A result of blax Zorn states
that if a Lie ring satisfies the maximal condition for subrings and if each
element is a bounded left Engel element then the Lie ring is nilpotent. The
purpose of this paper is to extend this result to Lie rings satisfying the general
Engel condition and with no infinite strictly ascending chains of abelian
smbrings. A similar result was obtained by I. N. Stewart for locally nilpotent Lie
algebras.