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The concept of a paranormed /3-space is defined and some
theorems of Banach-Steinhaus type are proved for sequences
of continuous linear f unctionals on such a space. For example,
necessary and sufficient conditions are given for a sequence
(An(x)) of continuous linear functionals to be in the space of
generalized entire sequences, for each x belonging to a
paranormed /3-space. The general theorems are then used to
characterize matrix transformations between generalized lp

spaces and generalized entire sequences.

1* In § 2 we present theorems which generalize some results in
[10], These theorems are applied in § 3 to characterize some classes
of matrix transformations. By N, R and C we denote respectively,
the sets of natural numbers, real numbers, and complex numbers.
By a sequence (xk) we mean (xί9 x2, •••)> a n ( i by Σkxk we mean

X will denote a nontrivial complex linear space of elements x,
with zero element Θ and with paranorm g9 i.e. g:X—*R satisfies
g{β) — 0, g(x) — g( — x) on X, g is subadditive, and, for Xe C and xe X,
X —* λ0 and g(x — x0) —• 0 imply g(Xx — Xoxo) —> 0, where XoeC and
xoe X.

Extending the definitions of Sargent in [8], we can define a
paranormed /3-space as follows. Let (Xn) be a sequence of subsets
of X such that θ e X1 and such that if x, y e Xn then x ± ye Xn+1

for n e N; then (Xn) is called an ^-sequence in X. If we can write
X= U»=i ̂ > where (Xn) is an ̂ -sequence in Xand each Xn is nowhere
dense in X, then X is called an α-space; otherwise X is a /S-space.
Clearly, every α-space is of the first category, whence we see that
any complete paranormed space is a /S-space.

If Yd X then we denote the closure of Yin X by F. We write,
for any ae X and δ > 0, S(a, 3) — {x: xe X and g(x — a) < δ). A
subset G of X is called a fundamental set in X if I. hull (G), the set
of all finite linear combinations of elements of G, is dense in X.
A sequence (bk) of elements of X is said to be a basis in X if for
each xe X there is a unique complex sequence (Xk) such that
9(® ~ Σfc=i λkf>k) "-* 0(n —> oo). Thus any basis in X is also a funda-
mental set in X.

We denote the set of continuous linear functionals on X by X*.
A linear functional A on X is an element of X* if and only if
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| | A \\M ~ sup 11 A(x) |: g(x) g — I < oo for some M > 1 .
^ M>

If X is a space of complex sequences x = (xk), then we denote the
generalized Kothe-Toeplitz dual of X by X\ i.e.

^ = {(̂ fc) Σjβb&k converges for every x e l } .

We now list some sets of complex sequences due to Maddox [4].
If p = (pk) is a sequence of strictly positive real numbers, then

IΛv) = {&: sup* I a* I** < ^} ,

co(p) = {a;: lim* | xk |** - 0} ,

c(p) — {$: Urn*. I xk — i \Pk = 0 for some Z e C} ,

We write eik) = (0, 0, , 1, 0, 0, •), the 1 occurring in the kth place,
for each k e N, and e = (1, 1,1, •)> a n ( i we write L = IJβ), c0 — co(β),
c = c(e), and ϊx = l(e).

The case p — (I/A;) of co(ί?) is of particular interest, since the
function defined by XΓ=o ockz

k, zeC, is an entire function if and only
if (ak) G cQ(l/k). Work on the space of entire functions has been
carried out, by V. Ganapathy Iyer in [2] and in other papers, and
by other authors, using this correspondence with cQ(l/k). It is shown
in [2] that c o ( W - IJXIk).

Now we collect some known results which will be useful in what
follows.

LEMMA 1. l(p) is a linear space if and only if p is bounded.
(See [4], Theorem 1, and [7], Theorem 1.)

LEMMA 2. If p is bounded with H = max (sup pk, 1), then
g(x) — (Σk I xk \pkytH defines a paranorm on l(p), l(p) is complete under
g, and (e{k)) is a basis in l(p), (See [5], Theorem 1 and Corollary 1,
and [7].)

LEMMA 3. ( i ) If l<pk^ H and p^1 + s^1 = 1 for each keN,
then

l(PΪ = {(ctkY Σk I oίk I
s*. M-s* < oo for some M > 1} .

( i i) If 0 < pk ^ 1 for all ke N then l{pj - Lip).
(See [6], Theorem 1, and [9], Theorem 7.)

LEMMA 4. If either 1 < pk <Ξ H for all k, or 0 < pk ^ 1 for all



CONTINUOUS OPERATORS ON PARANORMED SPACE 219

k, then every A e l(p)* may be written as A(x) = Σkakxk on l(p) for
some (ak) G l(p)\ and conversely A(x) = Σkakxk defines an element of
l{vY for each (ak)el(p)\ (See [6], Theorem 2, and [9], Theorem 7.)

Given sets Y and Z of sequences and a matrix A = (an,k) of
complex numbers (n, k = 1, 2, ) we say that Ae(Y, Z) if and only
if Σkan>kyk converges for every y = (yk) e Γand n e N, and (Σkan,kyk) e Z
for every yeY.

We shall frequently use the following inequalities. Take x, yeC;
if 0 < p ^ 1 then

\ χ \ p - \ y \ p ^ \ χ + y \ p ^ \ % \ p + \ y \ p ,

and if p > 1 and p~: + s"1 = 1 then

\ x y \ ^ \x\* + \ y \ s .

2. For the remainder of this paper, q = (qn) will denote a
sequence of strictly positive real numbers. If q is bounded with
H — max (sup qn, 1) then it follows by Lemma 1 of [4] that co(q) =

); similarly L(ί) - U ^ ί ) and c(q) - cίH"1?).

THEOREM 1. Let X be a paranormed space and let (An) be a
sequence of elements of X*, and suppose q is bounded. Then

(1) supw (|| An \\My» < oo for some M > 1

implies

( 2 ) (An (a?)) e Utf) /or even/ α? e X ,

and the converse is true if X is a β-space.

Proof. In view of the remarks at the beginning of this section,
we may without loss of generality assume that qn ^ 1 fore all neN.
First let (1) hold, and choose any xe X. By the continuity of scalar
multiplication in a paranormed space, there is a K ^ 1 such that
giK^x) <̂  IIM, where the M is that of (1). Then we have for any
nf since qn ^ 1,

so that (2) holds.
Now let (2) hold, with X a /3-space, and define for any me N,

Xm = {x:xeX and | A%(x)|?- ^ 2m for all

Then (Xm) is an α:-sequence in X, for obviously # 6 Xl9 and if for
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some m ^ 1, x, y e Xm then, since qn fg 1 for every n,

I An(x ± y) |< ^ I An(x) \<» + I An(y) h ^ 2™+1

for any n e N. Also X = U»=i -̂ »> s o since X is a /3-space there
exists a Be N such that X 5 is not nowhere dense. Using the conti-
nuity of the Anf it is not difficult to show that Xm = Xm for every
m, whence there is a sphere 5>(α, 8) czXB. Thus if #(& — a) < <S we
have I An(x) | ? κ g 2 δ for all n, so if g(x) < δ we have

I AΛ(α?) I7- ^ I ̂ ( α ; + a) \q- + I AΛ(α) \q- ̂  2S + 1 for all n.

Taking M> δ'1 we obtain (1).

THEOREM 2. Lei X be a paranormed space and let (An) he a
sequence of elements of X*.

( i ) If X has fundamental set G and if q is bounded, then the
following propositions

( 3 ) (An(b)) 6 cQ(q) for every b e G ,

( 4 ) l i m 3 / l i m s u p % ( i | A J U ) ^ - 0 ,

together imply

( 5 ) (An(x)) 6 co(q) for every xeX .

( i i ) // qn—>0(n—> ©o) then (4) implies (5).

(iii) Lei X be a β-space; then (5) implies (4) e?;e% i/ g is

Proof. ( i ) Again, we may without loss of generality assume
that qn <£ 1 for every neN. Let X have fundamental set (?, and
suppose (3) and (4) hold. Choose any xe X and any ε > 0. There
exist M > 1 and n0 such that (|| An \\M)q^ < e/2 for all w ̂  %0, by (4).
Since I hull (G) is dense in X there exist λ1? λ2, , λm e C and
K K -",bmeG such that g(x — Σ?=i λfcδfc) < 1/ Λ/i and we write L =
m a x d λ j , •••, | λ m | , 1). Then by (3) there is an nY^n^ such that
i An(bk) \Qn < ε/(2Lm), k = 1, 2, , m, if w ^ wlf whence if n ^ ^x,
we have

m

2LJ '

m

)

1,

mL

TO

• ε/(2Lm)1 <

( A

ε

thus (5) holds.
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(ii) Suppose (4) holds and qe c0, and choose any xe X and any
ε > 0. There is an M> 1 and an n0 such that (|| AJI*)** < e/2 if
n ^ n0, and since scalar multiplication is continuous on X there is a
K >̂ 1 such that g{K~ιx) <£ l/j|f Then we can choose ^ *> w0 such
that K9n ^ 2 if n ^ ^ whence if w ^ ?v

I An(x) |« - IF I AΛΐΓ-1*) h < e ,

so that (5) is true.
(iii) Let X be a /3-space and suppose (5) is true. We define

sequences (Bn), (C.) of elements of X* and sequences r — (rn), s — (s.)
of strictly positive real numbers as follows. If qn ^ 1 then define
Bn = An, C. = 0,rn = qn, and sn = 1; if qn < 1 write 5 % = 0, CΛ = Aw,
r» = 1, and sn = qn. Then (Bn(x)) e co(r) and (C%(α;)) e cQ(s) on X;
sup. sn ^ 1, and r . ^ 1 for all w e N. Also, (|| Aw \\My* = (|| £ w |U) r- +
(IICft IW for all large enough M, n = 1, 2, , whence

lim* lim sup. (|| An \\M)q- ^ lim* lim sup. (|| Bn \\M)r-

Choose any ε > 0, and define for each me N

Xm = {x: x e X and 12~mCn(x) |β ^ — for all n ^ m] .

Clearly θe Xlt and if for some me N we have ίc, y e XM then for
w S: TO + 1

^ (2 max (12~ ίm+ί)Cn(x) \, 12.-{mW

= max (12-mCJx) \\ | 2-C.(») |s") ^ | -

thus (Xm) is an α:-sequence in X. Also X = (Jm=i Xm and Xm = Xm

for all me N whence, since Xis a /S-space, some XB contains a sphere
S(a, δ). Then if g(x) < δ we deduce that | 2"sC.(α;) |β» ^e ίoτ n^B.
Write |0 = 2"5δ and choose M > p~u, then by the subadditivity of g
we have g(2Bx) < δ if #(#) < ô. Hence if #(α;) ̂  1/Λf we have

I Cn(x) Is- - I 2~BCn(2Bx) Is- ^ ε if n ^ £ ,

and since ε > 0 was arbitrary we obtain lim^ lim sup. (|| Cn \\M)Sn = 0.
Now (Bn(x)) e co(r) on X implies (#„(#)) G c0 on X. For suppose

if possible that for some sequence (n(ί)) of integers and some xe X
inf I BnU)(x) I = a > 0; then | ^.^(ar1^) |r^> ^ 1 for all i, contrary to
hypothesis. By the argument used above we deduce that

HSnlU = 0 ,
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whence since rΛ ^ 1 for all n, lim^ limsupn(||JBΛ | |J f)
r» = 0. By our

earlier remarks, (4) now follows.

THEOREM 3. Let X be a paranormed space and let (An) be a
sequence of element of X* and suppose q is bounded.

( i ) If X has fundamental set G, and if there is an I e X* such
that (An(b) — l(b)) e co(q) for all beG and

( 6) lim* lim supπ (|| An - 1\\xy» - 0 ,

then

(7) (AJx))ec(q) on X.

(ii) // qn—>0(n—>oo) and if there is an leX* such that (6)
holds, then (7) is true.

(iii) If X is a β-space and if (7) is true, then there is an I e X*
such that (6) holds.

Proof. ( i ) If the hypotheses hold, then An — I e X* for every
n 6 N whence by part (i) of Theorem 2 ((An — l)(x)) e cQ(q) on X; thus
(7) is true.

(ii) Follows similarly from Theorem 2(ii).
(iii) Suppose (7) holds; then for some I we have | AJx) —

l(x)\9» —>0(n-+ co) on I , We deduce that l(x) = UmnAn(x) on X and
supπ I AJx) I < co on X. Then by Theorem 1 we have sup% || An \\M < oo
for some M> 1, whence \\l\\M < °°. Clearly I must be linear, so
that ϊ e X * . Thus An — ί e X * for each neN, and by hypothesis
((An — l)(x)) e co(q) on X, so by Theorem 2(iii), (6) must be true.

3* We now apply the theorems above in characterizing the
classes (l(p), ?«>(#)), (KP), CQ(Q))> and (l(p)f c(q)) in the case when both
p and q are bounded. Throughout, A = (an>k) will denote an infinite
matrix of complex numbers. As a preliminary, we state Theorem 1
of [3]:

THEOREM 4. ( i ) Let 1 < pk ^ H < oo and pzι + sk

ι = 1 /or

every k. Then A e (l(p), D i/ α^cί <mίτ/ i/ ί/^βre eα iβίs α^ integer
B > 1 s%cέ ίfeαί supw I7^ | αWfAί \

Sk 5~s/c < oo.
(ii) Lβέ 0 < pk ^ 1 /or every k. Then A e (l(p), IJ) if and only

if supΛ,Λ I αΛffc |p* < oo.

In the proofs of the following results, as in earlier ones, we
may without loss of generality assume that qn ^ 1 for all neN,
and we shall do so when convenient.

We first consider the case when 0 < pk ^ 1 for all k e N.
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THEOREM 5. Suppose 0 < pk ^ 1 for all ke N, and q = (qn) is
bounded. Then,

( i ) A e (l(p), Liq)) if and only if

( 8 ) sup % (sup*; I an>h \ M~ιjPk)q^ < oo for some M > 1 .

(ii) A e (l(p), co(q)) if and only if

(9) I an>k \Qn —»0(n —* oo) for every ke N

and

(10) l im* lim sup % (sup* \an>k\ M~llPk)q^ = 0 .

(iii) A e (l(p), c(q)) if and only if sup w sup fc \an>k\ M'llPk < oo for
some M > 1 and there exist au a2, such that

(11) I an>k — αfc |
g^ —> 0(^ —• oo) /or βαcfe fc e

(12) lim* lim supw (supfc | aΛffc - afc | Λf-1/P*)ff- = 0 .

Proof. Write, for each α eZ(p) and each neN

(13) A.(a?) = Σkan>kxk .

( i ) Let A e (l{p\ IJQ)); then for each n, (an>1, an,2, . •) e
L(p), by Lemma 3(ii). Also, by Lemma 4, Aw e l{p)* for each n e N.
We show that for each n, || An |U = supfc | αnfJfe | M~1/ί)fc for all M such
that HAJIJΓ is defined. Choose any neN. First, if M is such that,
for some sequence (k(i)) of integers, | anMi) | M~1/Pk^ ^ i for each
ieN, then by defining x{k{i)) = (Λf-1^*^) sgnαW ; M ί ))β ( f c ( i ) ), i = 1, 2, . . . ,
we see that | | A J | ^ is undefined. Since (anΛ, an>2, •• )eloo(p) there is
an Mn ^ 1 such that |α n, f c |** ^ Λίw for all k. Choose M ^ ikf,. We
have if g(x) = Σk\xk \Pk ̂  1/ikf, since M1/Pk \ xk | ^ 1 for all A; and since
sup* pfc ^ 1,

I An(x) \
n,k

?) s u p , I an>k |

whence || An\\M ^ supfc \an>k\ M~1/Pk. Given ε > 0 we can choose an
m such that | an>m | ikf~1/PA; > supfc | an>k | Mr1/Pk — ε. Defining x =
(M~llPk sgn αw,m)β(m) we have g(x) ̂  1/ikf and An(x) > supfc | αWjA: | M~llPk - ε,
whence || An\\M — supfc |α n , f c | M~~llPk as required. By Lemma 2, ί(p) is
complete, so it is a β-space; thus by Theorem 1 we must have (8).

Conversely let (8) hold. Then as above it follows that for each
n, Anel(p)* w i th || An\\M = sup, \an>k\ M~llPk for all M such t h a t
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li^LIL is defined. Then using Theorem 1 we obtain (An(x)) e IJ^q)
on l(p), i.e. Ae(l(p)JJg)).

We remark that (8) reduces to sup%;A; | an>k \Pk < °o if 0 < inf qn ^
sup qn < oo 9 corresponding to the condition given for A e (l(p), IJ) in
Theorem 4(ii).

(ii) If A e (l(p), co(q)) c (l(p), L(tf)) then as above we have An e X*
and 11^(1^ = supfc | an>k \ M~ίlPk whenever H-AJU is defined, for each
n e N. Then, by Theorem 2(iii), (10) must hold. Also taking x =
e{k) 6 l{p) (k = 1, 2, •) we obtain (9). Conversely if (9) and (10) hold
we can show that An e l(p)* with | | An \\M = sup^ | an>k | M~llPk whenever
H-A.lljf is defined, for each neN; also (e(k)) is a basis in l(p) by
Lemma 2. Then by Theorem 2(i) we can deduce that A e (l(p), co(q))

(in) Let A e {l{p), c(q)); then as in (i) and (ii) above we have for
each n that Ane Jf*. By Theorem 3(iii) there is an I e X* such that
lim^ limsupΛ( | | An — l\\MYn = 0, and by Lemmas 3(ii) and 4 we can
write l(x) = Σkakxk on l(p) for some (ak) e l^ip). We deduce that
\\AH-l \\M = supfc I an>k - ak \ Mrllv* for large enough M, n = 1, 2 ,
whence (12) is true, and (11) must hold since (An — l)(eik)) = an>k — ak

for each n and k. Also c(g)cί M whence (l(p), (c(q))c.(l(p), Ϊ J ; thus
by (i) we must have supfc \an>k\ M~lfPk < ρo for some M > 1.

Finally, if sup^ |α Λ , f c | Λf"17** < oo for some M> 1 then A%eJ(p)*
for all n. If in addition (11) and (12) hold then for any k we have,
if n and M are large enough,

I ak I M-ιι»k ^ I α4 - αw,fc | M"1/^ + | an,k \ M~ιl»k

^ 1 + supw (sup* I an>k I ikf-1/?)Λ) = 5 say

hence \ak\
Pk ^ BPk - M^ BM ίoτ all fc, i.e. fc)GUi)) = W . By

Lemma 4, Z(#) = Σkakxk defines an element of l(p)*, and the result
now follows if we employ the methods used above together with
Theorem 3(i).

T H E O R E M 6. Suppose 0 < pk ^ 1 for all keNand qn--»0(n-• oo).

jΓAβ^ A e l(p), co(q)) if and only if (12) is true.

Proof. This follows from Theorem 2, parts (ii) and (iii), on using
the methods of Theorem 5.

COROLLARY. ( i ) Ae (llf cQ(l/n)) if and only if \ an>k \
1/n —»0 uni-

formly in k as n-^ oo.
(ii) Ae (llf IJl/n)) if and only if supW ; f c |an > k |

1 / ί ι < oo.

Proof. These characterizations were given in Theorems 1 and
2 of [1], and follow readily on taking p = e and q = (1/w) in Theorems
5(i) and 6.
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Now we consider the case when 1 < pk ^ H < oo for all k.

THEOREM 7. Let 1 <pk^ H and pj1 + sk* = 1 for each keN,
and let q be bounded. Then A e (l(p), L(#)) if and only if

( 1 4 ) T(B) = s u p , Σk I an>k \*k B~**ίq* < oo for some B > 1 .

Proof. Define An by (13) on l(p), for each ne N. For the suf-
ficiency, let (14) hold. Then if x e l(p) we have for each n, assuming
qn ^ 1 for all n,

I An(x) I*. ̂  ( ^ I α w , Λ |)*» = (Σk I α,.41 B " 1 ^ B^ \ xk \Y*

^ T{B)

which implies A e (l(p), l
Now let A 6 (l(p), l^iq)); then (αn Λ, αΛ>2, •) e l(pY for each n and

so, by Lemmas 3(i) and 4, An e l(p) for all n. By Theorem 1 there
exist M > 1 and G ̂  1 such that | AΛ(a?) |ff« ^ G for all ti and all
a? G l(p) with ί/(a?) ^ 1/ikf. Then | Σk G~llq- an>kxk \ ̂  1, ̂  = 1, 2, . . . , if
ίr(α?) ^ 1/M. Write Γ = (G"1/ff αftffc), and choose any αeί(p). By the
continuity of scalar multiplication on l(p) there is a K ^ 1 such that
έKiΓ-^) ^ 1/ΛΓ, whence | Σk G~llq^ α . , ^ | ^ iΓ for all n. Thus we see
that Γ € (i(p), L) and so by Theorem 4(i) there is a D > 1 such that
supnΣk \G~llq"" anyk\

8* D~sk < oo. Writing B = GD and using the
fact that Z)ff» ^ JD for all n, we obtain (14).

Looking at Theorem 4, one might except the necessary and
sufficient condition for A e (l(p), loo(q)) to be

(15) s u p w (Σk I an>k \Sk M~Sk)Qn < oo f o r s o m e M > 1 .

Using the method above we can show that (15) implies Ae
(l(p), IJg)). In fact it can be shown that (15) implies (14) directly.
For let (15) hold; then for some B > 1, (Σk \ an,k \

Sk B"*)9* ^ H for all
n, and we may suppose that H > 1. If qn ^ Q for all n then

(16) (Σk I αΛ>fc | * B~Sk - H-^)q-IQ ^ 1 for all n .

Put J f = i ϊ 5 ρ ; then Ms^ =Hs*-BQsk ^ H-Bq-Sk, whence
for all A; and %. Thus by (16) we obtain

^ (-̂ * I α, f i \
Sk'B~8k H~ι^)q-iQ S 1 for all

whence T(M) ̂  1, i.e. (14) holds.



226 IVOR J. MADDOX AND MICHAEL A. L. WILLEY

Clearly, (14) implies (15) if infn qn > 0 or if infk pk > 1. How-
ever, (15) is not necessary for A e (l(p), l^iq)) if inf n qn = 0 and
infk pk = 1. For choose bounded p and q, with pk > 1 for all k, and
suppose there exist sequence (n(i), (k(j)) of integers such that
Qnu) ^ Vh i = 1, 2 , and p fc( i) ^ 1 + 1/i, i = 1, 2, then s*(i) :>
i + 1 for each j . Define anli)MJ) — i, i, j = 1, 2, , and αΛ>* = 0 for
all other ^ and k. Then A = (an>k) e (l(p), l^(q)) since for all i e N.

but for any JkΓ > 1 we have if i ^ ikf,

which diverges.

THEOREM 8. Let q be bounded, and let 1 < pk ^ H and pk

ι+
Sk1 = 1 for all ke N. Then A e (l(p), co(q)) if and only if (9) holds
and, for every D Ξ> 1,

(17) limB lim supw (Σk \ an>k\*k D */flΓ» £-•*)*• = 0 .

Proo/. Again, define Aw on Z(̂ ) by (13). First we prove the
necessity: let Ae (l(p), co(q)). Obviously we must have (9), and as
in Theorem 7 we see that Ane l(p)* for all n. If Ae(l{p), co(q)) then
(Dιlq* ank)e (l(p), co(q)) for all D > 1, so it is enough to show that
(17) holds for D = 1. Since cQ(q) c L and using Theorem 4(i) there
is a B> 1 such that T . Ξ ^ I α ^ | * B'H'k ^ 1 for every ne N.
Choose any n, and define xk

n) = B~H8k\an>k\
8k~1sgnan>k for each k;

then

and An(x{n)) = ΓΛ, whence || Aw |U ^ Γw for each π. By Theorem 2(iii)
we must have limβlimsupΛ(|| An\\B)

qn = 0, whence (17) holds with
D = l.

For the sufficiency, let (9) be true and let (17) hold for all
D ^ l . It follows that Anel{p)* for all neN. Since (e{k)) is a
basis in l(p) and using Theorem 2(i) it is enough to show that
lim* lim sup, (|| An\\B)

q- = 0. Choose ε, 0 < ε ^ 1, and D > 2/e. There
exist ΰ > 1 and m such that (Jfc | an>k \

8k.D8kl^'B~8ή^ < ε/2 if n ^ m.
Then if #(#) ̂  1/J5 and if n ^ m we have

I An(x) h ^ (Σk I αw,fc I Z)1/9-. B~ι 5Z>-1/9- | xk \)qn

^ (J f c{| αΛ,fc | *D δ A / g w 5~S Λ + J D " ' * / ^ 5 ^ I xk \Pk}

< ε/2 + (D~^-' BHgH(x)y- < ε ,
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and this completes the proof.

One may show that if (9) is true and if (17) holds for D = 1,
and if either inf n qn > 0 or inf k pk > 1, then A e (l(p), eo(<?)), but that
these conditions are not sufficient for A e (l(p), co(q)) if infn qn = 0 and
inf k pk = 1.

THEOREM 9. Let q be bounded, and let 1 < pk ^ H and p^1 +
sϊ"1 = 1 for all ke N. Then A e (l(p), c(q)) if and only if supw Σk x
I a%ίk \SkB~*k < co for some B > 1 and there exist a19 a2, such that
(11) holds and lim* lim supw (Σk \anΛ- ak \°k DSklq* £-•*)'» = 0 for all

Proof. As usual, define An on l(p) by (13) for each ne N. F i r s t

l e t A e (l(p))> c(q) c (l(p), Z J ; t h e n s u p % Σk \ an>k \Sk B~Sk < oo for s o m e
B > 1. Also by Theorem 3 there is an le l{p)* such that | An{e{k)) -
l^k)) |ίn—>o(π—* oo) for each & and such that limBlimsupΛ( | | Aw—
ϊ||B) f f — 0. By Lemma 4 we can write l(x) = Σkakxk on l(p) for some
sequence (ak) e ί(p)r, and the necessity now follows using the method
of Theorem 8.

For the sufficiency, we show that the conditions of this theorem
imply Σk | ak \*k M~*k < oo for some M > 1; then Z(α ) = Σkakxk defines
an element of l{p)*. We have for suitably large B and n

^ Γ f e m a x (I an>k -ak\,\ an,k \)°k J B - »

^ J , I αΛiJb - α 4 | s ^ B~Sk + J , | an>k \*k.

J f c I αTO,fc |
s ^ B~Sk < oo .

Then by Theorem 8, (an>k - ak) e (l(p), co(q)) whence | An{x) - l(x) |ff»->0
(̂ —> oo) on l(p), and the proof is complete.

We note that (l(p), c) was characterized, for bounded p, in the
corollary to Theorem 1 of [3].

The conditions for A e (l(p), lj,q), (l(p), co(q)) or [(l(p), c(q)) in the
general case 0 < pk ^ sup pk < oo and # bounded may be obtained by
combining the separate cases 0 < pk ^ 1 and 1 < pk ^ H above.

REFERENCES

1. K. Chandrasekhara, Rao, Matrix transformations of some sequence spaces—II,
Glasgow Math. J., 11 (1970), 162-166.
2. V. Ganapathy Iyer, On the space of integral functions—I, J. Indian Math. Soc,
(2) 12 (1948), 13-30.
3. C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes
of sequences, Proc. Camb. Phil. Soc, 68 (1970), 99-104.
4. I. J. Maddox, Spaces of strongly summable sequences, Quarterly J. Math. Oxford,



228 IVOR J. MADDOX AND MICHAEL A. L. WILLEY

(2) 18 (1967), 345-355.
5. I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc.
Camb. Phil. Soc, 64 (1968) 335-340.
6. 1 Continuous and Kothe-Toeplitz duals of certain sequence spaces, Proc.
Camb. Phil. Soc, 65 (1969) 431-435.
7. f Some properties of paranormed sequence spaces, J. London Math., Soc,
(2) 1 (1969), 316-322.
8. W. L. C. Sargent, On some theorems of Hahn, Banach and Steinhaus, J. London
Math. Soc, 28 (1953), 438-451.
9. S. Simons, The sequence spaces l{pJ) and m(p»), Proc London Math. Soc, (3) 15
1965), 422-436.
10. M. A. L. Willey, On sequences of bounded linear functionals with applications to
matrix transformations, J. London Math. Soc, (2) 7 (1973), 19-30.

Received August 7, 1973. This paper was written while M. A. L. Willey held a
Science Council Research Studentship, and the support of the Council is very greatefully
acknowledged.

THE QUEEN'S UNIVERSITY OF BELFAST



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GlLBARG AND J. MlLGRAM

Stanford University
Stanford, California 94305

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by Intarnational Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 53, No. 1 March, 1974

Martin Bartelt, Strongly unique best approximates to a function on a set, and a finite
subset thereof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

S. J. Bernau, Theorems of Korovkin type for L p-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
S. J. Bernau and Howard E. Lacey, The range of a contractive projection on an

L p-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Marilyn Breen, Decomposition theorems for 3-convex subsets of the plane . . . . . . . . . 43
Ronald Elroy Bruck, Jr., A common fixed point theorem for a commuting family of

nonexpansive mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Aiden A. Bruen and J. C. Fisher, Blocking sets and complete k-arcs . . . . . . . . . . . . . . . 73
R. Creighton Buck, Approximation properties of vector valued functions . . . . . . . . . . . 85
Mary Rodriguez Embry and Marvin Rosenblum, Spectra, tensor products, and

linear operator equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Edward William Formanek, Maximal quotient rings of group rings . . . . . . . . . . . . . . . . 109
Barry J. Gardner, Some aspects of T -nilpotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Juan A. Gatica and William A. Kirk, A fixed point theorem for k-set-contractions

defined in a cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Kenneth R. Goodearl, Localization and splitting in hereditary noetherian prime

rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
James Victor Herod, Generators for evolution systems with quasi continuous

trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C. V. Hinkle, The extended centralizer of an S-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
I. Martin (Irving) Isaacs, Lifting Brauer characters of p-solvable groups . . . . . . . . . . . 171
Bruce R. Johnson, Generalized Lerch zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Erwin Kleinfeld, A generalization of (−1, 1) rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Horst Leptin, On symmetry of some Banach algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Paul Weldon Lewis, Strongly bounded operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Arthur Larry Lieberman, Spectral distribution of the sum of self-adjoint

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
I. J. Maddox and Michael A. L. Willey, Continuous operators on paranormed

spaces and matrix transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
James Dolan Reid, On rings on groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Richard Miles Schori and James Edward West, Hyperspaces of graphs are Hilbert

cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
William H. Specht, A factorization theorem for p-constrained groups . . . . . . . . . . . . . 253
Robert L Thele, Iterative techniques for approximation of fixed points of certain

nonlinear mappings in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Tim Eden Traynor, An elementary proof of the lifting theorem . . . . . . . . . . . . . . . . . . . . 267
Charles Irvin Vinsonhaler and William Jennings Wickless, Completely

decomposable groups which admit only nilpotent multiplications . . . . . . . . . . . . . 273
Raymond O’Neil Wells, Jr, Comparison of de Rham and Dolbeault cohomology for

proper surjective mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
David Lee Wright, The non-minimality of induced central representations . . . . . . . . . 301
Bertram Yood, Commutativity properties in Banach ∗-algebras . . . . . . . . . . . . . . . . . . . 307

Pacific
JournalofM

athem
atics

1974
Vol.53,N

o.1


	
	
	

