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Associated with each ring R over which every nonzero
right module has a minimal submodule is an ordinal number
called its right (lower) Loewy length. The concern here is
with the various possible left and right Loewy lengths of
such rings with zero radical and with the possible right-left
symmetry of this minimal submodule condition. In particular,
if R has finite right Loewy length n then R has left
Loewy length g 2n — 1.

All rings are associative rings with identity. Denoting the socle
of a module M by Soc (M), the (lower) Loewy series for M is defined
transfinitely by: So = 0, Sa+JSa = Soc (M/Sa) and, if a is a limit
ordinal, Sa = \Jβ<aSβ. (See Bass [1, p. 470].) If M = Sa for some
ordinal number a then M is called a (lower) Loewy module. The
Loewy length of such a module is L(M) = 7, the least ordinal 7 with
M — Sr. We call a ring R a right (resp., left) Loewy ring in case the
regular representation RR (resp., RR) is a Loewy module. (Nastasescu
and Popescu [6] use the term "semi-artinian" to denote such a ring.)
A ring R is easily seen to be a right Loewy ring if and only if each
of its right modules has a nontrivial (hence, essential) socle. Over
such a ring each right module M is a Loewy module of length L(M) ^
L(RR) and, since RR is finitely generated, L(RR) cannot be a limit
ordinal.

As part of his Theorem P, Bass [1] proved that a ring R is left
perfect (i.e., its (Jacobson) radical J = J(R) is left T-nilpotent and
R/J is semisimple) if and only if R is right Loewy and contains no
infinite orthogonal set of idempotents. No doubt inspired by this
result, Nastasescu and Popescu [6] proved that a ring R is right
Loewy if and only if its radical J is left T-nilpotent and R/J is right
Loewy. Thus we are led to study Loewy rings with zero radical.
After first modifying an example of Osofsky [7] to show that there
are primitive left and right Loewy rings of arbitrary infinite left and
right lengths and that a primitive right Loewy ring need not be left
Loewy, we prove that a right Loewy ring of finite length must also
be left Loewy of finite length, but that these two lengths are neither
independent nor necessarily equal. Then, recalling that the left and
right Loewy series for a (von Neumann) regular ring are the same,
we show that there exist both commutative and primitive regular
Loewy rings of arbitrary length.

1* Right Loewy length vs* left* Osofsky [7], in answer to a
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question of Bass, proved that, given any two infinite ordinals φ and
7, there exists a left and right perfect ring R with L(RR) = 7 + 1
and L(RR) = φ + 1; and that there exists a left perfect ring (neces-
sarily right Loewy) with L(RR) = 7 + 1 and Soc (RR) = 0. In such
rings R all the "action" must take place in the radical (i.e., if R is
right perfect, L{RR) g L(JB) + L(R/J) = L(J) + 1). Indeed it was
apparently heretofore not known whether a ring with zero radical
could be Loewy with L{RR) Φ L(RR). The following lemma allows us
to build such Loewy rings with zero radical by "putting Qsofsky's
rings on top of" the socle of the ring of linear transformation of a
vector space. Before proceeding to the lemma we recall (see [3, Chap-
ter IV]) the ring of linear transformations of a vector space is a PMJ
ring. That is, it is a primitive ring containing a minimal right (equiva-
lently, left) ideal; and so its left and right socles (the transformations
of finite rank) coincide, are homogeneous, and, as left and right ideals
are both faithful and essential.

LEMMA 1.1. Let B be an algebra over a field K. Then there is
a PMI algebra R over K with Soc (R) = S and subalgebra B ~ B
such that

R = B + S and B n S = 0

and hence R/S ~ B.

Proof. Let Vκ = 1?(Λ) be a countable direct sum of copies of B,
considered as a vector space over K. Let T = Enά(Vκ) the ring of
linear transformations of Vκ, viewed as left operators. Then the
mapping 6 κ-> b where

b:(blf •• ,6w >0, . . . ) ι >φbu •• ,δ&«,0, •••)

is an injective algebra homomorphism B~* T such that 6 has infinite
rank whenever b Φ 0. Now let S = Soc(Γ), the transformations of
Vκ of finite rank, and let

R = B + S .

Then, since S is an ideal in T, R is a subring of T, and clearly
B Π S = 0. By the Structure Theorem for PMI rings [3, p. 75], R
is a PMJ ring with socle S.

Now, letting B be one of the rings of Osofsky discussed above
(B is an algebra), we have at once:

PROPOSITION 1.2. Let ψ and 7 be infinite ordinal numbers.
Then there is a primitive left and right Loewy ring R with
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L{RR) = 7 + 1 and L{RR) = φ + 1 .

Moreover , £fcere exίsέ primitive right Loewy rings, of arbitrary
infinite Loewy length, that are not left Loewy.

Of course the model for Loewy rings is the semiprimary rings,
which one may characterize as left perfect rings of finite right (or
equivalently, left) Loewy length. The left and right Loewy lengths
of a semiprimary ring are the same—one greater than the nilpotency
index of its radical. We shall now show that finite Loewy length
on one side of a ring implies it on the other, but that if the ring
is not semisimple modulo its radical (i.e., perfect) then the two lengths
can differ.

THEOREM 1.3. If R is a right Loewy ring of finite Loewy length
n, then R is a left Loewy ring of Loewy length at most 2n — 1.

Proof. The proof is by induction on the right Loewy length.
Let L(RR) = n, S — Soc (RR), and N — J Π S, where J is the Jacobson
radical of R. Then, since NczJ and SR is semisimple, we have
SN = 0. Thus RN is an R/S module. Since R/S has right Loewy
length n — 1, it has left Loewy length at most 2n~1 — 1 by inductive
hypothesis. Clearly L(RR) is an upper bound for the Loewy length
of any left R module, so the Loewy length of RN is less than or
equal to 2n~ι - 1.

We claim that S/N is semisimple as a left R module. To see
this, note that SR = (Σ 0 e^) 0 N, where e\ = et and the etR are
simple right R modules. This is true because N is a summand of
SB, since SR is semisimple; and the simple components of any com-
plimentary summand are generated by idempotents, since they are not
nilpotent. Now, the proof of [3, Proposition 1, p. 65] shows that if
βiR is simple, and Rei contains no nonzero nilpotent left ideals then
Bet is also simple. But (B/N)(et + N) cannot contain any nonzero
nilpotent left ideals, because, since N2 = 0, any such left ideal would
lift back to a nilpotent left ideal in Ret + N £ S, which would be
contained in J Π S — N. Thus each (e, + N) generates a simple left
R module, so (RetR + N)/N is semisimple as a left R/N module. But
S = ΣRe.R + N so that S/N is left semisimple.

Now it is clear that L(M) ^ L(N) + L(M/N) for any submodule
NdM. Thus

L(B) ^ L(R/S) + L(S/N) + L(N)

^ (2*-1 - 1) + 1 + (2*-1 - 1) = 2n - 1 .

The case n — 1 being straightforward from the Wedderburn-Artin
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Theorem, the proof is complete.

Next we show that, even though the preceding theorem severely
limits the possible disparity between L(RR) and L(RB) for a ring R
of finite Loewy length, the two lengths can be different. To do so,
we employ the following variation of the standard construction used
in adjoining an identity to a ring.

LEMMA 1.4. Let S be an ideal in a ring T. Let K be a subring
of T. Let φ: KST —> KST be a bimodule homomorphism with kernel
N. Let R = K x S, and define addition in R coordinatewise and
multiplication by

(k, s)(k', «') = (kk'f sk' + ksf + sφ(s')) .

Then R is a ring with identity (1, 0) and 0 x S and 0 x N are
ideals in R with (0 x S)(0 x N) = 0.

Proof. The fact that R is a ring is a simple calculation. Note
that if φ is the identity map, one is simply adjoining a unit to S,
and if not, the linearity of ψ allows us to move the φ through a
product to preserve associativity. The fact that (0 x S) (0 x N) = 0
is straightforward.

Note that, in order to be of minimal Loewy length, the counter-
example that we are seeking must have nonzero radical, because in
a ring R with zero radical Soc (RR) = Soc (RR). However, an appli-
cation of (1.1) to our following example will yield a Loewy ring with
zero radical and differing finite Loewy lengths.

EXAMPLE 1.5. A Loewy ring R with L(RR) = 2 and L(RR) = 3.

DEMONSTRATION. Let T be the ring of linear transformations
End (Vκ) of an infinite dimensional vector space over a field K. Let
S — Soc (T). Then Sτ is an infinite direct sum of isomorphic minimal
right ideals and so there is an epimorphism

φ: KST > KST with N = Ker φ Φ 0 .

Let R = K x S be the ring constructed from this data via Lemma
1.4. Then since (0, s)(k', s') = (0, s(&' + <p(s'))), φ is epic, and MS = M
for every Mτ <Ξ Sτ, the right iϋ-submodules of 0 x S are just those
of the form 0 x M where M ^ Sτ. Thus 0 x S is a non-artinian
semisimple right ideal in R and so, since R/(0 x S) = K, we have
L(RR) = 2. Now to see that L(RR) = 3, first note that, since by (1.4)
(0 x JS)(O x N) = 0, the left iί-action on 0 x N is just that of K.
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So 0 x N is left semisimple over R. Moreover, being a nonzero right
ideal in the PMI ring T, Nτ is faithful. So if k Φ 0 or s g ~N then
there is an ne N with

(0, n)(k, s) = (0, n(k + φ(s))) Φ 0

because no transformation of finite rank can be scalar unless it is
zero. Thus it follows that 0 x N is essential in BR. Hence 0 x N =
Soc (RR). But 0 x N Φ 0 and clearly R/(0 x N) is not artinian, so
by (1.3) we do have L(BR) = 3.

Note that, according to the inequality of (1.3), L(BR) = 3 is the
largest possible for a Loewy ring with L(RB) = 2. We do not know
whether the bound 2n — 1 on L^ϋ?) (given L{RB) = w) can be achieved
for any w > 2.

2* Regular Loewy rings* In [6] Nastasescu and Popescu
proved that a commutative Loewy ring with zero radical is (von
Neumann) regular. Subsequently, Nastasescu [5] proved that a
right Loewy ring is regular iff J(R/Sa) = 0 for each a < L(RB). Since
the left and right socles of a ring with zero radical are equal [3,
Theorem 1, p. 65], the left and right Loewy series for such a ring
must be identical. Our concluding results show how to construct
both commutative and primitive regular Loewy rings of any length.
Unlike our first example there is, of course, no T-nilpotence involved.
The basic construction is based upon the following lemma about
partitions of an uncountable set.

LEMMA 2.1. Let β be an ordinal, c be an infinite cardinal and
let A be a set such that card A > c ;> card β. Then there is a
sequence of partitions {^a \ a ^ β} of the set A such that:

(1) Whenever a1 < a2, έ^"1 is a refinement of ^a2 but no
member of έ^"2 is a finite union of members of ^aκ

(2) Each element of &a has cardinality ^ c and card &a =
card A for all a.

Proof. Let ^ ° be the discrete partition of A. If aeA let Pa

a

be the member of 3?a containing a. The proof is by induction.
First, suppose a is a successor. Then, since card ^a~ι = card A

and c ^ card A, we can write ^a~ι as a disjoint union of card A
sets each of cardinality c. If X is an element of the partition of
^>cχ-1 described in the previous sentence, we take Q(X) — U x ^ " 1 -
The set of all such Q(X) is a partition of A, clearly having the
desired properties.
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If a is a limit ordinal, we define Pa

a = U« <«Pf and let ^ a =
{P:}. First, &a is a partition. For suppose P α

α n P ^ 0 . Then
there are ordinals aλ^a2<a with P^ Π PΓ2 ̂  0 . But since ^ α i is
a refinement of &>«\ we have ffcft so Pα"

2 n P?2 Φ 0 . Thus,
P«2 - Pp. Now, if 2/ e P:, then 2/ e Pα

5, where δ < a. Thus, y e Pϊ
for all δ' Ξ£ δ. Thus, we may assume δ Ξ> α2. But since Pα"

2 = P£2,
PI = Pξ so that ye Pic: Pi, and, since 1/ was arbitrary Pa

a c Pδ", and
since the argument is symmetric, the P« are pairwise disjoint. Thus,
since clearly A = Uαe^ Pa, we have partitions {^a \ a <: β). For these
part (1) is clear by construction, and (2) also follows for successor
ordinals by construction. If, however, α is a limit ordinal then
Pa = \Js<« Pa- So card Pa

a ^ sup5<α (cardPα

5)(card a). But cardPα

δ ^ c
by induction, and card a ^ c so card P* ^ c2 = c. Now, card A ^
(card ^a)(sniρaeA card Pα

α). But card P% ^ c, so card A <: (card ^ α ) c,
while c < c a r d A . So, card A ^ card ^ α but ^ α is a partition of
A so c a r d ^ α ^ card A, and we have equality.

THEOREM 2.2. Lβί /3 6e α ?̂/ ordinal, then there is a commutative
von Neumann regular ring Rβ such that every Rβ module has non-
trivial socle, and Rβ has Loewy length β + 1.

Proof. Let A be a set with card A > card β and let {^a \ a <; /5}
be the partitions of Lemma 2.1. Let i£ be a field and let T = iP,
the ring direct product of card A copies of K with projections
ττα: T-+K (aeA). For each ordinal a < β and each P * e ^ α define
to(Po

α) G T

;r6(n)(Pβ

β)) = 1 if δePα«
and

ττδ(tυ(Pα

α)) - 0 if 6 e A\Pα

α

and let lτ be the identity of T. Then from (2.1.1) it is easy to see
that

is a linearly independent set of vectors in Tκ. Let Rβ be the sub-
space that it spans. We shall prove that Rβ is a subalgebra of T
with the desired properties. The proof is facilitated by the following
observation: If a1 <̂  a29 then

if P α i c: P?2

0 , otherwise.

This is true because ^ a ί is a refinement of ^ α 2 so that if Pi1 g Pp
then Pα

α* Π P6

α2 = 0 . It shows immediately that Jfy is a subalgebra of
T. Now for each a < β, let
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and for each a ^ β set

&a — 2_ιδ<a Lδ

<so So = 0). Then from (*) it also follows that

Sa {a ^ β) and Sa + to(P:)K (a < β)

are ideals of Rβ. But as i£"-spaces

Sa+1 = Sa®La = Sa® (φ^ϊo(P;)K),

for each a < β. Thus Sa+ί/Sa is a direct sum

of minimal ideals of R/Sa. Therefore, Rβ — Sβ + 1TK is a Loewy
ring; and to see that it has the desired length we need only show
that Sa+1/Sa is essential in R/Sa for each a < β. So let a < β and

r =

with the ^ ^ 0, the Pα

ff* distinct members of \Jδ<β^
δ and

αx ^ ^ ak_x <a^ ak+1 S ^ α. .

Then by (2.1.1) P # ^ U?^1 -PίtS but Pjj is a union of members of &
So there exists a Pa

ae^a such that Pα

α £ P # but Pα

α g Pa"; (i
1, , n — 1). Now by (*) we have

which shows that Sa+1/Sa is indeed essential in Rβ/Sa. Thus
/S + 1. Finally, since Rβ is commutative, to see that it is regular
we need only, by [6, Theorem 3.1], observe that J(Rβ) = 0. But this
is the case because each tυ(Pa) is an idempotent in Rβ.

COROLLARY 2.3. There are primitive regular Loewy rings of
Loewy length β + 1 for each ordinal β.

Proof. Use the ring Rβ and Lemma 1.1 to construct a PMI
ring R = Rβ+ S with

Soc (R) = S , Rβ Π S = 0 and Rβ = Rβ

and observe that iϋ has zero radical modulo each term in its Loewy
series. Now apply the result of Nastasescu [5] cited above.
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3* Remarks. (1) Since minimal one-sided ideals are either nil-
potent or idempotent generated, semiprime (left or right) Loewy
rings have zero Jacobson radical.

(2) Over a direct product of rings ΠARa, the factor ΠARa/@A Ra

contains no minimal one-sided ideals. Thus no infinite direct product
of rings is a Loewy ring.

(3) Let R be a left or right self-injective right Loewy ring
with J(R) = 0. Then R is a direct product of endomorphism rings
of vector spaces (see [2]). By (2) this product must be finite. But
also the vector spaces must be finite dimensional (for otherwise R
would have a non-Loewy factor ring). Thus R is a semisimple ring.

(4) Left perfect (= right Loewy with R/J(R) semisimple) rings
have the property that each of their nonzero left modules contains
a maximal submodule. So do commutative Loewy rings (see [6] and
[4]) and right Loewy rings of finite length (see [6], Proposition 5.3],
and our Theorem 1.3). We suspect that every right Loewy ring
has this property.

We wish to express our appreciation to Professor Goro Azumaya.
It was a recent conversation with him that stimulated our interest
in this subject. We also wish to thank Professor John Beachy for
guiding us to the appropriate literature.

Added in proof. T. Shores has kindly informed us that L. Fuchs
had obtained Theorem 2.2 earlier in Theorem 6 of [J. Reine Angew*
Math. 239/240 (1970), 169-179].
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