ON CONJUGATION COBORDISM

DUANE O’NEILL
ON CONJUGATION COBORDISM

DUANE O’NEILL

An almost-complex manifold supports an involution if there is a differentiable self-map on the manifold of period two. The differential of the map acts on the coset space of the almost-complex structures on M by inner automorphism. This action is also of period two. If the almost-complex structure is sent to its conjugate, the manifold with structure, together with the given involution is called a conjugation. Any linear involution of Euclidean space may be used to stabilize this situation, giving a cobordism theory of exotic conjugations. The question considered here is: What is the image in complex cobordism of the functor which forgets equivariance. The result shown in the next section is: If a stably almost-complex manifold supports an exotic conjugation, every characteristic number is even.

The first cobordism results on conjugations are due to Conner and Floyd [3] (§ 24). In [4], Landweber established the equivariant analogues of the Thom theorems. Certain examples have been considered by Landweber, [5] (§ 3), and together with the result here the image of the forgetful functor can be seen to be maximal, in some cases.

2. Proof of the theorem. It is well-known from the work of Thom and Milnor that the unoriented bordism ring \mathcal{N}_*, with spectrum MO, is a polynomial ring over \mathbb{Z}_2 on manifold classes n_t, $t + 1$ any positive integer not a power of two (t nondyadic). Also \mathcal{U}_*, the complex bordism ring with spectrum MU, is a polynomial ring over \mathbb{Z} on manifold classes u_t, $t = 0, 1, \ldots$. Representatives for the dyadic generators u_{2^i}, $t + 1 = 2^i$, may be chosen so that every normal characteristic number is even. The principal ideal in \mathcal{U}_* generated by dyadic generators is the graded Milnor ideal associated to 2, I. $I_{2k} = I \cap \mathcal{U}_{2k}$.

If a partition of k contains a dyadic integer the partition will be called dyadic. Let $d(k)$ denote the dyadic partitions of k, $n(k)$ the nondyadic partitions of k. If $\alpha = a_1a_2\cdots a_r$ is a partition of k then the group generator $u_{a_1}\cdots u_{a_r} \in \mathcal{U}_{2k}$ will be denoted u_{α}. Similarly for $n_{\alpha} \in \mathcal{N}_{2k}$.

If $MU(n)$ is given the involution defined in [4] then it is a G-complex, $G = \mathbb{Z}_2$, in the sense of Bredon. Note that $\bar{\omega}(MU(n)) = \bar{\omega}(MU(n)) = 0$. The construction given in the next section produces, for each partition of k, α, and sufficiently large n, an equivariant
inclusion and a G-complex $\varepsilon^\alpha: MU(n) \to Y^\alpha$ such that

- $(c\ i) \quad \tilde{\omega}_{n+k}(Y^\alpha) = \begin{cases} (\mathbb{Z} \to 0) & \text{if } \alpha \in n(k) \\ 0 & \text{if } \alpha \in d(k) \end{cases}$
- $(c\ ii) \quad \tilde{\omega}_{2n+2k}(Y^\alpha) = (0 \to (\mathbb{Z}, (-1)^{n+k})])$
- $(c\ iii) \quad \omega_t(Y^\alpha) = 0 \text{ if } t \neq n + k, 2n + 2k$
- $(c\ iv) \quad e^\alpha(G) : \tilde{\omega}_{2n+2k}(MU(n))(G) \cong \mathbb{Z}_{2k} \to \tilde{\omega}_{2n+2k}(Y^\alpha)(G) \equiv \mathbb{Z}$ maps u_α to an odd multiple of the generator $\alpha \in n(k)$.

Let the $r + s$ sphere with the orthogonal involution fixing an equatorial s-sphere be denoted $S^{r,s}$. The G-complex formed by attaching the cone over $S^{r,s}$ in $S^{r,s}$ will be denoted $S^{r,s}/S^{0,s}$. Let the equivariant homotopy groups

$$\left[\frac{S^{n+a,n+b}}{S^{0,a+b}}, MU(n)\right] \text{ and } \left[\frac{S^{n+a,n+b}}{S^{0,a+b}}, Y^\alpha\right]$$

be denoted $\lambda_{Z_{a,b}}$ and $\lambda_{Y_{a,b}}$ respectively. It is understood that $a + b$ is much less than n whenever this is used.

It is easy to see, from the cochain complex, [1] I § 6, of $S^{r,s}/S^{0,s}$ that if $\tilde{\omega}$ is any generic coefficient system with a G-action g on $\tilde{\omega}(G)$ then

$$H^k(\frac{S^{r,s}}{S^{0,s}}; \tilde{\omega}) \cong \begin{cases} 0 & \text{if } 0 < k \leq s \text{ or } r + s < k \\ \text{Ker}(1 + (-1)^{k-s}g) & \text{if } s < k < r \\ \text{Im}(1 + (-1)^{k-s}g) & \text{if } k = r + s \end{cases}$$

Note that the groups $\lambda_{Y_{a,b}}$ are the same for all partitions α of k. I.e., by Bredon's classification theorem [1] II (2.11)

$$\lambda_{Y_{k+q,k-q}} \equiv \frac{Z}{(1 + (-1)^{q+1})Z}$$

$$\lambda_{Y_{h+q+t,k-t}} \equiv \begin{cases} 0 & \text{even} \\ Z_2 & \text{odd} \end{cases}$$

$$\lambda_{Y_{l,m}} = 0 \text{ if } l + m < 2k.$$

From this computation the main result may now be deduced. Let ψ denote the forgetful functor.

Theorem. $u_\alpha \in \text{Image } \{\psi: \lambda U_{k+q,k-q} \to \mathbb{Z}_{2k}\}$ only if $\alpha \in d(k)$.

Proof. Suppose u_α is in the image of ψ. Consider the com-
mutative diagram with exact row (see [3], p. 286 for definitions of \(\alpha\), \(\beta\), and \(\psi\)):

\[
\begin{array}{c}
\ldots \longrightarrow \lambda Y_{k+q+1,k-q} \longrightarrow \lambda Y_{k+q,k-q} \longrightarrow \pi_{2n+2k}(Y^a) \longrightarrow \lambda Y_{k+q+1,k-q-1} \\
\end{array}
\]

If \(q\) were odd, the lower \(\psi\) is zero. By (c iv) the upper \(\psi\) is zero and \(u_a = 0\), a contradiction. Now suppose \(q\) is even. The exact row then is 0 \(\rightarrow\) \(Z \rightarrow Z \rightarrow Z \rightarrow 0\), so that \(e^a(G)\) maps \(u_a\) to an even multiple of the generator and by (c iv), \(\alpha \in d(k)\).

Corollary. Image \(\psi \subseteq I\).

Proof. By ([4], (4.1)), \(2u_a \in \text{Image } \psi\) for every \(\alpha\).

Then if \(w \in \text{Image } \psi\), subtract off even multiples of group generators until we have \(w = 2w' + u_{\alpha_1} + u_{\alpha_2} + \cdots + u_{\alpha_t}\). Now construct diagram (2.1) for \(\alpha\) successively equal to \(\alpha_1, \ldots, \alpha_t\). This shows that \(\alpha_i \in d(k), \ldots, \alpha_t \in d(k)\), and the corollary is proved.

As a corollary of the construction in [5] § 3 there are free exotic conjugations on representatives \(\bar{u}_i\), \(t = 2^j - 1\), showing that Image \(\{\psi: \lambda U_{t+q,t-q} \rightarrow Z_{2k}\}\) contains \(u_i\) provided \(q\) divisible by \(2^{k(t+2)}\). Since the image of a forgetful functor is an ideal in \(\mathbb{Z}\), this shows:

Corollary. Image \(\{\psi: \lambda U_{t+q,t-q} \rightarrow Z_{2k}\} = I_{2k}\) if \(t = 2^j - 1 \leq k < 2^{j+1} - 1\) and \(q\) divisible by \(2^{k(t+2)}\). \(\phi(m)\) is the familiar number equal to the number of integers \(s, 0 < s \leq m\) with \(s \equiv 0, 1, 2, 4 \pmod{8}\).

3. The construction. Recall Bredon's procedure for killing the homotopy groups of a \(G\)-space \(X\), with \(\bar{\omega}_t(X, x_0) = \bar{\omega}_t(X, x_0) = 0\). Let \(T\) be some \(G\)-set and \(F(T)\) the free abelian \(G\)-module on \(T\) such that \(\text{Hom}(F(T), \bar{\omega}_t(X))\) contains an epimorphism \(A_r\). By use of [2], Chapter II, (2.11), take a representative \(a_r: S^r(T^+) \rightarrow X\) and define \(X_{r+1}\) by the equivariant Puppe sequence,

\[
S^r(T^+) \xrightarrow{a_r} X \xrightarrow{j} X_{r+1} \longrightarrow S^{r+1}(T^+) \longrightarrow \ldots
\]

Bredon shows, [2], (6.6), that

\[
j_\ast: \bar{\omega}_t(X) \longrightarrow \bar{\omega}_t(X_{r+1})\]

is an isomorphism for

\(0 \leq t \leq r - 1\) and \(\bar{\omega}_t(X_{r+1}) = 0\).
In this construction of Y^α there are at most two r where A_r is not taken to be an epimorphism. To begin, let α be a partition of $k \geq 0$ and take $n > 2k - 1$ so that $\pi_{n+k}(MO(n)) = \tilde{\omega}_{n+k}(MU(n))(\frac{G}{G}) \cong \mathcal{N}_k$ and $\pi_{2n+2k}(MU(n)) = \tilde{\omega}_{2n+2k}(MU(n))(\frac{G}{G}) \cong \mathbb{Z}_{2k}$. If α is dyadic let $n_\alpha \in \mathcal{N}_k$ denote the zero element. Regard $n\alpha$ and $u\alpha$ as elements of $Y_o = MU(n)$ and let all A_r be epimorphisms $0 < r < n + k$.

Let $Y_o = MU(n)$ and let all A_r be epimorphisms $0 < r < n + k$. Denote the composition of the inclusions by $E_r: MU(n) = Y_o \subset \cdots \subset Y_r$. If α is dyadic, let A_r be epimorphisms $0 < r < 2n + 2k$; if not let A_{n+k} be defined as follows. Let $T_{2n+2k}(Y_{2n+2k-1})$ and $\tilde{\omega}_{2n+2k}(Y_{2n+2k-1})(\frac{G}{G})$ be denoted F. Define T_{2n+2k} to be the G-set of elements in the union of the sets $\tilde{\omega}_{2n+2k}(Y_{2n+2k-1})(\frac{G}{G})$ except $E_{n+k}(n\alpha)$ and all elements in $\tilde{\omega}_{n+k}(Y_{n+k-1}) \times (\frac{G}{G})$. Take A_{n+k} to be the natural homomorphism defined by extending the G-set inclusion $T_{n+k} \cong \tilde{\omega}_{n+k}(Y_{n+k-1})$. Now let A_r, $n + k < r < 2n + 2k$, be epimorphisms. Let the free cyclic summand containing $E_{2n+2k-1}(u\alpha)$ in $\tilde{\omega}_{2n+2k}(Y_{2n+2k-1})(\frac{G}{G})$ be denoted F. Define T_{2n+2k} to be the G-set of elements in the union of the sets $\tilde{\omega}_{2n+2k}(Y_{2n+2k-1})(\frac{G}{G})$ and $\tilde{\omega}_{2n+2k}(Y_{2n+2k-1})(\frac{G}{G}) - F$, and define A_{2n+2k} to be the natural induced homomorphism. To define Y_r, $2n + 2k < r$, let A_r be epimorphisms. This defines Y^α as a limit of G-complexes $MU(n) = Y_o \subset Y_1 \subset \cdots$. Let $e^\alpha: MU(n) \rightarrow Y^\alpha$ be the inclusion.

It is clear that (c i) and (iii) are satisfied by this construction. To check the others some notation will be required. Let $g: S^{2n+2k} \rightarrow MU(n)$ be some representative for $u\alpha$, transverse regular on $BU(n) \subset MU(n)$ and let $M\alpha = g^{-1}(BU(n))$. Let $v\alpha \in \tilde{H}^*(MU(n); Z)$ denote the universal Thom class and $s\alpha \in \tilde{H}^{2k}(BU(n); Z)$ the symmetric function associated to α in the universal Chern classes c_1, c_2, \cdots. Let $f: MU(n) \rightarrow K(Z, 2n + 2k)$ represent $s\alpha \cup v\alpha \in \tilde{H}^{2n+2k}(MU(n); Z)$. It is well-known that the degree defined by $f \circ g$ is the normal characteristic number of $M\alpha, s\alpha(v\alpha)$.

The G-action of conjugation sends c_i to $-c_i$, so by the splitting principle c_i is sent to $(-1)c_i, v\alpha$ to $(-1)v\alpha$ and $s\alpha \cup v\alpha$ to $(-1)^{i+k}s\alpha \cup v\alpha$. However, this determines the G-action on homology which, through the Hurewicz isomorphism, gives the G-action on $\pi_{2n+2k}(MU(n))$. To check the remainder of (c ii) we attempt to extend the map f to a map $h: Y^\alpha \rightarrow K(Z, 2n + 2k)$.

The preceding construction shows that an extension of f to $f''': Y_{2n+2k-1} \rightarrow K(Z, 2n + 2k)$ exists for dimensional reasons. Thus there is an integer, $N \neq 0$, such that $N \cdot f''(E_{2n+2k-1}(u\alpha)) = f\alpha(u\alpha)$ in $\pi_{2n+2k}(K(Z, 2n + 2k))$. Note that this is justifies the preceding claim that $E_{2n+2k-1}(u\alpha)$ lies in an infinite cyclic summand in $\tilde{\omega}_{2n+2k}(Y_{2n+2k-1})(\frac{G}{G})$. The preceding construction shows that an extension of f to f''' exists for dimensional reasons.
Since \(n + k \) may be taken odd, \(F \) has only one fixed point, 0. Thus, in the construction, Image \(A_{2n+2k} \) and \(F \) have only 0 in common. But \(f^s'' \) lives on \(F \), so an extension \(f': Y_{2n+2k} K(Z, 2n + 2k) \) exists. The desired extension, \(h \), exists now by dimensional considerations and the following homotopy diagram commutes.

\[
\begin{array}{ccc}
\pi_{2n+2k}(S^{2n+2k}) & \xrightarrow{(e^s \circ g)^*} & \pi_{2n+2k}(Y^s) \\
g^s \downarrow & & \downarrow h^s \\
\pi_{2n+2k}(MU(n)) & \xrightarrow{f^s} & \pi_{2n+2k}(K(Z, 2n + 2k))
\end{array}
\]

Since \(f^s \) carries a generator to nonzero multiple of the generator, \(s_a(u_a) \cdot g \), we see that \(\pi_{2n+2k}(Y^s) \) cannot be finite. By construction, it is cyclic on one generator and this completes the verification of (c ii).

From this diagram, note that \(e^s \) carries \(u_a \) to some multiple of the generator, \(y \), of \(\pi_{2n+2k}(Y^s) \), \(e^s(u_a) = My \). By commutativity, \(M \) divides \(s_a(u_a) \). But if \(\alpha \in n(k) \), \(s_a(u_a) \) is odd; thus \(M \) is odd and (c iv) is verified.

References

Received September 19, 1973.

Suny at Buffalo
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1973 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Kenneth Abernethy, *On characterizing certain classes of first countable spaces by open mappings* .. 319
Ross A. Beaumont and Donald Lawver, *Strongly semisimple abelian groups* 327
Gerald A. Beer, *The index of convexity and parallel bodies* ... 337
Victor P. Camilo and Kent Ralph Fuller, *On Loewy length of rings* 347
Stephen LaVern Campbell, *Linear operators for which T^*T and TT^* commute.* 355
Charles Kam-Tai Chui and Philip Wesley Smith, *Characterization of a function by certain infinite series it generates* .. 363
Allan L. Edelson, *Conjugations on stably almost complex manifolds* 373
Patrick John Fleury, *Hollow modules and local endomorphism rings* 379
Jack Tilden Goodykoontz, Jr., *Connectedness im kleinen and local connectedness in 2^X and $C(X)$* ... 387
Robert Edward Jamison, II, *Functional representation of algebraic intervals* 399
Athanassios G. Kartsatos, *Nonzero solutions to boundary value problems for nonlinear systems* .. 425
Soon-Kyu Kim, Dennis McGavran and Jingyal Pak, *Torus group actions on simply connected manifolds* ... 435
David Anthony Klarner and R. Rado, *Arithmetic properties of certain recursively defined sets* .. 445
Ray Alden Kunze, *On the Frobenius reciprocity theorem for square-integrable representations* ... 465
John Lagnese, *Existence, uniqueness and limiting behavior of solutions of a class of differential equations in Banach space* .. 473
Teck Cheong Lim, *A fixed point theorem for families on nonexpansive mappings* 487
Lewis Lum, *A quasi order characterization of smooth continua* 495
Andy R. Magid, *Principal homogeneous spaces and Galois extensions* 501
Charles Alan McCarthy, *The norm of a certain derivation* .. 515
Louise Elizabeth Moser, *On the impossibility of obtaining $S^2 \times S^1$ by elementary surgery along a knot* ... 519
Gordon L. Nipp, *Quaternion orders associated with ternary lattices* 525
Anthony G. O’Farrell, *Equiconvergence of derivations* ... 539
Dorte Olesen, *Derivations of AW*-algebras are inner* ... 555
Dorte Olesen and Gert Kjærgaard Pedersen, *Derivations of C*-algebras have semi-continuous generators* ... 563
Duane O’Neill, *On conjugation cobordism* ... 573
Chull Park and S. R. Paranjape, *Probabilities of Wiener paths crossing differentiable curves* .. 579
Edward Ralph Rozema, *Almost Chebyshev subspaces of $L^1(\mu; E)$* 585
Lesley Millman Sibner and Robert Jules Sibner, *A note on the Atiyah-Bott fixed point formula* .. 605
Betty Salzberg Stark, *Irreducible subgroups of orthogonal groups generated by groups of root type 1* ... 611
N. Stavvakas, *A note on starshaped sets, (k)-extreme points and the half ray property* .. 627
Carl E. Swenson, *Direct sum subset decompositions of Z* ... 629
Stephen Tefteller, *A two-point boundary problem for nonhomogeneous second order differential equations* ... 635
Robert S. Wilson, *Representations of finite rings* .. 643