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HYPERSPACES OF GRAPHS ARE HILBERT CUBES

R. M. ScHORI AND J. E. WEST

The authors prove that 27 is a Hilbert cube where I is
any nondegenerate, finite, connected graph and 27 is the space
of nonvoid closed subsets of I" metrized with the Hausdorff
metric. This extends their result that 27 is a Hilbert cube.
They also prove corresponding theorems for local dendrons D
as well as for the space of subcontinua C(D) of D.

1. Introduction. In [9] the authors outlined their proof that
27, the space of nonvoid, closed subsets of I = [0, 1] metrized with
the Hausdorff metric, is a Hilbert cube @ and announced the main
results concerning graphs in this paper. Here we give the complete
proof, assuming that 27 is a Hilbert cube, that 27 is a Hilbert cube
for any finite, connected graph I". We also prove that if D is any
local dendron, then 27 is a Hilbert cube and prove some results
about the space of subcontinua C(D) of a local dendron D that ex-
tend the results of [13].

In [10] the authors give a complete proof that 27 is a Hilbert
cube. This settled a conjecture raised by Wojdyslawski [16] in 1938
where he also asked if 2% is a Hilbert cube for any nondegenerate
Peano space X. The first author and D. W. Curtis have announced
the proof of this latter conjecture in [5] as well as the theorem
that says that C(X) is always a Q-factor for any Peano space X,
and C(X) is a Hilbert cube iff X is a nondegenerate Peano space
that contains no free arcs. These results are strongly dependent
upon the results of this paper. The complete proofs of the 2* and
C(X) results appear in [6].

This paper assumes the 27 result and not the techniques of the
proof. The proofs given here use some of the fundamental results
of infinite-dimensional topology, but if the reader takes these results,
listed in §2, as axioms, then no previous knowledge of infinite-dimen-
sional topology is necessary for understanding this paper.

The authors thank D. W. Curtis for some useful suggestions
concerning this paper.

2. Definitions and infinite-dimensional topology background.
If X is a compact metric space, then the Hausdorff metric D on 2%
can be defined by

D(A, B) =inf {e > 0: Ac U(B, ¢) and BC U(4, &)}
where U(C, ¢) is the open e-neighborhood of C< X. If V isa subset
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of X, then 2% is the subspace of 2% consisting of all members of 2%
that contain V, and likewise for C,(X).

Let @ denote the countable infinite product of I with itself and
define a Hilbert cube as any space homeomorphic (a¢) to Q. A space
X is a Q-factor if X Xx @~ Q. A Q-manifold is a separable metric
space such that each point has an open neighborhood homeomorphic
to an open subset of Q.

A map is a continuous function. If X and Y are homeomorphic
compact metric spaces, then a map f: X — Y is a near-homeomorphism
if for each ¢ > 0 there exists a homeomorphism #: X — Y such that
d(f, h) <e. We say that f: X— Y stabilizes to a near-homeomor-
phism if f x 7d: X x @ — Y X @ is a near-homeomorphism. By a graph
we will mean a 1-dimensional polyhedron with a specific triangulation.

R. D. Anderson’s notion of Z-set [1] is extensively used in this
paper and is one of the fundamental concepts in infinite-dimensional
topology. There have been various definitions of Z-sets in the
literature [1], [2], [4], and [7]. The following is the most convenient
formulation for this paper.

DeErFINITION 2.1. A closed subset A of a @-factor X is a Z-set
in X if for each ¢ > 0 there exists a map f: X— X\A4 such that
da(f, id) < e.

We list below two well-known properties of Z-sets, the proofs
of which are very easy. All spaces below are Q-factors.

2.2. Z-set Properties.
(a) If A is a Z-set in X, then A x Y is a Z-set in X X Y.
(b) Any finite union of Z-sets is a Z-set.

One of the important theorems in infinite-dimensional topology
is the following theorem of Anderson. See [11] and [14] for gener-
alizations.

2.3. First Sum Theorem [1]. If A, B, and AN B are Hilbert
cubes (Q-factors) and AN B is a Z-set in A arnd in B, then AU B
is a Hilbert cube (Q-factor).

If X and Y are disjoint spaces, A a closed subset of X, and
fi A— Y a map, then the adjunction space of f, denoted XU, 7,
is (XU Y)/R, where R is the equivalence relation on XU Y gener-
ated by aRf(a) for each ac A. We say X is attached to Y by f. If
g: X— Y is a map, then the mapping cylinder of g, denoted M, is
the adjunction space (X x I){J, Y where g: X x {0} — Y is defined
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by ¢'(x, 0) = g(x). The following is one of the basic theorems in the
theory of Q-factors.

2.4. Mapping Cylinder Theorem [11] and [14]. Let X and Y
be Q-factors and let g: X— Y be a map of X into Y, then the mapp-
ing cylinder of g, M,, is also a Q-factor. Furthermore, if c: M, —
Y is the map defined by c([, t]) = g(x), then c stabilizes to a mear-
homeomorphism.

An important corollary of this is the following.

2.5. The Attaching Theorem [10]. Let X and Y be Q-factors
and let A be a closed subset of X that is a Z-set in X. If fi A—
Y is any map, then the adjunction space X U, Y is also a Q-factor.

A relative homeomorphism f:(X, A)— (Y, B) is a map of the
pairs where f|X\4: X\A — Y\B is a homeomorphism. The next
remark is just a convenient alternative way of viewing adjunction
spaces and will not be proved. Let all spaces below be compact
metric.

REMARK 2.6. If f: (X, 4)— (Y, B) is a relative homeomorphism,
then Y is homeomorphic to the adjunction space X |, B where g =

F1A.

The main tool of this paper is the following theorem.

2.7. Compactification Theorem [13]. Let A be a closed subset
of the space X where

(1) X is a Q-factor,

(2) A is a Q-factor,

(3) A isa Zset in X, and

(4) X\A is a @-manifold.
Then X is a Hilbert cube.

The above theorem gives us conditions as to when the Q-mani-
fold X\A can be compactified to be a Hilbert cube. We list the
parts of the hypothesis because in practice the verification of each
part will often be a separate result. To prove that 27 is a Hilbert
cube we will use the Compactification Theorem where X = 27 and
A =C,I') for some vertex we . In §3 we will prove that 27 is
a @Q-factor and in §4 we will prove that 27 and C,(I") satisfy the
other three conditions.
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3. 27 is a Q-factor. All of our results will be for the more
general case 27 where V is any set of vertices (possibly empty) of
a finite, connected graph. Note that if V is empty, then 27 = 27,
We first prove two lemmas.

Let I' be a finite, connected, acyclic graph and let V be any
subset (possibly empty) of the vertices of I'. Let w be a vertex
of I' which separates it and let I, ---, I', be the closure of the
components of I'\{w}, denoting by V, the set VNI, t=1, .-+, n.
Suppose that we V and let W = VU {w} and for each ¢, let W, =
V.U {w}). Let X, = Ui (@7, X TTi.iez 200).

LemMMA 3.1. X, is a Q-factor if the 2,C§1 and 25,"]. are Q-factors.

. . Irs i . .
Proof. For i <m, X, = 27itt x X; U 2%, x IIi= 204, and 27341 X

Wi+1

X, N 27 % e 203 = 27, x X,. Since I is acyclic, w is a free
vertex of each I'; and thus by a direct verification of the definition
of a Z-set, each 2',;;;. is a Z-set in 27t and by 2.2(b), X; is a Z-set in
IIi-. 2fi. Thus, by 2.2(a), 24/ X X; is a Z-set in 2}i1! X X, and in
2‘;,";11 x ITiz, 25;:. Note that a finite product of Q-factors is a Q-factor.
Hence, by the First Sum Theorem, X,,, is a Q-factor if X, is one
and since X, = 2@‘1 is a Q-factor by hypothesis, then X, is a @-factor
by induction and the proof is complete.

Let Y, be the set of all members of 27 which meet each I,.

LEMMA 3.2. Y, is a Q-factor if 25 and the 25; and 2% are Q-
factors.

Proof. If F: [li.2yi — 2; is defined by F(4,, ---, 4,) = A, U -~
U 4,, then F:(TI:i, 2%, X,) —(Y,, 2}) is a relative homeomorphism
and hence Y, is homeomorphic to the adjunction space [I:, 27 U, 2i
where f = F'| X,. Since each of [, 2/ X,, and 2§ is a Q-factor
and since X, is a Z-set in ], 27, then Y, is a Q-factor by the
Attaching Theorem.

ProrosiTION 3.3. If I' is a finite, connected, acyclic graph and
V is any subset (possibly empty) of the vertices of I', then 2] is a
Q-factor.

Proof. (By induction on the number of edges in I'.) If I is
degenerate (no edges), this is clear, and if I" has only one edge, this
is shown in [10]. Now suppose that I has more than one edge and
that the proposition is true for graphs with fewer edges than I.
Adopt the notation of this section but allow w to belong to V. If
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weV, then the mapping [[iL,2/: — 2/ given by (4, ---, 4,) —
A,U---UA, is a homeomorphism and since each of the 2i is a Q-
factor by the inductive hypothesis, 27 is also a Q-factor.

If we V, then by the above we have that 2} is a Q-factor and
hence by Lemma 3.2, Y, is a Q-factor. For k=1, --.,n — 1, let
Y, be the subset of 27 composed of those members which meet at
least k of the I')’s. If Y,,, # 27, let o, ---, 0, be the subsets of
{1, ---, n} with exactly k¥ members which contain {i:1 <7< n, V,#
@}, and let

ieo; meaj\(z)

X,=U@ix I 20).

Then exactly as in the proof of Lemma 3.1, each Xaj is a Q-factor
and a Z-set in [I;c,; 27:. For i =1, .--, p, let Y,, be the subset of
27, composed of those members that are contained in Uj.,, I; and
which meet each I, jeo; let Y] = (Ui, Y.;)U Y.y, and let Y}
denote Y;,,. Then Y, = Y7 and f,: (IT;c., 243, X,)— (Y, Yi™) defined
by fi.(4;, -+, A) = A, U--- UA, is a relative homeomorphism and
hence Y;~ Il;.,, 25;’. U, Yi', where g = f, .| X,,. Thus, by induction
we have that Y, = Y7 is a Q-factor if Y,,, = Y} is one. Thus, since
Y, is a Q-factor we have by induction that Y, = 27 is a @-factor.

THEOREM 3.4. If I' is a finite, connrected graph and V is any
subset (possibly empty) of the vertices of I', then 27 is a Q-factor.

Proof. As this is a topological result, new vertices may be in-
troduced in I" at will and therefore, one may assume without loss
of generality that for some connected, acyclic graph ', and some
collection w»,, w,, ---, v,, w, of free vertices of I',, that I' = I'}/R
where R is the equivalence relation on I, generated by v,Rw, for
1=1.--,m. For 1=k < n, let B, be the equivalence relation on
I’y generated by v,Rw, for ¢ =1, .--, k, and let I', = I"/R,. Since
R,_.C R,, we have a natural map @,:I",_, — I, induced by the
identity map on I,

The theorem is true for I, by Proposition 3.3. Suppose the
theorem is true for I",_,, let X be any subset of the vertices of I,
and let X’ = @;7%(X). Let f,: 2% — 2% be the map induced by o,
and observe that f, carries 2547}, .,, homeomorphically onto 255, (1o;,u-
Thus, if @,({vi, wi}) € X, then 2% is a Q-factor. If o,({vy, wi)) € X,
let ¥Y,=X"U{v,}, Y,=X"U{w,}, and Y,=X"U{v, w,}. Then

27 2757, ¢ =1, 2, 8, and 20k, are Q-factors and 20kt = 201 2061,
Moreover, since v, and w, are free vertices, 271 is a Z-set in each
of them and thus by the First Sum Theorem 27+ U 20k is a @-
factor. Also, since each of 201, { =1, 2, is a Z-set in 274", their
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union is also a Z-set by 2.2(b). Moreover, f,: (25, 251U 20k—1)—
(2%, 20k ) is a relative homeomorphism and hence 25 ~ 23~ U,, 25k,
where g, = f, |20k U 2051, and thus by the Attaching Theorem 2%
is a Q-factor and the theorem follows.

4. 27 is a Hilbert cube. In this section we verify the last
three conditions of the Compactification Theorem.

LEMMA 4.1. If I is a finite, connected graph and V is any
set of vertices (possibly empty) of I, then C,(I") is a Q-factor.

Proof. First we show that C,(I") is contractible. Let I be
endowed with a convex metric, i.e., one for which there always
exists a point half way between any two given points. Then the
function F: C,(I") x I — C,(I") defined by F'(A4, t) is equal to the closed
to-neighborhood of A in I', where ¢ is the diameter of I7, is a con-
traction of C,(I") to the point I"e Cy(I').

Next, in [8], R. Duda proves that C(I") is a polyhedron and since
it is contractible we have by [11] that C(I") is a @Q-factor. If V =~
@, then C,(I') is geometrically easier to classify than C(I") and
although it was not specifically dealt with in [8], it is a subpolyhe-
dron of C(I'), and since it is contractible, it is a Q-factor. For a
considerably more general result see [6].

LEmMMA 4.2. If I’ is a finite, connected, mondegenerate graph,
w 18 a vertex of I', and V is a collection (possibly empty) of vertices
of I'y then C,,.,(I") is a Z-set in 2F.

Proof. We will first prove the result for the case that we V
by constructing for each ¢ > 0 a map f: 27 — 20\C,(I") that is within
¢ of the identity. Let w, %=1, ---, n, be the vertices of /" which
are joined to w by edges E; = [w, w,] and assume, for the metric
on [, that each E, is isometric with [0, 1] so that for each 0 < e <
1 the open e-ball about w, U(w, €), is precisely the set {(1 — t)w +
tw:0=t<ei1=1,---,n}. Let V(w,e) be the closure in I" of
U(w, €) and let BdU(w, ¢) = V(w, e)\U(w, €). For a fixed 0 <e <1,
and for Ae2l, let

f(4) = [A\U(w, &/2)] U {w} U Bd U(w, ¢/2) .

It is clear that [A\U(w, ¢/2)] U {w} e 20\C,,(I") but this assignment of
A would not be continuous basically for the reason that one may
have two points ze€ U(w, €/2) and y¢ U(w, ¢/2) that are very close
together. Including the set Bd U(w, ¢/2) in the image under f of A
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establishes the continuity of f, which is within ¢ of the identity map
because in 27 the distance between {w} and Bd U(w, ¢/2) is ¢/2 < e.
Thus, since f is continuous and the image of f misses C,(I"), Cy(I")
is a Z-gset in 27,

We will now modify these techniques to prove the theorem in
the case wg¢ V: Let W = VU {w}. If the above map f were defined
on 27 it would not be within ¢ of the identity, as is seen by com-
paring f(A) and A for sets A with no points close to w. Since our
main technique of mapping 27 off C,(I") is to delete an open set
about w, we will phase out this process so that we will be deleting
open sets about w only from those members of 27 that contain points
close to w.

For 0 < a < 1 we denote the point (1 — a)w + aw; € [w, w,] simply
by [a];. For Ac?2f, let a,€[0, 1] be the number such that [a], is
the point of A N E,; nearest to w, if ANE, + @. If 0=Za,Z ¢, let
a; = max {0, 2a, — ¢} observing that if 0 < a, < ¢/2, then o) = 0; and
if a, = ¢, then a} = a,. For Ae2f, let

AUflail:1 =150, 050, ¢, if 0=¢2
f(A) = {AU{[(20/e)ai + (1 — 20/e)a;]:l =t =7n,0=<a, <¢,
if 0<0<c¢/2

where 0 = 6(4) = D(A, 2%), which in this case is the minimum dis-
tance between points of 4 and w. Then f is a well-defined function
since it is uniquely defined for elements A €27, where ¢ = ¢/2. Also,
f is phased back to the identity at 6 = 0, that is, if §(4) = 0, then
f(A) = A; and this establishes the continuity of f. Also observe
that if 0(4) = ¢/2, then wef(4) and if §(A) = ¢, then f(4A) = A.
Let a(A) = max {0, ¢/2 — 6(4)} and define g on f(27) by

[f(A\U(w, a(A)] U Bd U(w, a(4))  if 5(A4) <e¢/2

ww=fw if 5(4)=¢/2.

The continuity of g follows since a is continuous and since for
A€ 2] where d(A4) is less than ¢/2 but close to ¢/2, then Bd U(w, a(4))
is close to {w}, and hence gf(A) is close to f(A). Furthermore, the
composition gf: 20 — 27 is within ¢ of the identity and gf(25) N C,(I") =
@ and thus, Cp(I") is a Z-set in 27.

The next lemma will be the inductive step for the main theo-
rem of this section. Let L, --., L, be a finite collection of finite,
connected graphs, let W be a collection of vertices from UX, L,
where W contains at least one vertex of each L, and let K =
(U, L)/W be the quotient space obtained by taking the disjoint
union of the L, and identifying all the vertices in W. Let p: U™, L,—
K be the quotient map and let w = p(W).
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LEMMA 4.3. If each 27 is a Hilbert cube for each collection V,
(posstbly empty) of wertices of L,, then 25 is a Hilbert cube for each
set of vertices V (possibly empty) of K.

Proof. To apply the Compactification Theorem, we have that
2§ is a Q-factor by 3.4, C,(K) is a Q-factor by 4.1 where W= V U
{w}, and C(K) is a Z-set in 2%, by 4.2. It remains to be shown
that 28\C,(K) is a @-manifold.

If Ae2X\C(K), then A has a component missing w. If A is
connected, then it has an open neighborhood U in 2¥ homeomorphic
to an open set of 2}, for some ¢ and some collection V; of vertices
of L,. Since 2/ is by hypothesis a Hilbert cube, U is homeomorphic
to an open subset of the Hilbert cube. If A is not connected, then
it has a separation into two disjoint closed nonempty subsets A, and
A, such that A = A, U 4,. Assuming that we A4,, let U, and U, be
disjoint open sets of K containing A, and A,, respectively. Now,
for some %, ---, 1%, 1 <k <m, A, has an open neighborhood W, in
25,y consisting of sets lying entirely within U, which is home-
omorphic to a product U, X Uy X --- X U, of open sets of the
Hilbert cubes 2%, j =4, ---, 4, where V; = L; N p7(4,N V). On the
other hand, the set W, = {Be2f: B U}, where V' =V N A4, is an
open neighborhood of A, in 2% which is by 3.4 a Q-factor. Now
U={BUC:Be W, Ce W,} is an open neighborhood of A in 2¥ which
is homeomorphic to W, x W, and hence, to an open subset of the
Hilbert cube 2% x IT {2725 =4y, -+, 2.},  Therefore, 25\Cy(K) is a Q-
manifold and the proof is complete.

THEOREM 4.4. If I' is a nondegenerate, finite, connected graph
and V is any set (possibly empty) of wvertices of I', then 2] is a
Hilbert cube.

Proof. Let % be the class of all nondegenerate, finite, con-
nected graphs. For each K¢ &, let V(K) be the number of vertices
of K, E(K) the number of edges of K, and R(K) = E(K) — V(K) +
1. (R(K) is the rank of the first homology group H,(K); it is also
E(K) — E(L) for each maximal acyclic subgraph L of K.) Let &,
be the class of all members K of % for which R(K) =1, and let
Z,; be the subelass of 2, composed of all members K of &, with
E(K) = 3.

The theorem holds for &,, being the main results of [9] and
[10]. Specifically, 27, 2, 2f, and 2} are all Hilbert cubes. Now fix
(4, 7) # (0, 1) and suppose that the theorem holds for each Z,.; with
¢ <iori=1andj <j.
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Let KeZ,; and let V be a set of vertices (possibly empty) of
K and let w be a vertex of K which is not a free vertex of K.
Construct a new complex K’ by “splitting” K at w. That is, let
v, +-+, v, be the vertices of K which are joined to w by edges
[w, v,] of K and let w, ---, w, be abstract vertices not in K. Then
K’ = (K\UL, [w, v))) U U, [w,, v;,] and K’ has as vertices all vertices
of K except w together with w, ---, w, and has as edges all edges
of K which do not contain w together with the new edges [w;, v,],
1=1,---,n. Now, if w separates K, each component L of K’ has
E(L) < E(K) and R(L) < R(K), while if w does not separate K, then
K'e z and R(K') < R(K). Thus, by the induction hypothesis, each
component of K’ satisfies the theorem and hence by Lemma 4.3,
2% is a Hilbert cube and thus by induction the theorem is proved.

5. 2? and C(D) for local dendrons D. In this section we gen-
eralize the theorems to each dendron, that is, a Peano space which
contains no simple closed curve, and to each local dendron, that is,
a Peano space such that each point has a closed neighborhood which
is a dendron. In particular, each dendron is a local dendron. We
can express (see [13]) each dendron D as the limit of an inverse
sequence (7,, r,), lim (T,, r,), where T, is an arc and for each n = 1,
T,., is the union of T, and an arc [a,, b,] where T, N [a.,, b.] = {@.},
and where »,: T,,,— T, is the retraction which collapses [a,, b,] to
@,. The inverse sequence (7, r,) induces the inverse sequence (27, r¥)
where 7r¥: 2T»+1— 27» is defined by r*(A) = r,(4). Then 2° is home-
omorphic to lim (27, r¥).

The corresponding inverse limit representation for local dendrons
is the same except that T, is allowed to be a finite, connected graph.
We argue this as follows. For a local dendron D there exists an
¢ > 0 such that each closed connected subset of D with diameter less
than ¢ is a dendron. Cover D with a finite collection of closed con-
nected neighborhoods {D;} with diameter less than ¢/2. The pairwise
intersections of the D, are connected. In each nonempty intersec-
tion of elements of the {D;} pick a point and then in each D, con-
struct a tree connecting each of the selected points contained in
that D,. Then the union of these trees will be a finite connected
graph, a candidate for 7T, in the above inverse limit presentation.
Now we can add the remaining stickers to the trees in the prescribed
manner to obtain the local dendron D as the lim (7,, r,). Such an
inverse limit for a local dendron D will be called a standard inverse
limit representation for D. Also, for a given finite subset V of D
we can easily construct 7, to contain V by including it in the set
of points picked in the intersections of the D,, We will need the
next result.
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THEOREM 5.1. Morton Brown [3]. Let S = lim(X,, f.), where
the X, are all homeomorphic to a given compact metric space X
and each f, is a mear-homeomorphism. Then S is homeomorphic
to X.

LEMMA 5.2. If f:Q—Q is a map that stabilizes to a mnear-
homeomorphism, then f is a mear-homeomorphism.

Proof. Define a,:Q@ X @ —>Q by a.((®, 2, ), Wy ¥s -++)) =
@y, ~+ ) Tuy Yy Cugry Y, Tuvey Ys, + ). Then each a, is a homeomorphism
and hence each a, o (f X id)o ;" is a near-homeomorphism since f X id
is one by assumption. Furthermore, d(f, a,°(f X id)ca;") — 0 as n—
co and hence f is a uniform limit of near-homeomorphisms and thus
is a near-homeomorphism.

THEOREM 5.3. If D is a nondegenerate local dendron and V is
any finite subset (possibly empty) of D, then 2% is a Hilbert cube.

Proof. We follow the proof of [Theorem 2, 13] which states a
corresponding result for C(D). Choose a standard inverse limit rep-
resentation for D where Vc T\. Let 7,: 275}, — 2/ be the restric-
tion of the map »}, let M,, be the mapping cylinder of 7,, and let
¢a: M,, — 2j~ be the natural projection defined by c.([4, t]) = r.(4).
Since 2”*1) and 2%» are Q-factors by 3.4, it follows by the Mapping
Cylinder Theorem that ¢, stabilizes to a near-homeomorphism. We
will show below that M,, is homeomorphic to 2j»+ in such a way
that the projection map c, is topologically equivalent to ¢%. Thus,
since each of 2%» and 27»+: is a Hilbert cube, we have by 5.2 that
¢, is a near-homeomorphism and hence so is r%. The proof that
22 ~ @Q will then be complete by 5.1 since 22 is homeomorphic to an
inverse limit of Hilbert cubes 27» where the bonding maps are near-
homeomorphisms. We now verify the above stated fact about M,..
Define g,: 27»+* — M,, as follows where we parametrize [a,, b.] to be
order isomorphic with [0, 1] and let sup (4 N [a.,, b.]) = d if it exists.

Let
) = {[A], if A0 (@, b]=02
AN T U (LYAAN @, b,]), )], if AN(a, b= @

Then ¢, is a homeomorphism so that the following diagram is

$n+1 _&'_, M"fn
N /
A\ S
2pn
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commutative and this completes the proof.

In [13], it is proved that the subcontinua C(D) of a dendron D
form a Q-factor which is a Hilbert cube if and only if the branch
points of D are dense. We will extend this result to local dendrons
D and to spaces C,(D) where V is a finite subset of D.

LEMMA 5.4. For each local dendron D and each finite subset V
(possibly empty) of D, C,(D) is a Q-factor.

Proof. Choose a standard inverse limit representation, lim (T,, 7,),
for D where Vc T,. Then Cy(D) ~ lim (C,(T,), 7¥). As in the proof
of Theorem 5.8 the space C,(T,,;) is naturally homeomorphic to the
mapping cylinder M,, where 7.: Cpyy,(Tuii) — Co(T,) is the restric-
tion of r¥*. Furthermore, the map »¥ is topologically equivalent to
the natural projection c¢,: M, — Cy(T,) which stabilizes to a near-
homeomorphism. Since each space C,(T,) is a Q-factor by Lemma
4.1 and since each bounding map 7} stabilizes to a near-homeomorphism,
then Cy(D) ~ lim (C,(T,), r¥) is a @-factor and the proof is complete.

To prove that C,(D) is a Hilbert cube if the branch points of D
are dense, we will need Lemmas 4.1 and 5.4 together with the next
two lemmas to satisfy the hypothesis of the Compactification Theorem
where X = C,(D) and 4 = C(T)).

LEMMA 5.5. Let D be a local dendron with a dense set of branch
points, let V be a finite subset (possibly empty) of D, and let
lim (T,, r,) be a standard inverse limit representation for D where
Vc T. Then C,(T) is a Z-set in Cy(D).

Proof. A local dendron admits a convex metric. Using a convex
metric on D, for sufficiently small ¢ > 0, the map f on C,(D) defined
by setting f(A) equal to the closed e-neighborhood of A in D is a
map from Cy(D) into itself where d(f, id) < e. Since the branch
points of D are dense, we also have that f: C,(D) — C,(D)\C,(T,) and
hence C,(T)) is a Z-set in C (D).

LEMMA 5.6. IfD,V,andlim(T,, r,)are as above, then C,(D)\Cy(T))
18 o Q-manifold.

Proof. Let AeC,(D)\C,(T). It is sufficient, since C,(D)\C,(T})
is open in Cy(D), to show that A has an open neighborhood in Cy,(D)
that is homeomorphic to an open subset of the Hilbert cube. If
AN T, is either empty or a single point, then V is either empty or
is a single point and there exists an open set U in D containing A
and a dendron D, such that Ac Uc D,cD. If W is the set of all
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elements of C,(D) contained in U, then W is an open neighborhood
of A in Cy(D) and is an open subset of C,(D) which is a Hilbert
cube by an obvious modification of West’s proof [13] that C(D,) is
a Hilbert cube.

If AN T, is nondegenerate, let E be the closure of some com-
ponent of D\T, that contains some points of A and let F be the
closure of D\E. Then E is a dendron and F is a local dendron con-
taining 7T, and each has a dense set of branch points and E N F is
one point, say q. Then C(F) is a Hilbert cube by modifying West’s
argument and Cy(F), where W = V U {q}, is a Q-factor by Lemma
5.4 and hence C(F) x C,(F) is a Hilbert cube. The map a: C(E) x
Cy(F) — Cy(D) defined by a(A, B) = A U Bis an embedding into C,(D)
where the image of a is a closed neighborhood (not a small one) of
A and thus C,(D)\C,(T)) is a @Q-manifold.

THEOREM 5.7. If D 1is a local dendron and V is a finite subset
(possibly empty) of D, then Cy(D) is a Q-factor, and furthermore if
the branch points of D are dense, then Cy(D) is a Hilbert cube.

Proof. The first part of the theorem is Lemma 5.4 and the
second part follows from applying Lemmas 4.1 and 5.4-5.6 to the
Compactification Theorem and observing that D admits a standard
inverse limit representation lim (T,, »,) where VC T..
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