ON $\Lambda(p)$ SETS

GREGORY FRANK BACHELIS AND SAMUEL EBENSTEIN
ON Λ(\(\tilde{p}\)) SETS

GREGORY F. BACHELIS AND SAMUEL E. EBENSTEIN

In this note it is shown that if \(1 \leq p < 2\) and \(E\) is a set of type \(\Lambda(p)\) in the dual of a compact abelian group, then \(E\) is of type \(\Lambda(p + \varepsilon)\) for some \(\varepsilon > 0\).

Introduction. Let \(G\) be a compact abelian group with dual group \(\Gamma\). For \(0 < p < \infty\), we denote by \(L^p(G)\) the set of complex-valued measurable functions \(f\) on \(G\) such that

\[
\|f\|_p = \left(\int_G |f(x)|^p \, dx \right)^{1/p}
\]

is finite, where \(dx\) denotes normalized Haar measure on \(G\). For \(f \in L^1(G)\), the Fourier transform is defined by

\[
\hat{f}(\gamma) = \int_G f(x)(x, \gamma) \, dx, \quad \gamma \in \Gamma.
\]

As in [5], we call a subset \(E \subseteq \Gamma\) a set of type \(\Lambda(p)\) if there exists a \(q < p\) and a constant \(K_q\) such that

\[
(1) \quad \|P\|_p \leq K_q \|P\|_q
\]

for all trigonometric polynomials \(P\) such that \(\hat{P} = 0\) outside \(E\).

As shown in [5], if (1) holds for some \(q\), \(0 < q < p\), then it holds for all such \(q\). Also, if \(p > 1\), then the definition of \(\Lambda(p)\) set is equivalent to the statement that \(L^q_{\#} = L^p_{\#}\) for some \(q, 1 \leq q < p\), where \(L^q_{\#} = \{f \in L^q : \hat{f} = 0\}\) outside \(E\). For further details on \(\Lambda(p)\) sets, the reader is referred to [1] or [5].

In this note we apply results of [4] to show the following:

Theorem. Let \(1 \leq p < 2\). If \(E\) is of type \(\Lambda(p)\), then \(E\) is of type \(\Lambda(p + \varepsilon)\) for some \(\varepsilon > 0\).

This result is in contrast to the situation when \(p\) is an even integer, \(p \geq 4\). In that case there are known to exist sets of type \(\Lambda(p)\) which are not of type \(\Lambda(p + \varepsilon)\) when \(G\) is the circle group [5], and also for a large class of compact abelian groups [2].

The Main Result. We shall proceed to the proof of the theorem after establishing two lemmas; these lemmas were communicated to the authors by Haskell Rosenthal.

Lemma 1. Suppose \(X\) is a nonreflexive subspace of \(L'(\mu)\), where
μ is a probability measure on some measure space. Then given δ > 0 and M > 0 there exists f ∈ X with ∥f∥₁ = 1 and
\[\int_S |f(x)| \, dμ(x) > 1 - δ, \]
where \(S = \{x : |f(x)| \geq M\} \).

Proof. Suppose there exists \(M > 0 \) and \(δ > 0 \) so that if \(f \in X \) and ∥f∥₁ = 1 then
\[\int_S |f(x)| \, dμ(x) \leq 1 - δ. \]

Choose ε > 0 so that \(Mε < δ/2 \). Since X is nonreflexive, it follows from Lemmas 6 and 7 of [4] that there exists \(f \in X \) and a measurable set \(F \) with ∥f∥₁ = 1, \(μ(F) < ε \) and
\[\int_F |f(x)| \, dμ(x) > 1 - δ/2. \]

We have
\[
1 - δ/2 < \int_F |f(x)| \, dμ(x) = \int_{F \cap S} |f(x)| \, dμ(x) + \int_{F \setminus S} |f(x)| \, dμ(x) \\
\leq \int_S |f(x)| \, dμ(x) + \int_F Mdμ(x) \leq 1 - δ + Mε \\
< 1 - δ + δ/2 = 1 - δ/2,
\]
a contradiction.

Lemma 2. If \(E \) is of type \(A(1) \), then \(L^1_E \) is reflexive.

Proof. Suppose \(L^1_E \) is nonreflexive. Let \(M, δ > 0 \) and let \(f \in L^1_E \) be as given by Lemma 1.

If \(0 < p < 1 \), then
\[
1 \geq \int_S |f(x)| \, dx = \int_S |f(x)|^p |f(x)|^{1-p} \, dx \geq \left(\int_S |f(x)|^p \, dx \right)^{1-p} M^{1-p},
\]
so
\[\int_S |f(x)|^p \, dx \leq 1/M^{1-p}. \]

But
\[
\left(\int_{S^c} |f(x)|^p \, dx \right)^{1/p} \leq \int_{S^c} |f(x)| \, dx < δ,
\]
so
Now this last quantity can be made arbitrarily small, so it follows from (1) that E is not of type $A(1)$.

Proof of Theorem. First suppose that $p = 1$. By Lemma 2, L^1_E is reflexive. It follows from Theorem 1 and Lemma 6 of [4] that there exists $q > 1$ and a nonnegative function $\phi \in L^1$ such that $0 \neq ||\phi||_1 \leq 1$ and

\[
\left(\int_G |f(x)|^q \phi^{1-q}(x) dx \right)^{1/q} \leq K \int_G |f(x)| dx \quad , \quad f \in L^1_E .
\]

Letting f be some element of E, we see that $\phi^{1-q} \in L^q$. Let $h = \phi^{1-q-1}$. Then $h^q = \phi^{1-q} \in L^1$, so $h \in L^q \subset L^1$ and $h(0) > 0$.

For $f \in L^1_E$, let

\[T(f)(x) = f(x)h(x) . \]

It follows from (2) that $Tf \in L^q$ and

\[||Tf||_q \leq K ||f||_1 . \]

If $f \in L^1_E$ and $x \in G$ then $f_x \in L^1_E$, where $f_x(y) = f(x + y)$, since L^1_E is a translation-invariant subspace of L^1.

The map $x \rightarrow (T(f_x))_{-x}$ is continuous from G into L^q. Thus we may define T from L^1_E to L^q by the following vector-valued integral:

\[\tilde{T}(f) = \int_G (T(f_x))_{-x} dx \quad , \quad f \in L^1_E , \]

(cf. [3], p. 154). Then

\[||\tilde{T}(f)||_q \leq ||T(f)||_q \leq K ||f||_1 \quad , \quad f \in L^1_E , \]

so \tilde{T} is a bounded linear operator from L^1_E to L^q. Now

\[\tilde{T}(f) = \int_G (T(f_x))_{-x} dx = \int_G (hf_x)_{-x} dx \]

\[= \int_G h_{-x}f dx = \tilde{h}(0)f . \]

Thus $f \in L^1_E$ implies $f \in L^q_E$, so $L^1_E = L^q_E$ and E is of type $A(q)$.

If $p > 1$, then $L^1_E = L^p_E$ and the L^1 and L^p norms are equivalent there. It follows from Theorem 13 of [4] that (2) holds for some $q > p$. Thus, as shown above, E is of type $A(q)$.
REFERENCES

Received March 19, 1973. This research was supported by a Wayne State University Faculty Research Award.

WAYNE STATE UNIVERSITY
Ralph K. Amayo, *Engel Lie rings with chain conditions* ... 1
Bernd Anger and Jörn Lembcke, *Hahn-Banach type theorems for hypolinear functionals on preordered topological vector spaces* .. 13
Gregory Frank Bachelis and Samuel Ebenstein, *On Λ(p) sets* 35
Harvey Isaac Blau, *Indecomposable modules for direct products of finite groups* .. 39
Larry Eugene Bobisud and James Calvert, *Singular perturbation of a time-dependent Cauchy problem in a Hilbert space* .. 45
Walter D. Burgess and Robert Raphael, *Abian’s order relation and orthogonal completions for reduced rings* .. 55
James Diederich, *Representation of superharmonic functions mean continuous at the boundary of the unit ball* .. 65
Aad Dijksma and Hendrik S. V. de Snoo, *Self-adjoint extensions of symmetric subspaces* .. 71
Gustave Adam Efroymson, *A Nullstellensatz for Nash rings* 101
John D. Elwin and Donald R. Short, *Branched immersions onto compact orientable surfaces* .. 113
John Douglas Faires, *Comparison of the states of closed linear transformations* .. 123
Joe Wayne Fisher and Robert L. Snider, *On the von Neumann regularity of rings with regular prime factor rings* .. 135
Franklin Takashi Iha, *A unified approach to boundary value problems on compact intervals* .. 145
Palaniappan L. Kannappan and Che Tat Ng, *On functional equations connected with directed divergence, inaccuracy and generalized directed divergence* .. 157
Samir A. Khabbaz and Elias Hanna Toubassi, *The module structure of Ext(F, T) over the endomorphism ring of T* .. 169
Garo K. Kiremidjian, *On deformations of complex compact manifolds with boundary* .. 177
Dimitri Koutroufiotis, *Mappings by parallel normals preserving principal directions* .. 191
W. K. Nicholson, *Semiperfect rings with abelian adjoint group* 201
Norman R. Reilly, *Extension of congruences and homomorphisms to translational hulls* .. 209
Sadahiro Saeki, *Symmetric maximal ideals in M(G)* .. 229
Brian Kirkwood Schmidt, *On the homotopy invariance of certain functors* .. 245
H. J. Shyr and T. M. Viswanathan, *On the radicals of lattice-ordered rings* 257
Indranand Sinha, *Certain representations of infinite group algebras* 261
David Smallen, *The group of self-equivalences of certain complexes* 269
Kalathoor Varadarajan, *On a certain problem of realization in homotopy theory* .. 277
James Edward West, *Sums of Hilbert cube factors* .. 293
Chi Song Wong, *Fixed points and characterizations of certain maps* 305