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In this paper it is shown that effective torus 7"-actions
on simply connected closed (» + 2)-manifolds M"*2 for alln =1
exist, and a complete orbit structure is given. It turns
out that all maximal isotropy subgroups must generate the
whole group 7". The cross-sectioning theorem for the orbit
map z: M — M* = M~**/T* is given, and as its application an
equivariant classification theorem is obtained.

It is also shown that free torus 7"-actions on simply
connected closed (n + 4)-manifolds for all » = 1 exist.

The purpose of this paper is to study the actions of 7™ on simply
connected manifolds with low codimension. It is shown here that
the orbit space M* = M"**/T" is a disk D* with the boundary points
corresponding to only isotropy subgroups T%’s and T%s of T™ and the
interior points corresponding to only principal orbits.

It is also given that a subgroup T*(n > k = 1) cannot contain
all nonfree elements of 7", where, by a nonfree element we mean an
element that fixes some points of M"*2, This implies that all maximal
isotropy subgroups (which are T%'s) must generate the whole group T™.

We prove that if 7™ acts on a closed orientable (n + 2)-manifold
M+ with one or two orbit types of orbit structure, and with simply
connected orbit space then M"**is homeomorphic to L(p, ¢) x T * for
n = 2. Hence T" cannot act freely on any simply connected closed
(n + 2)-manifold M"** for n» > 1. However, we demonstrate here the
existence of a free T" *-actions on a simply connected closed (n + 2)-
manifold.

It is known that 7™ cannot act effectively on a simply connected
closed (n + 1)-manifold M"* for » =3 [4], and with the above
+ statements we suspected that 7™ cannot act effectively on a simply
connected (n + 2)-manifold M"** for n» = 5. However, we prove the
existence theorem of T"-actions on simply connected closed (n + 2)-
manifold M"** for all =.

We state the cross-sectioning theorem and equivariant classification
theorem without proof.

As a result, we more or less know completely about torus group
actions on simply connected closed manifolds with the low codimension.
That is, 7" cannot act freely on a simply connected closed (n + 1)
or (n + 2)-manifold, but T" can act freely on a simply connected
closed (n + 4)-manifold; and T cannot act effectively on a simply
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connected closed (% + 1)-manifold for » =3, but T™ can act effectively
on a simply connected closed (# + 2)-manifold.

Although most of our results carry over to the topological category
we will work in the locally smooth category. Definitions and termi-
nologies are all standard and can be found in Bredon’s book [1].

1. Isotropy subgroups and applications. Let a torus group 7™
act effectievely on a simply connected closed (n + 2)-manifold M"*2.
Then by the slice theorem [2] there are principal orbits which are
homeomorphic to 7" and the orbit space M* = M"™*/T" is a simply
connected compact 2-manifold.

We first prove the following theorem as an application of a result
of Pak [4]. It will say that 7" cannot act freely on simply connected
closed (n + 2)-manifold M"** unless #n = 1.

THEOREM 1.1. If T" acts on a closed orientable (n + 2)-manifold
M= with one or two types of orbit structure, and the orbit space
M* is simply comnected, then M"** = L(p, q¢) X T"* for n = 2, where
L(p, q) is a lens space which includes the case of S® and S* x S'.

Proof. Suppose the action is free (only one orbit type). Since
M* is simply connected it must be S®. Let 7" 'c 7" and T" be a
complementary circle subgroup to T"'in T". Let N denote the orbit
space M"*3/T*, Then T' acts freely on N such that N/T' = S
Then N is either S S®*x S' or L(|k{,1) for some integer ke Z.
Therefore, M"* is a principal 7" '-bundle over these spaces. Then
it follows by [4] that M"™ = L(p, g) x T for » = 2.

Now suppose that there are two types of orbit. Then 7% alone
cannot be isotropy subgroup of 7™ for a fixed ¢ = 2. Therefore, T"
is the only nonempty isotropy subgroup of T". Then T = T"/T*
acts freely on M**™ and the orbit space N = M**™/T"" is a 3-manifold
on which 7" acts semi-freely and N/T' = D* and o0D* = F(T", N).
Then N is the 3-sphere S?, which is gotten from D* x T* by identifying
each ¢t x S* to a single point for all ¢¢dD* Then M** is the trivial
T* *-bundle over S®. Thus M " = 8" x T

COROLLARY 1.2. T cannot act freely on simply connected closed
(n + 2)-manifold M"*™* unless n = 1.

Proof. If T* acts freely on M"*?, then M"** = L(p, q) x T"* for
n = 2 so that M™*™ is not simply connected. For n =1, the Hopf
fibering (7", S°) is a free action.

We note that Corollary 1.2 can also be seen by looking at the
homotopy exact sequence of the fibering 7" — M — S%. We also note
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that T, for n = 2, cannot act freely on any sphere S™ since it
contains a subgroup Z, P Z,.

If T™ acts effectively on a simply connected closed (» + 2)-manifold
M=+, then there must exist a nontrivial isotropy subgroup since the
action cannot be free for n = 2. It is not too hard to see that for
1= 3, any T subgroup of T" cannot be an isotropy subgroup, and
T* or T* subgroups cannot be the only isotropy subgroup of 7™
Furthermore, the product of T or T* with a finite subgroup of the
corresponding complementary subgroups cannot be an isotropy sub-
group of T". In summary we have:

THEOREM 1.3. Let (T", M"*®) be an effective T"-action on a
simply connected closed (n + 2)-manifold M"**, n = 2. Then both T*
and T*? subgroups of T must appear as isotropy subgroups of T"
and these are the only possible nontrivial isotropy subgroups of 1™,
ond the TVs are subgroups of the T?s, and at least two T* subgroups
always appear. If n =3, then three or more T° subgroups must
appear as isotropy subgroups of T™ (see the next example). Hence
the orbit space M* is a disk D* with the boundary points, 6D%
corresponding to only TVs and T¥s, and the interior points corre-
sponding to only principal orbits.

For n = 2, the theorem says that F(T% M') =« ¢ for simply
connected 4-dimensional manifolds, thus generalizing the result [3,
I, Lemma 5.1].

Proof of this theorem uses the parity of the dimensions of the
slice and that of the orbit. We leave the proof to the reader.

ExAMPLE 1.4. Let the orbit space M* of an effective action (7™,
M**%) be given by D* and isotropy subgroups on 0D* = S' are given
as on the figure:

In this case T; U T} generates T2 and 77 so that T2 = T2 Let 7"
be the complementary subgroup of T?in T". Then M™** is a principal
T *Dbundle over M"**/T"* which is a 4-manifold. Then by [3, (5.4)]
Mt T"* = §*, Since these bundles are classified by H¥(S; @ Z) =
0, it is a trivial bundle. Then M"*? = S* x T"%, which is not simply
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connected for »n = 3.
We also prove the existence of a particular isotropy subgroup
T* in T", which fixes a nonsimply connected subspace of M"+*2,

THEOREM 1.5. If T* acts effectively on a simply connected closed
(n + 2)-manifold M"*2, then there exists a circle subgroup T' in T*
such that every component of F(T', M"*™®) is homeomorphic to
Lp, ¢) x T*® for n = 4.

Proof. We know that M* = M"*%/T" is a disk D* and each point
of 0D? corresponds to either an orbit of an isotropy subgroup T" < T*
or T°cT" and T T* for some T*°c T". Then T" acts on M"*?
semi-freely and M"**/T" is a simply connected (n + 1)-manifold M"™
with boundary o(M"*") = F(T", M**?). Let M” be a component of
(M), Now T, the complementary subgroup of 7" in 7™, acts
on M" and the orbit space M*/T"' is homeomorphic to the unit
interval [0, 1] since T" <'T? and the complementary subgroup of 7"
in T* is a subgroup of T '. From the results of [4], we conclude
that M"™ = Ly(p, @) x T for n = 4. This completes the proof.

It is easy to see, by using the result of [3], that if the number
of T? stability subgroups is small and there exists a T % subgroup
which is disjoint from all stability subgroups then the action (1™,
M"*) is not effective. Furthermore, we actually prove that all 7%
stability subgroups must generate the whole group 7™

THEOREM 1.6. If (T, M™*%) is an effective action of a torus
group T™ on a simply connected closed (n + 2)-manifold M"™2, then
no subgroup T*(n >k = 1) can contain all nonfree elements of T".

Proof. Suppose a subgroup 7% contains all nonfree elements of
T*. If T * is the complementary subgroup of 7% in T™ then 7™ *
acts freely on M. Thus we have the commutative triangle:

M N = MyT

|
M T

The orbit space N relative to a T*-action on M"*? is simply connected
and T"* acts freely on the space N. For if there is an element
g€ T"* which fixes an element Z € N, i.e., g% = %, then gx = Z. There-
fore, there exists an element h,c T* such that gx = h,x. Then h'g
fixes the element z, and hence kh;'ge T*. This implies that ge T% N
T~*, Thus g =e. Therefore, z"": N— M"**/T* is a principal 7" *-
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bundle. Since the space M"*%/T" is a disk, N is homeomorphic to
D* x T *, contradicting the fact that N is simply connected.

COROLLARY 1.7. If (T*, M"*®) is an effective action of a torus
group T" on a simply connected closed (n + 2)-mamnifold M"*?, then
all stability subgroups must generate the whole group T*, and there
are at least n different circle stability subgroups of T".

As illustrations of the above fact there are T*-actions on simply
connected 4-manifolds (see [3]). Also we have the action (7% S°
given by (L, ty £:)(R), 2y %) = (6,24, ts2s, 523), (b, Eoy L)€ T X T' X T' =
T?, (2, 2., 25) € S° < C?, and the actions (T% x T? S? x S% and (7% x T?,
S x §9).

2. Cross-sectioning theorem and equivariant classification. In
[3], Orlik and Raymond proved a cross-sectioning theorem for the
orbit map 7: M"** — M* = M"**/T" for n = 2. By the similar technique
we ecan prove a cross-sectioning theorem for all #=2. To see this, we
use the following two lemmas. The proofs are slight generalizations
of those in [3].

LEMMA 2.1. Let (T", M"*?) be an effective T -action on an (n +
2)-mamnifold such that the orbit space M* is [0, 1] x [0, 1] and such
that there are only two types of orbits. Suppose that the points on
the arc [0, 1] X 0 have stability subgroup T < T and all other points
correspond to principal orbits T". Then the orbit map w M*"* —
M* has a cross-section. Moreover, every cross-section given on the
are A=(0x[0,1)U(0,1] x 1)U @A x [0,1]) may be extended to a
cross-section over all of M*.

LEMMA 2.2. Let (T", M) be an effective T action on an (n + 2)-
manifold M". Assume that the orbit space M* 4s [—1, 1] x [0, 1]
and that the points on [—1, 0) X 0 have stability subgroup T\ c T,
the points on (0,1] X 0 have stability subgroup T; C T", the point
0 X 0 has stability subgroup T* which is generated by T! and T;,
and all other points correspond to principal orbits T". Then there
18 a cross-section for the orbit map w: M"**— M*. Moreover, any
cross-section on the arc A = ((—1) x [0, 1) U ([—1, 1] x 1) U@ x [0, 1])
may be extended to a cross-section over all of M*.

Now we state a cross-sectioning theorem for an effective T"-action
on a simply connected closed (n + 2)-manifold M"*2,

THEOREM 2.3. Let (T", M"**) be an effective T™action on a simply
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connected closed (n + 2)-manifold M™*:. Then the orbit map m: M+ —
M* has a cross-section.

Now we know the complete orbit structures and the existence
of cross-sections for the orbit maps =: M""*— M* for effective T"-
actions on simply connected closed (n + 2)-manifolds. Therefore, we
can classify equivariantly these simply connected closed (n + 2)-mani-
folds which admit effective T™-actions.

Let M* be the orbit space of an action (7", M"*?). We associate
the stability subgroup of the points in the orbit to each orbit z* € M*.
The orbit space M* with associated orbit types is called a weighted
orbit space.

Let M* and N* denote the weighted orbit spaces of a T"-action
on M™™ and N"*2, respectively. A weight preserving homeomorphism
of M* onto N* is a homeomorphism of M* onto N* which carries
the weights of M* isomorphically onto the weights of N*.

If manifolds M"** and N"** are simply connected and closed then
the orbit spaces M* and N* are disks with nontrivial stability
subgroups T"s and T?s on the boundaries and the orbit map n: N—
N* have cross-sections by the above Theorem 2.3. By the same
argument that is used in [3] and [5], we have an equivariant classi-
fication theorem.

THEOREM 2.4. Let T* act effectively on the simply connected
closed (n + 2)-mamnifolds M"** and N**2. Then there is an equivariant
homeomorphism f of M onto N if and only if there is a weight
preserving homeomorphism f* of M* onto N*.

3. Free actions. We know by [4] and from the previous section
that a torus group 7™ cannot act freely on a simply connected (n + 1)
or (n + 2)-manifold for n = 3 or n = 2, respectively. This is of course
not true the higher codimension. For example for the codimension
4, the action (7% S* x S°) induced by the Hopf fibering (1", S°) is free.
We note that this action (7%, S® x S° has the orbit space S* x S?
and by taking equivariant connected sums of S® x S”s we get more
free T%actions on simply connected closed 6-manifolds. For all =,
we demonstrate the existence of a principal 7" *bundle over a con-
nected sum of several copies of S* x S? with a simply connected total
space.

Let X be the connected sum of % copies of S x S%ie., X =

¥,(S?*x S%,. Then we know H(X, Z) = 0 and H(X, Z) = @* Z = Z**.
Hence 7,(X) = Z*. Moreover, the universal-coefficient theorem [7]
shows that we have an isomorphism 4: H¥(X, Z" %) — Hom(H(X, Z), Z*™%)
defined by h(f)(Ze¢,) = Tf(c;) where f and 3¢, represent cohomology
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and homology classes, respectively.

Let P’: E' — B« be a universal T* %-bundle where the classifying
space Br.— is the product of n — 2 copies of the Eilenberg-MacLane
space K(Z, 2). Then principal 7" *bundles over X are in a one-to-
one correspondence with the set of homotopy classes of maps from X
to B, [X, B].

We also have a bijection : [X, B] — H*X, Z"*) defined as follows.
Let aec HYB, Z"* be 2-characteristic, i.e., h(a): H (B, Z)— Z"* is
an isomorphism, where & again comes from the universal-coefficient
theorem. Then [f] = f*(a)e HXX, Z*2) where [f] is a class in [X,
B} with a representative f.

Let o5 (X)) — Hy(X, Z) and @;: 7y(B) — Hy(B, Z) be the Hurewicz
isomorphisms. Then we have an obvious isomorphism v: Hom (HAX,
Z), Z**) — Hom (1,(X), 7(B)) defined by: 7(9) = #3'> (H(@)) > g° P

LEmMA 3.1. [X, B] = Hom (n,(X), 7,(B)) where the tmage of a
class [fle[X, B] 1s [ 7w (X)— my(B).

Proof. From the above comments we have [X, B] = Hom (7,(X),
7(B)) by the map vohoy. We must show that vehoa[f] = fi
Let 0: S*— X be a representative map of an element [¢] € 7,(X).
We have Y[koy([fDI(o]) = 95" o (@)™ o (ho ¥ ([fD)Px([0]). And we
have @3'o (R(a)) " 1(f*(a))Px([0]) = 95 (R(@)) " f*(@)P([a])
= 5" (@) af«px(lo])
= P35 (@) Psf A[0])

by the commutative diagram

(X)) =2 Hy(B, 7Z)
lf# lf*
7(B) — H(B, Z) ,
= 95'esf(lo]) = filo] .
This completes the proof.

THEOREM 3.2. Let X be the connected sum of k copies of S? X
S*, wherek = n/2 — 1. Then there is a principal T* *bundle over X
with a stmply connected total space.

Proof. Choose an element f, in Hom (7,(X), 7,(B)) = Hom (2%,
Z"7%) which is onto. The existence of an onto map is guaranteed by
the choice of k. Let p: E— X be the T"*bundle induced by f: X —
B. Then f induces a map between the homotopy sequences for
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bundles p": ' — B and p: E— X. Thus we have the following com-
mutative diagram

7y (B) — T X) — 1(T*%) — 7,(B) — 7(X) = 0

b,k

0 = Ty(B") — 7(B) —— 7(T*?) — T (B') = 0 ,

where the rows are exact and 7,(E') = 0 = x,(&") since £’ is contrac-
tible. Therefore 4’ is an isomorphism. Since f, is chosen to be onto,
4: (X)) — 7, (T"% must be onto. Hence 7, (F) = 0. This completes
the proof.

4., Effective actions. Now we study effective actions of the
codimension 2. There are many (% + 2)-manifolds which do not allow
any T"-action:

4.1. [D. Montgomery]. 7™ cannot act effectively on the (n + 2)-
sphere S*** for n > 3, or on R"** for n > 2.

4.2. T* cannot act effectively on S? x S with p, ¢ odd and
p+qg=2n+ 2 for n > 2.

4.1. follows from Borel’s formula, and 4.2 can be deduced from
Golber’s formula.

We know that 7™ cannot act effectively on a simply connected
(n + 1)-manifold for n = 3 [4], and we suspected that 7" cannot act
effectively on a simply connected (» + 2)-manifold for » = 5. However,
contrary to our suspicion, we construct an effective T™-action on a
simply connected (» + 2)-manifold for any =.

We first define certain permutations. Let o, = (12k + 1) for 2 <
k< n and o, = (123). Let ¢, = (1) and for 1 < k < n define y, by
Mio0, = My, (Where p,o0, means “o, followed by ). Finally
define 0,,, by #,00,, = (1). Let D*x T = {(t,, ty, ++-, t.)| (¢, t.) €
D* x D* = D*}. We shall consider various copies of D* x T"7* and we
will denote the kth copy by (D* x T"%),. Note that o(D* x T3, =
(S*'x D*x T"%), U(D?* x S x Tr?),.

For each 2 < k < » define f,:(S' x D* x T"?),— (D* x S x
T ey by filty, -+, t,) = (tak(l)) ++, o). Note that for 2 < k& <,
Fulty, <+, t,) = (&, tysry tsy +++, &y, =+, t,) With ¢, appearing in the (k +
1)st position and for k=n f,(t, -+, t,) = (t, &5, ¢y, -+, t,). Hence
each f, is a homeomorphism.

For k=n+ 1 define f,,:(D*x S x T™?),— (S x D* x T*?),
by fari(ts, =+, t) = (tanﬂmy M) tanﬂ(n))- We must show that f,,, is
a homeomorphism, i.e., we must show that o¢,.,(2) = 1.

LEMMA 4.8. 0,00, 0+++00;00, = 0,,,.
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Proof, o, = pi'op,_, for 2= 41 < n and o0,,, = #;'. Hence
O 04200, = y;lo/«ln_mﬂﬁﬂﬂn—f e 0#3‘—10#20#;10#%
= Mol = Oy -

Now computations show that ¢,.,(2) = 1 and hence f,., is a homeo-
morphism.

For each 1 <k £ n define a T™action on (D*x T*?, by (7,
ey Th) X (b e, ) = (Tpkmtu ey, T#k(n)tn)’

LemMmA 4.4. The homeomorphisms f,(2 =k =mn) and f,., are
equivariant with respect to this action.

Proof. For 2<k<n,teT" and te(D* x T %), we have

Sz x t) = Fi(Trwls Tuwle ** ) Tepmba)

= (T<;tkwk>(1>tok<1), Ty T(#kwk)(n)tdk(n))
= Tup_ywlopwy ** % Trgoymboyim)
=TX (tak(l)y ) tak(n))

= Tfk(tly ) t%)'

Hence f, is equivariant. Similar calculations show that f,., is equi-
variant.

Now let M, = (D* x T, and M, = M, U, (D* x T"*),. Weknow
that 7 (D* x T"); = Z* % = {t;» X ++- X {t,» where T"* = T, x T, X
«-+ X T, and <{t;,> corresponds to 7(T,). Now we may assume that
M, was obtained by attaching S' x D* x T" 2 x Ito (D*x S'x T %), &
M, via f, defined on S' x D* x T** x 0 and attaching (D* x T"7?),
to SEXxDPx Tr2x1E8S'xD?*x T"*x 1 via the identity on
(S* x D* x T"®),. For convenience we may assume M, and (D* X
T"*, are open subsets of M, with M, N (D*x T*%,=8"x D* X
T"*x I~ (I" an open interval in I). Now 7 (S'Xx D*Xx T"% =
Z" =) X Lty X oeee x Lty I

Pi (M 0 (D* x T*7),) — 7(M,) and
Po: (M () (D* X T"7%),) —— w(D* X T"7%),

are the homomorphisms induced by inclusions, it is easy to see that
ker ¢, = {t,> and ker @, = {(t,)> and that each @, is onto. Then by
applying Van Kampen’s theorem it is also easy to see that z,(}) is
isomorphic to 7, (M, N (D* x T*%),) modulo the smallest normal subgroup
containing (ker @,) U (ker @,), i.e., m (M) = Z™ 2 = {t,) X +-+ X {t,).
Now let M; = M, Uy, (D* x T"°); where we consider f; as a mapp-
ing onto (D* x S§* x T"?), < (D* x T" %), < M,. The same argument

shows that 7, (M,) = Z"*. Continuing this process we obtain
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Lemma 4.5. M, ,= M, ,U;,_(D*x T"7?),_, is a simply connected
manifold with the boundary oM, , = (D* x 8" x T, U(S' x D* x
Tn~2)l.

Define f:0(D* x T"?),—oM,_, by

_ fn(tly ety tn) fOT te (Sl x D? x Tn—z)n
- fn—H(t;, cee, tn) for te (D* % St x Tn‘z)n .

Then these definitions agree on (S* x D* x T2, N (D* x S'x T"7?), =
(S* x S8t x T*?),. For if te(S' x S§* x T*?),, on the one hand, we
have ¢ identified with (fy0 -+« o fL)(&) = (fopeomry ** s Ligporomm) € (ST X
Stx T, & M,_,. On the other hand, ¢ is identified with f,..,({) =
oy s toy ) €(S* X S* X T"7%), & M, ;. Then Lemma 4.1 shows
these two are equal.

f(tly Tty tw)

LEMMA 4.6. The space M, = M,_,U,(D* x T, is a simply
connected closed (n + 2)-manifold.

Proof. Since f is a homeomorphism from o(D* x T"*n onto
oM,_,, M, is a compact manifold without boundary. It is easy to
see that the homomorphism @: 7,(6(D* x T"7?),) — m,(D* x T*7%), induced
by the inclusion is onto. A further application of Van Kampen’s
theorem shows that M, is simply connected.

Therefore we have proved the following:

THEOREM 4.7. There exists an effective T™action on a simply
connected closed (n + 2)-manifold M.
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