain lim, lim sup, (|| C, ||x)™ = 0.
Now (B.(®)) € c(r) on X implies (B,(x))€c, on X. For suppose
if possible that for some sequence (n(7)) of integers and some ze€ X
inf | B,,(x)] = @ > 0; then | B, (a '2) | =1 for all 4, contrary to
hypothesis. By the argument used above we deduce that

limy lim sup, || B, |lx = 0,
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whence since », =1 for all =, lim, lim sup, (|| B,||x)™ = 0. By our
earlier remarks, (4) now follows.

THEOREM 3. Let X be a paranormed space and let (A,) be a
sequence of element of X* and suppose q is bounded.

(1) If X has fundamental set G, and if there is an le X* such
that (A,(0) — (b)) € cl(q) for all be G and

(6) lim, lim sup, (|| 4, — L{|x)™ =0,
then
(7) (A.()ec(g) on X .

(ii) If q,—0(n — =) and if there 1is an le X* such that (6)
holds, then (7) is true.

(iii) If X is a B-space and if (7) is true, then there is an le X*
such that (6) holds.

Proof. (i) If the hypotheses hold, then 4, — € X* for every
n € N whence by part (i) of Theorem 2 ((4, — {)(z)) € ¢(qg) on X; thus
(7) is true.

(ii) Follows similarly from Theorem 2(ii).

(iii) Suppose (7) holds; then for some ! we have |A.(z) —
I(x)|» — 0(n — ) on X. We deduce that [(z) = lim, 4,(x) on X and
sup, | A.(x)| < c on X. Then by Theorem 1 we have sup, || 4, ||z < =
for some M > 1, whence [|l]|,; < . Clearly [ must be linear, so
that le X*. Thus A, —le X* for each ne N, and by hypothesis
(A, — D)) eclq) on X, so by Theorem 2(iii), (6) must be true.

3. We now apply the theorems above in characterizing the
classes (I(p), 1..(9)), (L(p), ¢q@)), and (I(p), ¢(q)) in the case when both
p and ¢ are bounded. Throughout, A = (a, ;) will denote an infinite
matrix of complex numbers. As a preliminary, we state Theorem 1
of [3]:

THEOREM 4. (i) Let 1<p, £ H< o and pi'+s;'=1 for
every k. Then Ac (l(p),l.) if and only if there exists an integer
B > 1 such that sup, X, | @, |« B~ < oo,

(ii) Let 0 < p, =1 for every k. Then Ac (I(p),l.) of and only
of SUD, g | Qg |7 < oo

In the proofs of the following results, as in earlier ones, we
may without loss of generality assume that ¢, <1 for all ne N,
and we shall do so when convenient.

We first consider the case when 0 < p, <1 for all ke N.
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THEOREM 5. Suppose 0 < p, <1 for all ke N, and q = (q,) is
bounded. Then,

(1) Ae(Up) l(2)) if and only if

(8) Sup, (Supy | @, | M%) < oo for some M > 1.
(ii) Ael(p), c(q) if and only if
(9) | @, [ — 0(n — ) for every ke N
and
(10) lim, lim sup, (sup, | @, . | M~H?k)» = 0 .
(iii) Ae (U(p), ¢(@) if and only if sup, supy| @, | M " < oo for
some M > 1 and there exist a, a,, -+ such that
(11) | @ — @y | — O0(n — ) for each ke N
and
(12) lim,, lim sup,, (sup; | @, — a, | MHPe)n =0,

Proof. Write, for each zcl(p) and each ne N
(13) A (%) = 2000 1% -

(i) Let Ae((p), 1.(q)); then for each =, (@, Qus, ) EUD) =
l.(p), by Lemma 3(ii). Also, by Lemma 4, 4, c l(p)* for each ne N.
We show that for each =, || A, ||y = sup, | @, | M "* for all M such
that || A4, ||» is defined. Choose any ne N. First, if M is such that,
for some sequence (k(7)) of integers, |a, .. | M V*@ =4 for each
1€ N, then by defining x®*") = (M~**c6 ggn a, yu))e*, 1=1,2, --.,
we see that || 4,y is undefined. Since (@, @ps * ) € l(p) there is
an M, = 1 such that |a, ,[” < M, for all k. Choose M = M,. We
have if g(x) = 3, |2, | < 1/M, since M'* |z, | = 1 for all & and since
sup, . = 1,

| A (@) < 20 a,, | M~Pe . MU | g, |
S 2l a, | M M|, [P
< Mg(x)sup, | @, | M7,

whence || 4, ||x < sup,|a, .| M*. Given ¢ >0 we can choose an
m such that |a,,| M " > sup,|a,,| M /" —e¢e  Defining 2=
(M7 sgn @, ,)e'™ we have g(x) =< 1/M and A,(x) > sup, | a, | M7 —¢,
whence || A4, ||y = sup,|a, .| M " as required. By Lemma 2, I(p) is
complete, so it is a B-space; thus by Theorem 1 we must have (8).

Conversely let (8) hold. Then as above it follows that for each
n, A,€l(p)* with ||A,|lyx = sup,|a,,| M* for all M such that
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|| A, |l is defined. Then using Theorem 1 we obtain (4.(x))<l.(q)
on l(p), i.e. A€ (I(p), 1..(9))-

We remark that (8) reduces to sup, ;| @, ;| < «if 0 < infgq, <
sup ¢, < o, corresponding to the condition given for A e (I(p), l.) in
Theorem 4(ii).

(ii) If Ae(U(p), cq)) < (Up), L..(9)) then as above we have A, X*
and || A, ||x = supy | @, | M '** whenever || A, ||, is defined, for each
ne N. Then, by Theorem 2(iii), (10) must hold. Also taking « =
ePel(p)(k=1,2, ---) we obtain (9). Conversely if (9) and (10) hold
we can show that A4, € l(p)* with || 4, ||x = sup, | @, | M '/* whenever
|| A, ]l is defined, for each me N; also (e®) is a basis in I(p) by
Lemma 2. Then by Theorem 2(7) we can deduce that A e (I(p), c(q))-

(iii) Let A e (I(p), ¢(q)); then as in (i) and (ii) above we have for
each n that A,e X*. By Theorem 3(iii) there is an [ ¢ X™* such that
lim, lim sup, (|| 4, — I||x)™ = 0, and by Lemmas 3(ii) and 4 we can
write I(z) = X,a,x, on l(p) for some () el.(p). We deduce that
| A, — U|ly = supi | @ur — ay| M?¢ for large enough M, n =1, 2---,
whence (12) is true, and (11) must hold since (4, — I)(e*) = @, — @,
for each n and k. Also c(q) <!l. whence (I(p), (c(q)) < (Up), L.); thus
by (i) we must have sup, |a, .| M /" < « for some M > 1.

Finally, if sup,|@,,| M/ < o for some M > 1 then 4,¢ l(p)*
for all #n. If in addition (11) and (12) hold then for any & we have,
if » and M are large enough,

la, | M~Y2e < | ay — @ | M7YPE + | @y, | M7
=1+ sup, (sup; | a,,.| M'") = B say ;

hence |a,|”* < B*. M < BM for all k, ie. (a)el.(p) =1l(p). By
Lemma 4, l(z) = X ,a,x, defines an element of l(p)*, and the result
now follows if we employ the methods used above together with
Theorem 3(i).

THEOREM 6. Suppose 0 < p, <1 for all ke N and q,— 0(n— o).
Then Ae€l(p), ci(q)) if and only if (12) is true.

Proof. This follows from Theorem 2, parts (i) and (iii), on using
the methods of Theorem 5.

COROLLARY. (i) Ae(l, c(l/n)) if and only if |an; " — 0 uni-
formly in k as m— oo.
(ii) Ae(l, l.(1/n)) if and only if SUP,i| Wi |'™ < oco.

Proof. These characterizations were given in Theorems 1 and
2 of [1], and follow readily on taking » = ¢ and ¢ = (1/n) in Theorems
5(i) and 6.
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Now we consider the case when 1 < p, < H < « for all k.
THEOREM 7. Let 1 <9p,< H and p3' + si* = 1 for each ke N,
and let q be bounded. Then Ae (I(p), 1..(Q) if and only if

(14) T(B) =sup, 2|, | B~ < « for some B>1.

Proof. Define A, by (13) on I(p), for each ne N. For the suf-
ficiency, let (14) hold. Then if xz ¢ l(p) we have for each n, assuming
9. =<1 for all =,

[ A, (@) < (3 | @u sy ) = (Z) | @p i | B0 B | g5, [)o
é (Zk l Qo i "k « B %kln -+ Zk Bl , Xy |1”k)qn

= (T(B))™ + B*(g"(x))™
< T(B) + 1 + B*(¢%(z) + 1)

which implies A4 € (I(p), {..(9)).

Now let Ae (I(p), 1..(q)); then (a,., @, ---)€l(p) for each n and
so, by Lemmas 3(i) and 4, A,el(p) for all n. By Theorem 1 there
exist M>1 and G =1 such that |A,(x)|"» <G for all » and all
zel(p) with g(x) <1/M. Then |2, G Y -q, 5| <1, n=12 -.-,if
g(®) < 1/M. Write I' = (G™'*a, ), and choose any x€l(p). By the
continuity of scalar multiplication on l(p) there is a K = 1 such that
9(K %) < 1/M, whence |2, G " .a, ,x,| < K for all n. Thus we see
that I"c (I(p), ..) and so by Theorem 4(i) there is a D > 1 such that
sup, 2, |G Y. q, |- D% < oo, Writing B = GD and using the
fact that D™ < D for all n, we obtain (14).

Looking at Theorem 4, one might except the necessary and
sufficient condition for A e (I(p), I..(¢)) to be

(15) Sup, (34 | @, 1 |k« M~%k) < oo for some M > 1.

Using the method above we can show that (15) implies Ae
(U(p), 1(¢)). In fact it can be shown that (15) implies (14) directly.
For let (15) hold; then for some B > 1, (3;|@, ;|- B~*¥)™ < H for all
n, and we may suppose that H > 1. If ¢, < @ for all n then

(16) (Zrlan |- Bk« H)wWle < 1 for all n .

Put M = HB®; then M =H. B%: > H. B, whence M /% > H"%.B%
for all k¥ and n. Thus by (16) we obtain

ol [k Mokl < 3 [ @i 7% B~ H
Sl |- B H )¢ < 1 for all =,

whence T(M) =<1, i.e. (14) holds.
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Clearly, (14) implies (15) if inf,q, > 0 or if inf,p, > 1. How-
ever, (15) is not necessary for Ae (I(p),l..(q)) if inf,q, =0 and
inf, p, = 1. For choose bounded p and ¢, with p, > 1 for all %, and
suppose there exist sequence (n(), (k(5)) of integers such that
Gy =1/5,0=1,2---, and p,;, =1+ 1/,5=1,2, -.-; then s, =
j + 1for each j. Define apy 15y =% %J=12 -+, and a,, = 0 for
all other » and k. Then A = (a,,.)< (I(p), l..(¢)) since for all i N.

Zi [ @iy pisy o080+ 27k < Fi(3/27 S 1,
but for any M > 1 we have if ¢ = M,
(2 | @acir,pai [P0« Mokti)tnt) = (35 | 4/ M )™,

which diverges.

THEOREM 8. Let ¢q be bounded, and let 1 < p, < H and pi'+

s;* =1 for all ke N. Then Ac (l(p), c(q)) if and only if (9) holds
and, for every D =1,

(17) llmB lim sup,, (Zk l a",klﬂk .-D sildn ., B—sk)q,n =0.

Proof. Again, define A, on I(p) by (18). First we prove the
necessity: let Ae (I(p), ¢(q)). Obviously we must have (9), and as
in Theorem 7 we see that A, l(p)* for all n. If Ae (I(p), c(q)) then
(DMin.a, )€ (U(p), c(q)) for all D > 1, so it is enough to show that
(17) holds for D = 1. Since ¢,(q) c!l. and using Theorem 4(i) there
is a B>1 such that T,=2J3,|a,,|*- B #*<1 for every nec N.
Choose any 7, and define 2 = B #%|a, ,|** 'sgna,, for each k;
then

g7 (@™) = I, B Hw " |q, | < B*T, < B™*

and A,(x™) = T,, whence || 4,|[z = T, for each n. By Theorem 2(iii)
we must have lim,lim sup, (|| 4.]/z)? = 0, whence (17) holds with
D=1.

For the sufficiency, let (9) be true and let (17) hold for all
D=1. It follows that A,el(p)* for all ne N. Since (¢*) is a
basis in I(p) and using Theorem 2(i) it is enough to show that
lim, lim sup, (|| 4., ||z)™ = 0. Choose ¢, 0 < ¢ <1, and D > 2/s. There
exist B> 1 and m such that (F,|a, % D*/%. B~%)% < ¢/2 if n = m.
Then if g(x) £ 1/B and if » = m we have

| A @) " = (Zx|@np| DVine BT BD™Hin |2, )
< (T {|@pp|*D < ¥l Bk 4 D~Pkltn o Bk | g, |?k})7n
< &2 + (D Yin- BEgE(z))™» < €,
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and this completes the proof.

One may show that if (9) is true and if (17) holds for D =1,
and if either inf, ¢, > 0 or inf, p, > 1, then A< (I(p), c((q)), but that
these conditions are not sufficient for A € (I(p), ¢i(q)) if inf, g, = 0 and
inf, p, = 1.

THEOREM 9. Let g be bounded, and let 1 < p, < H and p;* +
sy =1 for all ke N. Then Ac (l(p), ¢(q) if and only if sup,, X
|G, 1| B % < oo for some B>1 and there exist «, ,, --- such that
(11) holds and limglim sup, (X, | @, — @, |- D*#% . B~%) = 0 for all
D=1.

Proof. As usual, define A, on I(p) by (13) for each ne N. First
let A< (l(p)), e(g) < (i(p), l.); then sup, X, |a, .l B™* < co for some
B> 1. Also by Theorem 3 there is an [ € l(p)* such that | 4,.(e"*) —
l(e®)]» — 0 (n — o) for each k and such that lim,limsup, (|| 4, —
1]|s)» = 0. By Lemma 4 we can write I(z) = 3,2, on l(p) for some
sequence («;) < l(p)!, and the necessity now follows using the method
of Theorem 8.

For the sufficiency, we show that the conditions of this theorem
imply X, |a, |- M~ < o for some M > 1; then I(z) = ¥, a,z, defines
an element of I(p)*. We have for suitably large B and =

il H2B) ™ = |y — @ + @y [ (2B) 70
< Yimax ((a,, — apl, [ @))% B~
s3], — | Bk 4 X |a, [ BT
Z1+sup, 3| @upl® B < oo,

Then by Theorem 8, (a, , — «,) € (I(p), c(q)) whence | A,(x) — I(z)|"»—0
(n— ) on I(p), and the proof is complete.

We note that (I(p), ¢) was characterized, for bounded p, in the
corollary to Theorem 1 of [3].

The conditions for A e (I(p), I..(q), (((p), c(q)) or [(I(p), ¢(q)) in the
general case 0 < p, < sup p, < « and ¢ bounded may be obtained by
combining the separate cases 0 < p, <1 and 1 < p, < H above.
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