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The measures directed divergence, inaccuracy as well as
generalized directed divergence occurring in information
theory can be characterized by the symmetry, expansibility,
branching, and additivity properties together with some
regularity and initial conditions. In this paper some func-
tional equations generalizing those implicit in these charac-
terizations shall be treated.

1. Introduction. Let 4, ={P = (p, 0, -, D) |2 =0 and
tap; =1} and 4, = {P = (p, Dy, -+, Pa) | . >0 and >2,p; <1} be
the set of all finite complete and incomplete probability distributions

respectively. In 1948 C. E. Shannon [16] introduced the following
measure of information

(L.1) H,(P)= - 3\p.logp;

on 4, which is now known as Shannon’s entropy. This has been
generalized to inaccuracy [10]. Inaccuracy and the related quantities
directed divergence or information gain {11,15] and generalized
directed divergence [3] are given by

(L2)  H(PQ=-3nlega, (Ped,Qed,ord),
(1.3) I(P|| Q) = épi log%’ , (Ped, Qed, or 4,),
and

(1.9) Dn(PIIQIR)=jZ=lpilog%, (Pe 4., Q, Re 4, or 4,)

K

respectively. While characterizing these measures we come across
the following functional equations

5 X5 Fea) =5 F0)+ 5 F@), (Ped,Qedn),

n

w8 33 Fogs, ) = 3 F®, w) + 3,0,

=1 j=1
(Ped,, Qe d,, Xe4, or 4, Yed, or 4,)
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and

n m

(1'7) Z Z F(pz(ij .Y, u‘bvj) = 2 F(pi; Ly uz) + Zl F(qi! Yis /vi) ’
1=1 Jj=1
(Ped,, Qed,, X, Ucd, or 4, Y, Ved, or 4;,)

=1 j=1
(ct. [2], [4], [5], [6], [7], [8], [9], [13]).
For the motivation to consider (1.6) and (1.7) and the application
of this result, refer to the Remark at the end of this paper.
In this paper we consider the functional equation

2 3 2 3
(1'8) Z Z Fz j(piqj, xlyl) = Zle(piy xz) + Z Hj(qi! yJ) ’

1=1 j=1 3= j=1

(Ped, Qe d,, Xe 4y, Ye )

for unknown functions F,;, G, H;. Then this gives the measurable
solutions of (1.6) for all Pec 4, Qc 4, Xe 4, Ye 4} as a special case.
The measurable solution of (1.7) for Pe 4,, Qe 4, X, Ue 4}, Y, Ve 4
can also be obtained by a reduction to (1.8).

In solving (1.8) we make use of the following result of C. T. Ng
[13]:

THEOREM 1.1. The measurable solutions of the functional equation
2 3 2 3
(1.9) 2 2 Fiwa) = 2 Gdp) + 2 Hia,)
=1 j=1 =1 j=

for ¢ll Pe 4,, Qe 4,, are given by

({H{(q) = aqlog q + b.q + ¢, HY(q) = aqlogq + (b, + d)g + ¢,
H(q) = aqlog ¢ + (b, + €)q + ¢;, F, (p) = aplogp + bp + ¢,
F(p) =aplogp + (b, + d)p + ¢5,
Fop)=caplogp + (b, + e)p + ¢,
(1.10) ( Fy(p) = aplog p + byp + ¢5 Fho(p)=aplogp + (bs + d)p + ¢,
F.p) = aplogp + (bs + €)p + ¢, Gi(p) = 9(0) ,
Gop) = —g(L — p) + a[plog p + (1 — p)log (1 — p)]

by —b)p+ (b, —b)— ¢, + e+ 5 —ct+ 6T G

— ¢+ GG,y

where a, by, by, by, ¢,, €y + -+, o, d, € are arbitrary constants and g is an
arbitrary measurable function.

2. Measurable solutions of the functional equations (1.6) and
(1.8). We first suppose that equation (1.8) is to hold for all Pe 4,,
Qe 4, Xe 4, Ye 4, where F, ;, G,, H;: [0, 1] x ]0, 1[ — R are functions
measurable in their first variables.
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For arbitrarily fixed =z, y,; in ]0, 1[ with S, 2, <1, 3,9, < 1,
equation (1.8) is of the form (1.9) in the p,’s and ¢,’s. Therefore, by
Theorem 1.1 there exist ‘ constants’ a(®,, s, ¥, Yy ¥s), D1, sy Yy Y2r¥s)s
1=1,23, ci(®, @, Y, Yo ¥s)y 3= 1,2, -+, 9, d(x,, &, Y1, Ys, Ys)s €T, Ty
Y1, Yz ¥s) and a measurable function g(-, 2, ., ¥, ¥,, ¥s) such that

F, (p,
Fl 2 ’
@1 | TP
Fl,s(p’
F, \(p,

F2,2(p7

F, (p,

[G(D, @

Hy(g, y)) = alx, %, Y, ¥s, ¥5)q log g + by(x,, 22, s, Ys, Ys)Q

+ ¢(®y, T3y Yy Ysy Ys) »

H{q, v:) = a(x,, ,, Y, Ys, Ys)g log q + (b, + d)(@,, s, Yy, Ys, YD

+ 04(x17 x27 yu y29 y3) ’

Hyq, y:) = a(x,, &, Yy, Ys, ¥5)qlog q + (b, + €)@y, @, Yy, Yoy YT

+ @y, %oy Ysy Yz Ys)
Y1) = a(Xy, By Yy Yep Y2)D 10g D + b1, 2y Yy, Yy Ys)D
+ ey, %oy Y, Yoy Ys) 5
YY) = &%y, Toy Yy Yo, Y2)P log  + (b, + ANy, @2y Yy Yoy Yo)D
+ 65(991, sy Y1y Yop Ys) »
T,Ys) = %y, Toy Yy, Yo, Y2)D log D + (by + €)(1, oy Yy, Yoy Yo)D
+ cy(@y, oy Yy Yy Ys)
%,9,) = a(®y, Toy Yy Yo, Y2)D 10g P + by, Tay Yy, Ysy Ys)D
+ ey, X2 Y, Yo Ya)
TaYs) = @@y, Toy Yy, Y Ys)D 10g D +(bs + ) (%, Ty Yy Uiy Y)D
+ o(%y, 2y Ysy Yoo Ys) 5
ToYs) = Ay, Ty Yy, Yor Y2)D 10 D + (b5 + €)@, oy Yy, Yay Yo)D
+ cy(®, Xy Yiy Yo, Ys) -

D) = 9(p, T4y Xy Ysy Yo Ys) »

Gop, %) = —g(1 — D, @,y Tsy Y, Yz, Ys) + (21, Ty Yy Yoy Ys)[Dlog D

2.2)

+ @ — p)log (L — p)] + (bs — bY@y, 2y Yy, Yoy Ys)P
+b,—b —c,+etes— et e+ — ¢+ c
+ 09)(x1; 902, yl, yz, ys) .

From (2.1) we get

(2.9)

and

a(x,, T Yy, Yo, Ys) = constant = a

b(®, %2 Y,y ¥y Ys) = a function of y, only = by(y,) ,

(2.4)

by, + d(x,, @, Ys, Ysy ¥s) = & function of y, = 0,(y,) ,

bi(y.) + e(®, T Yy, Ys, Ys) = a function of y; = ¢u(vs) ,
b2, X2, Y1y Y, Ys) = & function of x,y, = b(x,y,),
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by(x,y,) + d(xy, %5 Yy, Yo, ¥s) = @ function of 2.y, = 0:(x,v.) ,

bo(x.y.) + e(w,, oy Y1, Ys ¥s) = a function of xy; = é(2,¥s) ,
(2.4) A bz, xs, Y, Y, ¥s) = a function of x,y, = by(x.yy) »

byx,y) + d(xy, % Y., Y., ¥s) = & function of xy, = 0(.y.) ,

by(x.y,) + e(xy, Xy, Yy, Ys, ¥s) = a function of x,y; = ¢5(2:Ys) ,

where x,, y; are in ]0, 1[ with >i,2, <1 and >}, ,y; = 1.
Similarly

c(®y, X5y Yy Yy Ys) = (W)
(@, 2y Yy Yo, Ys) = (1Y)
es(®y, Ty Yiy Yoy Ys) = Cs(0291) 5
Xy Ty Yy Yo Ys) = C¥2) 5
(2.5) (@4, Ty Yy Yo Ys) = (1Y)
(@1, T3y Ysy Yoo Ys) = Co(X:Y2)
ey, @2 Yy Yoo Ys) = €Ys)
(X1, oy Yy Yoo Ys) = Cs(T:Y5)
(X1, Toy Y1y Yoo Ys) = Co(T5Y3)

where x,, y; are in ]0, 1] with 2,2, <1 and >3, 9, < 1.
The simultaneous equations (2.4) are equivalent to

&1, Tay Y1y Yoy Ys) = 0.(Y2) — bi(y)) = 04(2,92) — bo(,9,)
= 04(%:Y:) — by(229) »

e(%y, Loy Ysy Yoy Ya) = $u(Ys) — DY) = $o(@.9s) — bo(,)
= ¢5(T2Ys) — bs(%:.)

(2.6)

where z,, y; are in 10, 1[ with 2, + 2, <1, v, + ¥, + ¥: = L.
We shall give the general solutions of equation (2.6) through the
following lemma.

LevmmA 2.1. The general solutions of the functional equation
(2.7) f(rs) — g(rt) = h(s) — k() ,
for all »,s, t€]0, 1] with s + t < 1, are given by
F@) = @) + A4,
9(@) =y@) + A+ C,

h(z) = ¥(x) + B,
k(x) = y(x) + B+ C,

Sfor all €10, 1], where A, B, C are constants and +: ]0, «o[ — R (reals)

(2.8)
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18 a solution of the Cauchy equation,
(2.9) Y(rs) = ¥(r) + ¥(s) .
Proof. We rewrite equation (2.7) as

(2.10) S(rs) — h(s) = g(rt) — k(¢) ,
for all »,s,¢€]0, 1[ with s+ ¢t < 1. Thus f(rs) — h(s) is a function
of » only, say
(2.11) flrs) — h(s) = U(r),
for all r,s€]0,1[. Thus by [11, p. 59] there exists +:]0, o[ = R
satisfying
(2.9) Y(rs) = (1) + V¥ (s),
for all r, s€]0, o] such that it represents f, h, and [ through the
equations
J@) =)+ 4,
(2.12) h(x) = Y(z) + B,
Uz) = (x) + A — B,

for all #€]0, 1[, where A and B are arbitrary constants. Similarly
g and k are given by

(2.13) i g(x) = v(@) + A+ C,

F(x) = () + B+ C,
for all £ €10, 1] and where C is an arbitrary constant. This completes

the proof of Lemma 2.1.
Thus the general solution of the equations (2.6) is given by

b(x) = (x) + A, , 1=123
(2.14) 0.x) = v(x) + A, + B, i=1273
¢1(x):"f’f(x)+Az+C! %:1,2,3

for all x¢]0, 1[, where A,, B, C are constants and + is a solution of
the Cauchy equation (2.9).

Now we shall determine the function ¢ and the ‘constants’ ¢,’s
in equation (2.2). We prepare our result by the following lemma.

LeMmA 2.2, Let k:10,1]— R, ¢t =1, 2, 3 be functions satisfying
the functional equation

(2.15) Teu(r) -+ Eu(rs) + ky(rt) = T(s, t)
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Jor all r,s,t€]0, 1[ with s+t £ 1. Then, and only then, there exist
Sunctions +r, ¢: 10, o[ — R which are solutions of (2.9) and constants
A, B, C such that

k(x) = —(z) — ¢(z) + C,
(2.16) ko) = v(x) + A,
ki) = ¢(x) + B

Proof. As the right side of (2.15) is independent of », we have
2.17) k(7)) + ko(rs) + ky(rt) = k(r') + kf(r's) + ki(r't) ,

for all », ', s,t€]0, 1] with s + ¢ < 1. For arbitrary s, s'€]0, 1[ we
can choose t€]0, 1[ such that s+ ¢, 8 + ¢t <1 and thus from (2.17)
we get

(2.18) ko(1s) — ky(v'8) = ky(rs’) — ky(v's'),

for all », 7', s,8'€]0,1]. We can now fix ' and s’ arbitrarily and
then equation (2.18) reduces to

(2.19) ko(rs) = L(r) + l(s) ,

for all », s€]0, 1], (for some functions l,), which is an equation similar
to (2.11). Thus there exists a function : ]0, <[ — R satisfying (2.9)
such that

ko(x) = v(x) + A,

for all xze€]0, 1], where A is a constant. Similarly there exists
$: 10, co[ — R satisfying (2.9) such that

kfx) = ¢(x) + B,

for all x€]0, 1[. If we replace k,, k; by ¥, ¢ respectively in equation
(2.17) while fixing ' we get k, as is in (2.16). This proves our
lemma.

From equation (2.2), we see that g is a function of p and z, only,
say

(2.20) 9(D, @1, %y Ysy Yoy Ys) = 9(0, 21) .

Now, from equation (2.2), we see that —e,(y,) + c(2.¥,) + cs(2y,)
is independent of y, and therefore by Lemma 2.2 we have

c(x) = "/’1(37) + 951(96) + D,
(2.21) c(x) = ¥y(x) + B,
c(x) = ¢u(x) + F,,
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for all x¢€10, 1[, where 4, and ¢, are solutions of the equation (2.9)
and D, E,, F, are arbitrary constants. Similarly we have

c(®) = ¥(x) + ¢o(x) + Dy,

c(®) = Vvo(x) + By,

c(x) = Py(z) + F;,

c(x) = Yro(x) + o) + Ds

cs(x) = ¥ro(x) + Ey,

Leo(®) = golx) + Fy,

where +, 8, V5, ¢, are solutions of (2.9) again. If we replace the
¢;’s in the second equation of (2.2) by equations (2.20), (2.21), and (2.22)

we see that —g(1 — p, 2,) — ¥(@)p + (@) + ¥(2) + Vo) + Pu(2) s
independent of «,, say

91 — p, ) = g(1 — p) — P(x)p + V()
+ () + Yol + vrs(2y)

for all pe[0,1] and =,€]0, 1[, where ¢:[0, 1]— R is an arbitrary
measurable funection.

Combining equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.14), (2.21), (2.22),
and (2.23) we are ready to conclude the following theorem.

(2.22)

(2.23)

THEOREM 2.1. Let F,,; G, H;:[0,1] x10,1[—R(i=1,2,5 =
1, 2, 3) be functions which are measurable in their first variables.
Then these functions satisfy the functional equation (1.8) if and only
1f there exist +, ¥, ¢,: 10, o[ — R all satisfy the Cauchy equation (2.9)
such that

Hy(q, y) = aqlog q + [v(y) + Alq + v.(y) + (%) + D,,
Hyq, y) = aqlog g + [¥(y) + A, + Blg + ¥(y) + ¢y) + D,
Hyq, ) = aqlog g + [v(y) + A, + clg + ¥(y) + 6(y) + Ds,
F.(p,y) =aplogp + [v(y) + Alp + v.(v) + B\,
F\o(p, y) = aplog p + [¥(y) + A: + Blp + v:(y) + E:,
Fiop, y) = aplog p + [y (y) + A, + clp + ¥(y) + Es,
(2.24)  F,\(p, y) = aplog p + [Vv(y) + Aslp + ¢.(¥) + F',
F,op, y) = aplog p + [v(y) + A5 + Blp + ¢(y) + F3,
Foi(p, v) = aplog p + [¥(y) + 4As + clp + 84(y) + Fi,
G(p, ) = 9(p) + V(@) + Vu(®) + Pux) + V(@) ,
Gop, ) = —g(1 — p) + a[plog p + (1 — p)log (1 — p)]
+ [v(x) + As — Ap + ¢(x) + (%) + ds(x) + A,
—A~-D—-D,—-D,+E +E,+E+F +F,+F,,
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Jor all p,qel0, 1], x, yc]0, 1], where a, A,, B,¢, D, E,, F,, 1= 1,2, 3,
are oll constants, and g 1s an arbitrary measurable function.

THEOREM 2.2. If F:[0,1] x ]0, 1] — R is measurable in its first
variable, then it satisfies the functional equation (1.6) for all Pe 4,
Qed, Xed, Ye d, if and only if F is of the form

(2.25) F(p, 2) = aplog p + [¥(z) + Alp ,

Jor all pel0, 1], x€]0, 1[, where 4 is a solution of the Cauchy equa-
tion (2.9) and a, A are constants.

3. On the measurable solutions of the functional equation
(1.7). Let F:[0,1] x 10,1 x 10, 1] — R be measurable in its first

variable and satisfy the equation (1.7) for all Pe 4, Qe 4, X, Ue 4,
Y, Ve d,

For each fixed #,, v; equation (1.7) reduces to the form (1.8). Thus
by Theorem 2.1 there exist in particular +, v, v, ¢, ¢, satisfying the
Cauchy equation (2.9) in their first variables and A, A4, 4., a, B, D,
D, E, E, F, such that

F(q, y, v)) = a(u,, %y, v, vy, v)qlog q + [v(y, Uy, Us, Vs, Vsy V)
+ A, (%, Usy vy, Vs, U)]Q + (Y F G)Y, Wiy Uy Uiy Vs, Vs)
+ D,(w,, Uy, V1, Vs, Vs) ,
F(q, y, v2) = alu,, w,, v, vy, v,)q log q + [V(y, %, U, v, Vsy Vs)
+ (4, + BY(uUy, s, v, Vsy v)]q + (V2 + )
(Y, %y, Uy, ¥y Vs, Vs) + Dy(Uy, Uy, ¥,y Vs, Vs)
Fq, ¥, uv) = a{u,, U, v, v, v5)qlog q + [v(y, w, Uy vy, Vs V)
(3.1) + AUy, Usy Vi, Uy, VG A+ VY, Uy, Uy Vs, Vs V)
+ E (1, Uy, Vi, Vs, V3)
F(q, y, u,v,) = a(u,, Uy, vy, Vs, v5)q log q + [y, 1, U, V1, s, V)
+ (A, + B)(u,, %y, v, Vs, vs)]q
+ (Y, Uy, Us, Vi, Vay Vs) + Fy(ty, U, Uy, Vs, V)
F(q, y, u,v) = a(u, U, v, v, v:)q log q¢ + [V (Y, Uy, Us, V1, Vs, Us)
+ Ay, sy Vi, Vs VG F S(Y, Uy U, Vs, Uy V)
+ F(t,, Uy, sy Uy Us)

3.2 Ay, Uy, v, v, ¥;) = @ constant = a .

Hence it follows that

(3 3) V(yr ul’ uz; /vlr 7;2; /US) + Al(%ly fu’27 /vly v2; /03)
' = ¢ function of ¥ and v, only = 4(y, v, ,



ON FUNCTIONAL EQUATIONS 165

(34) V(y’ ul’ ?’{’27 /Ulf UZ’ /03) + Al(uu ’M/z, 1]1, /Uz, 'U3) + B(ulr uz; vu Uz; /03): 6(?/7 /Uz) ’
(3.5) (Y, Uiy Uny Vs, Vyy vy) + Ay, Uy Dy Vo vy) = 0(y, U)

qry(yr ul’ u?; vl) Q)Zy ’03) + AZ(u/ly 7/(/2, /UU /027 /2)3) + B(uly 7'(’2} vl) /027 ,2;3)

3.6) = 0(y, w,v,) .

From equations (3.3) to (3.6) we have

3.7 Iy, v) — 0(y, v) = 6(y, ww,) — 0y, ww,)

and

(3.8)  Ay(uy, %y, vy, Uy v5) — AWy, U, Vi, Yy, Vs) = (Y, wv) — 0y, V) .

For (8.7), by Lemma 2.1 there exists, for each fixed y, a function
8. -, y) satisfying the Cauchy equation (2.9) and a constant 6,(y) such
that, we have

(3.9) 0y, v) = 6.(v, y) + O:(v) .
Now equations (3.8) and (3.9) yield

(3.10) 0.(v, y¥) = a function of » alone = 4,(v).
Thus we can rewrite the first equation of (3.1) as

F(q, y, v,) = aqlog q + [0.(v,) + 9.()lq

(3.11) ]
+ (o)W, Uy Uy Vs, Vs, V) + DUy, Uy, Uy, V2 V)

From (3.11) we see that (v, + 8,0, %, Us, V1, Vay Vs) + D (U, Uy, ¥,y Vay Vy)
depends on y and v, only. Since 4, 6, satisfy the Cauchy equation
(2.9), (v, + o)y, %y, U, vy, Vs vs) and Du,, 4., v, v, v;) depend on (¥, v,)
and v, only respectively. Thus we can write (3.11) in the form

F(q, y, v) = aqlog q + [0.(v) + 0y)]lq

(3.12) + a(y, v) + a(v),

where 8, and «, (-, v) satisfy the Cauchy equation (2.9).
From the first, third, and fifth equations of (3.1) and (3.12) we
have

al(yy 7)1) = al(y! 7/('1771) + al(y1 MZ'Ul) ’

for all w, u,, v,€]0, 1] with %, + u, < 1. Hence «, is independent of
the second variable and we may write the equation (3.12) as

(3.13)  Fl(q, y,v) = aglog q + [6.(v) + O)]q + a(y) + ay(v),

for all g0, 1], ¥, v 10, 1] where ¢, and «, are scolutions of the Cauchy
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equation (2.9). If we interchange the roles of the second and the
third arguments of F in the above procedure we see that 4, «, are
also solutions of the Cauchy equation (2.9).

Substituting (3.13) into (1.7), taking into account that ¢, a, are
solutions of the Cauchy equation (2.9) we get &, = 0. Thus we have
proved the following theorem.

THEOREM 3.1. Let F:[0,1] x ]0, 1] x ]0, 1[ = R be measurable
in its first variable. Then F satisfies the functional equation (1.7)
iof and only if F has the form

(3.14) F(q, v, v) = aglog q + [0.(v) + 0.(¥)]a,

where 6., 6,:10, co[ — R satisfy the Cauchy equation (2.9).

COROLLARY 3.1. Let F: ([0, 1] x 10, 1[ x 10, 1]) U {(0, 0, [0, 1[)} U
{@, 1,70, 1D} U{(0, [0, 1[, )} U {(1, 10, 1], 1)} — R be measurable in its first
variable., Then it satisfies the equation (1.7) if and only if F has
the form given by (3.14) on [0, 1] x 10, 1] x 10, 1] and on the boundary
F@©,0,.)=0, F(1,1, ) =6,-), F(0, -,0)=0 and F(, -, 1) = 6,(-).

ReEmMARK. The measures H,, I, D, in (1.2), (1.3), (1.4) possess in
particular properties: (a) Symmetry: H,, I,, D, are symmetric in the
pairs (»,, ¢,), (p;, 9.), (s, q;, 1;) respectively, (b) Expansibility: If P =
(pu Doy * vy pn), QZ(QN Qzy =y q,,,), R=(’l"1, Yoy = vy Tn) and P,:(pu Dzs * -y
Pn 0), @ = (¢, @+, 40, 0), B = (7, 7y +++, 7, 0), then H(P[ Q)=
H..(P'|Q), I(P|Q) = L,.(P'||Q) and D(P||Q|R) = D,..(P'| |Q'| R),
(¢) Branching: If P = (p, Py +++, Pu)y @ = (q, @ =+, €u)y B = (1, 14,
vy ry) and P = (D + Dy Py, v, Pa)y @ =(00+ 4y @5 +++, 0,) and
R =(r + ryry -+, 7,), then H(P| Q) — H,,(P'||Q), L(P|Q) —
I, (P'||Q) and D,(P||Q| R) — D,(P'||Q"| R) depend on (p,, D, ¢, @),
Py, Do @1, @) and (v, Doy @i, Qo 71, 7o) respectively, It is shown by
C. T. Ng [14] that these three properties are equivalent to the
representability of H,, I,, D, in the form H,(P|| Q) = X% f(p,, @),
In(P i Q) =3 9P, €0) and D,(P|] QI R) = Dia h(pu d:s Ti) where S
g, h are any function satisfying £(0, 0) = g(0, 0) = (0, 0, 0) = 0. From
these representations, the additivity property of these measures
motivates the study of the functional equations (1.6) and (1.7).

The Theorems 2.2 and 3.1 lead to a characterization of directed
divergence and inaccuracy and of generalized directed divergence
respectively. These three measures are determined by (a) Symmetry,
(b) Expansibility, (¢) Branching, (d) Additivity, and (e) Regularity
conditions such as Lebesgue measurability and appropriate initial
conditions.
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