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KENNETH ABERNETHY

This paper has three main results. These are characteri-
zations of Nagata spaces, y-spaces, and semi-metric spaces,
respectively, as images of metrizable spaces under certain
kinds of continuous open mappings.

1. Introduction. A basic area of research in general topology
is the study of how various classes of spaces are related through
mappings (see [3] and [5]). More specifically, many important classes
of spaces have been characterized as the image of a metrizable space
under an open continuous mapping of some sort. For example,
Heath [10] has characterized developable spaces in this way and
Hanai and Ponomarev independently have given an elegant charac-
terization of first countable spaces (see Theorem 2.1). In recent years
considerable attention has been given to the problem of characterizing
generalized metrizable spaces in this way. We mention some of these
results in §2. In this paper we characterize Nagata, semi-metric,
and v-spaces as the image of a metrizable space under certain types
of open continuous mappings. Definitions and some known results
are given in § 2, Nagata spaces are characterized with Theorem 3.3,
v-spaces with Theorem 4.3, and semi-metric spaces with Theorem 5.3.
Throughout the paper the set of natural numbers will be denoted
by N.

2. Definitions and background results. The spaces which inter-
est us in this paper can be described in terms of sequences of open
covers. It should be pointed out that many of the definitions which
follow are not the original definitions, but are actually characteriza-
tions which were proved, after the particular concept had been in-
troduced, in efforts to unify the various concepts. Consequently,
the definitions we give, in terms of a COC-function, display some
degree of this unification.

Let (X, T) be a topological space and let ¢ be a function from
N x X into T. Then g is called a COC-function for X (COC=
countably many open covers) if it satisfies these two conditions:
1) xe N 9(n, x) for all xe X; (2) g(n + 1, x) S g(n, x) forall ne N
and e X. Note that if ¢ is a COC-function for X, we obtain
countably many open covers of X, {G,», by taking G, = {g(n, 2): € X}
for each =.

Now let X be a space with COC-function g, and consider the
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following conditions on g:

(A) y.cg(n,z) for each ne N implies that the sequence (y,)>
has x as a cluster point.

B) g(n,2)Ng(n,y,) = @ for each ne N implies that <{y,> has
2 as a cluster point.

C) y.c9(n,x)and p,cg(n,y,) for each ne N implies that {p,>
has z as a cluster point.

D) {9(n,x):n =1,2, ---} is a fundamental system of neighbor-
hoods for z, for each z, and ze g(n, y,.) for each ne N implies that
{y.y has x as a cluster point.

(E) If H is closed and pe U {g9(n, x): x € H} for each n € N, then
pe H.

(F) xzeg(n,y, for each ne N implies that <{y,) has x as a

cluster point.
If X is a space with a COC-function g satisfying (A), X is called a
first countable space and g a first countable function for X; X is
called a Nagata space and g is called a Nagata function for X if g
satisfies (B); if g satisfies (C), X is called a 7-space and g a v-function
for X; if g satisfies (D), X is called a semi-metric space and g a
semi-metric function for X; X is called a stratifiable space and g a
stratifiable function for X if g satisfies (E); and finally if ¢ satisfies
(F), X is called a semi-stratifiable space and ¢ a semi-stratifiable
Sfunction for X.

Ceder [6] first studied stratifiable spaces under the name “M,-
spaces”. Borges [4] renamed them “stratifiable” and investigated
them in more detail. Creede [7] introduced semi-stratifiable spaces.
Our definition of semi-metric spaces is a characterization given by
Heath in [9] where he studies semi-metric spaces. Hodel [12] intro-
duced v-spaces. Ceder [6] also introduced Nagata spaces, but our
definition is a characterization due to Heath [9].

It is clear from our definitions that a space is a semi-metric
space if and only if it is a first countable semi-stratifiable space.
Also, it is true (c.f. [4]) that a space is a Nagata space if and only
if it is a first countable stratifiable space.

Each class of spaces which we characterize below is included in
the class of first countable spaces. Consequently we are able to
make use of the following theorem proved independently by Hanai
[8] and Ponomarev [16].

THEOREM 2.1. A T,-space Y is first countable if and only if
there is a metrizable space X and a continuous open mapping from
X onto Y.

Let us now mention some characterizations of Nagata spaces
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and semi-metric spaces. Heath [10] has characterized each of these
as follows.

THEOREM 2.2. A T.-space is a semi-metric space if and only if
there exists a continuous open mapping + from some metric space
(X, d) onto Y, and a subset X' of X such that (1) v(X')=Y and
@) if ye Y, W an open set containing y, then there exists an € > 0
such that y(Bd(v(y), ) N X)) & W.

THEOREM 2.3. A T,-space Y is a Nagata space if and only if
there exists an open continuous mapping - from some metric space
(X, d) onto Y and a subset X' of X such that (1) yv(X') = Y and (2)
if K is compact in Y, W an open set with K & W, then there exists
an € > 0 such that ¢y(Bd(v(K), e)N X)) W.

Nagata [15] has recently given quite similar characterizations
of Nagata spaces and semi-metric spaces using the concept of a
g-closed mapping. In comparing these results (of both Heath and
Nagata) with results such as Theorem 2.1 and Heath’s characteri-
zation of developable spaces, we can see that one natural way to
try to improve them is to avoid having to consider a subset X’ of
the metric space X.

3. Nagata spaces.

DEFINITION 3.1. Let X and Y be topological spaces, let v: X — Y
be a surjection, and let g be a COC-function for X. Then + is an
N-mapping relative to g (N=Nagata) if given any y € Y and neighbor-
hood W of y, there is a neighborhood V of y and a positive integer
n such that if g(n,2) Ny (V)= @, then (x)e W. A surjection
P¥: X—Y is an N-mapping if there is a COC-function g for X such
that + is an N-mapping relative to g.

We note that our N-mapping is quite similar to Arhangel’skii’s
[3] regular mapping. Indeed our definition was suggested by his
definition. In [3] he proved a theorem showing that conditions on
the range space of a mapping can force the mapping to be regular.
This theorem motivated the following proposition on N-mappings.

PropPOSITION 3.2. Let (X, T) and Y be topological spaces with
Y a stratifiable space, and let v: X — Y be a continuous surjection.
Then + is an N-mapping.

Proof. Let h be a stratifiable function for Y, and define g: N X
X— T by g(n, ) = v '[h(n, ¥(x))]. Then g is a COC-function for X.
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Now let ye€ Y, and let W be an open set containing y. Then Y — W
is closed and y¢ Y — W; hence there exists an m,€ N such that
ye U, p):pe Y—W} Let V=Y— U {k(n, p):pe Y —W}. Now
if g(n, 2) N ¥ (V) =+~ @, then h(n, ¥(x)) N V= @. But this means
that y(x)¢ Y — W, i.e., ¥y(x)e W.

Using Theorem 2.1 and Proposition 3.2, we are able to charac-
terize Nagata spaces.

THEOREM 3.3. Let Y be a T.-space. Then Y is a Nagata space
iof and only if there is a metrizable space X and an open continuous
N-mapping from X onto Y.

Proof. First assume that Y is a Nagata space. Then Y is first
countable; so by Theorem 2.1, there is a metrizable space X and an
open continuous surjection from X onto Y. By Proposition 3.2, 4 is
an N-mapping.

Now assume that X is metrizable and + is an open continuous
N-mapping from X onto Y. Clearly Y is first countable, so it suffices
to show that Y is stratifiable. Let g be a COC-function for X
relative to which + is an N-mapping. Let yeY, neN. Then
choose any se ¥ '(y) and define k(n, y) = v[g(n, s)], for every n. We
claim that % is a stratifiable function for Y. Let H be closed in Y,
and suppose that p€ U {h(n, 2): z€ H}, for each ne N. Suppose p € H;
then pe Y — H = W, which is open. Thus there exist a neighbor-
hood V of » and an n,e N such that if g(n, ) N ¥ (V) #% @ then
P(x) e W.

Now since V is a neighborhood of p, VN (U{k(n, 2): 2€ H}) = O
for each ne N. Thus there is a z¢ H such that h(n, 2) NV = @.
Therefore, if ¢ is such that &(n, z) = ¥[g(n, t)], we have g(n, t) N
¥ (V) @. But this implies that 4(¢) = ze W, an obvious con-
tradiction.

In reference to the remark at the end of §2, we note that we
are able to do away with having to look at a subset X' of the
metric space X in our characterization of Nagata spaces. (A similar
remark applies to our characterization of semi-metric spaces in §5.)

4, v-spaces. This section proceeds almost exactly as §3. We
begin by giving the definition of the kind of mapping we need in
order to characterize v-spaces.

DEFINITION 4.1. Let X and Y be topological spaces, let 4: X — Y
be a surjection, and let g be a COC-function for X. Then + is a
G-mapping relative to g (G=gamma) if given any y € Y and neighbor-
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hood W of y, there is a neighborhood V of ¥ and an n € N such that
¥IU {g(n, ): e v (V)}] S W. A surjection v: X — Y is a G-mapping
if there is a COC-function g for X such that - is a G-mapping
relative to g.

PROPOSITION 4.2. Let (X, T') and Y be topological spaces with
Y a v-space, and let y: X — Y be a continuous surjection. Then o
18 o G-mapping.

Proof. Let h be a v-function for Y, and define g as in the
proof of Proposition 3.2. Let y € Y and let W be a neighborhood of .
We claim that there exists an n,€ N such that U {h(n,, 2): 2 € k(n, Y)}S
W. For suppose not; then we can choose sequence {z,> and <u,)
such that z, € h(n, y) and w, € h(n, z,) — W for each ne N. But since
h is a 7v-function, this means that y is a cluster point of (u,);
obviously a contradiction since u,¢ W for any =€ N.

Now let V = h(n,, y). Then we have ¥[U {9(n, x): x€ v (V)}] =

U {a(n, 2): Z € h(n,, y)} & W.

THEOREM 4.3. Let Y be a T.-space. Then Y is a v-space if and
only if there is a metrizable space X and an open continuous G-
mapping from X onto Y.

Proof. Suppose that Y is a <v-space. Then by Theorem 2.1
there is a metrizable space X and an open continuous surjection
¥: X— Y. By Proposition 4.2 + is a G-mapping.

On the other hand, suppose that X is metrizable and : X — Y
is an open continuous surjection, which is a G-mapping. Then Y is
first countable. Let f be a first countable function for Y, and let
ye Y. Choose an se v (y) and define k(n,y) = v[g(n, s)] N f(n, y).
Now suppose ¥, € k(n, ») and z, € h(n, y,) for each ne N. Then we
must show that p is a cluster point of {(x,>. Assume not, and choose
a neighborhood U of p and an integer % so that for n >k, z,¢ U.
Now there exists a neighborhood V of » and an n, (which we may
choose to be = k since g(n + 1, ) & g(n, ) for all 2 and =) such
that ¥[U {g(n,, x): 2 €y (V)}] S U. But we can choose an m, = n,
such that h(m, p) & V. Then we have v[U {9(m,, 2): zc v+ (V)}] < U.
Now since Y., € h(m,, p), we get v¥[g(m,, s, )] S U, where h(m,, ¥,,) =
VYlg(me, su )l O f(Moy Ym,) and S, € ¥ '(Ym,). But there is a t,, € ¥~ (xn,) N
g(my, S,,) and so Y (t,,) = ., € U, a contradiction.

5. Semi-metric spaces. Since the proofs of Proposition 5.2 and
Theorem 5.3 are very similar to the proofs of Proposition 3.2 and
Theorem 3.3 respectively, we omit them here.
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DEFINITION 5.1. Let X and Y be topological spaces, let v: X— Y
be a surjection, and let g be a COC-function for X. Then + is an
SM-mapping relative to g (SM=semi-metric) if given any ye Y and
neighborhood W of y, there is an n € N such that g(n, ) N v '(y) = @
implies that ¥ (x)e W. A surjection : X— Y is an SM-mapping if
there is a COC-function g for X such that + is an SM-mapping
relative to g.

We remark that our SM-mapping is a generalization of Pono-
marev’s [16] m-mapping. In fact if (X, d) is a metric space and
g(n, x) = Bd(x, 1/n) then a m-mapping and an SM-mapping relative
to g are identical concepts. Notice, however, that in Theorem 5.3
we get an SM-mapping relative to a COC-function g which is not
directly related to the metric on X. Consequently, that SM-mapping
is not necessarily a m-mapping. In connection with this remark, the
question arises as to whether we can find characterizations similar
to the ones we give, but with mappings which are directly related
to the metric on X. Such characterizations, if they exist, would in
a sense be improvements of our theorems.

ProrosITION 5.2. Let (X, T) and Y be topological spaces with
Y a semi-stratifiable space, and let v: X — Y be a continuous surjec-
tion. Then + is an SM-mapping.

THEOREM 5.3. Let Y be a Ti-space. Then Y is a semi-metric
space itf and only if there is a metrizable space X and an open
continuous SM-mapping from X onto Y.

In addition to comparing this characterization with those of
Heath and Nagata mentioned above, the reader should compare it
with results by Alexander [1] and Burke [5].

6. Some properties of the mappings. We note that each of
the kinds of mappings we have defined in this paper (N-mapping,
G-mapping, and SM-mapping) is countably productive. We can use
this property to get relatively simple proofs that Nagata spaces,
v-spaces, and semi-metric spaces are countably productive as follows
(the results are known, with the possible exception of the v-space
case).

THEOREM 6.1. Let {Y,:n=1,2, ---} be a sequence of T,-spaces.
(1) If each Y, 18 a Nagata space, so is 11y Y,.

(2) If each Y, is a v-space, so ts [Ip- Y,.

(3) If each Y, is a semi-metric space, so 18 [I5=1 Y,.
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Proof. (1) By Theorem 3.3 for each 7, there is a metric space
X, and an open continuous N-mapping +,: X,—Y,. Then T3, X,
is a metric space and J[:., ¥, is an open continuous mapping from
Iy, X, onto II;-, Y,. It is not difficult to show that this mapping
is in fact an N-mapping. Consequently, again by Theorem 3.3,
M. Y, is a Nagata space.

The proofs of (2) and (8) are similar.

Now we ask when finite-to-one and compact mappings are SM-
mappings, and derive several corollaries concerning images under
these mappings.

THEOREM 6.2. Let 4: X— Y be a continuous finite-to-one surjec-
tion, and let g be a semi-stratifiable function for X. Then ¥ is a
SM-mapping relative to g.

Proof. Let yeY, W an open set in Y containing y. Suppose
that v '(y) = {x, ---, 2,}. For each ¢, 1 < ¢ < k, there exists an =,
such that z, ¢ U {9(n;, p): p€ X—+4(W)}. Let n,=max{n;:i=1,--+,k}.
Then (recall that g is decreasing) if g(n, ) N Vv '(y) # &, we know
x¢ X — v (W), Le., y(x)e W.

THEOREM 6.3. Let ¢: X— Y be a continuous compact surjection,
and let g be a K-semi-stratifiable function for X. Then + is a
SM-mapping relative to g.

The proof of Theorem 6.3 is very similar to the proof of Theorem
6.2. For the definition and a discussion of K-semi-stratifiable spaces,
the reader should see Lutzer [13].

Next we note that we can weaken one implication of Theorem
5.3 to get the following.

- THEOREM 6.4. Let X be a space with a COC-function g, let
Yv: X—Y be an almost-open SM-mapping relative to g. Then Y 1s
semi-stratifiable.

Proof. (Sketch). Let ye Y, ne N. Then there is an s€ ¥ '(y)
with a system of neighborhoods {N,: a e A} such that each ¥(N,) is
open. Now choose N, < g(n,s) and define &(n,y) = ¥(N,,). Then
h can be shown to be a semi-stratifiable function for Y.

COROLLARY 6.5. An almost-open continuous finite-to-one image
of a semi-stratifiable space is semi-stratifiable.

Proof. Combine Theorems 6.2. and 6.4.
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It should be noted that Henry [11] has proved a slightly stronger
result than Corollary 6.5 (pseudo-open rather than almost-open).

COROLLARY 6.6. An almost-open continuous compact image of
a K-semi-stratifiable space is semi-stratifiable.

Proof. Combine Theorems 6.3 and 6.4.
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