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In this paper smooth maps f:M"—> N" with a zero-
dimensional critical set are considered. The singularities
of these maps in the case n =2 are known to be points
where f is locally topologically equivalent to z—2? (d=
2,3,--+). Originally these singularities were studied in
connection with the regularity of Douglas’ solution to
Plateau’s problem.

In §1, an Euler characteristic formula is developed which
generalizes both the Riemann-Hurwitz equation from complex
analysis and the usual Euler characteristic formula for covering
maps. Section 2 is devoted to several technical lemmas while §3
applies these lemmas to the case where M is the disc (with holes)
and N is a compact orientable 2-manifold. It is shown that for the
existence of such a map there is a lower limit depending upon the
genus of N and on the number of holes of M.

The singularities of these maps have been characterized by
Church and Timourian [2]. In the case n = 2 these maps are locally
topologically equivalent to z— 2% (d = 2,8, ---) and for n > 2, these
maps are covering projections. For n = 2, the singularities and
maps are special cases of branch points and branched immersions.
In this case, the Euler characteristic formula represents a generali-
zation of the clasgical Riemann-Hurwitz equation for light interior
transformations on 2-manifolds. When f'(0N) = oM, the formula
produced here reduces to the Riemann-Hurwitz equation. For n > 2,
the maps are covering projections and the Euler characteristic formula
reduces to the usual equation.

The mappings considered in this paper are not, in general,
interior transformations on the boundary of M. These considered
here, however, appear to have more applications with regard te
questions which have arisen from Plateau’s problem. Heinz [6] and
Gulliver, Osserman, and Royden [35] have shown that these maps are
of much more interest than solely in the context of minimal surfaces.

A very readable account of the Riemann-Hurwitz formula may
be found in Whyburn [10]. The authors wish to express their
gratitude to the referee for his many helpful suggestions.

1. Let f: M"— N™ be a continuous map between orientable
n-manifolds with or without boundary having finite fibres. If oM =
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¢, assume f(0M) is a closed orientable (» — 1)-submanifold of N
without boundary. Let B be any finite subset of N. In addition,
let us assume that M, oM, N — (f(OM) U B), f(0M)— B and oN —
(f(M) U B) have finitely generated homology modules with 0N —
(f(éeM) U B) a closed subset of N. For notational convenience we
will write the last three spaces as the union of their topological
components i.e., N — (f(0M)U B) = 4., foM)— B= | B; and
ON — (fOM)U B) = U C,. We then have the following Euler charac-
teristic relationship:

THEOREM 1. Suppose that under the above assumptions the
Leray sheaf is locally constant each component X (X = A,, B; or
C,) with stalk given by SZ°f; Z),, = ®ux) Z. Further, assume for
each component X that y(H*(X: S24°(f: Z)) = y(HXX; @uxZ)) (here
X(+++) denotes the Euler characteristic). We then have

AM) = YOM) = 5 HA)(A) — S BB
— 5 #(CH(Ce) + (=1 3, 1)

where (b)) is the cardinality of the fibre over b.

(1)

Proof. Since M and N are locally compact Hausdorff manifolds,
the family of compact supports ¢ is paracompactifying and well
adapted [1]. In addition the fibres are c-taut in M and thus there
is a spectral sequence [1] with

B = HXN; 323 Z)) — HI*(M; Z)
and natural isomorphisms
G5 L) ~ HX (7 (2); Z) .

Since covering dimension dominates cohomological dimension [4], the
assumption that f is light implies that

0 if g=z0or p<O0
HP(N; 274(f, Z)) otherwise.

2,9
2=

Let us denote 2£°(f; Z) by 7. Clearly this sequence satisfies
Serres’ theorem [7] which gives the following isomorphism:
HXM; Z) ~ HXN; 7).
The sheaf theoretic version of Lefschetz duality [1] implies that
H/(M, 0M; Z) ~ H} (M Z) .

Combining these isomorphisms and the fact that the homology
modules of M and dM are finitely generated we obtain
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(2) XM) — x(OM) = y(M, 0M) = (—1)"y(H:(N; %)) .

Thus the proof is reduced to the computation of the sheaf

cohomology term.
Since f(0M) is a closed (n — 1)-submanifold in N and B is finite,

S@GM) U B is a closed subset of N. Thus there exists the following
long exact sequence [1]:

+ — HXN — (f(0M) U B); &) ~— HIN; &) —
(3) — H)(f(OM) U B; &) —

— HZ(N = (fOM) U B); .5) — -+

Let B, = f(OGM) N B and B, = B — B,. Since B, is finite, it is closed
in f(0OM) U B and again we have the sequence

« — HXf(OM); &) — HX(f(OM) U B; &) —

) — H}(B; &) — HI N (f(OM); ) — -+

Since B, is finite, a third application of the sequence gives

-+ — HXf(OM) — B; &) — HXf(OM); &) —

) — H(By; 57) — HZ(F(OM) — B; 57) — o+ -
From the fact that the fibres over B are finite, we have

(6) H)(B;; &) ~ H'(B;; &) ~ bgi H(f7(0); Z)

and

(7) Hi(B;; ) ~ H'(Bj; ) ~ @ H.(f7(0); 2)

with all other dimensions trivial.

Using the hypothesis that f(0M)— B is an (n — 1)-manifold
without boundary and the Euler characteristic formula for com-
ponents, Poincaré Duality [1] gives the following equation:

WHI(f(OM) — B; 7)) = 3, y(HX(Bj; )

(8) ,
= S (H(Bs @ 7)) = (1 3L uBB)

Since the homology modules are finitely generated, we can
apply the Euler characteristic formula to each of the above sequences
(3), (4), and (5) to obtain

X(HI(N; 7)) = Y(HX(N — (f(0M) U B); .&7))
+ X(HX(f(0M) U B; .))

and
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X(HX(f(OM); 7)) = Y(HX(f(OM) — B; .27))
+x(HX(By; X)) .

Combining these equations with (6), (7), and (8) we have

WHI(N; ) = y(HX(N — (f(0M) U B); %))

(9) 1
+ (=17 X BB + X #(0) -

Since 0N — (f(@M) U B) is closed in N, applying the Euler charac-

teristic to the exaect sequence of the pair (N — (f(0M)U B), 6N —

(f(0M) U B)) gives

HHX(N = (FGM) U B); )
= 3 ((HNAG ) + 5 UHHCis )

= 3u(H:(40 @ 7))+ 2A((Cs @ 7))

w4 )
or by Poincaré Duality
XHHN — (f(0M) U B); %))
- (e (45 @ 7)) - 5 (w1 (cs,@ 7))
= (=13 (A4 — 35 C(CT -
Combining this result with (2) and (9) completes the proof.

2. In this section we will develop several lemmas necessary for
the existence theorems of §3. Recall that a topological submersion
is a continuous map f: M — N which is locally topologically equivalent
to a projection. If f is smooth and its’ Jacobian is of maximal
rank at each point of M, then f is a submersion. The following
lemma is a special case of a result proved in [8] for smooth sub-
mersions and again in [3] for general submersions.

LEMMA A. (Tubular Neighborhoods): If f: M — N is a proper
surjective submersion between n-dimensional manifolds without
boundary then for every ye N there is a neighborhood U of y and
an embedding e: U x f~(y)— M such that

(i) foe 48 projection onto the first factor.

(ii) ey, x) = x for all x € f'(y).

(i) f7(U) = (U x f(y)-

Thus each point y of N has a neighborhood U whose inverse image
18 smoothly equivalent to a product of U with the fibre f(y).
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The next lemma follows immediately from the existence of
tubular neighborhoods.

LEMMA B. (Covering Lemma): Suppose f:U—V is a proper
surjective submersion between n-manifolds without boundary.
Assume that V is connected. Then

(i) the multiplicity of the cover denoted by p(V) ts constant,

(ii) the Leray sheaf S£°(f; Z) is locally constant with stalk
given by SE(f Z)1s = @uwn Z.

Lemma C verifies the Euler characteristic hypothesis of Theorem
1 for certain subsets of compact polyhedra.

LEMMA C. Suppose M is a compact polyhedron which 1is
triangulated by the finite simplicial complex K. Let X be any sub-
space of M formed by removing the inmterior of a number of
simplices and o number of vertices. Then for any locally constant
sheaf on X with stalk G,

XHHX; 7)) = ((HAHX: G)) .

Proof. Suppose the dimension of K is m and let L’ denote
the intersection of the +¢-dimensional skeleton of K with X. Since
L? is a closed subset of X for all 4, applying the Euler charac-
teristic to the long exact sequence of the pair (LF, L) [1], we
obtain

W(HI L Z)) = WHXL — L7 2)) + ((HAL 2))

for any sheaf <#. Hence by induction we have
WHNX; 8) = 5, WHH(L — L 7)) where L=,

However, L’ — L' is the disjoint union of the interiors of simplices,
which are simply connected. Since any locally constant sheaf .o~
is constant on these simply connected sets, we obtain

HX (L — L™ &) ~ HXNL — L7 G)
and finally
XHHX; ) = ((HXX; G)) .
In particular Lemma C applies to subsets of a compact 2-mani-

fold with boundary formed by removing a finite number of points
and boundary curves.

Our final lemma gives a description of the behavior of a smooth
proper surjection in a neighborhood of the image of a boundary point.
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LEmMMA D. (Boundary Covering Lemma): Suppose f: M"— N* is
a proper surjective map between mn-dimensional nanifolds with
boundary having discrete fibres. Assume feC! in the interior of
M and that Df extends continwously to 0M. Let Df denote this
extension. Assume B = f({x: det (Df(x)) = 0}) is finite and in addi-
tion that f,y ts 1-1. Then there exist neighborhoods U of ye
fOM) — (BUON) and V of 0€R" and a local homeomorphism
h: f7*U— V such that

(1) (f7y)=0.

(ii) h@EMN f'U) ={(zy, +++, 2,)€ V:2, = 0}.

(iii) there exists an integer q > 0 with {z€ V: 2, = 0} covered
g + 1 times and {z€ V: z, < 0} covered q times by the map h.

Proof. Since f is proper the fibres are finite. Suppose y¢ B
and let f'(y) = {x, @, -+, &} With x,€0M and z,¢0M for 7> 0.
Let g be a chart diffeomorphism mapping the closed upper half
plane of R" onto a neighborhood of z,, Let g take the bounding
hyperplane onto a neighborhood in the boundary of M with g(0) = «,.
If follows from [9] that there is a C' extension F' of fog to all of
R" whose derivative agrees with Dfog on the closed upper half
plane. Since f(x,) = y¢ B we have that DF(0) == 0. Thus by the
inverse function theorem there exists a neighborhood V of the origin
in R* and a neighborhood U of ye N such that F; is a C* diffeo-
morphism onto U with U N B = @. Define V, = Vn R~

Let 2 U and let K be a compact set satisfying xe Kc U.
Since f is a proper map f~(K) is compact in M. However, f"Y(K) —
g(V,) is a closed subset of f~(K) and hence compact. Thus f
restricted to f~(T) — g(V,) is proper. From Lemma A there exists
a neighborhood Uc U such that f(U) — g(V,) is homeomorphic
to {x, -+, 2} X U. Let h: f7'U—V be defined by

-1 -1 ¥4
way = | 2tV 0V e V= Py T
97'(») xeg(F(U))

3. We wish now to apply equation (2) to branched immersions
from the disc or multiply connected disc onto compact orientable
2-manifolds without boundary. Throughout this section we will
assume all branched immersions f: M — N are surjective and that
fionr is 1-1.

Let D, denote the disc with m holes i.e., 0D,, = V' S' and let
N be a compact orientable 2-manifold without boundary of genus g.
It follows that
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THEOREM 2. For g > 0, there does not exist a branched immer-
ston from D,,_, onto N.

The next proposition shows that this result cannot be improved.

PROPOSITION 3. For g > 0, there does exist a branched immer-
ston from D,,_, onto N.

REMARK 1. The special case of g=1 gives N = T* (torus)
and it follows as a corollary to Theorem 2 that there does not
exist a branched immersion of D onto T2

REMARK 2. It will follow from the proof of Theorem 2 that
if there exists an immersion f: D, — N with branch points then there
does not exist an unbranched immersion g: D, — N with the same
homotopy type as f. Conversely if there exists an immersion
¢9:D,— N then there does not exist an immersion with branch
points f: D,,— N of the same homotopy type. The removal of branch
points is therefore, a global problem.

The proof of Theorem 2 will require the following two lemmas:

LeEmMA E. (N — fGM)) = 7(N) = 2 — 2g.

Proof. Since f is 1-1 on the boundary, f(6M) is a disjoint

union of 1l-spheres VS,. Let each S, be expanded to a band S, in
N with the bands pairwise disjoint. Consider the sequence

«— HN-VS)—— H(N)— H(N, N—-VS)—
s H, (N — VS)— - .
We have
X(N) =N —-VS)+ y(N, N—VS).
Now
H/(N, N — VS)~ H/(VS, VS, — VS, by excision.
However, y(VS, VS, — VS) = x(VS, — V8) — x(VS,) and the lemma

is proved.

LeMMA F.  Assume the tmage of a boundary sphere S'C f(0M)
encloses a simply connected region R. Further, assume that neither
R or its boundary contain any branch point images. Then if R
is covered m times there exists a deleted neighborhood of R covered
n -+ 1 times.
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Proof. From Lemma D it follows that the difference in covering
between interior points of R and points in a deleted neighborhood
of R is one. Suppose that R is covered one more time than any
deleted neighborhood. From Lemmas A and D, f,;—z is a covering
projection. Since R is simply connected this covering projection is
trivial. Thus, again by Lemma D, there exists a neighborhood of
R, say U, such that f—'U = V2,U, VR where each U, is homeo-
morphic to U via f and B is homeomorphic to R. Since R is a
connected component of the closed set fR and is also a component
of the open set f U, it is a component of the entire domain which
is a contradiction.

Proof of Theorem 2. Assume such an f: D,,_,— N exists.

Case 1. B = ¢ i.e., f is actually an immersion. In this instance
equation (1) reduces to

WM) — 2(0M) = 2\ YN — f(oM)(f) -

Let N — f(0M) be written as the sum 3 A, of its topological com-
ponents. We have from Lemma E

24D = X (N — fOM)) = x(N) =2 —2g.
We want to show that
DA(A)p(A) = 3 (A) =2~ 29 <3 — 29 = (M) — (M) .

Now x(4,) =1 for all 4. Assume ¥(A,) =1 and A, is the surround-
ing component of A,. From Lemma F we have p(4,) > #(A4,) and
2(A4) £0. If x(4.,) = 0 then A, has the homotopy type of a 1-sphere
and there exists a component A, surrounding A, and satisfying
H#(A;) = (A,). We may continue in this manner to find a component
A; with y(4;) < 0. If A; serves as the surrounding component for
more than one disc then its Euler characteristic is lowered by one
for each disc. Hence

S AMA) £ 2 x(4) =2 —29 <3 —2¢.

Case II. B = ¢. We want to show that the addition of branch
points makes the right hand side of equation (1) more negative.

Since the function f in a neighborhood of a branch point b has
the form z— 2" we have that p(b) < p(x) for « in a deleted neighbor-
hood of b. If beS'C f(0M) then ¥(S* — b) = 1 but p(b) < ¢(S* — b).
If be A, where A, is a component of N — f(0M) then (4, — b) =
X(A) — 1 and p(A; — b) > p(b).
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Let B; be the branch points of f contained in A, and B, the
branch points of f in S}e f(0M). Then by the above equations

S\ UA, — B)(A, ~ B) — SUS} — BIS; — B) + 3, (o)
= Z"H H(ANMA,; — B;)) — 3| B;| (A; — B)

=SB} ~ B)+ % pb) + 3 5 1)

i bpeB;

where | B, | denotes the cardinality of B,.
= Z‘H‘; XANUA; — B) = Z x(A4A) =2—2g

concluding the proof.

For the proof of Proposition 3 let M be a disc with 2¢g — 1 holes
and N a surface of genus g. Map M onto the complement on the
Riemann sphere of a small disc by a linear fractional transformation.
The resulting image on the sphere will have 2¢g holes. Assume one-
half of these are located on the northern hemisphere. With proper
alignment we may then identify, with overlap, pairs of holes, one
from each hemisphere. The resulting surface is a compact orientable
surface of genus ¢ covered once at all points except for a band in
the interior of each 2-dimensional hole covered twice. It is easy to
see that given a disc with more than 2g — 1 holes the map described
above can be adjusted to map the additional holes onto the bands
which are covered twice. There is therefore no upper limit on the
number of holes but only a lower limit given by Theorem 2.

The special case of g =0 i.e., N = S? is also of interest. Let
M be the disc and f: M — S* a branched immersion with f,, 1-1 as
is assumed throughout this section. S — f(6M) consists of two
contractible discs D, and D,. Lemma F shows that f must have
branch points.

Let us assume that each branch point of f is covered once and
that D, (except at branch points) is covered » times by f while D,
is covered n + 1 times. Denote by P, 7 =1, 2; the collection of
branch points in D, and let p, be the cardinality of P,. Then
equation (1) becomes

1 =30D; = P)uD; — P) + 3, p(b)
which reduces to
1=0—-p)n+A—-p)n+1)+p + D

The above equation has four possible solutions
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#(D1""P1):n,/"(Dz—P2)=n+1; 0, =0,p =2
#(Dl—“Pl):zrﬂ(Dz—Pz):g; p1:2;p2:1'
(D, — P) =3, (D, — P,) = 4 p =3, p,=0.
(D, — P) =2, (D, — P,) = 3; =4, p,=0.

The first solution is possible and is Example 5.2 in [5]. Solu-
tions 3 and 4 are ruled out by Lemma F. The second possibility is
also eliminated by the observation that D, has a single branch point
and since D, is covered 3 times, f must have the form z— 2* on D,.
It follows that f,,; cannot be 1-1. Hence there is, up to winding,
only one branched immersion from D to S? with the branch points
covered once.

L
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