LINEAR OPERATORS FOR WHICH T^*T AND TT^* COMMUTE.

II

STEPHEN LAVERN CAMPBELL
LINEAR OPERATORS FOR WHICH T^*T AND TT^* COMMUTE (II)

STEPHEN L. CAMPBELL

Let (BN) denote the class of all bounded linear operators on a Hilbert space such that T^*T and TT^* commute. Let $(BN)^+$ be those $T \in (BN)$ which are hyponormal. Embry has observed that if $T \in (BN)$, then $0 \in W(T)$ or T is normal. This is used to show that if $T \in (BN)$, then $(T + \lambda I) \notin (BN)$ unless T is normal. It is also shown that if $T \in (BN)^+$, then T^n is hyponormal for $n \geq 1$. An example of an $T \in (BN)^+$ such that $T^2 \in (BN)$ is given. Paranormality of operators in (BN) is shown to be equivalent to hyponormality. The relationship between T being in (BN) and T being centered is discussed. Finally, all 3×3 matrices in (BN) are characterized.

This paper is a continuation of [3]. In that paper we studied bounded linear operators T acting on a separable Hilbert space H such that T^*T and TT^* commute. Such operators are called bi-normal and the class of all such operators is denoted (BN). This paper will explore some of the properties of hyponormal bi-normal operators. In addition, we will show that no translate of a non-normal bi-normal operator is bi-normal and characterize all 2×2 and 3×3 bi-normal matrices.

It has been pointed out to the author that the term bi-normal has been used earlier by Brown [2]. However, his usage does not appear to be in the current literature so we will continue to use bi-normal for operators in (BN).

1. All shifts, weighted and unweighted, bilateral and unilateral, are in (BN). Further, operators in (BN), if completely nonnormal, have a tendency to be "shift-like". Our first result, due to Embry, is an example of this.

Theorem 1. If $T \in (BN)$, then either T is normal or zero is in the interior of the numerical range of T, $W(T)$.

Proof. Embry has shown that if $T \in (BN)$ and T is not normal, then $0 \in W(T)$ [7, Theorem 1]. She has also shown that if $T \in (BN)$ and $T + T^* \geq 0$, then T is normal [5, Theorem 2]. Thus if 0 were on the boundary of $W(T)$, by a suitable choice of α, $|\alpha| = 1$, we could consider $T_1 = \alpha T$ where $T_1 \in (BN)$ and $T_1 + T_1^* \geq 0$. Then T would be normal.
An interesting consequence of Theorem 1 is that no translate of a bi-normal operator can be bi-normal unless the original operator was normal.

For bounded linear operators X and Y let $[X, Y] = XY - YX$.

Theorem 2. Suppose that $T \in (BN)$. Then $T + \lambda I \in (BN)$, some complex $\lambda \neq 0$, if and only if T is normal.

Proof. Suppose $T \in (BN)$. Let $\lambda \neq 0$ be real. Then

$$[(T + \lambda I)^*(T + \lambda I), (T + \lambda I)(T + \lambda I)^*] = 0$$

is equivalent to $[[T^*, T], T + T^*] = 0$. Thus if $T + \lambda I \in (BN)$ for some real $\lambda \neq 0$, then $T + \lambda I \in (BN)$ for all real λ. But $0 \in W(T + \lambda I)$ for λ sufficiently large so T would be normal by Theorem 1. The case when λ is complex easily reduces to the one when λ is real.

2. One reason that the class (BN) is of interest is that it includes many of the weighted translated operators of Parrott [10], and nonanalytic composition operators, such as those studied by Ridge [12]. In particular, (BN) includes the Bishop operator [10, p. 2] for which the question of invariant subspaces is still open.

The Bishop operator actually falls into the following class which is more restrictive than (BN).

Definition 1. A bounded linear operator T is called centered if the set $\{T^n T^*, T^* T^n\}_{n=0}^\infty$ consists of pairwise commuting operators.

Centered operators have been studied by Muhly [9] and Morrell [8]. Muhly has shown that centered operators with zero kernels and dense ranges are the direct sums of weighted translation operators [9]. Parrott has asked (in a private communication) whether the same is true for operators in (BN). We answer this in the negative by exhibiting a $T \in (BN)$ such that $T^2 \notin (BN)$, and T is invertible.

Example 1. Let $T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$. Then $T \in (BN)$, $T^2 \notin (BN)$, and T is invertible.

3. Powers of hyponormal or bi-normal operators need not be hyponormal or bi-normal. Operators which are both hyponormal and bi-normal are somewhat "nicer". Let $(BN)^+$ denote the hyponormal bi-normal operators.
THEOREM 3. Suppose that \(T \in (BN)^* \). Then \(T^* \) is hyponormal for \(n \geq 1 \).

Proof. If \(C, D \) are positive operators such that \(C \geq D \geq 0 \), then \(T^*CT \geq T^*DT \geq 0 \) for any bounded operator \(T \). Suppose now that \(T \in (BN)^* \). Since \(T^*T \geq TT^* \), we have \(T^*T^2 \geq (TT^*)^2 \) and \((TT^*)^2 \geq T^2T^* \). But \(T^*T \geq TT^* \) and \([T^*T, TT^*] = 0 \) implies that \((TT^*)^2 \geq (TT^*)^2 \). Hence \(T^*T^2 \geq (TT^*)^2 \) and \(T^2T^2 \) is hyponormal. Suppose then that \(T^*T^n \geq (TT^*)^n \) for some integer \(n \geq 2 \). Then \(T^*T^* \geq (TT^*)^n \) implies that \(T^*T^{n+1} \geq (TT^*)^{n+1} \) and \((TT^*)^n \geq T^*T^n \). But \((TT^*)^n \geq (TT^*)^{n+1} \). The theorem now follows by induction.

4. The assumption that \(T \in (BN) \) is hyponormal can be weakened to \(T \in (BN) \) is paranormal but no added generality is achieved as the next result shows. Recall that \(T \) is paranormal if \(\| T^* \| \leq \| T \| \) for all \(\phi \in \mathcal{A} \). See for example [1]. Hyponormal operators are paranormal.

THEOREM 4. Suppose that \(T \in (BN) \). If \(T \) is also paranormal, then it is hyponormal.

Proof. Suppose that \(T \) is paranormal. Then \(AB^2A - 2\lambda A^2 + \lambda^2 I \geq 0 \) for every \(\lambda > 0 \) where \(A = (TT^*)^{1/2} \) and \(B = (T^*T)^{1/2} \) [1]. Suppose that \(T \in (BN) \). The condition for paranormality becomes

\[
A^2B^2 - 2\lambda A^2 + \lambda^2 I \geq 0 \text{ for every } \lambda > 0.
\]

Since \([A^2, B^2] = 0\), there exists a spectral measure \(E(\cdot) \) such that

\[
A^2 = \int f(t)dE(t) \text{ and } B^2 = \int g(t)dE(t).
\]

Substituting these integrals into (*) gives

\[
\int (f(t)g(t) - 2\lambda f(t) + \lambda^2)dE(t) \geq 0.
\]

Let \(\theta = \{(x, y): x \geq 0, y \geq 0 \text{ and } xy - 2\lambda x + \lambda^2 \geq 0 \} \text{ for all } \lambda > 0 \}. \) Then \((f(t), g(t)) \in \theta \) almost everywhere \(dE \). We will show now that actually \(\theta = \{(x, y): x \geq 0, y \geq 0 \} \). Then \(g(t) \geq f(t) \) almost everywhere \(dE \) and \(T^*T \geq TT^* \) as desired. To see that \(\theta = \{(x, y): x \geq 0, y \geq 0 \text{ and } y \geq x \} \), observe that \(xy - 2\lambda x + \lambda^2 = 0, \lambda > 0, \) defines the curve \(y = h_\lambda(x) = 2\lambda - \lambda^2/x \) in the first quadrant. The line \(y = x \) is tangent to \(h_\lambda(x) \) at \(x = \lambda \). Since \(h_\lambda(x) \) is everywhere
concave down we have that it lies entirely on or below \(y = x \). But \(\theta \) consists of those points in the first quadrant lying above the graph of \(h_2 \) for every \(\lambda > 0 \), that is, above the line \(y = x \).

An immediate corollary to Theorem 4 which might save time in the construction of examples is the following.

Corollary 1. There are no weighted shifts which are paranormal and not hyponormal.

5. Under certain conditions \(T \) being in \((BN)\) does imply \(T \) is centered. We give two.

Theorem 5. Suppose that \(\| T \| \leq 1 \). If \(T^*T = f(TT^*) \) and \(TT^* = g(T^*T) \) where \(f \) and \(g \) are continuous functions from \([0, 1]\) into \([0, 1]\), then \(T \) is centered.

Proof. If \(T^*T = f(TT^*) \), then

\[
(*) \quad T^{*2}T^2 = T^*f(TT^*)T = f(T^*T)T^*T = f(f(TT^*)g(TT^*)) = f_2(TT^*)
\]

where \(f_2 \) is a continuous function from \([0, 1]\) into \([0, 1]\). The second equality of \((*)\) is trivially valid if \(f \) is a polynomial. By taking uniform limits of polynomials it can be seen that it is true for all continuous functions \(f \). From \((*)\) and an induction argument, we get that \(T^{*n}T^* = f_2(TT^*) \) and \(T^*T^{*n} = g_2(T^*T) \) for continuous functions \(f_2, g_2 \) mapping \([0, 1]\) into \([0, 1]\), \(n \geq 1 \). Hence \([T^{*i}T^j, T^{*j}T^i] = 0 \) for all integers \(i, j \geq 0 \).

The assumption that \(f, g \) are continuous can be considerably weakened. If \(h, k \) are bounded measurable functions from \([0, 1]\) into \([0, 1]\), then let \((h \boxtimes k)(x) = h(k(x))k(x) \). Set \(h_1 = h \) and define \(h_n = (h_{n-1} \boxtimes h) \) for \(n \geq 2 \). Then the theorem is true if \(f_n \) and \(g_n \) are well-defined \(dE \) measurable functions for every integer \(n \geq 1 \). \(dE \) is the spectral measure of the \(*\)-algebra generated by \(I, T^*T \) and \(TT^* \). Clearly the assumption \(\| T \| \leq 1 \) is not restrictive.

S. K. Parrott has proven the following result (private communication).

Theorem 6. If \(T \in (BN) \) and \(T^*T \) has a cyclic vector, then \(T \) is unitarily equivalent to a weighted translation operator.

6. The operator \(T = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \) acting on \(C^2 \) shows that Theorem 6 is not valid for an arbitrary \(T \in (BN) \). Our next example shows it is also not true for \(T \in (BN)^{+} \).
Example 2. Let

\[T_n = \begin{bmatrix} 0 & 0 & \sqrt{2} g(n + 1) \\ g(n) & g(n) & 0 \\ g(n) & -g(n) & 0 \end{bmatrix}, \quad n \geq 1, \]

where \(g(n) \) is a strictly increasing sequence of positive numbers converging to 1. Let

\[A = \begin{bmatrix} 0 & 0 & 0 \\ T_1 & 0 & 0 \\ 0 & T_2 & 0 \end{bmatrix} \]

acting on \(\mathcal{A} \) where \(\mathcal{A} \) is a countable number of copies of \(C^* \). Then \(A \in (BN)^+ \), but \(A^* \notin (BN) \). \(A \in (BN) \) since \(A^*A \) and \(AA^* \) are diagonal. \(A \in (BN)^+ \) since \(T_{n+1}^* T_{n+1} \geq T_n T_n^* \), \(n \geq 1 \). So show \(A^* \in (BN) \), one need only show that \([(T_{n+1}^* T_n)(T_{n+1}^* T_n)]^* \), \((T_{n+2}^* T_{n+2})^* (T_{n+2}^* T_{n+2}) \) \(\neq 0 \) for some \(n \geq 1 \). Picking \(n = 1 \) and \(g(1) = 0 \) makes the calculation easier.

It is easy to modify Example 2 to get an invertible \(A \) such that \(A \in (BN)^+ \) and \(A^* \notin (BN) \). This is done by picking a sequence \(\{g(n)\}_{n=\infty}^\infty \) such that \(g(n) < g(n + 1), \lim_{n \to \infty} g(n) = 1, \) and \(\lim_{n \to \infty} g(n) = c > 0 \). Define \(A \) to be a matrix weighted bilateral shift with weights \(T_n, T_n \) as in Example 2.

There remains then the problem of determining what types of operators are in \((BN)^+ \).

In the process of proving Theorem 1 of [3] we proved the following result which could be helpful.

If \(C \) is self-adjoint, let \(E_C(\cdot) \) be the spectral measure of \(C \).

Proposition 1. If \(T \in (BN)^+ \), then \(E_{T^* T}([b, ||T||]) < \) is an invariant subspace of \(T \) for every \(b > 0 \). Furthermore, \(E_{T^* T}([0, b]) \subseteq E_{T^* T}([0, b]) \) for every \(b > 0 \).

By considering weighted shifts in \((BN)^+ \) it is easy to see that the subspaces need never be reducing and \([b, ||T||] \) cannot be replaced by a noninterval or by an interval without \(||T|| \) as an end point.

7. The presence of a large number of examples is useful both in making conjectures and in finding counterexamples. There has also been some interest in the condition \((BN) \) when \(\dim \mathcal{A} < \infty \) [4]. For these reasons we will now characterize all operators in \((BN) \) when \(\dim \mathcal{A} = 2 \) and \(\dim \mathcal{A} = 3 \).
DEFINITION 2. If \(\{ \phi_i \} \) is an orthonormal basis, \(D \) is a diagonal matrix with respect to this basis, and \(U \) is a permutation of the basis, then \(T = UD \) is called a weighted permutation.

We say that a matrix \(A \) is a form for \(T \) if \(T \) is unitarily equivalent to a scalar multiple of either \(A \) or \(A^* \).

Theorem 7. If \(T \in (BN) \) and \(\dim \mathcal{A} = 2 \), then the possible forms are:

1. \[
\begin{bmatrix}
1 & 0 \\
0 & a
\end{bmatrix}, \text{ } a \text{ an arbitrary complex number.}
\]
2. \[
\begin{bmatrix}
1 & b \\
0 & -1
\end{bmatrix}, \text{ } b > 0.
\]
3. \[
\begin{bmatrix}
0 & 1 \\
a & 0
\end{bmatrix}, \text{ an arbitrary.}
\]

Theorem 8. If \(T \in (BN) \) and \(\dim \mathcal{A} = 3 \), then the possible forms are:

1. \[
\begin{bmatrix}
c & 0 & 0 \\
0 & X & 0 \\
0 & 0 & 0
\end{bmatrix}, \text{ where } X \text{ is (I2), } c \text{ an arbitrary complex number.}
\]
2. A weighted permutation.
3. \[
\begin{bmatrix}
0 & b & -1 \\
0 & 1 & b \\
0 & 0 & 0
\end{bmatrix}, \text{ } b > 0.
\]
4. \[
\begin{bmatrix}
0 & 0 & a \\
u_{21} & u_{22} & 0 \\
u_{21} & u_{22} & 0
\end{bmatrix}, \text{ } a > 0 \text{ and } \begin{bmatrix} u_{21} & u_{22} \end{bmatrix} \text{ is unitary.}
\]

Proof. Theorem 7 is easy. Form (I3) is best developed from the form developed in [4] for matrices \(T \) such that \([T'T, TT'] = 0 \) where \(T' \) is the generalized inverse of \(T \). If \(T \in (BN) \), then \([T'T, TT'] = 0 \). Form (I4) is best developed by looking at the polar form and determining possible unitary parts of \(T \).

Example 1 was found by considering an operator of form (I4). The blocks in Example 2 are also (I4) forms.

In looking for \((BN) \) matrices the following matrix version of Theorem 6 is useful.

Theorem 9. Suppose that \(T \in (BN) \) and that \(\dim \mathcal{A} = n < \infty \). If \(T^*T \) has \(n \) different eigenvalues, then \(T \) is a weighted permutation.

Theorem 9 can be given a simple matrix proof by observing that if \(T = U(T^*T)^{1/2} \) and \(T \in (BN) \), then \(U(T^*T) = (TT^*)U \) and \(T^*T \) and \(TT^* \) may be simultaneously diagonalized. Furthermore, \(T^*T \) and \(TT^* \) have the same spectrum. It is then easy to see that the only
possible U are permutations of the basis that diagonalizes T^*T and TT^*.

It is easy to verify that in all of the forms in Theorem 7 and Theorem 8, except possibly (II4), that zero is in the convex hull of $\sigma(T)$. Is this always true when $n = \dim \mathcal{A} < \infty$? Is it true when $\dim \mathcal{A}$ is infinite? If it is not always true, for what dimensions is it true?

8. All of the two-dimensional bi-normal operators have a square which is normal. Such operators are automatically bi-normal (though never nontrivially hyponormal). This result was proved in [4] and observed independently by Embry in a private communication.

Operators such that T^2 is normal have been studied by Embry [6] and completely characterized by Radjavi and Rosenthal [11].

The author would like to thank Mary Embry and S. K. Parrott for their helpful comments.

REFERENCES

Received April 11, 1973.

NORTH CAROLINA STATE UNIVERSITY
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On characterizing certain classes of first countable spaces by open mappings</td>
<td>Kenneth Abernethy, Ross A. Beaumont and Donald Lawver, Gerald A. Beer, Victor P. Camillo and Kent Ralph Fuller</td>
<td>319</td>
</tr>
<tr>
<td>Strongly semisimple abelian groups</td>
<td>Allan L. Edelson</td>
<td>327</td>
</tr>
<tr>
<td>The index of convexity and parallel bodies</td>
<td>Charles Kam-Tai Chui and Philip Wesley Smith</td>
<td>337</td>
</tr>
<tr>
<td>On Loewy length of rings</td>
<td>Robert Edward Jamison, II</td>
<td>347</td>
</tr>
<tr>
<td>Linear operators for which T^T and $TT^$ commute.</td>
<td>Stephen LaVern Campbell</td>
<td>355</td>
</tr>
<tr>
<td>Characterization of a function by certain infinite series it generates</td>
<td>Dorte Olesen and Gert Kjærgaard Pedersen</td>
<td>363</td>
</tr>
<tr>
<td>Conjugations on stably almost complex manifolds</td>
<td>Allan L. Edelson</td>
<td>373</td>
</tr>
<tr>
<td>Hollow modules and local endomorphism rings</td>
<td>Patrick John Fleury, Jack Tilden Goodykoontz, Jr., and Anthony G. O'Farrell</td>
<td>379</td>
</tr>
<tr>
<td>Connectedness in the kleinen and local connectedness in 2^X and $C(X)$</td>
<td>Jack Tilden Goodykoontz, Jr., and Anthony G. O'Farrell</td>
<td>387</td>
</tr>
<tr>
<td>Functional representation of algebraic intervals</td>
<td>Robert Edward Jamison, II</td>
<td>399</td>
</tr>
<tr>
<td>Nonzero solutions to boundary value problems for nonlinear systems</td>
<td>Athanassios G. Kartsatos</td>
<td>425</td>
</tr>
<tr>
<td>Torus group actions on simply connected manifolds</td>
<td>Soon-Kyu Kim, Dennis McGavran and Jingyal Pak</td>
<td>435</td>
</tr>
<tr>
<td>Arithmetic properties of certain recursively defined sets</td>
<td>David Anthony Klarner and R. Rado</td>
<td>445</td>
</tr>
<tr>
<td>On the Frobenius reciprocity theorem for square-integrable</td>
<td>Ray Alden Kunze</td>
<td>465</td>
</tr>
<tr>
<td>Existence, uniqueness and limiting behavior of solutions of a class of differential equations in Banach space</td>
<td>John Lagnese</td>
<td>473</td>
</tr>
<tr>
<td>A fixed point theorem for families on nonexpensive mappings</td>
<td>Teck Cheong Lim</td>
<td>487</td>
</tr>
<tr>
<td>A quasi order characterization of smooth continua</td>
<td>Lewis Lum</td>
<td>495</td>
</tr>
<tr>
<td>Principal homogeneous spaces and Galois extensions</td>
<td>Andy R. Magid</td>
<td>501</td>
</tr>
<tr>
<td>The norm of a certain derivation</td>
<td>Charles Alan McCarthy</td>
<td>515</td>
</tr>
<tr>
<td>On the impossibility of obtaining $S^2 \times S^1$ by elementary surgery along a knot</td>
<td>Louise Elizabeth Moser</td>
<td>519</td>
</tr>
<tr>
<td>Quaternion orders associated with ternary lattices</td>
<td>Gordon L. Nipp</td>
<td>525</td>
</tr>
<tr>
<td>Equiconvergence of derivations</td>
<td>Anthony G. O’Farrell</td>
<td>539</td>
</tr>
<tr>
<td>Derivations of AW*-algebras are inner</td>
<td>Dorte Olesen</td>
<td>555</td>
</tr>
<tr>
<td>Derivations of C^*-algebras have semi-continuous generators</td>
<td>Dorte Olesen and Gert Kjærgaard Pedersen</td>
<td>563</td>
</tr>
<tr>
<td>On conjugation cobordism</td>
<td>Duane O’Neill</td>
<td>573</td>
</tr>
<tr>
<td>Probabilities of Wiener paths crossing differentiable curves</td>
<td>Chull Park and S. R. Paranjape</td>
<td>579</td>
</tr>
<tr>
<td>Almost Chebyshev subspaces of $L^1(\mu; E)$</td>
<td>Edward Ralph Rozema</td>
<td>585</td>
</tr>
<tr>
<td>A note on the Atiyah-Bott fixed point formula</td>
<td>Lesley Millman Sibner and Robert Jules Sibner</td>
<td>605</td>
</tr>
<tr>
<td>Irreducible subgroups of orthogonal groups generated by groups of root type 1</td>
<td>Betty Salzberg Stark</td>
<td>611</td>
</tr>
<tr>
<td>A note on starshaped sets, (k)-extreme points and the half ray property</td>
<td>N. Stavrakas</td>
<td>627</td>
</tr>
<tr>
<td>Direct sum subset decompositions of Z</td>
<td>Carl E. Swenson</td>
<td>629</td>
</tr>
<tr>
<td>A two-point boundary problem for nonhomogeneous second order</td>
<td>Stephen Tegteller</td>
<td>635</td>
</tr>
<tr>
<td>differential equations</td>
<td>Robert S. Wilson</td>
<td>643</td>
</tr>
</tbody>
</table>