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For each derivation δ of a C*-algebra A with £(#*) =
—δ(x)* there exists a minimal positive element h in the enve-
loping von Neumann algebra A" such that δ(x) = hx — xh. It
is shown that the generator h belongs to the class of lower
semi-continuous elements in A". From this it follows that if
the function π —> 11 π o δ 11 is continuous on the spectrum of A
then h multiplies A. This immediately implies that each
derivation of a simple C*-algebra is given by a multiplier of
the algebra. Another application shows that each derivation
of a countably generated monotone sequentially closed C*-
algebra is inner.

A linear operator δ on a C*-algebra A is called a derivation if
δ(ab) = δ(a)b + aδ(b) for all a and b in A. If δ* = -δ (i.e., δ(a)* =
— <5(α*)) then at(a) = exp (itδ)a defines a norm-continuous one-parameter
group of ^-automorphisms of A. Conversely, each such group can
be written as exp (itδ) for a suitable derivation δ of A. After a
number of partial results, notably by I. Kaplansky and R. V. Kadison,
it was proved by S. Sakai that every derivation of a von Neumann
algebra A is inner, i.e., δ(a) = ha — ah for some h in A (see [9, IΠ.9.3.
Theoreme 1]). Recently W. B. Arveson ([3])—see also [4]—gave a new
proof of this result, using the theory of spectral subspaces associated
with a one-parameter group of automorphisms. The powerful tech-
niques developed in [3] enabled the first author to show that each
derivation of an APP*-algebra is inner ([12]).

In this paper we use Arveson's technique to show that if δ is a
derivation of a C*-algebra A with <5* = — δ then the minimal positive
generator for S, or rather for its extension to a derivation of the
enveloping von Neumann algebra A" of A, is the limit of an increasing
net of self-adjoint operators from Ά. This shows that the function
π —• ||τro5|| on the spectrum A of A is lower semi-continuous and that
it is continuous if and only if the minimal positive generators for δ
and —δ both multiplies A. This last result was first proved in [2]
and has as an immediate consequence that every derivation of a simple
C*-algebra is given by a multiplier ([17]). We finally show that every-
derivation of a countably generated monotone sequentially closed
C*-algebra is inner.

The possibility of using [12] to show that derivations of C*-
algebras have measurable generators was pointed out to us by E. B.
Da vies.
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l Spectral subspaces and duality* Let at be a norm-continuous
one-parameter group of isometries of a Banach space X. For each /
in L\R) let πa(f) denote the bounded operator on X given by the
Bochner integral

Ka(f)x = \ oct(x)f{t)dt .

With f(s) = ( f(t)eistdt and -<χ> ^t<*w <L oo let Ra(t, w) denote the

closed subspace of X generated by vectors πa(f)x, xeX such t h a t /

has compact support in (£, w). The spectral subspace associated wi th

[t, w] is

Ma[t, w] = Π R«(t - —, w + ±λ .
V n n/n

As shown in [3, Proposition 2.2]—see also [12]—we have

Ma[t, w] - {x e X i ττβ(/)a? - 0 V/e J0[ί, w]}

where I0[t, w] denotes the set of functions / in L\R) such that / has
compact support disjoint from [t, w].

The transposed at and bi-transposed at* of at gives rise to norm-
continuous (and weak ^-continuous) groups of isometries of X* and
X**, respectively. We shall relate the spectral subspaces of the three
groups using polar sets (denoted by M°).

LEMMA 1.1. If s <t then

Proof. For each / in /0[—°°, t] and x in X we have πa(f)xe
Ra(t, so). If therefore peRJίt, oo)° then

0 = <πa(f)x,p} = <x,πa*(f)p) ,

since πa*{f) is the transposed of ττα(/). Thus πa*(f)p = 0 so that
/o e ϋfα * [ - oo, ί]. It follows that

and

Ra(t, oo) a Ma[t,

implies that
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Consequently

Ma[t, ooγaMa*[-oo9t] .

If 8 < t then s < t — (1/n) for sufficiently large n. For each /
in Lι(R) where / has compact support in (t — (1/n), oo) and x in X
we have

<*a(f)x, P> = <x,πΛ*(f)P> = 0

for each p in Ma* [- oo, 8]9 since/e Io[~ °°, *]. Thus p e Ra(t - (ί/n), oo)°
and a fortiori peMa[t, oo]°. It follows that

Mα*[-co,S]cΛfα[£, oo]°

and the proof is complete.

REMARK 1.2. The reader may verify that for each x in Ma[t, °°]
and p in jkfα*[— oo, t] one has <«.(»), iθ> = ei8t(x, p) for all s. Despite
this extraordinary behavior it is not in general true that Ma[t, co]° =
Ma*[— oo, t]. To see this take any Banach space Xand define at{x) =
eux for all x in X. Then oct is a norm-continuous one-parameter group
of isometries of X. Since πa{f)x = f{ϊ)x it is easily verified that
Ma[t, oo] = X for ί ^ 1 and zero otherwise. Analogously Ma * [— <*>, ί] =
X* for ί ^ 1 and zero otherwise. Consequently,

0 - Ma[l, oof ^ ikfα*[-oo, 1] = X* .

PROPOSITION 1.3. If s <t then

.Mα**[£, oo]cikfα[s, oo]00cikfα**[s, oo] .

Proof. Taking polar sets in Lemma 1.1 we get

for w < s. Using Lemma 1.1 with att and X* instead of at and X
we obtain

[—co? s]° and Λία*[—oo, w]° aMa**[w, oo] ,

for s < t. Inserting these inclusions in (*) yield

Ma**[t, oo]aMa[s, oo]00cikfα**|>, oo]

for w < s < t. However, by the definition of spectral subspaces

lfα**[s, oo] = P| Ma**[w, oo]
W<8

and the proposition follows.
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2* Derivations of C*-algebras* Let A be a C*-algebra and
denote by A" the enveloping von Neumann algebra of A, isomorphic
with the second dual of A (see [7, § 12]). For any set B in AJ!β. let
B~ denote the norm-closure of B and let Bm denote the set of oper-
ators in A"α. which can be obtained as strong limits of increasing
nets from B. The class ((As.α.)

m)~~ consists of the so called lower semi-
continuous elements of A"α.. If As.α. is represented as the continuous
real affine functions vanishing at 0 on the convex compact set

Q = {peA*\\\p\\£l, p^O}

then ((As.α.)
w)~ is precisely the set of lower semi-continuous bounded

real affine functions on Q vanishing at zero. Let A denote the C*-
algebra obtained by adjoining the unit 1 of A" to A. Then

If M(A) denotes the C*-algebra in A" of elements x such that xAaA
and Ax a A then

M(A)..a. = (Άs.ar n (Ά..a.)m .

([15, Theorem 2.5] see also [1]). It is shown in [8, Theorem 5] (see
also [15, Corollary 4.7]) that the center of M(A)~the ideal center of
A—can be identified with the set of bounded continuous functions on
the spectrum A of A.

Let δ be a derivation of A such that δ* = — δ. Then at — exp itδ
defines a norm-continuous one-parameter group of ^-automorphisms of
A so that the results from § 1 are applicable.

THEOREM 2.1. Let d be a derivation of a C*-algebra A such that
g* = _§t Then the minimal positive operator h in A" for which
δ — adh is a lower semi-continuous element.

Proof. The bi-transposed δ of δ is an extension of δ to a deriva-
tion of A". With p(t) as the left annihilator projection of ΛTα**[£, oo]
we know from [12, Proposition 3] that the operator-valued Riemann-
Stieltjes integral

with respect to the increasing projection-valued map t—*p(t) defines
a positive operator h in A" and that h is the minimal positive operator
in A" such that δ = adh.

Let p(t) denote the left annihilator projection in A" of Ma[t, oo].
Since the annihilators of a subspace and its weak closure ( = bi-polar)
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coincide we see from Proposition 1.3 that

p(s) ^ p(s) ̂  p(t)

for s < t. For each positive functional p on A" define g and g on
[0, ||«||] by

g(t) = p(p(t)) and g(t) = P(p(ί))-

Since g(s) ̂  g(s) ̂  inf g(t) it follows from well-known properties of
Riemann-Stieltjes integrals that

\f(t)dg(t)= \f(t)dg(t)

for every continuous function / on [0, || d | | ] .

Thus

/ f l l ί l l \ / f l l ί l l \

^ f(t)dp(t)) = p(\Q f(t)dp(t)),

and since this holds for all p on A" we have

S ll«ll f | | δ | |

f(t)dp(t) = f(t)dp(t) .
0 JO

In particular

S l l « l l
t dp(t) .

o

For fixed t let A denote the net (under inclusion) of finite subsets
of Ma[t, oo], and for λ in A let | λ | denote the cardinality of λ. Then
the net in A+ with elements

increases to a projection q(t) in (A
s α
. )

m
. Since

q(t) ̂ (I λ I"
1
 + tfz*)-

1
^*

for each a? in λ we see that q(t) majorizes the range projection of each
x in Ma[t, oo]. Thus if ίΠs the universal Hubert space on which A"
acts we conclude that q(t) is the projection on the closure of Ma[t, oo]H.
It follows that q(t) = 1- p(t). Put

Then hn e (A8.α.)
m and 0 <; h — h* ̂  n'1; so that h e ((As.α.)

m)~ which is
precisely what we wanted.



568 DORTE OLESEN AND GERT K. PEDERSEN

PROPOSITION 2.2. For each derivation δ of a C*-algebra A the
function π—*||τro<5|| is lower semi-continuous on A.

Proof. Given π0 in A let t be the liminf of | |τrog| | when π
ranges over the neighborhood system of τcQ. We shall prove that
\\πQ°δ\\^t. Choose a net {πj in A converging to π0 such that
| |τr z oδ| | < t + ε for all i. Then

Π ker πi c ker πQ .

If therefore p denotes the representation J 9 ^ then πo(A) is a quotient
of ρ(A) so that ||7Γ0o5|| ^ | |/0o5||. But

\\poδ\\ = supllTΓ.oδll ^t + ε

and consequently ||τr0og|[ <ς £ + e. Since ε > 0 is arbitrary the pro-
position follows.

REMARK 2.3. If δ* = — δ and h is the minimal positive generator
for δ then since each representation π of A is quasi-equivalent to a
representation of the form x—+ zx for some central projection z in A"
we have

Note that since he((Asa)
m)~ the function π—> \\ π(h) \\ is lower semi-

continuous on A by [15, Theorem 4.6] in accordance with Proposi-
tion 2.2.

The next result is proved in [2] by an entirely different method.

THEOREM 2.4. For each derivation δ of a C*-algebra A such that
<5* — — §f the function π—•> | |τro5| | is continuous on A if and only if
the minimal positive generators for δ and ~δ both belong to M(A).

Proof. Without loss of generality assume that | | δ | | = 1, and let
h and k be the minimal positive generators for δ and —δ, respectively.
Since 1 — k is a positive generator for δ we have h ^ 1 — k. More-
over, (1 — k) — h belongs to the center of A". Put a = h + k. We
claim that 11 π(h) \\ = \\ π(a) \\ for each irreducible representation π of
A. For if ||τr(Λ,)|| + ε g | |τr(α)|| for some ε > 0 then since π(a) is a
multiple of the identity we get

ττ(α) — π(k) = π(h) ̂  ττ(α) — ε

so that ε <Ξ π(k). But this is impossible as π(k) is the minimal positive
generator for — πoδ.

By the Dauns-Hofmann Theorem the central, positive element a
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in ((As.a)
m)~ belongs to M(A) if and only if the function π-+ \\π(a) \\

(=\\πoδ ||) is continuous on A (see [15, Corollary 4.7]). If both h and
k belongs to M(A) then of course a e M(A). But if a e M(A) then in
particular ae(Ά8.a)m and since -(A8.α.)m = (Ά8.a)m

h = a - ke(Άs.a)m .

Thus by Theorem 2.1

This completes the proof.

COROLLARY 2.5. (Sakai [17]). Every derivation of a simple C*-
algebra is given by a multiplier of the algebra.

Proof. Each nonzero representation of A is an isometry so that
the function π—»||7Γo<5|| is constant, hence continuous.

3* Derivations of sequentially closed C*-algebras* A monotone
sequentially closed C*-algebra B is a C*-algebra in which every norm-
bounded increasing sequence of self-adjoint elements has a least upper
bound in the algebra. Basically these algebras are the non-commuta-
tive algebraic counterpart of abstract measure spaces, a point of view
which has been successfully exploited in [5]. A monotone sequentially
closed C*-algebra which admits a faithful σ-normal representation on
a Hubert space (sometimes known as a Baire* algebra) is a reasonable
non-commutative analogue of the Baire functions on a locally compact
space. These algebras are studied in [6], [11], [13], [14], and [16].

We say that the monotone sequentially closed C*-algebra B is
countably generated if it contains a sequence {bn} such that the smallest
monotone sequentially closed C*-subalgebra of B containing {bn} is equal
to B. In this case B has a unit—the supremum of all range projec-
tions of the bn's.

THEOREM 3.1. Every derivation of a countably generated mono-
tone sequentially closed C*-algebra is inner.

Proof. We may assume that δ* = — δ. Let A be the separable
C*-subalgebra of B generated by elements of the form δm(bn), m ̂  0,
where {6J is a generating sequence for B containing 1. Then δ(A) c A
so that δ1 = δ I A is a derivation of A. By Theorem 2.1 δx = ad h for
some h in (A+)m (since 1 e A the subset (Asα.)m is norm-closed and
((As.a)

m)+ = (A+)m). The separability of A implies that Q is metrizable
so that we can find a sequence {hk} in A+ with hk/*h.

Let {un} be a countable group of unitaries in A which generate
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A as a C*-algebra. Note that

uthun — h = u*δx(un) 6 A .

For fixed nQ put X = Σf<^0 ^ Then the sequence in X with elements

%k = Σ « h k u n - hk~ uϊd^Un))

converges weakly to zero in X**. Thus for every ε > 0 and k0 there
exists {xk I k0 ^ k ^ fcj such that

(\{psX?\\ p(xk) \^e}= 0 .

It follows that || Σxkxk || < ε for some convex combination of the E/S.
Using this we can inductively find a sequence {am} in A+ such that

( i ) Each am is a convex combination of elements from {hk}.
(ii) The elements hk occuring in the combination of αm+1 all have

higher index than those occuring in am.

(in) || utamun - am- u^δ^uj || ^ — for n ^ m.
m

By condition (i) am <. \ \ h \ \ for all m and by condition (ii) the
sequence {αm} is increasing. Let a denote the least upper bound of
{am} in B. Then utaun is the least upper bound for {u%amun}. Since
{ulamun — am) is norm-convergent to utd^uj we conclude from [10,
Lemma 2.2] that

utaun - a = utδ^Un)

for all un (the additional hypothesis in [10, Lemma 2.2] that B is
(unrestrictedly) monotone complete is not needed for the proof). Thus
δi(un) = aun — una for all un. The elements in B on which the two
derivations δ and ad a coincide form a C*-algebra containing A. Since
δ(A) c A we see that the elements in I? on which δn and (αd α)% coincide
for every n form a C*-algebra I?o containing A. If {cn} is an increasing
sequence of self-adjoint elements in Bo with least upper bound c in B
then

exp (itδ)cn — exp (ίta)cn exp ( — ita)

for every % and all real ί. Since * automorphisms are order-preserving
this implies that

exp (itδ)c = exp (ita)c exp ( — ita).

Successive differentiations show that δn(c) = (ad a)n(c); hence ceBQ.
It follows that Bo is monotone sequentially closed and therefore BQ = 5.
This completes the proof.
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COROLLARY 3.2. If δ is a derivation of a countably generated
monotone sequentially closed C*-algebra B such that <?* = — δ then
there is a minimal positive generator a in B for δ characterized by

\\az\\ = \\d\Bz\\

for every central projection z in B.

Proof. Since B is countably generated every projection in B has
a central cover in B, so that B is well supplied with central projec-
tions. With the notation as in the proof of Theorem 3.1 note that
each central projection z in B determines a representation π of A
given by π{b) = bz. Since h is the minimal positive generator for δt

this implies that ||τr(λ)|| = HTΓO^H. NOW 0 <; am <: h so that

\\amz\\ = \\π(am)\\^\\π(h)\\.

Since az is the least upper bound in B of {amz} we conclude that
0 S az ^ | |π(h) | | , hence \\az\\^\\π(h) \\. Finally

\\πoδ1\\ = \\δ\Az\\£\\δ\Bz\\

so that || as || ^ \\δ\Bz\\. The reverse inequality is obvious and it
follows as in the proof of [12, Proposition 3] that a is uniquely
characterized by these norm conditions and that it is the minimal
positive generator for δ in B.

REMARK 3.3. For a nonseparable Hubert space H let S(H) denote
the set of operators in B{H) with separable range. Then S(H) is a
monotone sequentially closed C*-algebra but since S(H) is an ideal in
B(H) it is easy to find outer derivations for S(H). Thus the condi-
tion of being countably generated can not be deleted from Theorem 3.1.
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