A NOTE ON THE ATIYAH-BOTT FIXED POINT FORMULA

Lesley Millman Sibner and Robert Jules Sibner
A NOTE ON THE ATIYAH-BOTT FIXED POINT FORMULA
L. M. SIBNER and R. J. SIBNER

Let f be a holomorphic self map of a compact complex analytic manifold X. The differential of f commutes with $\bar{\partial}$ and, hence, induces an endomorphism of the $\bar{\partial}$-complex of X. If f has isolated simple fixed points, the Lefschetz formula of Atiyah-Bott expresses the Lefschetz number of this endomorphism in terms of local data involving only the map f near the fixed points. For example, if X is a curve, this Lefschetz number is the sum of the residues of $(z - f(z))^{-1}$ at the fixed points.

Using a well-known technique of Atiyah-Bott for computing trace formulas, we shall, in this note, give a direct analytic derivation of the Lefschetz number as a residue formula. The formula is valid for holomorphic maps having isolated, but not necessarily simple fixed points.

1. Let E be the $\bar{\partial}$-complex of a compact complex analytic manifold X of dimension n.

$$E: 0 \longrightarrow \Gamma(A^{0,0}) \xrightarrow{\bar{\partial}} \Gamma(A^{0,1}) \longrightarrow \cdots \xrightarrow{\bar{\partial}} \Gamma(A^{0,n}) \longrightarrow 0.$$ Since E is elliptic, $H^i(X) = \ker \bar{\partial}/\text{im} \bar{\partial}_{i-1}$ is finite dimensional. Denote by $T = \{T_i\}$ the endomorphism induced on E by the holomorphic map f, and by $H^i T$ the resulting endomorphism on $H^i(X)$.

The Lefschetz number of f is then defined by

$$L(f) = \sum_{i=0}^{n} (-1)^i tr H^i T$$

and the finite dimensionality of the spaces $H^i(X)$ insures that this number is finite.

The Atiyah-Bott method of computing trace formulas reduces the problem of calculating $L(f)$ to that of finding a good parametrix for the $\bar{\partial}$-operator. In fact, let us suppose we can find operators $P_i: \Gamma(A^{0,i}) \to \Gamma(A^{0,i-1})$, $i = 1, \cdots, n$, having the property that

$$P_{i+1} \bar{\partial}_i + \bar{\partial}_{i-1} P_i = I - S_i \quad (1)$$

where $S_i: \Gamma(A^{0,i}) \to \Gamma(A^{0,i})$ are integral operators with sufficiently smooth kernels. Observe that if $\omega \in \Gamma(A^{0,i})$ is in the kernel of $\bar{\partial}_i$, then the left-hand side of (1) is a co-boundary. Hence, $H^i I - H^i S$ is the zero-endomorphism on homology. Similarly, since T commutes
with \(\bar{\partial} \)

\[
T_i(P_{t+1}\bar{\partial}_t + \bar{\partial}_{t-1}P_t) = T_iP_{t+1}\bar{\partial}_t + \bar{\partial}_{t-1}T_iP_t = T_i - T_iS_t
\]

so that \(H^iT = H^iTS \). Therefore,

\[
L(f) = \sum_{i=0}^{n} (-1)^i trH^i(TS).
\]

The generalized alternating sum formula of Atiyah-Bott says that the alternating sum of traces is the same on the chain level as on the homology level; that is,

\[
L(f) = \sum_{i=0}^{n} (-1)^i trH^i(TS) = \sum_{i=0}^{n} (-1)^i trT_iS_t
\]

provided the right-hand side is finite. This will be the case if the kernels of the operators \(S_t \) are sufficiently smooth along the graph of \(f \).

To carry out the above procedure and evaluate \(L(f) \) we make an explicit choice of the operators \(P_t \).

2. The most natural way to choose a parametrix on \(X \) is to glue together the local fundamental solutions of the \(\bar{\partial} \)-operator using partitions of unity. Given any finite open covering \(\{U_a\} \) of \(X \), there are, in each \(U_a \), integral operators \(Q_{a,i}: \Gamma(A^{0,i}(U_a)) \to \Gamma(A^{0,i-1}(U_a)) \) \(i = 1, \ldots, n \) such that for \(\omega \in C_0^\infty(U_a) \)

\[
\bar{\partial}Q_{a,i}(\omega) = \omega - Q_{a,i+1}(\bar{\partial}\omega)
\]

\[
(Q_{a,i}\omega)(z^a) = \int_{U_a} \omega(\zeta^a) \wedge \Omega_i(z^a, \zeta^a)
\]

where \(\Omega_i(z^a, \zeta^a) \in \Gamma(A^{0,i-1}(U_a) \otimes A^{n,n-i}(U_a)) \) is a \(C^\infty \)-section off the diagonal and has an absolutely integrable singularity.

Let \(\Omega(z^a, \zeta^a) = \sum_{i=1}^{n} (-1)^i \Omega_i(z^a, \zeta^a) \). This is an \((n, n-1)\) form on \(U_a \times U_a \) satisfying

\[
\bar{\partial}\Omega = 0.
\]

For a detailed study of Cauchy-Fantappié forms see Koppelman [2], Lieb [3], Øvrelid [4]. An explicit expression for \(\Omega \) appears near the end of § 3.

Suppose \(f \) has \(m \) isolated fixed points, \(P_1, \ldots, P_m \). Let \(U_k \) be a coordinate neighborhood containing \(P_k \), chosen so that the sets \(U_k \) are mutually disjoint. Let \(N_k \) be a neighborhood of \(P_k \), sufficiently small so that \(f^{-1}(N_k) \subset U_k \) (\(f \) is continuous and \(f(P_k) = P_k \)). The collection \(U_1, \ldots, U_m \) can be extended to a covering \(\{U_a\} \) and a partition of unity \(\{\lambda_a\} \) subordinate to this covering can be chosen such
that (for \(k = 1, \ldots, m \))

(i) \(\text{supp} \lambda_k \subseteq N_k \)

(ii) \(\lambda_k = 1 \) in a neighborhood of \(P_k \).

Then \(\text{supp} \lambda_k \circ f \subseteq f^{-1}(N_k) \subseteq U_k \) and \(\lambda_k \circ f = 1 \) in some (other) neighborhood of \(P_k \).

Now choose nonnegative functions \(\sigma_a \in C_0^\infty(U_a) \) such that

(iii) \(\sigma_a = 1 \) on \(\text{supp} \lambda_a \alpha \neq 1, \ldots, m \)

(iv) \(\sigma_a = 1 \) on \(\{ \text{supp} \lambda_a \} \cup \{ \text{supp} \lambda_a \circ f \} \alpha = 1, \ldots, m \).

Define \(P_i : \Gamma(A^{0,1}) \rightarrow \Gamma(A^{0,1}) \) by

(5) \[
P_i \omega = \sum_a \lambda_a Q_{a,i}(\alpha_a \omega) \quad i = 1, \ldots, n
\]

\(P_i \omega = 0 \).

From (4a) we obtain

(6) \[
\bar{\partial} P_i \omega + P_{i+1} \bar{\partial} \omega = \omega + \sum_a \bar{\partial} \lambda_a Q_{a,i}(\alpha_a \omega) - \sum_a \lambda_a Q_{a,i+1}(\partial \sigma_a \land \omega)
\]

\[
= \omega - S_i \omega \quad i = 0, \ldots, n
\]

where

\[
S_i \omega(z) = - \sum_a \bar{\partial} \lambda_a(z) \int_{U_a} \sigma_a(\zeta) \omega(\zeta) \land \Omega_i(z, \zeta)
\]

\[
+ \sum_a \lambda_a(z) \int_{U_a} \partial \sigma_a(\zeta) \land \omega(\zeta) \land \Omega_{i+1}(z, \zeta).
\]

(We consistently suppress the coordinate superscript when possible: writing, for example, \(\sigma_a(\zeta) \) for \(\sigma_a(\zeta_0) \).)

3. Because of the construction of the covering and the patching functions, the kernel of \(S_i \) is smooth in a neighborhood of the graph of \(f \). In fact, if \(\alpha > m \), then \(f \) has no fixed points in \(U_a \) and therefore, \(\zeta - f(\zeta) \) is bounded away from zero so that \(\Omega_i(f(\zeta), \zeta) \) is a \(C^\infty \)-function in \(U_a \). Furthermore, in \(U_k, k \leq m \), we have chosen \(\lambda_k \) so that \(\lambda_k(f(\zeta)) = 1 \) in a neighborhood of \(P_k \). Then, \(\bar{\partial} \lambda_k(f(\zeta)) = 0 \) near \(\zeta = f(\zeta) \). Also, since \(\sigma_a(\zeta) = 1 \) on the support of \(\lambda_a(f(\zeta)) \), we have \(\bar{\partial} \sigma_a(\zeta) = 0 \) near \(\zeta = f(\zeta) \). Thus, the kernel of \(S_i \) may be evaluated along the graph of \(f \) to obtain:

\[
\sum_a (-1)^i tr(T_i S_i) = \sum_a \left\{ \sum_i (-1)^{i+1} \int_{U_a} \bar{\partial} \lambda_a(f(\zeta)) \land \sigma_a(\zeta) \Omega_i(f(\zeta), \zeta) \right\}
\]

\[
+ \sum_a \left\{ \sum_i (-1)^i \int_{U_a} \lambda_a(f(\zeta)) \bar{\partial} \sigma_a(\zeta) \land \Omega_{i+1}(f(\zeta), \zeta) \right\}
\]

\[
= - \sum_a \int_{U_a} \bar{\partial} \lambda_a(f(\zeta)) \sigma_a(\zeta) \land \sum_i (-1)^i \Omega_i(f(\zeta), \zeta)
\]

from which
In U_a, for $\alpha > m$, f has no fixed points. Using (4c), integrating by parts, and making use of the fact that σ_α has compact support in U_a, we have

$$
\int_{U_a} \delta(\lambda_\alpha(f(\zeta))\sigma_\alpha(\zeta)) \land \Omega(f(\zeta), \zeta) = \int_{U_a} \delta(\lambda_\alpha(f(\zeta))\sigma_\alpha(\zeta)\Omega(f(\zeta), \zeta))
$$

$$
= \int_{U_a} \lambda_\alpha(f(\zeta))\sigma_\alpha(\zeta)\Omega(f(\zeta), \zeta) = 0 .
$$

For $\alpha = k \leq m$, let B_k be a ball around P_k on which $\lambda_k(f(\zeta)) \equiv 1$. Since $\sigma_k(\zeta) \equiv 1$ on the support of $\lambda_k(f(\zeta))$,

$$
L(f) = - \sum_{k=1}^{\infty} \int_{B_k} \delta(\lambda_k(f(\zeta))\sigma_k(\zeta)) \land \Omega(f(\zeta), \zeta) = \sum_{k=1}^{\infty} \int_{B_k} \lambda_k(f(\zeta))\Omega(f(\zeta), \zeta)
$$

Using local coordinates in B_k, let $g_i(\zeta^k) = \zeta_i^k - f_i(\zeta^k)$, $i = 1, \ldots, n$. Then, for $n > 1$,

$$
\Omega(z^k, \zeta^k) = \frac{(n-1)!}{(2\pi i)^n} \left| \zeta^k - z^k \right|^{-2n} \sum_{i=1}^{n} (-1)^{i+1} \zeta_i^k \wedge \frac{d\zeta_j^k - d\zeta_j^k}{\zeta_j^k - f(\zeta_j^k)}
$$

and

$$
L(f) = \frac{(n-1)!}{(2\pi i)^n} \sum_{k=1}^{n} \int_{B_k} (\Sigma |g_i^k|^2)^{-n} \sum_{i=1}^{n} (-1)^{i+1} g_i^k \wedge \frac{d\zeta_i^k}{\zeta_i^k - f(\zeta_i^k)}
$$

which is the desired formula.

For $n = 1$, $\Omega(z^k, \zeta^k) = (1/2\pi i)(d\zeta^k/\zeta^k - z^k)$ and

$$
L(f) = \frac{1}{2\pi i} \sum_{k=1}^{m} \int_{B_k} \frac{d\zeta^k}{\zeta^k - f(\zeta^k)} = \sum_{f(\zeta) = \zeta} \text{Res}(\zeta - f(\zeta))^{-1} .
$$

Note. Other proofs of this result have recently been given by Toledo [5] and Tong [6] using different techniques.

References

Received May 29, 1973. The first author was supported in part by National Science Foundation grant GP-27960. The second author was supported in part by National Science Foundation grant GP-7952X3.

The Institute for Advanced Study

Current addresses:
L. M. Sibner
Polytechnic Institute of New York
Brooklyn, NY 11201
R. J. Sibner
City University of New York
Brooklyn College
Brooklyn, NY 11210
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1973 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>On characterizing certain classes of first countable spaces by open mappings</td>
<td>Kenneth Abernethy</td>
<td>319</td>
</tr>
<tr>
<td>Strongly semisimple abelian groups</td>
<td>Ross A. Beaumont and Donald Lawver</td>
<td>327</td>
</tr>
<tr>
<td>The index of convexity and parallel bodies</td>
<td>Gerald A. Beer</td>
<td>337</td>
</tr>
<tr>
<td>On Loewy length of rings</td>
<td>Victor P. Camillo and Kent Ralph Fuller</td>
<td>347</td>
</tr>
<tr>
<td>Linear operators for which T^T and $TT^$ commute.</td>
<td>Stephen LaVern Campbell</td>
<td>355</td>
</tr>
<tr>
<td>Characterization of a function by certain infinite series it generates</td>
<td>Charles Kam-Tai Chui and Philip Wesley Smith</td>
<td>363</td>
</tr>
<tr>
<td>Conjugations on stably almost complex manifolds</td>
<td>Allan L. Edelson</td>
<td>373</td>
</tr>
<tr>
<td>Hollow modules and local endomorphism rings</td>
<td>Patrick John Fleury</td>
<td>379</td>
</tr>
<tr>
<td>Connectedness im kleinen and local connectedness in 2^X and $C(X)$</td>
<td>Jack Tilden Goodykoontz, Jr.</td>
<td>387</td>
</tr>
<tr>
<td>Functional representation of algebraic intervals</td>
<td>Robert Edward Jamison, II</td>
<td>399</td>
</tr>
<tr>
<td>Nonzero solutions to boundary value problems for nonlinear systems</td>
<td>Athanassios G. Kartsatos</td>
<td>425</td>
</tr>
<tr>
<td>Torus group actions on simply connected manifolds</td>
<td>Soon-Kyu Kim, Dennis McGavran and Jingyal Pak</td>
<td>435</td>
</tr>
<tr>
<td>Arithmetic properties of certain recursively defined sets</td>
<td>David Anthony Klarner and R. Rado</td>
<td>445</td>
</tr>
<tr>
<td>On the Frobenius reciprocity theorem for square-integrable</td>
<td>Ray Alden Kunze</td>
<td>465</td>
</tr>
<tr>
<td>Existence, uniqueness and limiting behavior of solutions of a class of differential equations in Banach space</td>
<td>John Lagnese</td>
<td>473</td>
</tr>
<tr>
<td>A fixed point theorem for families on nonexpansive mappings</td>
<td>Teck Cheong Lim</td>
<td>487</td>
</tr>
<tr>
<td>A quasi order characterization of smooth continua</td>
<td>Lewis Lum</td>
<td>495</td>
</tr>
<tr>
<td>Principal homogeneous spaces and Galois extensions</td>
<td>Andy R. Magid</td>
<td>501</td>
</tr>
<tr>
<td>The norm of a certain derivation</td>
<td>Charles Alan McCarthy</td>
<td>515</td>
</tr>
<tr>
<td>On the impossibility of obtaining $S^2 \times S^1$ by elementary surgery along a knot</td>
<td>Louise Elizabeth Moser</td>
<td>519</td>
</tr>
<tr>
<td>Quaternion orders associated with ternary lattices</td>
<td>Gordon L. Nipp</td>
<td>525</td>
</tr>
<tr>
<td>Equiconvergence of derivations</td>
<td>Anthony G. O’Farrell</td>
<td>539</td>
</tr>
<tr>
<td>Derivations of AW*-algebras are inner</td>
<td>Dorte Olesen</td>
<td>555</td>
</tr>
<tr>
<td>Derivations of C*-algebras have semi-continuous generators</td>
<td>Dorte Olesen and Gert Kjærgaard Pedersen</td>
<td>563</td>
</tr>
<tr>
<td>On conjugation cobordism</td>
<td>Duane O’Neill</td>
<td>573</td>
</tr>
<tr>
<td>Probabilities of Wiener paths crossing differentiable curves</td>
<td>Chull Park and S. R. Paranjape</td>
<td>579</td>
</tr>
<tr>
<td>Almost Chebyshev subspaces of $L^1(\mu; E)$</td>
<td>Edward Ralph Rozema</td>
<td>585</td>
</tr>
<tr>
<td>A note on the Atiyah-Bott fixed point formula</td>
<td>Lesley Millman Sibner and Robert Jules Sibner</td>
<td>605</td>
</tr>
<tr>
<td>Irreducible subgroups of orthogonal groups generated by groups of root type 1</td>
<td>Betty Salzberg Stark</td>
<td>611</td>
</tr>
<tr>
<td>A note on starshaped sets, (k)-extreme points and the half ray property</td>
<td>N. Stavrakas</td>
<td>627</td>
</tr>
<tr>
<td>Direct sum subset decompositions of Z</td>
<td>Carl E. Swenson</td>
<td>629</td>
</tr>
<tr>
<td>A two-point boundary problem for nonhomogeneous second order</td>
<td>Stephen Tefteller</td>
<td>635</td>
</tr>
<tr>
<td>Representations of finite rings</td>
<td>Robert S. Wilson</td>
<td>643</td>
</tr>
</tbody>
</table>