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Let X be a compact connected metric space and 2¥(C(X))
denote the hyperspace of closed subsets (subcontinua) of
X. In this paper the hyperspaces are investigated with
respect to point-wise connectivity properties. Let Me C(X).
Then 2% is locally connected (connected im kleinen) at M if
and only if for each open set U containing M there is a
connected open set V such that M c V < U (there is a com-
ponent of U which contains M in its interior). This theorem
is used to prove the following main result. Let Aec2f.
Then 2% is locally connected (connected im kleinen) at A if
and only if 2% is locally connected (connected im kleinen)
at each component of A. Several related results about C(X)
are also obtained.

A continuum X will be a compact connected metric space.
2%(C(X)) denotes the hyperspace of closed subsets (subcontinua) of
X, each with the finite (Vietoris) topology, and since X is a con-
tinuum, each of 2% and C(X) is also a continuum (see [5]).

One of the earliest results about hyperspaces of continua, due
to Wojdyslawski [7], was that each of 2% and C(X) is locally con-
nected if and only if X is locally connected. As a point-wise pro-
perty, local connectedness is stronger than connectedness im kleinen,
which in turn is stronger than aposyndesis. The author [1] has
shown that if X is any continuum, then each of 2* and C(X) is
aposyndetic. It is the purpose of this paper to investigate the
internal structure of 2* and C(X) with respect to these properties.
In particular, we determine necessary and sufficient conditions (in
terms of the neighborhood structure in X) that 2% be locally con-
nected at a point and that 2* be connected im kleinen at a point.
We also determine that C(X) has, in general, stronger point-wise
connectivity properties that either 2¥ or X.

For notational purposes, small letters will denote elements of X,
capital letters will denote subsets of X and elements of 2%, and script
letters will denote subsets of 2%. If A c X, then A* (int 4) (bd A)
will denote the closure (interior) (boundary) of 4 in X.

Let xe X. Then X is locally connected (l.c.) at z if for each
open set U containing x there is a connected open set V such that
ze VcU. X is connected im kleinen (c.i.k.) at x if for each open
set U containing x there is a component of U which contains x in
its interior. X is aposyndetic at z if for each ye X — z there is a
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continuum M such that xcint M and ye X — M.

If A, ..., A, are subsets of X, then N(4, ---, 4,) = {Be2%|for
each 1 =1, .-, %, BN A, # @, and Bc U, A4,}. The collection of
all sets of the form N(U, ---, U,), with U, ---, U, open in X, is a
base for the finite topology. It is easy to establish that

N, -, U)* = N(U?, ---, U)

and that N(V, ---, V,)cN(U, ---, U,) if and only if U~ V,c
Uz, U, and for each U, there exists a V; such that V;c U, (see
[5]). We remark also that the finite topology is equivalent to the
Hausdorff metric topology on 2% whenever X is a compact metric
space (theorem on page 47 of [4]).

If o <2% then U{A|Ae.} is open (closed) in X whenever
7 is open (closed) in 2* (see [5]). Furthermore, if &7 N C(X)# @
and %7 is connected, then {J{4A]|Ae.&} is connected (Lemma 1.2
of [3]).

If » is a positive integer, then F, (X) = {4€2"| 4 has at most
n elements} and F(X) = Uz, F.(X).

An order arc in 2¥(C(X)) is an arc which is also a chain with
respect to the partial order on 2*(C(X)) induced by set inclusion.
If A, Be2% then there exists an order arc from A to B if and
only if A c B and each component of B meets A (Lemma 2.3 of [3]).
It follows (Lemma 2.6 of [3]) that every order arc whose initial
point is an element of C(X) is entirely contained within C(X).

It will be convenient to begin our study by considering points
of C(X).

THEOREM 1. Let Me C(X). Then 2* is c.i.k. at M if and only
if for each open set U containing M there is a component of U
which contains M in its interior.

Proof. Suppose 2% is c.i.k. at M. Let U be an open set con-
taining M. Then Me N(U), so there exists a component & of
N(U) containing M in its interior. It follows that {J{A|Ae &} is
a connected set containing M in its interior and lying in U.

Conversely, suppose that for each open set U containing M
there is a component of U which contains M in its interior. Let
N(U, ---, U,) be a basic open set containing M and let N(V,, ---, V)
be a basic open set such that Me N(V,, -+, Vo, )T NV, -+, V)" C
NU, ---,U,). Let V=Ur V.. Then there is a component C of
V which contains M in its interior. For each ¢=1, ---, m, let
W,=V,nintC. Then Me N(W, ---, W) NV, ---,V,). If Ae
NW, .-, W,), then AcC* and A, C*eNV{ ---, V5 =
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NV, -, Va)*CN(U, ---, U,). Since C* is connected there exists
an order arc in N(U, ---, U,) from A to C*. It follows that there
is a component of N(U, ---, U,) which contains M in its interior.

COROLLARY 1. Let xc X. Then 2% is c.i.k. at {x} if and only
if X is c.i.k. at x.

LEMMA 1. Let V be a connected open set and V, .-+, V, be
open sets such that Ui, V., = V. Then N(V, ---, V,) is connected.

Proof. Let p be the smallest positive integer such that F,(X).N
NV, .-, V,)#+ @. We will show that

F = Uz (F(X)N NV, -+, V)

is connected.

Let &7 = {{x,, +++, x,}|for each 2 =1, ---, 5, 2,€ V,, and 2, = «;
if and only if 7 = j}. We will first establish that .o lies in a con-
nected subset of &, Let {x, ---, %}, {¥, -+, Yo} € . Define & =
{{ey, -+, %,y lye Viand 2 = {{y,, % -+, ., ¥} |y € V}. Then each
of .7 and <& is the continuous image of the connected set V, so
&7 is a connected subset of &% which contains {z, ---, z,} and
{2, -+, %, ¥} and <&, is a connected subset of & which contains
{¢, ++-, ®,, v} and {y,, s, +--, x,}. Similarly, foreach1 =2, ---,n —1
define .7 = {{y,, *++, Yies, ¥y -+, @, ¥y} |y € V} and

%Z{{yly *rty Yiy Bigyy 00y Xy y}|ye V}'

Then .%4 is a connected subset of & which contains {y, ---, ¥,
Xy ove, %, and {yy, o+, Y;, %, -+, x,} and <&, is a connected subset
of . which contains {y,, -+, ¥;, %,y + -, 2,} and {y, -+, Yiy Tisry * * *5 Lule
Define .97, = {{#1, *** Yu—1y T, ¥} |y € V} and

%:{{yl,“‘,yn,y}ler}-

Then .97, is a connected subset of & which contains {y,, -, ¥._, %.}
and {y, +--, ¥,, ®,} and <%, is a connected subset of &% which
contains {y,, -+, Y., &} and {y,, -+, ¥.}. It follows that |J%, (U <)
is a connected subset of % which contains {x,, ---, ,} and {y, * -+, ¥.}.

Now let {2, ++, Zn}e F — ¥ If p<m <mn, choose n —m
distinct elements @, ---, 2, such that {x, -, Tp, Tmry, =+, Lo} € A
Foreach ¢ =1, ..., n—m let &, ={{x, +**, Tmru-, ¥} |y€ V}. Then
%, is a connected subset of & containing {x, ---, Tmrc-n} and
{2, *++, Tmys). Hence U™ &, is a connected subset of & contain-
ing {x, -+-, x,} and {x, ---, x,}.

If m =mn, let {yu Tty yn}e‘—% Let 2, = {{xl, Xy y}|ye V}'
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Then <7, is a connected subset of & containing {z, ---, z,} and
{2, +*+, Tm, ¥.}. For each ¢ =2, ---,m, let Z,={{x, ~++, T, ¥y, ***»
Y, Y} ye V). Then < is a connnected subset of & containing
{2, +) Ty Yy, 7, Ysu} and {x, -+, Tp, Yy, *++, Y} Hence YU, 7, is
a connected subset of % containing {z, ---, z,} and {x, -, Tp,
Yy, **, Y. With an analogous construction we can show that there
is a connected subset of %  which contains {y,, -, ¥.} and {x, ---,
Ty Y1, *, Ya). It follows that there is a connected subset of &~
which contains {x,, ---, z,.} and {y,, -, Y.}

We have now established that .% lies in a connected subset
of % and that each member of &% — .o lies in a connected sub-
set of .# which meets .&% Hence & 1is connected. Since & is
dense in N(V,, ---, V,), it follows that N(V, ..., V,) is connected.

THEOREM 2. Let MecC(X). Then 2% s l.c. at M if and only
if for each open set U containing M there exists a connected open
set 'V such that MV cU.

Proof. Suppose 2% is l.c. at M. Let U be an open set contain-
ing M. Then Me N(U), so there exists a connected open set 7~
such that Me 7" c N(U). It follows that Mc {4147} = VU,
and V is open and connected.

Conversely, suppose that for each open set U containing M there
exists a connected open set V such that McVcU. Let N(U, ---,
U,) be a basic open set such that Me N(U, ---, U,) and let U =

7., U;. Then there exists a connected open set V such that MC
VcU. Let V,=VnU,. Then Me NV, ---, V)cCNU, ---, U,
and by Lemma 1, N(V, ---, V,) is connected.

COROLLARY 2. Let xe X. Then 2% is l.c. at {x} of and only if
X is l.e. at 2.

We remark that if Me C(X) and 2¥ is l.c. at M, then Lemma 1
and Theorem 2 imply the existence of a local base of connected sets
at M, each of which is of the form N(U, ---, U,).

The next several results concern the relationships between 2%
and C(X) with respect to local connectedness and connectedness im
kleinen at points of C(X).

THEOREM 3. Let Me C(X). If 2% 4s c.i.k. at M, then C(X) is
c.i.k. at M.

Proof. Let N(U, ---, U,) N C(X) be an open set containing M.
Let N(V, «--, V,) be an open set such that Me N(V, ---, V) C
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NV, -, V)*<NUU, -+, U,). Since 2% is c.i.k. at M, there exists
an open set N(W, ..., W,) such that ‘

MeN(W, «++, W) NV, -+, Va)

and with the property that Be N(W, .-, W,) implies N(V,, «++, V..)
contains a connected set containing. B and M. Then N(U, ---, U,)
contains a continuum containing B and M.

Let Ke N(W,, ---, W, )n C(X). Then there exists a continuum
% in N(U, +--, U,) containing K and M. Now U{4|Ae ¥} =
Le(C(X), and LeN(U, ---,U,), since < cNU,- ---,U,) It
follows that there exist order arcs &% and &5 in N(U, ---, U,) N
C(X) from K to L and from M to L. So & U & is a continuum
in N(U, +---, U,) N C(X) containing K and M. Hence C(X) is c.i.k.
at M.

COROLLARY 3. Let MeC(X). If for each open set U contain-
ing M there is a component of U which contains M in its interior,
then C(X) s c.i.k. at M.

Corollary 3 is a generalization of Theorem 6 of [6]. The
example following Theorem 6 of [6] shows that the converse of
Corollary 3 is false. It also shows that the converse of Question 1
below is false.

Question 1. Let MeC(X). If 2%¥isl.c. at M, is C(X) l.c. at M?

COROLLARY 4. Let x€ X. Then X is c.i.k. at x if and only
if C(X) s e.i.k. at {x}.

Proof. If X is c.i.k. at z, then by Corollary 1, 2% is c.i.k. at
{z}, and by Theorem 3, C(X) is c.i.k. at {x}.

Suppose C(X) is c.i.k. at {#}. Let U be an open set containing
#. Then {z}e N(U) N C(X), so there exists an open set N(V)nC(X),
{Zle NV)NCX)c N(U)N C(X), with the property that Me
N(V)n C(X) implies N(U) n C(X) contains a connected set contain-
ing M and {x}.

Now xe VcU. Let ye V. Then {y}e N(V)n C(X), so N(U)Nn
C(X) contains a connected set & containing {y} and {z}. It follows
that U{L|Le <} is a connected subset of U containing z and y.
Hence X is c.i.k. at x.

COROLLARY 5. Let xe€ X. If X is l.e. at z, then C(X) is l.c.
at {x}.
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Proof. This follows from the observation that if V is con-
nected, then N(V) N C(X) is connected, since each point of (N(V)N
C(X)) — F(V) can be joined by an order arc in N(V)N C(X) to a
point of F(V), and F(V) is connected.

The next example shows that the converse of Corollary 5 is
false.

ExampLE 1. This example is from page 113 of [2]. For each
positive integer » and each positive integer m let L,, denote the
line segment in the plane from (1/(n + 1), (—1)"™1/m(n + 1)) to (1/x, 0).
Let A, = (Un=1 L..»)* and let X = (U, 4.)*. Then X is c.i.k. at
(0, 0) but is not l.c. at (0, 0).

We now give a brief argument that C(X) is l.c. at {(0, 0)}. For
each n = 2 choose ¢,, 7,, and s, so that 1/(n + 1) <¢q, <7, <1/n <
s, <1l/n—1). Let U,={(z, v)|x<r,)and V, = {(&, 9) | ¢. <z <s,}.
Then N(U,)U N(U,, V,) is a continuum-wise connected open set in
C(X) containing {(0, 0)}, for if M, Ne N(U, UN(U, V,), then
M, Nc{lz,y)|z<1l/n}U{(x, 0)|1/n <2x<s,} and a continuum can be
constructed in C(X) containing M and N and lying in N(U,) UN(U,, V).
Clearly {N(U,) UN(U,, V,)|n =2,8, ---} is a neighborhood base at
{(0, 0)}.

The following definition and Lemma 2 concern the finite topology
and will be used in proving our main results, in which we obtain
necessary and sufficient conditions that 2¥ be l.c. (c.i.k.) at an
arbitrary point.

Let Ae2*. A basic open set N(U, ---, U,) is essential with
respect to A if AeN(U, ---,U,) and for ech 1=1, ---, n,
A—UixU;# 2.

LemMMA 2. Let Ae2* and N(U, ---, U,) be an open set contain-
ing A. Then there exists an open set N(V, ---, V,) such that
Ae NV, -, V) NU, ---,U,) and NV, .---, V,) is essential
with respect to A.

Proof. Choose z,, --+,x,€ A such that x,€¢ U, Let V,,.---, V,
be open sets such that for each ¢+ =1, ---, n, z,€ V,Cc{U; |z, € U;}
and with the additional property that V;, = V; if 2, = %, and VN V; =
@ if x,%# x;. Let {V, ---, V.} (relabeling if necessary) be the set
of V,’s which are distinct. For each ye A — UL, V; let O, be an
open set such that ye O, c N {U; |y < U;} and such that O, N {z, ---,
z,} = @. Since A — L.V, is compact, there exist y, -+, ¥» such
that A — UL, V., cUL. O0,,, We may assume that all the O0,’s are
distinet. Let {O,, ---, O, } (relabeling if necessary) be the subset of
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{0y, +++, O,,} consisting of all the O,’s with the property that
(14 - LJ?:] pC) - LJj?% ()yj * Qa-

For notational purposes, for each =1, ---, ¢ let O,, = V,,; and
let £+ q=m. Then Ae N(V, +--, Vi, Viey, =+, V). Clearly

N(Vlr ct Vlcy Vk+1y Tty Vm)CN(UU Tty Un) .

For each j=1,..., k there exists x,€ A such that x,¢V,; and
a6 (UryVy) — V,. Foreachj=k+1,.--,m,
k m
<A—L=11Vf>_.u Vit @,

i=k+1
]

so there exists a;€¢ V;N(4A— UL, V,) such that a;¢ U.n; Vi It
follows that N(V, ---, V,) is essential with respect to A.

THEOREM 4. Let Ac2*. Then 2% 1is c.i.k. at A if and only
if 2% is c.i.k. at each component of A.

Proof. Suppose that 2 is c.i.k. at A. Let A, be a component
of A and let W be an open set containing A,. Let U be an open set
such that A, cUcU*cC W and such that (bd U)Nn A= @. Let
{U, ---, U} be a finite cover of A — U by open sets such that
for each ¢=1,.---,n, UNU, =@ and ANU,#= @. Then Ac
N, U, ---, U).

Let & be a component of N(U, U,, ---, U,) which contains A in
its interior. Define f: & — N(U) by f(B)=BnU. If N(V, ---, V»)C
N(U), then f'(N(V,, -+, Vu,)) =NV, ---, V,, U, -+, U)NF, so f
is continuous. Hence f(¥’) is connected.

Let N(V,, ---, V,) be an open set such that Ae N(V, .-+, V,) C
&. Let {V, ---, V,} (relabeling if necessary) be the largest subset
of {V,, .-+, V,} with the property that foreach j =1, ---,m, V;N U= @.
Let {V,, ---, V,} (relabeling if necessary) be the largest subset of
V, .-, V, with the property that foreach =1, ---, %k, V; N (U, U, =
@. Foreach j=1,---,k let Vi=V,nNUand V} = V;Nn(Ux, V).
Then

AGN(Vll’ MY Vli; Vk+1) MY Vm; -[/12, Tty szy Vm+1; A Vq)
=7 cNUV, -, V)cZz.
Now if Be 7, then
f(B)=BnU
k m
- Bm[(gl V;) U ( V,-)]eN(Vf, e, Vi, Ve oo, V)

j=k+1

Conversely, suppose Ce N(V}, -+, Vi, Viey, *++, V). For each j =
1, -+, k% let z;€ V} and for each j=m + 1, ---, q let ;€ V;. Then
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Cufw, ---, Loy Tz * %5 T} €T and fC Ufm, <+, B, Baryy * =, Z}) =
Cef(77). Hence f(77) = N(VI, -+, Vi, Viyy, »++, V). So f(¥) con-
tains an open set containing AN U.

Let C=U{f(B)|Be¥}. Then C*c U*cW. Let C(4,) be the
component of C* which contains 4,. Let N(V,, «++, Vi, Virn, -+, V)
be an open set such that Ae N(V,, -+, Vo, Vs, =+, Vo) © % and
such that Upr, V,c U and Uk, V.cUr U. Let {V, .- Vi}
(relabeling if necessary) be the largest subset of {V,, ---, V,} with
the property that for each 1 =1, --+, %k V¥ N C(A) = @. (A slight
modification of the following argument is necessary in the case that
{V, ---, Vi) = @.) Let O be an open set containing C(4,) such that
0N (U, V) = @ and such that (bd O)N C* = ©@.

Let xe 4,. Suppose x4 int C(4,). Let O, be an open set con-
taining « such that O, cON(N{V.|xe V). Let y€O, such that
¥ & C(A,) and let C(y) be the component of C* which contains y.
Since (bdO) N C* = @, C(y) =O. Let O, be an open set containing
C(y) such that 0,c0, 0,nC(4,) = @, and such that (bd 0,)NC* = @.

Now O, O— Of, and X — O* are disjoint open sets, and
C*cO,U(0—0)U(X— 0*). Consequently the sets N(O,), N(O — 0O}),
N(X — 0%), N(O,, O — 0}, N, X — 0*), NO — 0f, X — 0*), and
N(O,, O — O;, X — O*) are pairwise disjoint, and f(&")* is contained
in the union of these sets.

For each ¢t =1, ---, k, let ;¢ V,., For each 1=k +1,---,m,
C(A)Nn V# - @, and since O — O is an open set containing C(4,),
there exists x,€ O — O} such that z,€ V,. Then {x, -+, @}, {z, -+,

T, Y€ N(V, -+, V,) Cf(¥). Furthermore, {x, ---, z.} € N(O — O},
X~ 0% and {a, -+, Zm, ¥y} € N(O,, O — O}, X — O*). Hence f(&)*
is not connected, so f(%) is not connected, a contradiction. Thus
the assumption that x¢ int C(A,) was false. It follows that C(4,) is
a connected subset of C* which contains A, in its interior. Hence,
by Theorem 1, 2* is c.i.k. at A,.

For the converse, suppose that 2% is c.i.k. at each component of
A. Let % be an open set containing A and N(U, ---, U,) be a
basic open set such that 4Ae¢ N(U, ---, U)yc N, -+, U,)* T Z.
By Lemma 2 we may assume that N(U, -.-, U,) is essential with
respect to A. For each component A, of A let {U,, ---, Uina} be
the largest subset of {U, ---, U,} with the property that for j =
Lo, A.NU;# @. Then A,eNU,, ---, U%). Let U, =
Uiz, U;;. By Theorem 1 there is a component M, of U, which
contains A, in its interior. Foreach j =1, ---, n, let Vi = (int M,)N
U;. Then A,e N(Vy, ---, Vi) N, +-+, U, ).

Now 4AcU. (U’ V) and since A is compact there exists a
finite subcover of A of the form UZ,(U;% V). Then



LOCAL PROPERTIES IN 2¥ AND C(X) 395

ANV, oo, Vit ooe, Vom oo, Vam ) N(U,, -+, U,) .
The last inclusion follows from the construction and the fact that
N(U, ---, U,) is essential with respect to A. Let M= Uz, M.
Then Me N(U,, ---, U,)*.
Let BeN(Vy, ---, Vii, oo, Vim, «v., Vim). Note that B =
L (BN U,% Vir). Now BN (U, V"™)c M, so there exists an order
arc &, from BN (U;2 V;*) to M. Define f: &, — Z by fi(C) =
CU(Ur.(Bn U;ij}’f*)). Since union is continuous, f(<Z,,) is con-
nected, and B, M} U (U~ (Bn U;% V%) e f(F,). For each i =
2, -+, m, there exists an order arc &, from BN (U= Vi*) to Mz,
For each ¢ =2, ---, m — 1, define f(Z,,)— % by

7o) =(Umz)ueu( 0 (Bn Lj vee)).

k=i+1

Then f(<,,) is a connected subset of 7 containing (Uizi M) U

k=1

(U= (BN U2 Vi) and (U= M) U (Ui (B 0 U2 Vi), De-
fine f.(Z.,)— % by fu(C)= Uizl M})UC. Then f.(Z,) is a
connected subset of % containing (Ur=' MJ:) U (B n Ui Vin*) and

M. Hence U, f(<.,) is a connected subset of % containing B
and M. It follows that 2¥ is ec.i.k. at A.

THEOREM 5. Let Ac€2*. Then 2% is l.c. at A if and only if
2% is l.c. at each component of A.

Proof. Suppose that 2* is l.e. at A. Let A, be a component of
A and let W be an open set containing A,. Let U be an open set
such that A4, c Uc W aud such that (bd U)n 4 = @. Let {U, ---,
U.} be a finite cover of A — U by open sets such that for each
1=1.-,m UNU,=® and ANU,- @. Then AeNU,U, ---,
U,).

Let 7” be a connected open set such that Ae?7 cN(U, U, ---,
U,). Define f:7"— N(U) by f(B) = Bn U. An argument similar
to the one used in Theorem 5 will establish that f is both continuous
and open. Hence f(7") is connected and open.

Let V=U{fB)|Be7}). Then VcU. Let Q(A) be the
quasicomponent of V which contains 4, and let x€ Q(4,). Let Be 7"
such that xz€ f(B). Then there exists an open set N(V, -+, Va,
Vi, =+, Vp) such that Be N(V,, =+, Vo, Vs, ==+, Vo) TNV, -+,
VE Ve o0+, Vo) €7 and such that U, V*c U and Uknn ViC

., U,. Let {V, ---, V,} be the largest subset of {V,, ---, V,} with
the property that for each ¢ =1, ---, k, V¥ N Q(4,) = @. (A slight
modification of the following argument is necessary in the case that



396 JACK T. GOODYKOONTZ, JR.

{Vy, -+, Vil = @.) Since UL, Vi is compact, there exist disjoint
open-closed sets S and 7T such that ELVECS, QA)c T and
SuUT=1V.

Suppose = ¢ int Q(A4,). Let O be an open set containing x such
that OcTn(N{V.|xzeV,}). Let yeO such that y&¢ Q(A4,). Then
there exist disjoint open-closed sets 7" and 7" such that Q(4,) c
T, yeT”, and T"UT" = T.

Now T', T", and S are disjoint open sets whose union is V.
Consequently the sets N(T’), N(T”), N(S), N(T',T"), N(T',S),
N(T”, S), and N(T’, T”, S) are pairwise disjoint and f(?") is con-
tained in the union of these sets.

For each ¢ =1, -.-, k, let ;¢ V,. For each 1=k +1, -+, m,
Q(A) N V# = &, and since T’ is an open set containing Q(A4,), there
exists x, € T' such that z,€ V,. Then

{xly ) xm}r {901, ctty Ly y}eN(Vu Tty VM) Cf(%) .

Furthermore, {x, ---, z,} € N(T", S) and {x,, +--, @, y} € N(T’, T", S).
Hence f(77) is not connected, a contradiction, so the assumption
that x ¢ int Q(A,) was false.

We have now established that Q(4,) is open. So Q(4)) and
V — Q(A,) are disjoint open-closed subsets of V. If Q(4,) were not
connected, there would exist a proper open-closed subset of @Q(A4,)
(and hence of V) containing A,, which is impossible. It follows that
Q(A) is an open connected subset of V containing A4,. Hence, by
Theorem 2, 2¥ is l.c. at A.

For the converse, suppose that 2% is l.c. at each component of
A. Let N(U, ---, U,) be a basic open set containing A. By Lemma
2 we may assume that N(U, ---, U,) is essential with respect to A.
For each component A4, of Alet{U,, ---, U,, } be the largest subset of
{U,, ---, U,} with the property that for each j =1, -++, s, U;; N Ax #
@. Then A,e N(U,, ---, U,-%). Let U, = U}z U,;. By Theorem 2
there is a connected open set V, such that A,cV,cU, For each
J=1 -, m,let VeE="V,nN Ui;. Then

A.e N(VE, ---, Vi) N(U,, ---, Us,)

and by Lemma 1, N(V¢, -+, V7 ) is connected. Now A c Uu(Ujz, V3),
and since A is compact, there exist «, ---, @&, such that Ac
~ (U5 V). Then

AeN(Vlvq, oo, V’fall’ cee, Vl"m’ ooy, V;{:nm) = %CN(UI’ cee, Un) R

The last inclusion follows from the construction and the fact that
N(U, --., U,) is essential with respect to A.



LOCAL PROPERTIES IN 2¥ AND C(X) 397

Let B,Ce? N F(X) and for and 2=1,---,m let B,= B
(U« Vi) and C,=Cn (U;% Vi9). Then B, Ce N(V;’i, , Vai) N
F(X) As in the proof of Theorem 2, for each ¢ =1, , m there
exists a connected set <& in N(V, . , Vai) N F(X) Whlch con-
tains B; and C;. Define f;: g—»%ﬂF(X) by F.(D) = DU(U%. B)).
Since f. is continuous, fi(<3) is a connected subset of 7” N F(X)
containing B and C, U (U™.B,). For each 1 =2, -.-, m — 1 define
fit & — 7" NF(X) by f(D) = (Uizi C,) UD U (Ui=ss: B). Then f(<)
is a connected subset of 7" N F(X) containing (Ui C:) U (Ur-. By)
and (Ui-C) U (Ur=ir1 B)). Define f,: &, — 7 N F(X) by fuD) =
UrstCHUD. Then f,.(<5) is a connected subset of 7° N F(X)
containing ({Jr'C;) U B, and C. Hence U, f:(&5) is a connected
subset of 7" N F(X) containing B and C. It follows that 7 N F(X)
is connected, and since 7" N F(X) is dense in 7; 7 is connected.
Hence 2% is l.c. at A.

COROLLARY 6. Let Ac2*. If X 4s c.i.k. (l.c.) at each point
of A, then 2% is c.i.k. (l.c.) at A.

The converses of Corollary 6 are false. It is easy to verify (see
Lemma 2 of [1]) that for any continuum X, 2% is l.c. at X.

COROLLARY 7. The following are equivalent:

(1) For each 1 =1, - n,X'iscik (l.c.) at p,.
(2) For each i =1, ---, n, 2% is c.i.k. (l.c.) at {p;}.
(3) 2% 4s c.i.k. (l.c.) at {pl, cee, D)

REFERENCES

1. J. T. Goodykoontz, Jr., Aposyndetic properties of hyperspaces, Pacific J. Math.,
47 (1973), 91-98.

2. J. G. Hocking and G. S. Young, Topology, Addison-Wesley Pub. Co., Reading, Mass.,
1961.

3. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc., 52 (1942),
23-36.

4. K. Kuratowski, Topology II, Academic Press, New York and London, 1968.

5. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951),
152-182.

6. J. T. Rogers, Jr., The cone equals hyperspace property, Canad. J. Math., 24
(1972), 279-285.

7. M. Wojdyslawski, Retractes absolus et hyperespaces des continus, Fundamenta
Mathematicae, 32 (1939), 184-192.

Received April 30, 1973.

WEST VIRGINTA UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Los Angeles, California 90007
R. A. BEAUMONT D. GILBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305
ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA
SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two must
be capable of being used separately as a synopsis of the entire paper. Items of the bibliography
should not be cited there unless absolutely necessary, in which case they must be identified by
author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be
sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index
to Vol. 39. All other communications to the editors should be addressed to the managing editor,
or Elaine Barth, University of California, Los Angeles, California, 90024,

100 reprints are provided free for each article, only if page charges have been substantially
paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual
members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,
3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1973 by Pacific Journal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 53, No. 2 April, 1974

Kenneth Abernethy, On characterizing certain classses of first countable spaces by

OPCIL MAPPINGS « « « oottt e et e e e et e e e e 319
Ross A. Beaumont and Donald Lawver, Strongly semisimple abelian groups . ... ... 327
Gerald A. Beer, The index of convexity and parallel bodies . ...................... 337
Victor P. Camillo and Kent Ralph Fuller, On Loewy length of rings ................ 347
Stephen LaVern Campbell, Linear operators for which T*T and TT* commute.

Ll 355
Charles Kam-Tai Chui and Philip Wesley Smith, Characterization of a function by

certain infinite SEries it GENETAIES . . ... ....v v it 363
Allan L. Edelson, Conjugations on stably almost complex manifolds............... 373
Patrick John Fleury, Hollow modules and local endomorphism rings .............. 379
Jack Tilden Goodykoontz, Jr., Connectedness im kleinen and local connectedness in

2Xand C(X) .o 387
Robert Edward Jamison, 11, Functional representation of algebraic intervals . . . .. .. 399
Athanassios G. Kartsatos, Nonzero solutions to boundary value problems for

NONLIRCAT SYSTEMLS .« o o o e e et e e ettt e et e e e et e e e aeee s 425
Soon-Kyu Kim, Dennis McGavran and Jingyal Pak, Torus group actions on simply

connected Manifolds . .......... ... e e e 435
David Anthony Klarner and R. Rado, Arithmetic properties of certain recursively

AEfiNed SELS . . ..ottt e 445
Ray Alden Kunze, On the Frobenius reciprocity theorem for square-integrable

FEPTESCTIATIONS « . o o o oo v e et et e e et et e e ettt e e ettt e eeieee s 465

John Lagnese, Existence, uniqueness and limiting behavior of solutions of a class o

differential equations in Banach space . .................
Teck Cheong Lim, A fixed point theorem for families on nonexp
Lewis Lum, A quasi order characterization of smooth continua
Andy R. Magid, Principal homogeneous spaces and Galois ext
Charles Alan McCarthy, The norm of a certain derivation. . . ..
Louise Elizabeth Moser, On the impossibility of obtaining S* x

surgery along a knot ..............coouiiiiiiiiiaiia..
Gordon L. Nipp, Quaternion orders associated with ternary latt
Anthony G. O’Farrell, Equiconvergence of derivations . .. ... ..
Dorte Olesen, Derivations of AW*-algebras are inner . .......|
Dorte Olesen and Gert Kj®rgaard Pedersen, Derivations of C*-

SEMi-CONHINUOUS GENETALOTS . . . oo oot eieen
Duane O’Neill, On conjugation cobordism...................
Chull Park and S. R. Paranjape, Probabilities of Wiener paths ¢

Edward Ralph Rozema, Almost Chebyshev subspaces of L' (ju;
Lesley Millman Sibner and Robert Jules Sibner, A note on the A
pointformula.......... ... . i
Betty Salzberg Stark, Irreducible subgroups of orthogonal grou
groups of roottype 1 .. ..o
N. Stavrakas, A note on starshaped sets, (k)-extreme points and
PFOPEFLY « vttt e e e et
Carl E. Swenson, Direct sum subset decompositions of Z . .. ...
Stephen Tefteller, A two-point boundary problem for nonhomog
differential equations. . ................ ... ...
Robert S. Wilson, Representations of finite rings ..............


http://dx.doi.org/10.2140/pjm.1974.53.319
http://dx.doi.org/10.2140/pjm.1974.53.319
http://dx.doi.org/10.2140/pjm.1974.53.327
http://dx.doi.org/10.2140/pjm.1974.53.337
http://dx.doi.org/10.2140/pjm.1974.53.347
http://dx.doi.org/10.2140/pjm.1974.53.355
http://dx.doi.org/10.2140/pjm.1974.53.355
http://dx.doi.org/10.2140/pjm.1974.53.363
http://dx.doi.org/10.2140/pjm.1974.53.363
http://dx.doi.org/10.2140/pjm.1974.53.373
http://dx.doi.org/10.2140/pjm.1974.53.379
http://dx.doi.org/10.2140/pjm.1974.53.399
http://dx.doi.org/10.2140/pjm.1974.53.425
http://dx.doi.org/10.2140/pjm.1974.53.425
http://dx.doi.org/10.2140/pjm.1974.53.435
http://dx.doi.org/10.2140/pjm.1974.53.435
http://dx.doi.org/10.2140/pjm.1974.53.445
http://dx.doi.org/10.2140/pjm.1974.53.445
http://dx.doi.org/10.2140/pjm.1974.53.465
http://dx.doi.org/10.2140/pjm.1974.53.465
http://dx.doi.org/10.2140/pjm.1974.53.473
http://dx.doi.org/10.2140/pjm.1974.53.473
http://dx.doi.org/10.2140/pjm.1974.53.487
http://dx.doi.org/10.2140/pjm.1974.53.495
http://dx.doi.org/10.2140/pjm.1974.53.501
http://dx.doi.org/10.2140/pjm.1974.53.515
http://dx.doi.org/10.2140/pjm.1974.53.519
http://dx.doi.org/10.2140/pjm.1974.53.519
http://dx.doi.org/10.2140/pjm.1974.53.525
http://dx.doi.org/10.2140/pjm.1974.53.539
http://dx.doi.org/10.2140/pjm.1974.53.555
http://dx.doi.org/10.2140/pjm.1974.53.563
http://dx.doi.org/10.2140/pjm.1974.53.563
http://dx.doi.org/10.2140/pjm.1974.53.573
http://dx.doi.org/10.2140/pjm.1974.53.579
http://dx.doi.org/10.2140/pjm.1974.53.579
http://dx.doi.org/10.2140/pjm.1974.53.585
http://dx.doi.org/10.2140/pjm.1974.53.605
http://dx.doi.org/10.2140/pjm.1974.53.605
http://dx.doi.org/10.2140/pjm.1974.53.611
http://dx.doi.org/10.2140/pjm.1974.53.611
http://dx.doi.org/10.2140/pjm.1974.53.627
http://dx.doi.org/10.2140/pjm.1974.53.627
http://dx.doi.org/10.2140/pjm.1974.53.629
http://dx.doi.org/10.2140/pjm.1974.53.635
http://dx.doi.org/10.2140/pjm.1974.53.635
http://dx.doi.org/10.2140/pjm.1974.53.643

	
	
	

