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This article deals with existence and extension theorems
for continuous positive linear forms, dominated by hypolinear
functionals, i.e., sublinear functionals which may attain the
value -foo.

It is proved that a hypolinear functional dominates a
continuous positive linear form if and only if its largest
increasing and hypolinear minorant exists and is lower semi-
continuous at the origin. Conditions are given which imply
that any increasing hypolinear functional is lower semicon-
tinuous at the origin.

Introduction* This is the second article (cf. [1]) dealing with
Hahn-Banach type theorems for hypolinear functionals (i.e., sublinear
functionals which may attain the value +oo). It contains part of
the results announced in [2].

Here we are concerned with existence and extension theorems for
continuous positive linear forms on a locally convex space E, preordered
by a (pointed convex) cone C.

Throughout this paper, hypolinear functionals are defined on
vector spaces rather than cones. By [1, 1.3(3)], this restriction means
no loss of generality. As any vector space may be considered as a
preordered vector space with equality as order relation, this article
generalizes in particular the results of [1, §l-§3].

Any linear form dominated by an increasing hypolinear functional
is positive. On the other hand, the upper envelope of any nonempty-
set of positive linear forms on E is an increasing hypolinear func-
tional.

These two facts suggest to replace a given hypolinear functional
p on E by its largest increasing minorant p, and then to apply the
results of [1], provided that p is also a hypolinear functional. By
this procedure, we obtain from theorems on arbitrary linear forms
corresponding results for positive linear forms.

After a preliminary first chapter dealing with elementary
properties of increasing hypolinear functionals we prove in § 2 that
a hypolinear functional p dominates a continuous positive linear form
if and only if its largest increasing minorant p is hypolinear and
lower semicontinuous at the origin.

In § 3, we study theorems on the extension of linear forms defined
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14 BERND ANGER AND JORN LEMBCKE

on a subspace of E to continuous positive linear forms on E. In
Theorem 3.4 an additional domination condition is imposed. We
use this result to give an alternative proof for a dominated extension
theorem of H. Bauer.

The hypolinear functional which is 0 at the origin and + ^
elsewhere dominates every linear form. Therefore, we may apply
our results on dominated extension in order to obtain new proofs for
extension theorems without domination condition, due to Bauer,
Namioka, and Hustad.

In Theorem 4.1, we prove that a numerical function on a
preordered locally convex space is the upper envelope of a family of
continuous positive linear forms if and only if it is a lower semi-
continuous increasing hypolinear functional.

Relations between topology and order structure which ensure that
any increasing hypolinear functional is lower semicontinuous at the
origin are investigated in § 5.

The last chapter deals with a general type of sandwich theorems.
In particular, we generalize a theorem of one of the authors on the
existence of positive simultaneous inverse images of linear forms and
give a new proof for the theorem of Mazur-Orlicz.

l Preliminaries* Unless otherwise stated, we shall assume
throughout this paper that E is a real locally convex topological
vector space and that C is a (pointed convex) subcone of E, i.e.,
xu x2eC and λlf λ2 ^ 0 imply λ ^ + X2x2 e C.

If E is only an algebraic vector space, then it shall be under-
stood that E is endowed with the finest locally convex topology.

Let <̂  denote the preorder relation defined on E by C (i.e., x^y
for x, y eE if and only if y — xe C).

NOTATIONS 1.1.

( 1 ) O co = oo O = O ( - o o ) = (-oo) .O = 0.

( 2 ) inf {x:xe 0 } = +oo.
( 3 ) For i = 1, 2 let ft be a numerical function on a set Xt.
If Xx = X2 and fx(x) ^ fz(x) for all x e X19 we write f, ^ /2 and

say that f2 dominates fλ (/Ί is /2-dominated).
If X is a subset of Xλ f] X2> we denote by ft \ X the restriction

of ft to X, and say that /2 dominates ft on X, lί ft\XύfA X

As in [1, Definition 1.1] we introduce the notion of a hypolinear
functional:

DEFINITION 1.2. A numerical function p:E—*R is called a hypo-
linear functional, if

(1) p(x) > -oo (xeE).



HAHN-BANACH TYPE THEOREMS 15

( 2 ) p is subadditive:

p(x + y) ^ p(x) + p{y) (x, y e E) .

( 3 ) >̂ is positively homogeneous:

p(\x) = Xp(x) (x e E, λ ^ 0) .

If in addition p is finite, p is called a sublinear functional.

DEFINITION 1.3. For any numerical function / on E we define
the numerical functions /, /, and / on E by

f(x) = lim inf f(y) ,
y-+x

f(x) = inf f(y)

and

f(x) = f(~x) .

/ is called the regularized of / with respect to the cone C.

A numerical function / on a subset F of E is said to be increasing

(with respect to C) if and only if x, y e F and x^y imply f(x) ύfiv)-

f is called decreasing if — / is increasing.

/ is called positive if f(x) ^ 0 for every xeC f] F.

The following lemma is easily proved.

LEMMA 1.4. (1) /// and g are numerical functions on E such
that f S g, then

f Sg and f ^ g .

(2) Let C be a cone in E containing C and f a numerical
function on E.

Then f ^ /', where / ' denotes the regularized of f with respect
to the cone G\

If a numerical function on E is positive, increasing, or decreas-
ing with respect to C, then it has the same property with respect
to C.

LEMMA 1.5. For any numerical function f on E we have:

(1) f is the largest lower semicontinuous minorant of f, and

/ = /. / is lower semicontinuous at a point xe E if and only if

f(χ)=f(χk .

(2) f is the largest minorant of f which is increasing, more-

over f = /. f is increasing if and only if f' = f.
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(3) f is increasing and / = / — /. f is the largest lower semi-
continuous increasing minor ant of /. For xe E

f(x) = sup ( inf f(y)) ,
UeUίO) y ex-rU^-C

where 11(0) denotes the system of neighborhoods of 0.

(4) f is increasing if and only if f is decreasing. Further-

more f = f.

Proof. (1) is well known.
(2) and (4) are obvious.
(3) By (1), (2), and Lemma 1.4(1), any increasing and lower

semicontinuous minorant of / is dominated by /. / is lower semi-
continuous, by (1). Moreover, we have for xeE,

f(x) = sup [ inf (inf f(z + c))]
C e l l ( 0 ) z e x + U c e C

= sup ( inf f(y)) .
ί7eU(0) y ex^-ϋ + C

Hence / is also increasing, and therefore / is the largest lower semi-
continuous and increasing minorant of /.

This implies

By L4(l), f^f implies / ^ / , and f^f implies f = f^f. Hence

/ = /.

REMARK 1.6. We shall see in Example 1.11(3) that in general

/ need not be lower semicontinuous, i.e., / and/ need not coincide, even

if /, /, /, / ,and / are hypolinear f unctionals.

LEMMA 1.7. A hypolinear functional p on E is increasing if
and only if

p(x) 5g 0 for every xe —C .

Proof. If p is increasing and xe — C, then p{x) S vΦ) — 0.
Conversely, if p{x) <£ 0 for every xe—C, then we have for

y, zeE with z^ y

p{y) = p(z + (y - z)) ^ p(z) + p(y - z) ^ p(z) .

GOROLLARY 1.8. If p is an increasing hypolinear functional
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on E, then any p-dominated hypolinear functional (linear form) q
on a subs pace F of E is increasing (positive).

Proof. For x e — C n F we have

q(x) ̂  p(x) ^ 0 .

Hence, by 1.7, q is increasing. If q is a linear form, this implies
the positivity of q.

LEMMA 1.9. Let p be a hypolinear functional on E.
Then p: E —* R (cf. Definition 1.3) is an increasing hypolinear

functional if and only if p does not attain the value — °°.
A linear form (a hypolinear functional) f on Έ is p-dominated

and positive (increasing) if and only if it is p-dominated.

Proof. It is clear from the definition that p is increasing and
subadditive and that p(Xx) = Xp(x) for x e E, λ > 0. If p does not
attain — co, then

- oo < 2p(0) - p(Q) ̂  p(0) = 0 ,

hence p(0) ~ 0. Therefore, in this case p is a hypolinear functional.
The converse implication is trivial.

If / is p-dominated, then / is positive (increasing), by 1.8. If /
is increasing and p-dominated, then for x, y e E with y ^ x

f(χ) ^ f(y) £ P(y) ,

hence

f(x) £ V(x)

As any positive linear form is increasing, this proves that lemma.

REMARK 1.10. Another way to prove the preceding lemma would
be the following:

Let I - {1, 2}, Px = P2 = E, pλ = p and define p2: P2-+R to be 0
on — C and +^o elsewhere. Then pu p2 are hypolinear functional
and p is equal to the numerical function p defined in [1, Lemma 1.5]
thus 1.9 follows from conditions (6) and (5) of [1, Lemma 1.5] and
from 1.7.

Let us now give some examples of increasing hypolinear f unctionals.

EXAMPLES 1.11. (1) Any positive linear form on E is an in-
creasing hypolinear functional.

(2) The upper envelope of any nonempty set of continuous
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positive linear forms on E is a lower semicontinuous increasing
hypolinear functional.

(3) Let p be the hypolinear functional of [1, 1.2(1)], which is
defined to be 0 at the origin and + oo elsewhere.

Then p is an increasing hypolinear functional which is 0 on — C
and + co elsewhere.

Hence p is the lower semicontinuous increasing hypolinear func-
tional which is 0 on the closure — C of — C and + oo elsewhere.

In order to prove Remark 1.6, suppose moreover that E is a
Hausdorff locally convex space. Then p is lower semicontinuous,
hence p = p and p = p. Therefore, p is 0 on — C and -foo elsewhere,
whereas p is 0 on — C and +oo elsewhere. Hence f> and p coincide
if and only if the cone C is closed.

(4) Let I be an index set and let E = R{1) be the vector space
of [1, Example 1.6].

Then the set C = {x = {x%)ίeIeEix^O for all iel} is a cone in
E. Obviously, the hypolinear functional p of [1, Example 1.6], defined
on E by

p(x) = — Σ λ/XiXj for x = (Xi)ieIeC
i , j e j

and by

p(x) = + oo f o r x $ C ,

is decreasing. Hence p is an increasing hypolinear functional on E.

2. Existence of dominated positive linear forms* The following
theorem gives necessary and sufficient conditions for the existence of
continuous positive linear forms dominated by a given hypolinear
functional p. Most of these conditions are formulated in terms of
p. If p is increasing (i.e., p = p), then the theorem is merely a
restatement of [1, Theorem 1.8] in combination with 1.8.

THEOREM 2.1. Let p be a hypolinear functional on E. Then
the following assertions are equivalent:

(1) There exists a p-dominated continuous positive linear form
f on E.

(2) There exists a p-dominated continuous linear form on E.
( 3) There exists a continuous seminorm (sublinear functional)

q on E such that —q is dominated by p.
(4) There is a continuous decreasing sublinear functional q on

E such that —q is dominated by p.
(5 ) There is a continuous seminorm s on E such that xe E and

s(x) ^ 1 imply
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p(y) ;> — 1 for all y >̂ x .

( 6 ) There is a continuous sublinear functional q on E such that
x G E and q(x) <£ 1 imply

p(y) 7> — 1 / o r αM 7/ ̂  x .

( 7 ) p is bounded below in some neighborhood of 0.
(8) There is a neighborhood U of 0 swΛ ί/iαί p is bounded

below on U + C.
(9) p(0) = 0 α^d p is lower semicontinuous at 0.

Proof. (1) and (2) are equivalent by 1.9.
Each of the conditions (2), (3), (5), (7), and (9) implies that p is a

hypolinear functional. So these conditions are equivalent by [1, 1.8],
applied to p.

(1) => (4): We choose q = —/. Then q is a continuous decreasing
sublinear functional on E and — q = f is p-dominated.

(4) => (3): Let x, y e E with y ^ x. Then

^ -q(y) ^ - φ ) ,

hence

p(x) ^ - g(cc) .

Therefore, p dominates —q.
Obviously, (5) implies (6).
(6) => (5): The numerical function s defined on E by

s{x) = sup{gθ), q{~x)}

is a continuous seminorm. For x e E with s(x) ̂  1, we have q(x) ̂  1,
and therefore

p(y) ^ — 1 for every y ^ x .

(8) is only a restatement of (7).

COROLLARY 2.2. Let p be a hypolinear functional and q a
continuous decreasing sublinear functional on E such that —q is
P'dominated.

Then there exists a positive linear form f on E such that

Proof. By step (4) => (3) in the proof of the preceding theorem,
we have —q^p. Therefore, it follows from [1, Corollary 1.9] that
there is a continuous linear form f on E such that —q<^f<^p. By
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Lemma 1.9, / is positive and p-dominated.

3* Extension theorems* We start with a slight formal generali-
zation of a functional defined in [1, cf. 2.1 and 2.2(3)].

DEFINITION 3.1. Let p be a numerical function on E and let /
be a linear form on a subspace F of E.

Then the numerical function pf on E is defined by

pf(x) = inf (p(x + y) - f(y)) .
y e F

LEMMA 3.2. Let p he a hypolinear functional on E andf a linear
form on a subspace F of E.

Then we have pf = (p)f, and we write pf instead of both p} and

Moreover, pf is an increasing hypolinear functional if and only
if Pf does not attain the value — co.

Proof. Let x e E. Then

(V)f{x) = inf [ inf p(z) - f(y)]
yeF z^x+y

= inf [inf (v{z + y)
yeF z^x

= inf [inf (p(z + y) - f(y))] = pf(x) .
z^x yeF

The second part follows from [1, 1.5 (6)] and 1.9.

EXAMPLE 3.3. Let p be the hypolinear functional of Example
1.11(3) which is 0 at the origin and + ©o elsewhere.

Then any hypolinear functional and in particular any linear form
defined on a subspace F of E is p-dominated.

Hence, by Lemma 1.5, any positive linear form on E is p-domi-
nated, and any continuous positive linear form on E is p-dominated.

Let / be a linear form on a subspace F of E. Then pf is equal
to / on F and to + co elsewhere. Hence

pf(x) = inf f(y) (xeE) .
yeF
y^x

Obviously, pf(0) > — co if and only if / is a positive linear form
on F.

THEOREM 3.4. For any hypolinear functional p on E and any
linear form f on a subspace F of E the following assertions are
equivalent:
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(1) / can be extended to a continuous positive linear form on
E which is dominated by p.

(2) / can be extended to a continuous linear form on E
dominated by p.

(3) There exists a continuous seminorm (siώlinear functional)
q on E such that —q is dominated by pf.

(4) There exists a continuous decreasing siώlinear functional
q on E such that —q is dominated by pf.

(5) There is a continuous seminorm (sublinear functional) q
on E such that xeE and q{x) ̂  1 imply

p(z + y) — f(y) ^ — 1 for every y e F and every z Ξ> x .

(6) The mapping pf is bounded below in some neighborhood
of 0.

(7) There is a neighborhood U of 0 such that pf is bounded
below on U + C.

(8) P/(0) = 0 and pf is lower semicontinuous at 0.
(9) There is a neighborhood U of 0 such that the set

{p{z — y) + f(y): y e F, ze U + C) is bounded below.

Proof. (1) and (2) are equivalent by 1.9.
In each of the Cases (3)-(8), pf is a hypolinear functional by [1,

2.2(1)]. Therefore, (3), (4), (5), (6), (7), (8) are respectively equivalent
to conditions (3), (4), (5 and 6), (7), (8), (9) of 2.1, applied to pf, hence
(3)-(8) are equivalent by 2.1. (9) is a restatement of (7).

In each of the Gases (2) and (3), p is a hypolinear functional.
So the equivalence of these conditions follows from [1, Theorem 2.4],

The following extension theorem is due to Bauer [3, Hauptsatz
1 and Bemerkung, p. 181f.].

THEOREM 3.5 (Bauer). Let p Ξ> 0 be a continuous sublinear
functional on E and f a linear form on a subspace F of E. Let
V= {xeE:p(~x) £ 1}.

Then f can be extended to a p-dominated continuous positive
linear form g on E if and only if

f(y) ^ - 1 for every y e F Π (V + G) .

Proof. (1) If g is a p-dominated continuous positive linear
extension of /, then, for every y e F Π (V + C), there is an x e V such
that y ^ x. Hence

f(y) = 9{y) S g{χ) = -g(-χ) ^ -p(-χ) ^ -
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(2) Conversely, suppose

f(y) ^ - 1 for every y e F f) (V + C) .

We shall prove Condition 3.4 (5) for q = p.
Let x e V,ceC, and y e F. Then

p(x + c + y) - /O) ̂  p(c + y) - p(-α)
^ p(c + 3/) - /(?/) - 1 .

Therefore, it is sufficient to show

P(c -V) + f(y) ^ 0 (ceC,yeF).

( i ) If p(c — y) > 0, then a? = (y — c)/p(c - | / ) e F . Hence
y/p(c — y)e F Π (V + C), and therefore

This implies

p(c ~y) + f(y) ^ 0 .

(ii) If p(c — y) — 0, then, for every λ >̂ 0, we have X(y — c) 6 V,
hence λi/ e ί7 Π (V + C), and therefore /(λ#) ̂  — 1. This implies
/(?/) ^ 0? hence

2̂ (c - y) + /(#) ̂  p(c - y) = 0 .

REMARK 3.6. The preceding theorem is no longer true if p is
not supposed to be nonnegative on E.

If we choose E to be the real line and define the sublinear
functional p on E by p(x) = — x, then the linear form / = 0 on the
subspace F = {0} trivially satisfies the condition required in Bauer's
theorem, but there exists no positive p-dominated linear extension
off.

The following two theorems on the existence of continuous positive
linear extensions of linear forms, without any domination conditions
imposed, are respectively due to Bauer [3, Hauptsatz 2] and Namioka
[10, Theorem 4.4], and to Hustad [6, Theorem 2]. We shall give
new proofs for both theorems, using the fact that any linear form
is dominated by the hypolinear functional p of Example 3.3.

THEOREM 3.7 (Bauer-Namioka). Let f be a linear form on a
subspace F of E. There exists a continuous positive linear extension
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of f to E if and only if there exists a neighborhood U of 0 such
that the set f(Ff] (U + C)) is bounded below.

Proof. Let p be the hypolinear functional of Example 3.3 defined
by p(0) — 0 and by p(x) = + oo for x Φ 0. Any linear form on E is
p-dominated. Therefore, the result follows from Theorem 3.4, (1)
and (9).

THEOREM 3.8 (Hustad). A linear form f on a subspace F of E
has a continuous positive linear extension to E if and only if f is
positive with respect to the cone C" = f~~\ϋ) + C.

Proof. The "only if" part being obvious, let us suppose that /
is positive with respect to C".

Let p denote the hypolinear functional on E which is 0 at the
origin and + co elsewhere (cf. 3.3). By 3.4, we have to prove that
pf is bounded below in some neighborhood of 0.

As in Lemma 1.4 (2), we denote by pr

f the regularized of pf

with respect to the cone C". Then p'f ^ pf (1.4 (2)). Hence it is
sufficient to show that p'f is bounded below in some neighborhood
of 0.

Suppose, this is not true. By 3.3, we have for x e E

pr

f{x) = inf {f(y): yeF,y-xeC'}.

Hence/cannot be the 0-form on F. Therefore, there is a yoe F such
that f(y0) - 1.

Let U be a symmetric convex neighborhood of 0. By the
assumption, there is an xve U such that vr

f(xπ) < — 1. Hence there
is a yveF such that f(yσ) < — 1 and yΌ — xσeC. F is the direct
sum of /"̂ (O) and R y0. Hence yΌ — λ^ 0 + vυ for some Xjj^R and
some vhef~ι(ϋ). Then also λ^ 0 — % e C and f(Xuy0) < — 1, hence
λff < — 1. xσe U implies XπyQe U + C. Therefore, also

(λ^o)e U+ C .

As this holds for each symmetric convex neighborhood of 0,
we may conclude —yoeC\ Hence /(—y0) ^ 0, which contradicts

Λ~vo)= - i .

4* Approximation of increasing hypolinear functional^*

THEOREM 4.1. A numerical function p on E is the upper envelope
of a nonempty set of continuous positive linear forms on E if and
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only if p is a lower semicontinuous increasing hypolinear functional.

Proof. Let p be a lower semicontinuous increasing hypolinear
functional. Then, by [1, Corollary 3.6] p is the upper envelope of
all ^-dominated continuous linear forms, each of which is positive,
by 1.8.

The converse implication follows from Example 1.11 (2).

COROLLARY 4.2. Let p be a hypolinear functional on E domi-
nating at least one continuous positive linear form on E.

Then p is the upper envelope of the set of all p-dominated
continuous positive linear forms on E.

Proof. By 1.5(3), p is the largest lower semicontinuous increasing
minorant of p. Hence a continuous positive linear form on E is
p-dominated if and only if it is p-dominated. Therefore, the result
follows from 4.1, applied to the hypolinear functional p.

PROPOSITION 4.3. The upper envelope of the set of all con-
tinuous positive linear forms on E is equal to 0 on —C and to + °°
elsewhere.

Proof. As the linear form / = 0 on E is continuous and positive,
we may apply 4.2 to the hypolinear functional p of Example 1.11(3)
which is 0 at the origin and + °° elsewhere (cf. 3.3).

The following corollary is due to Bauer [3, Satz 2] and Namioka
[10, Theorem 4.1], it follows immediately from 4.3.

COROLLARY 4.4. Let x0 e E. There exists a continuous positive
linear form f on E with f(x0) > 0 if and only if xQ does not belong
to the closure —C of —C.

5* Lower semicontinuity of increasing hypolinear functionals*
Let p be an increasing hypolinear functional on E. Then p — p. In
view of Theorem 2.1 (9) it would be of great interest to find con-
ditions on the locally convex space E and the cone C which imply
that any increasing hypolinear functional on E is lower semicontinuous
at 0.

The similar problem for the continuity of every positive linear
form on E has been treated in some well known theorems (cf. 11,
Chapter 2, 2.17] or [12, Chapter V, 5.5]).

As the lower semicontinuity of any increasing hypolinear func-
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tional on E at 0 would imply the continuity of any positive linear form
on E, we shall investigate the conditions given in these theorems.

The proof of the following theorem is similar to the proof of the
corresponding results in [11] and [12].

THEOREM 5.1. Each of the following two conditions implies that
any increasing hypolinear functional p on E is lower semicontinuous
at 0:

(1) C has nonempty interior C.
(2) E is a metrizable locally convex space of second category

with E = C — C, and C is a complete subcone of E.

Proof. (1) Let ε > 0 and choose x0 e C. Then there is a λ > 0
such that p( — \xQ) > — ε. As p is increasing, we get

p(x) > — ε for every x e — \x0 + C .
o

Moreover, as \x0 e C,

0 e - \x0 + C c - Xx0 + C .

This implies that —Xx0 + C is a neighborhood of 0, hence p is lower
semicontinuous at 0.

(2) As E is metrizable, there exists a countable neighborhood
basis (Un)neN of 0 consisting of closed circled sets such that

Un+1+ Un+1aUn (neN).

By Klee [7] (cf. [11, p. 194]), the sets

V%= Unf]C- Unf]C (neN)

form a neighborhood base of 0.
Now, assume t h a t p is an increasing hypolinear functional on E

which is not lower semicontinuous at 0. Then for every neN there
are elements xn, yne Un Γ) C such t h a t

and hence

Since Un+1 + Un+1aUn for all neN, the sequence (yn)nBN is
summable. Let y — Σ«eiv2/Λ. As C is closed, we have yeC and
y^Vn for all neN. Therefore, we get

p(-y) ^ P(-Vn) ̂  -n ,

hence
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p(-y) = -°° f

which is impossible.

REMARK 5.2. Condition (2) of Theorem 5.1 holds in particular
if E is complete and metrizable, and C is a closed cone generating
E (i.e., E = C- C) (cf. [4, §5, π°3, Theorem 1]).

REMARK 5.3. By analogy with the corresponding theorem on the
continuity of positive linear forms (cf. [12, Chapter V, 5.5. ill]) one
might expect that the following condition also implies the lower semi-
continuity of any increasing hypolinear functional at 0:

(3) E is a bornologίcal space (i.e. E is a locally convex space
such that each circled convex set absorbing every bounded set is a
neighborhood of 0) and C is a strict b-cone (i.e., the increasingly
directed system of all bounded sets in E is generated by the class
{ j B n C - ΰ n C : ΰ is a bounded subset of E}) which is sequentially
complete.

However, this conjecture turns out to be false, as we shall show
in the following example.

EXAMPLE 5.4. (cf. [1, Example 1.6] and 1.11(4)). Let I be an
uncountable index set, E — R{1) the vector space defined in [1,
Example 1.6] endowed with the finest locally convex topology, and
C - { ( ^ 6 7 e # : ^ 0 ( ί 6 l ) } .

For the hypolinear functional p of [1, Example 1.6] we have
shown that p is an increasing hypolinear functional (cf. 1.11(4)) and
that p and hence p does not dominate any (continuous) linear form
on E (cf. [1, Example 1.6(1)]. Hence, by 2.1, p is an increasing
hypolinear functional on E which is not lower semicontinuous at 0.

Let us now prove that

( i ) E is a bornological space.
(ii) C is a strict b-cone in E.
(iii) C is sequentially complete.

( i ) Every one-element subset of E is bounded. Hence every
circled convex set in E absorbing every bounded set is absorbing and
therefore, by the definition of the finest locally convex topology, a
neighborhood of 0.

(ii) A subset B of E is bounded if and only if B is a bounded
subset of some finite dimensional subspace F of E (cf. [12, Ch. II,
Exercise 7(b)]). We may assume that F = {(Xi)ieI:Xi = 0 for ig J}
for some finite subset J oί I. F f] C is a strict δ-cone in F (cf. [11,
Chapter II, Example 1.17 (a)]). Hence there is a bounded set Bf in F
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and therefore in E such that B' Π C - B' Π C z> B.
(iii) Any Cauchy sequence in C is bounded and hence contained

in some finite dimensional subspace F of E. As F is necessarily
complete and C is closed, any Cauchy sequence in C Π F converges
to some element of C f) FaC.

One might expect that each of the Conditions (1) and (2) of 5.1
even implies that an increasing hypolinear functional on E is lower
semicontinuous at any point of E. However, the following example
shows that this conjecture is not true.

EXAMPLE 5.5. (cf. [1, Example 5.4]). Let E be the vector space
^([—1, 1]) of all real-valued continuous functions on the interval
[—1, 1], We endow E with the supremum norm topology and take
for C the cone of all functions in E with values in R+ = [0, °o).

Then (cf. 5.2) E and C satisfy both Conditions (1) and (2) of
Theorem 5.1.

We define g e E by g(x) = cos (π/2)x (x e [ —1, 1]) and p: E-+R by

(0, if h 5g Xg for some λ ;> 0
p(h) = I

I + oo, else

Then p is an increasing hypolinear functional on E (cf. [1, 5.4 and
1.3 (3)] and 1.7) which is lower semicontinuous at 0. But p is not
lower semicontinuous at the function hf defined on [ — 1, 1] by

h(x) = l/Γ=~^2 .

We shall now apply our previous results to the case where any
increasing hypolinear functional on E is lower semicontinuous at 0.

THEOREM 5.6. Suppose every increasing hypolinear functional
on E is lower semicontinuous at 0 (e.g., if E and C have one of the
properties (1), (2) of 5.1).

Then for any increasing hypolinear functional p on E there is
a p-dominated continuous positive linear form on E.

Proof. The result follows immediately from 2.1 (1 and 9), since

THEOREM 5.7. Suppose that every increasing hypolinear func-
tional on E is lower semicontinuous at 0 (e.g., if E and C have one
of the properties (1), (2) of 5.1).

Then for any hypolinear functional p on E and any linear form
f on a subspace F of E the following conditions are equivalent:
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(1) There exists a p-dominated continuous positive linear form
on E which extends f.

(2) The mapping pf does not attain the value — oo.
( 3 ) For every x e E, the set

{p(z + y) - f(y): z^x,yeF}

is bounded below.

Proof. By 3.2, (2) implies that pf is an increasing hypolinear
functional, which is lower semicontinuous at 0, by assumption. Hence
(1) and (2) are equivalent by 3.4.

(3) is a restatement of (2).

REMARK 5.8. Suppose that under the assumptions of Theorem
5.7, p is an increasing hypolinear functional. Then pf — Pf. Hence
in this case Condition (2) of 5.7 is the Saskin-Milman condition (cf. [1,
2.3]). Thus, under, these supplementary assumptions on E, C, and
p, Milman's and Saskin's result (cf. [9, § 1, Lemma 1]) is true.
However, it is not true in general (cf. [1, Remark 2.3]).

6* A sandwich theorem and positive simultaneous inverse
images of linear forms* The following lemma generalizes both [1,
Lemma 1.5] for vector spaces and [8, Lemma 1.2]. The proof is
similar to the proofs of these two lemmas.

LEMMA 6.1. Let I be an index set. Suppose that, for ie I, Et

is a vector space, pt a hypolinear functional on Et and h^Ei—^E
a linear mapping.

Then the numerical function p defined on E by

( * ) p(x) = inf J Σ Pifo): Ja I finite, xt e Ei9 Σ ht(xt) ^ x\
\i&J iej )

has the following properties:
(1) p is increasing.
(2) p(x + y)£p(x) + p(y) (x,yeEand{p(x), p(y)} Φ {+ oo, -oo}).
( 3) p(Xx) = Xp(x) (xeE,X> 0).
(4) pihfa)) £ p,(s<) (i el.x.
( 5 ) If p(0) ^ 0, then

( 6) An increasing hypolinear functional q on E satisfies

q(ht(Xi)) ̂  pάxt) (i el,xte E%)

if and only if q is p-dominated.
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( 7 ) p is an increasing hypolinear functional if and only if
p(x) > - co for all xeE.

( 8 ) If p(x) < oo for all x e E and p(y) > — co for some y e E,
then p is an increasing suhlinear functional.

Proof. (1), (2), (3), and (4) follow immediately from the defi-
nition of p.

(5) We may assume pih^x^) < co and, by (4), p( — h^x^)) < oo.
Then, by (2),

0 < p(0) ^ pihάxj) + pi-hXx,)) ,

and hence, by (4),

( 6 ) Let q be an increasing hypolinear functional on E satisfying

q(ht(Xi)) £ Pι(Xi) (i G J, xi e Ex) .

For x e E, any finite subset J of I and x% eEi (ie J) such t h a t

ΣaejK(xt) ^ x, we have

Φ) S Σ Qih&ί)) ^ Σ Pi(x%)
i e j i e j

Hence q(x) ^ p(x).
The converse follows from (4).
( 7 ) Let p(x) > ~ co for every x e E. Then p is subadditive,

by (2). (3) and (4) imply

2p(0) = p(0) ^ 0 ,

therefore p(0) = 0. Hence, by (3), p is positively homogeneous.
The converse is trivial.
(8) By (7), we only have to prove

p(x) > — co for every x e E .

However, p(x) = —oo for some x e E implies

p(y) ^ P(%) + P(V - x) = —°° ,

•whicii contradicts p(̂ /) > — co.

REMARKS 6.2.

( 1 ) lί E = C - C, then it is sufficient to show in (7) that
p(x) > - c o for all xe—C, and in (8) that p(x) < co for all xeC.

( 2 ) Suppose that, for ie I, Ei is a subspace of i? and h^: Ei~->E
is the canonical injection.
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Then Lemma 6.1 contains [1, 1.5] for vector spaces as a special
case for the cone C ~ {0} (i.e., the order relation on E coincides with
the equality relation).

We now prove a sandwich theorem for positive linear forms which
generalizes [1, Theorem 1.12] for vector spaces.

THEOREM 6.3. Let K and L be disjoint index sets and I = K (j L.
For any iel, let Et be a vector space, hi\Eι—^E a linear mapping,
and qt a hypolinear functional on Ei9

Then for any linear subspace F of E and any linear functional
f on F, the following conditions are equivalent:

(1) There exists a continuous positive linear extension g of f
to E such that

— Qi ^ goh for ieK

and

gohi ^ qt for ie L .

(2) The numerical function p, defined on E by

p(x) = inf ] Σ qt(xt) + f(y): Jal finite, xt e Ei9
iiej

yzF, Σ hτ(Xi) - Σ fcίOO + y ^
ieLDJ ieKOJ

is bounded below in some neighborhood of 0.

Proof. Let iog I and Jo = JU {i0}. We define ft = qt for i e L,
^ - g, for i e Z, EiQ = F, pH = f, and hiQ: EiQ-+E by hiQ(x) = x. Then
p is the numerical function defined in 6.1 (*) with I replaced by 70.

(1) is equivalent to.

There exists a continuous positive linear form g on E such that

go hi ^ Pi (^G i 0 ) .

By 6.1 (7) and 2.1, (2) is equivalent to

( 4 ) There is a p-dominated continuous positive linear form g on E.

By 6.1 (6), (3) and (4) are equivalent.

COROLLARY 6.4. Let K and L be disjoint index sets and I — K{JL.
For iel let Et be a vector space, h^Ei—^E a linear mapping, and
qt a hypolinear functional on Et.

Suppose, there exists a jel with Ej = E such that hj is the
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identity and qό is a continuous sublinear functional on E.
Then, for any linear subspace F of E and any linear form f

on F, the following conditions are equivalent:
(1) There exists a continuous positive linear extension g of f

to E such that

— qι £ g°hi for ieK

and

g°hi ^ qt for ie L .

( 2) For any finite subset J of I, xt e Et (i e J), and y e F such
that

Σ K{xt) - Σ ht{x<) ^ y ,
ieLΠJ ieKΠJ

we have

Σ ?*(*«) ^
ij

Proof. (1) is identical to Condition 6.3 (1).
If p denotes the numerical function defined in 6.3 (2), then (2)

is equivalent to

( 3 )

By 6.1 (3), 6.3 (2) implies (3).
Conversely, if (3) holds, then by 6.1 (5),

— qj^pohj^p if jeK

and

— Qj S P°hj = p if j e L .

By the assumption on q3 , this implies 6.3 (2).

COROLLARY 6.5 (Theorem of Mazur-Orlicz). Let pbe a continuous
sublinear functional on E and K an index set. Let (xk)keκ and (Pk)keκ
be families of elements of E and J2, respectively.

Then there is a p-dominated continuous positive linear form g
on E such that

pk^g(χk) (keK)

if and only if for any finite subset J of K, any family (λk)keJ of
nonnegative real numbers and any x e E with Σfcej ^k%k ̂  %y we have

Σ ^kpk ̂  Pi?)
kej
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Proof. We choose j$K, L = {3}, I = K\J L,E5 = E, q5 = p,
Ek = R xk(h G K) and define qk: Ek -» R by

( oo , λ < O

Moreover, for every iel, let h^Ei^E be the canonical injection.
Then, for every ie I, qt is a hypolinear functional on Ei9 and q3-

is a continuous sublinear functional.
We may therefore apply Corollary 6.4 to the linear form / = 0 on

the subspace F — {0} of E, and get the equivalence of the following
two conditions:

(1) There is a continuous positive linear form g on E (which
extends /) such that

) (keK,xeR)

and

g(x) £p(x) (xeE).

( 2 ) For any finite subset J of K, any family {Xk)kej of real
numbers, and any xeE such that x — Σkej^k%k S 0,

Φ) + Σ Qk(Kxk) ^ 0 .
kj
Σ

kej

Obviously, (1) and (2) are equivalent to the first and second
condition of Corollary 6.5, respectively.

In [8, 1.3] the usual Hahn-Banach theorem has been used to
prove an existence theorem for positive simultaneous inverse images
of linear forms. This theorem was used in [8] to solve some ques-
tions in measure theory. As a third corollary of Theorem 6.3 we show
how the artificial domination Condition (C) of [8, § 1] can be dropped
by introducing a boundedness Condition 6.6 (2) which is weaker then
the combination of (C) and [8, 1.3 (3) or (4)].

COROLLARY 6.6. Let E be a locally convex space and C a subcone
of E. Let I be an index set. Suppose, for every iel, there is

( i ) a vector space Ei9

(ii) a linear mapping h^. Et —> E,
(iii) a linear form ft on Et.

We define the numerical function p on E by

p(x) = inf {Σ/<(»*): J c J finite, x> e Eif Σ hi(xt) ̂  x) .
ij ij
{Σ
iej

Then the following assertions are equivalent:
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(1) There is a continuous positive linear form g on E such
that

f< = goh, (iel) .

(2) p is bounded below in some neighborhood of 0.

Proof. In Theorem 6.3 we choose L = I,K= 0, qt = fi9 F= {0}
and / = 0. Then p is the numerical function defined in 6.3(2).

(2) is identical to 6.3 (2).
Obviously, (1) implies 6.3(1).
Conversely, 6.3 (1) implies for iel and xt e Eiy

and therefore (1).
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