A NOTE ON STARSHAPED SETS, (k)-EXTREME POINTS AND THE HALF RAY PROPERTY

N. STAVRAKAS
A NOTE ON STARSHAPED SETS, \((k)-\)EXTREME POINTS AND THE HALF RAY PROPERTY

N. STAVRAKAS

Let \(S\) be a compact subset of \(\mathbb{R}^d\), \(d \geq 2\). \(S\) is said to have the half-ray property if for each point \(x\) of the complement of \(S\) there exists a half line with \(x\) as vertex having empty intersection with \(S\). It is proven that \(S\) is starshaped if \(S\) has the half-ray property and the intersection of the stars of the \((d-2)\)-extreme points is not empty.

Let \(S \subset \mathbb{R}^d\). We say \(x \in S\) is a \((k)\)-extreme point of \(S\) provided for every \(k+1\) dimensional simplex \(D \subset S\), \(x \notin \text{relint } D\) where relint \(D\) denotes the interior of \(D\) relative to the \(k+1\) dimensional space \(D\) generates. If \(y \in S\) the symbol \(S(y)\) is defined as \(S(y) = \{z \mid z \in S\text{ and }[yz] \subset S\}\), where \([yz]\) denotes the closed line segment from \(y\) to \(z\). The symbol \(E(S)\) denotes the set of all \((d-2)\)-extreme points of \(S\). We say \(S\) is starshaped if \(\ker S = \emptyset\), where \(\ker S = \bigcap_{y \in S} S(y)\).

In [1] the following is proved:

Theorem 1. Let \(S \subset \mathbb{R}^d\), \(d \geq 2\), be compact and starshaped. Then \(\ker S = \bigcap_{x \in E(S)} S(x)\).

Theorem 1 certainly yields information about the structure of a starshaped set but at the same time raises several questions. First, has Theorem 1 a converse? Specifically, given that \(\bigcap_{x \in E(S)} S(x) = \emptyset\), under what hypothesis will \(S\) be starshaped? Secondly, can the hypothesis of starshaped be replaced with a seemingly more general hypothesis? We answer the latter question in Theorem 2.

Definition 1. Let \(S \subset \mathbb{R}^d\) and let \(S^c\) be the complement of \(S\). We say \(S\) has the half-ray property if and only if for every \(x \in S^c\) there exists a half line \(l\) with \(x\) as vertex such that \(l \cap S = \emptyset\).

Theorem 2. Let \(S \subset \mathbb{R}^d\), \(d \geq 2\), be compact and suppose \(\bigcap_{x \in E(S)} S(x) = \emptyset\). Then the following are equivalent:

1. \(S\) has the half-ray property.
2. \(\ker S = \bigcap_{x \in E(S)} S(x)\).

Since for any starshaped set \(S\), \(S\) has the half-ray property and \(\bigcap_{x \in E(S)} S(x) = \emptyset\), the implication (1) \(\implies\) (2) generalizes Theorem 1. Further, the implication (1) \(\implies\) (2) is a type of converse since we assume \(\bigcap_{x \in E(S)} S(x) = \emptyset\) and obtain as a conclusion, rather than a hypothesis, that \(S\) is starshaped. As a corollary to Theorem 2,
we obtain a new characterization for starshaped sets.

COROLLARY 1. Let \(S \subset \mathbb{R}^d \), \(d \geq 2 \), be compact. Then the following are equivalent:

1. \(S \) is starshaped.
2. \(\bigcap_{x \in E(S)} S(x) \neq \emptyset \) and \(S \) has the half-ray property.

2. Proof of Theorem 2. In the proof the symbol \(\| \| \) denotes the Euclidean norm and the symbol \([ab_\infty)\) denotes the half line determined by the points \(a \) and \(b \) with \(a \) as vertex.

(2) \(\Rightarrow \) (1). This follows immediately since any starshaped set has the half-ray property.

(1) \(\Rightarrow \) (2). Let \(y \in \bigcap_{x \in E(S)} S(x) \) and we show \(y \in \text{Ker} \ S \). Suppose \(y \not\in \text{Ker} \ S \). Then there exists \(z \in S \) such that \([yz] \not\subset S \). Let \(a \in [yz] \sim S \). Without loss of generality, suppose \(a \) is the origin, \(O \). By hypothesis there exists a half line \(l = [0,b_\infty) \) with \([0,b_\infty) \cap S = \emptyset \). Let \(Q \) be the two dimensional subspace spanned by \(y \) and \(b \). Now rotate \(l \) in \(Q \) so that the angle between \(l \) and \([0,z_\infty) \) (which is already less than \(\pi \)) decreases. Cease the rotation when \(S \) is intersected and let the rotated half line be \(l^* \). Note \(l^* \cap S \) is compact and hence \(\theta = \sup \{ \| x \| : x \in l^* \cap S \} \) exists. Let \(x \in l^* \cap S \) be such that \(\| x \| = \theta \). We claim \(x \in E(S) \). Suppose not. Then \(x \in \text{relint} \ D \) where \(D \) is a \(d-1 \) dimensional simplex in \(S \). Since \(x \in D \cap Q \), \(\dim (D \cap Q) \geq 1 \). For each \(z \in D \), \(z \neq x \) let \([zze_\infty) \cap D \) be \([ze_\infty) \) and note \(x \in (ze_\infty) \). Let \(w \in D \cap Q \), \(w \neq x \). Note \([we_\infty) \subset Q \). Now, if \([we_\infty) \subset l^* \), we contradict the definition of \(x \) since \(x \in (we_\infty) \) and if \([we_\infty) \not\subset l^* \), we contradict the definition of \(l^* \). Thus, \(x \in E(S) \). Then \([xy] \subset S \) and this contradicts the definition of \(l^* \). Thus, \(y \in \text{Ker} \ S \) and we are done.

In conclusion, we remark that a triangle in \(E^2 \) is an example of a nonstarshaped set for which \(\bigcap_{x \in E(S)} S(x) \neq \emptyset \) and which does not have the half-ray property. The latter shows that in the implication (1) \(\Rightarrow \) (2) of Theorem 2 the hypothesis of \(S \) having the half-ray property cannot be deleted.

The author wishes to thank the referee for many helpful suggestions.

Reference

Received November 9, 1973.

University of North Carolina at Charlotte
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY
UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

* * *

AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

OSAKA UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific of Journal Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1973 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Kenneth Abernethy, On characterizing certain classes of first countable spaces by open mappings 319
Ross A. Beaumont and Donald Lawver, Strongly semisimple abelian groups 327
Gerald A. Beer, The index of convexity and parallel bodies 337
Victor P. Camillo and Kent Ralph Fuller, On Loewy length of rings 347
Stephen La Vern Campbell, Linear operators for which T^*T and TT^* commute. III 355
Charles Kam-Tai Chui and Philip Wesley Smith, Characterization of a function by certain infinite series it generates 363
Allan L. Edelson, Conjugations on stably almost complex manifolds 373
Patrick John Fleury, Hollow modules and local endomorphism rings 379
Jack Tilden Goodykoontz, Jr., Connectedness im kleinen and local connectedness in 2^X and $C(X)$... 387
Robert Edward Jamison, II, Functional representation of algebraic intervals 399
Athanassios G. Kartsatos, Nonzero solutions to boundary value problems for nonlinear systems .. 425
Soon-Kyu Kim, Dennis McGavran and Jingyal Pak, Torus group actions on simply connected manifolds .. 435
David Anthony Klarner and R. Rado, Arithmetic properties of certain recursively defined sets .. 445
Ray Alden Kunze, On the Frobenius reciprocity theorem for square-integrable representations .. 465
John Lagnese, Existence, uniqueness and limiting behavior of solutions of a class of differential equations in Banach space 473
Teck Cheong Lim, A fixed point theorem for families on nonexpansive mappings 487
Lewis Lum, A quasi order characterization of smooth continua 495
Andy R. Magid, Principal homogeneous spaces and Galois extensions 501
Charles Alan McCarthy, The norm of a certain derivation .. 515
Louise Elizabeth Moser, On the impossibility of obtaining $S^2 \times S^1$ by elementary surgery along a knot .. 519
Gordon L. Nipp, Quaternion orders associated with ternary lattices 525
Anthony G. O’Farrell, Equiconvergence of derivations .. 539
Dorte Olesen, Derivations of AW^*-algebras are inner .. 555
Dorte Olesen and Gert Kjærgaard Pedersen, Derivations of C^*-algebras have semi-continuous generators .. 563
Duane O’Neill, On conjugation cobordism .. 573
Chull Park and S. R. Paranjape, Probabilities of Wiener paths crossing differentiable curves .. 579
Edward Ralph Rozema, Almost Chebyshev subspaces of $L^1(\mu; E)$ 585
Lesley Millman Sibner and Robert Jules Sibner, A note on the Atiyah-Bott fixed point formula .. 605
Betty Salzberg Stark, Irreducible subgroups of orthogonal groups generated by groups of root type 1 .. 611
N. Stavrakas, A note on starshaped sets, (k)-extreme points and the half ray property .. 627
Carl E. Swenson, Direct sum subset decompositions of Z 629
Stephen Tefteller, A two-point boundary problem for nonhomogeneous second order differential equations .. 635
Robert S. Wilson, Representations of finite rings .. 643