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L. M. Gluskin has shown that if « is an isomorphism of
a weakly reductive semigroup S onto a semigroup T, if Vis
a dense extension of S and 7 is densely embedded in W
then « extends uniquely to an isomorphism of V into W. P.
Grillet and M. Petrich have shown that this result can be
interpreted in terms of extending « to certain subsemigroups
of the translational hull 2(S) of S. Here the problem of
extending homomorphisms between inverse semigroups is con-
sidered. As a preliminary to the main results the problem
of extending congruences from S to 2(S) is considered and
various classes of congruences are shown to be extendable.
The main result shows that any homomorphism ¢ of an inverse
semigroup S into an inverse semigroup 7 such that the ideal,
in the semilattice £ of idempotents of 7, generated by the
image of the idempotents of S intersects any principal ideal
of E, in a principal ideal extends naturally to a homomorphism
of 2(S) into 2(T). The extension described is unique with
respect to certain natural restrictions.

1. Introduction and extensions of congruences, We first recall
some standard notation (cf. [2] and [5]). For any semigroup S, let

A(S) = (v e Tt May) = M)y, for all x, ye S},
P(S) = {oe I (xy)o = x(yp) , for all =, yeS}

where, for any set X, 7 4(7 ) denotes the full transformation semi-
group on X with functions written on the left (right). Then A(S)
and P(S) are subsemigroups of 9 and .75, respectively. Let

AS) = {(\, p) € A(S) x P(S): (My)) = (@)0)y , for all «,yeS}.

Then 2(S) is a subsemigroup of the direct product 75 X 7%, called
the translational hull of S. For basic properties of 2(S), the reader
is referred to [5].

For any ae S, let A, € A(S)(p, € P(S)) be such that

No(®) = ax, (¥)0, = 2a, for all zeS.

Then (\,, 0.) € 2(S) and 75: a — (\,, 0,) is a homomorphism of S into
2(S). If Il is an isomorphism, then S is said to be weakly reductive.
Thus S is weakly reductive provided that ax = bx and xa = zb, for
all x€ S, implies that a = b.

Let S be an ideal of a semigroup V and « be a congruence on S.
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Then & is compatible with V if (a, b) € £, implies that (va, vd) € £ and
(av, bv) ek, forall ve V. Let A be a subsemigroup of 2(S) containing
11(S). Then k£ is compatible with A if (a, b) € £ implies that (\(a),
M0b)) € k£ and ((a)p, (B)p) ek, for all (\, p)e A. If Sis weakly reductive
then II5'ckoIly is a congruence on II4(S), which we denote by £~,
and x is compatible with A if and only if £* is compatible with A.
Now suppose that 7 is a congruence on A (alternatively, V) such
that 7N (II5(S) x II«(S)) = £~ (alternatively, 7 N (S x S) = £) then we
say that k£ extends to ¢ and that 7 extends k.

For each ve V, let \’(0") denote the mapping M(a) = va((a)p’ =
av), for all a€ S, of S into itself. Then (A, p*)e2(S) and w:v—
(A%, 0°) is a homomorphism of V into 2(S). Clearly the restriction of
@ to S is just IIs. The following lemma is straightforward.

LEMMA 1.1. Let S be an ideal of V and & a congruence on S.
Let S be weakly reductive. Then k extends to a congruence on V if
and only if £ is compatible with w(V). Moreover, if £ is compatible
with w(V) then

k* = {(u, v) € V: for all ac S, (ua, va)€ k and (au, av) € £}

18 the maximum congruence on V such that £° N (S x S) = k.
The smallest congruence © that will extend & when £ is compatible
with w(V) is just

T ={(u, v) eV X V: either (w, v)eS X S and (u, v)EK or u = v} .

Consequently, if we are interested in studying those congruences
on an ideal S of a semigroup V which extend to congruences on V
then we should consider those congruences on S that are compatible
with subsemigroups 4 of 2(S) which contain I74(S) and therefore,
in particular, those that are compatible with 2(S).

NorATiON. For any semigroup S we write &°(S) for the lattice
of congruences on S. For a subsemigroup 4 of 2(S) containing 174(S)
we write &,(S) for the set of congruences on S that are compatible
with A.

LemMA 1.2. Let A be a subsemigroup of 2(S) containing Il (S).
Then &4(S) ts a complete sublattice of the lattice of all congruences
on S containing the identity and universal congruences.

We now consider Z°(S) for certain classes of semigroups and
for the most restrictive case 4 = 2(S).
For any left zero band S (i.e., xy = x for all z, ¥y S), 28) =
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{(x, ): % is a funetion S, ¢ the identity on S} and therefore %% (S)
congsists of only the identity and universal congruences.

In general, however, there are many congruences on S which are
compatible with 2(S) as the following lemmas indicate.

We shall dencte by 5% Green’s relation 5% (see [2]).

LemMmA 1.3, Let S be a semigroup and £ a congruence on S
Tsuch that £ S 57 Then k€ Foi(S).

Proof. Let (a,b)ex and (\, 0)€2(S). Then (a, b)e o# and so
there exist elements x, y € S such that @ = b, b = ay. Then b = xby
and so

[Ma) = M)

(1) M) = Ma)by .

Since (a, b) € £ we must have (b, by) = (ay, by) € £ and therefore, by
1), (Ma), Mb)) € k. Similarly ((a)p, D)o)€ £ and s0 &€ Z%(S).

LEMMA 1.4. [7] Let B be an ideal of a semigroup S such that
B* = B. Then ke ©s(S) where

£ ={(a,b)eS x S: either a,beB or ¢ =b}.

A semigroup S is a regular semigroup if ¢ € aSa for all elements
e e S and a regular semigroup S is an 1nverse semigroup if all idem-
potents commute. If Sis an inverse semigroup then, for each element
a €S there is a unique element z in S, which is usually denoted by
a”!, such that axa = ¢ and zax = x. For the basic properties of
inverse semigroups the reader is referred to [2].

LevMMA 1.5. Let S be o semigroup and £ be a congruence on S
such that S/t is an inverse semigroup. Then k€ Fhs(S)-

Proof. Let (a, b)ek and (N, p) € 2(S). Let 2(y) be elements of S
such that (x)e = (Ma))e " and (y)k = O\(b))x~'. For any element ue S,

(Wr(Ma))r = (uMa)k = (w)oa)s
(2) = (Wo)r(a)e = (w)e)r(b)x
= ((w)od)e = (unb)r = (w)r(Mb)% .

Hence
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Ma))e = (Ma)e@)E(Ma)E ,
= Ma)e@)e(MO)E , by (2),
= (Ma))r(@)e(Mb)yMb))x
= (Ma)e(@)e(M0)y)e(MD))&
= (MO)y)E(Ma))e(@)e(MB)y)E(Mb))E 5

since S/k is an inverse semigroup and therefore idempotents commute,

= (MO))E(B)E(M@)E™* MO)Y)E T (MB)E , by (2)
= (MO)E[(MOIE(Ma)£] (MB))E

= (MONE[(MB)Y)E(MONE] (BN, by (2)

= (MB))e(MO)E™ (MB)E = (MB))E

Thus (Ma), Md)) e k. Likewise ((a)o, (b)p) € £ and k€ Bo)(S)-

2. Extensions of homomorphisms. If S is an ideal of a semi-
group V then a question closely related to that regarding which con-
gruences extend to V is the question of which homomorphisms extend
to V. Naturally, one would not expect to be able to say very much
in such a general situation. A context in which the question is more
meaningful is indicated in Theorem 2.2.

First, some relevant terminology.

Let S be an ideal of a semigroup V. Then V is a dense extension
of §if, for any nontrivial congruence o on V, ¢ N (S x S) is nontrivial.
(By a nontrivial relation we mean one which is not equal to the
identity relation.) Furthermore, S is said to be a densely embedded
1deal of V if V is a maximal dense extension; that is, if W is a dense
extension of Sand VS W then V = W. These concepts can be charac-
terized for weakly reductive semigroups in terms of subsemigroups
of 2(S) as follows. Let w: v— (\*, p*) be the homomorphism of V into
2(S) introduced in §1.

From [5], we have the following result that illuminates Gluskin’s
theorem below.

LEMMA 2.1. Let S be an ideal of the semigroup V and let S
be weakly reductive.

(1) Vis a dense extension of S if and only if ® s an iso-
morphism of V into Q(S).

(2) S is a densely embedded ideal of V if and only if @ is an
1somorphism of V onto AS).

Gluskin [3] ([5], §4, Theorem 1) established the following.

THEOREM 2.2. Let a:S— T be an tsomorphism between weakly
reductive semigrouns. Let V be a dense extenstion of S and let T be
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o densely embedded ideal of W. Then « extends to a wunique iso-
morphism of V into W.

In other words, if S and T are weakly reductive and a: S— T
is an isomorphism then a will “extend” uniquely to an isomorphism
of any subsemigroup of 2(S) containing /74(S) onto a subsemigroup
of AT) containing I7,(T).

We formalize this notion of extension not only for isomorphisms
but also homomorphisms as follows.

If A is a subsemigroup of 2(S) containing /74«(S) and « is a
homomorphism of S into a semigroup 7T then we say that « extends
to a homomorphism B of A into 2(7T) or that @ extends a if B is a
homomorphism of A into 2(T) such that

/8(7\%1; loa) = ()’a(a); pa(a>) ’ for all ae S .

LEMMA 2.3. [7] Let Abea subsemigroup of 2(S) containing 1I4(S)
and let £ be a congruence on S compatible with A. Let T = S/k and
a denote the natural homomorphism of S onto T. Then «a extends
to a homomorphism B: A — AT). Moreover, if T is weakly reductive
then B is unique. If S and T are both weakly reductive then Bo B8N
(IT5(S) x IIs(S)) = £ and BB~ is the largest congruence on A
extending K.

The homomorphism g is defined in the obvious way by B(\, p) =
(\, 0') where
M(a(@) = a(M@)) and  (a(x))o" = a((2)0)

for all ze S.

We can use this result to make some further observations regard-
ing %%s)(S). The reader is referred to [7] for applications of Lemma,
2.3 to the translational hull of a semisimple semigroup.

LEMMA 2.4. Let k, T be congruences on a semigroup S such that
TS k. Let T=S/t. If v € os(S) and £/t € Eouw(T) then k € S5 (S).

Proof. Let (a, b)ek and (A, 0) € 2(S). Then (az, b7) € k/c. Since
T € Zus(S) the natural homomorphism a: S— T extends to a homo-
morphism g: 2(S) — 2(T). Let g\, p) = (\, 0'). Then

(Ma))z, (Mb))T) = (M (az), N'(bT)) € /T .
Hence

(Ma), Mb)) ek .
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Similarly ((a)o, (b)o) € £ and £ € ZFp 5 (S).

This enables us to say a little more about &, (S) when S is a
regular semigroup.

For any regular semigroup S the relation 6 is defined on the
lattice of congruences of S as follows [10]

(£, 7)€l == kN (Es X Ey) =t N (Fs x Ey)

where, for any semigroup S, E denotes the set of idempotents of S.
The relation ¢ is a complete congruence on Z’(S) and each f-class is
a complete modular sublattice of Z(S).

PRrOPOSITION 2.5. Let S be a regular semigroup. Then s (S)
s a unton of O-classes.

Proof. Let 6 be any f-class in &7(S) such that 0N Ehe(S) is
nonempty. Since &,(S) and 6 are both complete sublattices of
Z(S), s0is F = 0N Zus(S). Hence F has a smallest member ,
say. Let T'=S/r. lLet k€0 and £ = 7. Since (x,7)€0, £/t S 5~
Hence £/t € &5 (T), by Lemma 1.3. Therefore £ € &5/(S), by Lemma
2.4. Thus ke F.

Now let £ be any element of 6 and ¢ = £ \V 7. Then £ < 0 and
ceF. Also o/t S 5~

Let (\, 0) € 2(S) and (@, b) € . Then (a, b) € 0. Since ¢ is compatible
with 2(S), (v(a), M) € ¢ and (Ma))k, (\M(b))k) € a/k. Therefore, (Ma))k,
(Mb)k) € &7 and so there is an element c< S such that (¢)x(0\(a))k =
(A {b))x. Hence,

Mo)E = (eMa)r = ((e)pa)e
= ((9)0)e(a)(k) = (()P)e(b)r = (Mb))E = ()e(MD)x -

Consequently, left translation by (¢)t induces the identity mapping on
the right ideal generated by (Mb))k. In particular, (¢)e(Ma))k =
(Ma))k. Therefore (\Ma))xr = (Mb))k. Similarly, ((a)p, (b)p) € £ and so
k€ Gns(S). Thus 0 & &% (S) and the result follows.

We shall call a semigroup S fundamental if there are no nontrivial
congruences on S contained in £ We conclude this section with a
result which is a consequence of some of our observations regarding
the extension of congruences and of some independent interest.

PROPOSITION 2.6. Let S be a regular semigroup. Then S is
fundamental if and only if 2(S) is fundamental.

Proof. For the purposes of this proposition, we identify S with
II«(S). First suppose that S is not fundamental and let o be a non-
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trivial congruence on S contained in 5. Then p € %% (S), by Lemma
1.3. Let 0 be the minimum extension of o to a congruence on £(S)
described in Lemma 1.1. (Here S = II¢(S) and V = 2(S).) Clearly
0 & 27, Green’s relation on 2(S), and o is nontrivial. Therefore 2(S)
is not fundamental.

Conversely, suppose that ¢ is a nontrivial congruence on (S),
such that ¢ & 222 By Lemma 2.1, p =0 (S x 8S) is a nontrivial
congruence on S. Since S is a regular ideal of 2(S), the restriction
of 27 on 2(S) to S is just Green’s relation 577 on S. Hence o is
a nontrivial congruence on S and p & 5#° Therefore S is not funda-
mental.

3. Extensions of homomorphisms between inverse semigroups.
From Lemmas 1.5 and 2.3, we see that, if «: S— T is an epimorphism
between inverse semigroups then « extends uniquely to a homomor-
phism g: 2(S) — 2(T). In general [7], 8 is not an epimorphism.

Although it seems to be difficult, in the general case, to say much
about extending semigroup monomorphisms one might expect to be
able to say something when the semigroups concerned are inverse
semigroups. To do so, however, it is not surprising that one needs
to know more about the translational hull of an inverse semigroup.

The first result in this direction appears to be the observation
due to Ponizovski.

Lemma 3.1. (Ponizovski [6]). If S s an tnverse semigroup then
2A(S) 1s also an tnverse semigroup.

Then J. Ault [1] considered those inverse semigroups S for which
II«(S) = 2(S)\(Unit group of 2(S)) and orthogonal sums of such
semigroups. Any inverse semigroup S for which Fy is a chain is
such a semigroup.

For an arbitrary inverse semigroup S, J. Ault also characterized
those ne A(S) for which there is a p € P(S) such that (, o) belongs
to the unit group 2(S) of (S). Since the mapping 7,: (\, o) — \ is
an isomorphism of 2(S) into A(S) it would seem natural to attempt
to characterize X(S) (and, indeed, 2(S)) by characterizing 1,(2(S)),
as J. Ault did (and 7,(2(8)), as described below).

Throughout the remainder of this paper, for any inverse semi-
group S and any e A(S), 0, will denote the mapping of Es into Eg
defined by

0,(e) = nMe)M(e)™, for all ec K.
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In her characterization of 3(S), J. Ault introduced these mappings
0, and observed that if (A, p) € X(S) then 6, is an automorphism of
E¢. These mappings are also valuable in discussing I7,(2(S)).

Before stating the main result, we need one or two preliminary
observations.

For any semigroup 4 and any a€ A the mapping a— X, is a
homomorphism of A into A(A). If A is left reductive (ax = bz, for
all x€ A, implies a = b), for example, if A is an inverse semigroup,
then this mapping is an isomorphism. Let I"(4) = {\,:a € A}.

For any mapping «, 4(«) and /(o) denote the domain and range
of «, respectively.

If A is a semilattice then B is a P-ideal of A if BN1I, is a
principal ideal of A for all principal ideals I,. Then 2(A) and 4(A)
are just (isomorphic to) the semilattice of all P-ideals of A [1]. The
element (A, p) € 2(A) or : € A(A) corresponds to the P-ideal /(A) and
any P-ideal B corresponds to the element (A, p) € 2(A4) or : € 4(A) where

Me) = (e)o = f where AenN B = Af .

THEOREM 3.2. [9] For an inverse semigroup S, II(2(S)) can
variously be described as:

(1) the idealizer of I'(S) in A(S);

(2) the unique maximal inverse subsemigroup of A(S) contain-
g I'(S);

(3) the unique maximal inverse subsemigroup of A(S) with the
idealizer of I'(Es) n A(S) as its set of idempotents;

(4) the unique maximal inverse subsemigroup of A(S) with
A(ES) as its set of idempotents;

(5) the set of all ne€ A(S) such that

(@) 7, is a P-ideal,
and

(b) 0, is a homomorphism;

(6) the set of all ne A(S) such that

(@) 7@, is o P-ideal,
and

(b) 4; = M) "Me):e€ Es} ts a P-ideal,
and

(¢) the restriction of 0, is an isomorphism of 4; onto V(0;).

Armed with these results we can now return to the problem of
extending homomorphisms. The reader is referred to [8] for a discus-
sion of some examples that indicate some limits to one’s expectations.

We shall need some observations regarding idempotents in 2(S).
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LEMMA 3.3. Let S be an inverse semigroup and let (N, 0), (¢, r)
be idempotents of 2(S). Then

(1) M= 0= p;

(2) ME5) S Es, (Es)p & Es;

(3) 4, =MEs) is a P-ideal of Eg;

(4) for any ec K,

Ese N A; = Esk(e) ;

(5) (v o) =(,7) if and only if 4, 4.
Conversely, 1f P is any P-ideal of Hg, then (N, p) € Eoy, where, for
any a€ S,

Ma) = ea where Esaa™ N P = Ege,
(a)o = af where Esxa'a N P = Esf .

Moreover, 4, = P.

Proof. Observations (1) and (2) follow from [1] while (3) and (4)
follow from [9], Lemma 2.5. The assertion (5) follows from (3) and
the fact that elements of 2(S) are completely determined by their
actions on K.

COROLLARY 3.4. Let S be an inverse semigroup and (\, 0) be an
idempotent of 2(S). Then
N 0) = YV A(x, 0): €€ Es and (N, 0.) = (N, 0)},
= v {(>\’e’ pe): ec Ai} ’

where VA, for a subset A of Eg,g, denotes the least upper bound of
A in E,i which, of course, need mot exist for all A.

(3) {

Proof. That
{(A, p):ec Es and (A, 0) = (\, 0} = {(\, 0.): €€ 43}
is immediate from Lemma 3.3, (5) and observation that, for any ec Ey
4;, = Ese .

Hence, (A, 0) = (\., 0.), for all ec 4,. On the other hand, since 4, is
an ideal of Ej,

d; = U {Eseiec ;) = U {4,:ee 4y}

and if ([, ) is any idempotent of 2(S) such that (I, ) = (\,, p.), for
all ec 4,, we must have

AID U{Ah: ec A;}
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and, therefore, (I, ) = (\, 0). Thus (3) holds.
Finally,

LEMMA 3.5. ([9], Lemma 2.5). Let S be an itnverse semigroup.
Let (N, p) € 2(S) and (£, ) be the inverse of (N, p) in 2(S). Then

(1) M) *NMe) = kn(e), for all ec E;

(2) FEen 4, = Exn(e) = EX(e)™\(e), for all ec Hs.

We can now establish the main extension theorem for mono-
morphisms.

THEOREM 3.6. Let S and T be inverse semigroups and 0: S— T
be a monomorphism such that the ideal

((Es)y ={feE: f=06(), for some eckHs}

generated by O0(Es) in E, is a P-ideal. Then 0 extends to a mono-
morphism @ of 2(S) into QT) such that, for any (\, 0) € Eqs,

@(’\” (0) = v {(kﬂ(e)y [00(8)): ec ES a/??/d ()\‘ey loe) é (’\” IO)}
= V {(K’ﬁ(e)) [00(9)): S 417} .

Moreover, @ is the unique extension of 0 such that

(5) P 9 = VY (s, o) € € Es}

where ¢ denotes the identity left and right translation, and therefore
1s the unique extension of 0 satisfying (4). Thus if ¥ is an extension
of 0 such that (, ¢) = P(, ¢) then ¥ = P.

(4)

Proof. Let ne A(S). Define a mapping N as follows. Let ac
T and aa™ =e. Let

Eqre N {0(E5)) = Ere
and ¢” € Fg be such that ¢ < 6(¢”). Then define
N(a) = 0(u(e"))a .

Suppose that ¢”, f”" € Es are such that ¢’ < 0{(¢"), (f"). Then ¢'i<
6(e” ). Also

h = 00u(e) 0\ ))aa " € Ere .
Hence, h < ¢ < 0(¢”f") and hO(e”f"") = h. Therefore,

o(e"))a = 0u(e")ha = O(\(e"))0(e" f")ha
= 0(\(e")0(e" £\ (")) 0(Me))aa"a
= 00O ") = BOMe")e" ") = 00" e «
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Similarly,
OM(f")a = 6(M(" f"))a

and )\ is well defined.
To see that N is in A(T) let a,be T, e = aa™, f = abb™'a™". Let
¢ ek, ¢ cEs be such that

E.en (6(Es)y = E¢ and ¢ < 6(”).
Let f' and f” be defined similarly. Then
N(a)b = 0(\(e"))ab ,
N(ab) = 6((f""))ab .

Since f < e, f' < ¢ and so we may choose f” so that f”" <e”’. (If
7 & e’ take e”f"” as a new f”.) Clearly f' =e¢'f.
Let « = 00\(e""))'0(\(€"))f. Since

O(Me") = 0(M(e")e"”) = 0(\(e"))0(e")
we have that
x = x0(e")f = ab(e")ef =ae'f =af’ =xf'0(f") = 20(f").
Hence
M(@)bd = 0(n(e"))ab = O(\(e"))xab
= 0(M(e")x0(f")ab = O(\M(e")O(f")ab = O(Me”)f")ab
= 0((f"))ab = N'(abd) .

Therefore N € A(T).
Now let A, 1€ A(S) and N, I’ be defined as above. Letac T, e =

aa”' and ¢, ¢ be defined as before. Then
Nl (a) = N(0(Ue"))a)
= N(0Ue N ,

and it is not difficult to see that N'(6(l(e”))) = 6(Ml(e”)). Thus Nl (a) =
(M) (a) and the mapping A — \' is a monomorphism of A(S) into A(T).

We define a mapping o — o’ of P(S)— P(T) similarly. Let ae
T o 'a =e,

ETG n <6(Es)> = Ere,
and e” € Eg be such that ¢ < 6(¢"). Define
(a)o" = a(0(e”)p) -

As for the left translations, o’ P(T) and o — 0’ is a monomorphism
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of P(S)— P(T).

Suppose now that (A, p) € 2(S). We wish to show that (\, p') e
2T). It remains to show that A" and 0" are linked. Leta, be T, e =
a”'a, £ = bb™* and let ¢, ¢”, f, f”' be defined as before. Then

© = e0OMf"NOO")" € Ere N (6(Ey))

and so x < ¢ < 0(e'). Similarly, if y = 0((¢")p)'0((e")p)f then y <
6(f""). Hence
a)'(b) = ad(Mf"))b = axb(M(f"))b
= axd(e")IMf")b = abd(e"Mf"))b = ab((e”)oS")b
= af((e")P)0(f")b = ab((e")0)yb(f")b = ab((¢")0)yd
= (@)0'd .
Thus (\, ') € 2(T) and clearly @: (\, p) — (\/, 0’) is a monomorphism.

We now show that @ extends 6. Let a€T,e=aa™* and ¢, ¢”
be as before. Let x€S. Then

(A)'(@) = 60v(e"))a = O(xe")a = O(x)0(e")a
= f(x)a , since O(x)0(x)e < (") .

Thus (\,) = M. Similarly (0,) = ps., and the monomorphism @: (\,
0) — (N, 0') extends 6.

To see that (4) holds, let (A, p) be an idempotent of 2(S). Then
(', 0’) is an idempotent of 2(T). Let ec 4;. Then e = \(e). Let ¢,
¢’ be as in the definition of A\'(¢). Then

e = \(e) = O(Me)e .

Therefore, ¢ < 0(\(¢")) where f" =\(¢") € 4;. Thus ¢€ 4, where f’'=
0(f"). Hence

(6) 4y SU{4, ff=0(f") and f"ed}.

Since the converse inclusion clearly holds, we have equality in (6)
and therefore

W, 00 =V (s, 0): f' = 0(f") and [f"edy}.

Hence (4) holds. In particular we note from this that

(7) 4. = {0(Es))
and
(8) ¢, ) = V {(Mowey, Oser): €€ Eg} .

Let 4 be any other extension of 6 that satisfies (5). For any
n, 0) € 2(S), let ¥v(n, p) = (\", 0”). From (5) and (8) it follows that
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(9) (€, ) =071

Let (A, o) be any element of 2(S) and let (&, o) be the inverse of
(A, ) in 2(S). Then it follows, from Lemma 3.5, that

A). == Arl and A}j/ - A,;N;y/ .
Let ae T and aa™ =e¢. Let ¢, ¢’ be as before. Then
V(@) = V(e)a = (" (e) N (@)a = V' (g)a ,

where g = N'(e)"'\N'(e) € 4, = Ay © 4. Hence, from (7) and (9),
g€ 4,,, for some f"=6(f") with f”e F,. Since g =e we therefore
have ge Eye N (O(Es)) and so g < ¢’ < 6(e”). Hence g = gd(¢”). Also

(7, 0" Moy Ooern) = V(N OIF ey 0r) = (X, O)(Nerr, 007))
= r‘r"f(x}.(e”)y (0/7(2")) = ()\’02(8”)7 [Oﬂl(e”)) .
Therefore, since 7' is weakly reductive,
N Ngery = Noaerry »
Also, from Lemma 3.5,
Een 4, = HEyg
while, for = = \'(0(e")),
x'wec Bye 4, .
Hence
(10) r'weg = x”'we .
Therefore,
N'(a) = N'(9)a = N'(0(e")g9)a = xga = xx'xgea

=uxa, by (10)=N'0")Na = N Nye(a)
= Morern(@) = (O(Me"))a = N(a) .

Thus N =N, ¥\, p) = 2(\, p) and + = p.
Combining Lemmas 1.5 and 2.3 with Theorem 3.6 we have the
following result.

COROLLARY 3.7. Let 0: S— T be a homomorphism of the inverse
semigroup S into the inverse semigroup T such that {6(Es)> is a
P-ideal in E;. Then 0 extends to a homomorphism @: 2(S)— 2(T)
which 1s unique with respect to the condition

P, ) = V {(Mowy, Oo): €€ B}
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where ¢ denotes the identity left and right translation of S.

Proof. Let 6 = 6,0, where 6, is the natural epimorphism of S
onto S/6-6~* and 6, is the embedding of S/f-6~* into T such that
6 = 6,0,, Let ® be the composite of the natural extensions of 6, and
6, described in Lemma 2.3 and Theorem 3.6. Then @ extends 4.

The uniqueness part does not follow immediately from the state-
ment of Theorem 3.6 but the proof of uniqueness in Theorem 3.6 will
carry over almost verbatim.

So far we have been concerned with extending a homomorphism
6: S — T between inverse semigronps to a homomorphism @: 2(S) —
2(T). Having done that we can easily generalize the domain of our
extension if we also liberalize our definition of an extension. Let S
be an ideal of a semigroup V and 6: S — T be a homomorphism. Then
we shall say that a homomorphism :V — QT) extends 6 if

“F(a’) = O\'a(a), pa(a)) , for all aeS.

Then we have the following result.

COROLLARY 3.8. Let 0: S— T be a homomorphism between inverse
semigroups such that (O(Es)y is a P-ideal in Ey. Let S be an ideal
of the semigroup V. Then 0 extends to a homomorphism ¥: V — T).

Proof. Let w:V— 2(S) be the homomorphism introduced in §1.
Then the restriction of w to S is just I75. Let ¢: 2(S) — 2(T) be the
extension of # described in Corollary 3.7. Then @ow:V— 2(T) and

28)

T(T)

of
4)0“5’ 1

(PR VU S (G \ W

s I, T4(S)
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Pow(a) = Pollg(a) = P(\q, Po) = Noay Pow) -

Thus + = @ow is an extension of #. The situation is displayed in
the above diagram.

An interesting feature of the natural extension @ of # in Theorem
3.6 is that it preserves convexity. Recall that a subset A of a par-
tially ordered set X is said to be conver if a <z <b,a,beAl, zecX
implies that x ¢ A.

PropoOSITION 8.9. If, in addition to the hypothesis of Theorem
3.6, 0(Es) is convex in E, then @(Eys) s convex in Eoq and @ s
the unique extension of 6 such that the image of Eys 1is convex inm
E.Q(T)'

Proof. We wish to show that @(H,s) is convex. Let (), p), (&,
v)e Ky and (I, r) e E,py be such that

W, )=l r) =, Y).
Then, from Lemma 3.3, we must clearly have
4y S 4, & 4p
and therefore
(11) 4y NE) & 4N 0(Es) S 4w N O(Ey) .

Let the three expressions in (11) be labelled 4,, 4., and A4,, respectively.
Note that

dy ={ecEpie < 6(f") for some f" e 4;}
and similarly for 4,. Let ¢”’e Es. Then

0(Es)0(e") N A & E-0(e") N 4,
= HE,f , for some feFE;,.

Since 4, 4,, we must have f < 0(f”), for some f”’¢cEs Onthe
other hand,

4.N Ese" = Esg"
for some ¢”" ¢ Eg, and so
O(Es)0(e") N A, 2 0(E)0(e") N As 2 0(E5)0(g") -
Hence,
0(¢") = f = 0(f")

and, since 0(E;) is convex, fec8(E;). Since we also have fed, it
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follows that f e 4,. Hence
O(Es)0(e") N A, = 0(Eg)f

and A, is a P-ideal of 9(Eg). Let A = 67'(4,). Then A is a P-ideal
of E;. Let (¢, 6) be the element of E, s, as in Lemma 3.3, with 4, =
A. Then @(¢, 0) = (¢, ') so that to show that (¢, 6) = (I, r) it only
remains to be shown that 4, = 4,. But clearly

4o = L0(4)) = <6(4)) = (A & 4 .

Let ec 4,. Since 4, < 4., we have that e < 6(¢”), for some e’ ¢ Ej.
Let f” e Eg be such that

A, N 0(Es)o(e”) = 0(E)I(f") ,
and let ge E,; be such that
4, N E (") = Erg .
Then e < g while
0(f") = g = 6(e") .
Therefore g € 6(Ey), since §(Es) is convex, and
geEANO(E) = A, .

Thus ec (A,), 4, = 4., 1 = ¢ and therefore (I, r) = (¢, ¢').
Finally, to establish the uniqueness of @, let ¥ be any other
extension such that ¥ (FH,s) is convex. From Theorem 3.6,

20 ) =V {Mow, Ooe): €€ Es)
and clearly, since (¢, ¢) = (\,, p.), for all ec Ej,
P(e, &) = (o, Qo) » for all ec Eg.
Hence
P, )z P o)

Since y(Hyos) is convex in Ey,, there is some element (A, 0) € Eoy,
with (A, 0) = @(¢, ). Then

'31’0"; lo) 2 ()"ﬂ(e)f pﬂ(e)) = "5[’“(7\%’ loe) ’

for all ee Ey. Hence

()\’y (0) g ()\’e; (06) ’

for all ee E5. But there is only one idempotent in 2(S) with this
property, namely (¢, ¢). Hence (¢, ¢) = @(¢, ¢) and, by Theorem 3.6,
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P = .

In general, » may not be the only homomorphism of 2(S) into
(T) that extends 0, even if O(Es) is convex in E,. An example to
illustrate this will be found in [8].

The knowledge that certain homomorphisms between inverse semi-
groups extend to their translational hulls can be useful in determining
the nature of the translational hull of individual inverse semigroups.
By relating an inverse semigroup S via homomorphisms to other inverse
semigroups for which the translational hulls are known one can
again insight into 2(S).

For instance, the Howie-Munn representation of an inverse semi-
group S is described as follows [4]. Let E be the semilattice of
idempotents of S. Let 7T denote the inverse semigroup of all iso-
morphisms of principal ideals of E onto principal ideals and let Ug
denote the inverse semigroup of all isomorphisms of P-ideals of E
onto P-ideals of . Note that 7, is a subsemigroup of Uz. The
mapping 0: a — 0, where

(1) 4, = Ea'a;
(2) 6.e) =aeat, for all ec 4(9,)

is a homomorphism of S into T, such that #0607 is the maximum
idempotent separating congruence on S.

Since ¢ maps E onto the idempotents of T, ¢ extends to a
homomorphism @: Q(S) — 2(T:). This extension is considered in more
detail in {8] where it is shown that 2(7;) = Uy and 4o¢ " is the
maximum idempotent separating congruence on (8).

5. Composition of extensions. Let us call a homomorphism
a:S— T between inverse semigroups a P-homomorphism if {(a(Eg))
is a P-ideal in E,.

In this final section we show that the extension of a composite
of P-homomorphisms is the composite of the extensions. Implicit in
this statement, of course, is the claim that the composite of two
P-homomorphisms is a P-homomorphism. We tackle this first.

Levmma 5.1. If a: S— T and g: T— U are P-homorphisms, then
s0 18 Beoa.

Proof. Let ec E,. Then there exists an element ¢’ € £, such that
12) Eve N {B(Er)) = Epe' .

Let f e E; be such that ¢ < 8(f). Then there exists an element [’ €
E, such that



226 N. R. REILLY

(13) E.f N <{a(Es)) = Erf -
Let ge E5 be such that f" < a(g). Clearly
epa(g) € Eve N {Ba(Es)) .

Let  be any element of E,e N {Ba(Es)>. Ther
(14) r=e,
and, for some he E,,
(15) ¢ = pa(h)
and

w e Eye N (Ba(Ey)) & Eve N (B(Hy)) .
Hence, by (12),

(16) v ¢ = B(f) .
From (15) and (16),

(17 v = B(NBah) = p(fah)
where

Ja(h)e Erf N {a(Ey)) .
Hence, by (13),
Jath) = /" = a(g) .

Therefore, from (17),

¢ = Ba(g) ,
and, from (14),

r < eBa(g) .
Thus

Eye N {Ba(Es)) = Eyepa(y) ,

and Boa is a P-homomorphism.

NoTrATION. For any P-homomorphism «:S-— T let 2(«) denote
the extension of « to a homomorphism of 2(S)— (T) described in
Corollary 3.7.

Let & denote the category of inverse semigroups and P-homo-
morphisms. Note that a homomorphism «:S— T between inverse
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semigroups where S has an identity is necessarily a P-homomorphism.
Hence 2(a)e &, for all ac &.

THEOREM 5.2. 2: &, — &, defined on objects and morphisms by

Q: {a: S — T} — {Q(a): AS) — AT}

18 a covariant functor. Moreover, for any morphism a:S— T in
&, the diagram

s—"s s
a Na)
i A gl( T)

commutes and therefore {Ils: Se objects of &} is a matural trans-
formation from the identity functor: &, — &, to L.

Proof. To show that Q is indeed a covariant functor it remains
to be shown that, for any P-homomorphisms a:S— T, g: T—U, it
is the case that 2(8oa) = 2(8) - 2(«). Since it is clear that 2(8) A«)
is an extension of Soa, by Corollary 3.7, all that is required is to
show that 2(B-a)(, o) = 2(B8) - 2a)(, o).

Let 2(a)(e, ¢) = (x, p), 2B)k, p) = (\, 0) and 2(Boa)(, o) = (¢, T)-
Then , \, ¢t are idempotents. Let ec 4,. Then, for ¢’ e E, and fe E,
such that

Eve(\ {B(Ey)) = Eye’ and ¢ = B(f)
we have
e = Me) = Be(f))e
and, for f'e E,, ge E such that

Erf n<a(ls)) = E-f" and f' = a(g)

we have

£(f) = ag)f = a(g)f .
Thus

e = B(E(f))e = pa(9)B8(f)e
and

we) = (Ba(9)B(fe = Ba((9)B(fe = Ba(g)8(fe = e .
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Thus ec 4,. Conversely, let ec 4,, ¢/, ¢’ be such that
Ecen (Ba(Ey)) = Epe, ¢ = Ba(e”) .
Then

¢ = ple) = pa(e"))e = Ba(e)e .

Hence

Me) = MpBa(e"))e = pr(ale”))e = Ba(le”))e = pa(e")e = e
and ec 4,. Thus 4, =4,, x=p, (\, 0) = (¢, ) and 2(B°a) = 2(B) o A«).
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