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Let G be a nondiscrete locally compact abeiian group, and
M(G) the convolution algebra of bounded regular measures
on G. In this paper, the following is proved: Let {λk}%=Q be
a countable subset of MC

+{G), OΦ λoeMQ(G), and {CJ£U a
countable family of σ-compact subsets of G such that
hi% + C*) = 0 for all x e G and all fc = 0,1, 2, . Then there
exists a nonzero measure σ e Mt (supp λ0) with compact support
such that λk[x -f Ck+ Gp (supp σ)] = 0 for all x 6 G and all k =
0,1, 2, . A consequence of this result is the following:
Let Y be the closed ideal in M(G) which is generated by
U {L1^*): k = 0,1, 2, •} for some countable subset UJΓ-o of
MC(G). Then there exist ''fairly many" symmetric maximal
ideals in M(G) which contain U {Lι{μ)ι μe Y}\jMa(G) but not
MQ(G). Here L^μ) denotes the set of the measures in M(G)
which are absolutely continuous with respect to \μ\.

Throughout the paper, let G be a nondiscrete locally compact
abeiian group, G its dual, and M{G) the convolution algebra of bounded
regular measures on G. We use the following customary notations:

L\G) = Ma(G) c M0(G) c MC(G) c M(G) .

Here M0(G) denotes the closed ideal of those measures in M(G) whose
Fourier transforms vanish at infinity. For the definitions of MJfi)
and MC(G), see [3: (19.13)]; for the second inclusion, see [8:5.6.9] or
[4]. Given a measure μeM(G), we denote by L\μ) the set of those
measures in M(G) which are absolutely continuous with respect to \μ\%

For a set K in G, define

(K\ = Kϋ(~K) and {K)n - (K)^ + {K\ (n = 2, 3, . . •) .

Thus, the union of all (K)n, denoted by GP(K), is the subgroup of G
generated by K.

Our main results are the following.

THEOREM 1. Let {\k}ΐ=0 he a countable subset of Mt(G), 0 Φ λ oe
MQ(G), and {CJ"=0 a countable family of nonempty σ-compact subsets
of G such that

(a) \c(x + Ck) = 0 (α e G; & = 0, 1, 2, •) .

Then there exists a nonzero measure σ e Mn~(supp λ0) tvith compact
support such that
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(b) Xk[x + Ck + GP(supp σ)] = 0 (x e G; k = 0, 1, 2, •) .

/f, m addition, G is metrizable, such a measure σ can be taken so
that (supp σ) — x0 is independent for some x0 e G.

COROLLARY. Let {Xk}ΐ=0 be a countable subset of MC(G), 0 Φ λ0 e
M0(G), and Y the closed ideal in M{G) which is generated by
U {Lι(Xk): k = 0, 1, 2, •}. Then there exists a nonzero measure
σ e Mi(supp λ0) m'£& compact support such that

\μ\[x + G,(suppσ)] = 0 (cc e G; μ e Γ) .

//, m addition, G is metrizable, such a measure σ can be taken so
that (supp σ) — x0 is independent for some x0 e G.

THEOREM 2. Let {λfc}̂ =0 and Y be as in the Corollary. Then
there exists a symmetric maximal ideal Θ in M(G) such that

U {L\μ): μeY}Ό Ma(G) c Θ but MQ(G) £ Θ .

Furthermore, the set of all θ's with these properties has cardinal
number larger than or equal to max {2ω, Card G}. Here ω denotes the
smallest uncountable cardinal.

Theorem 1 improves the main result in [6] and its Corollary
generalizes a theorem of Rudin [7] (see N. Th. Varopoulos [9] in this
connection). The idea of our proof is due to T. W. Korner [5: Ch.
XIII]. Although the arguments needed are similar to those in [6],
we give a detailed proof of Theorem 1.

We need some lemmas.

LEMMA 1. Let λ be a measure in Mt{G), and D a compact
subset of G such that X(x + D) — 0 for all xeG. Then, for each
finite set F in G, neN (the natural numbers) and e > 0, there exists
a neighborhood V of 0 e G such that

X[x + D + (F + V)n\ <e (xeG) .

Proof. Let F, n, and ε be as above. Take a compact set K in G
so that \(G\K) < ε, and fix any neighborhood VQ of 0 with compact
closure. Since F is finite, X[x + D + (F)n] = 0 for all xeG by
hypothesis. Thus, for each xeG, we can find a neighborhood Wx of
0 so that

\[x + D+ (F). + (W.M <ε .

(Note that D + (F)n is compact.) It follows from compactness of the
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set K — [D + (F)n + (F 0 )J that there exist finitely many points xlf

%2> , %m e G such that

# - [ £ > + ( F ) . + (F 0 )J c U (*i + W..) .

Put F = nΓ=i W.y Π Fo. If x e iΓ - [D + {F)% + (F 0 )J f then a; e s, +
Wx. for some j = j(x), and so

\[x + Z) + (F + F ) J ̂  λ fo + TΓ.y + JD + (F)n

lί xίK-[D+ (F)n + (F0)J, then

[x + D+(F+ V)n] ΠK(z[x + D+ (F)n + (Vo)J ΓΊ ̂  = 0 ,

and so λ[α + D + ( F + F)Λ] ^ X(G\K) < e. This completes the proof.

LEMMA 2. Suppose that G is metrίzable and λ0 a nonzero measure
in Mt(G). Then there exists a point xQeG and a nonempty, totally
disconnected, compact, perfect subset Ko of supp λ0 with the following
three properties.

(a) Every nonempty (relatively) open subset of KQ has positive
X0-measure.

(b) The elements of Ko — xQ have the same order, say q0.
(c) If Vlf V2, ' - ,Vm are m disjoint, nonempty, open subsets of

Ko, there exist m points x5 e Vj such that xx — x0, x2 — xQ9 , xm — xQ

are independent.

Proof. Since G is metrizable and λ0 is continuous, we may assume
that λ0 is carried by a totally disconnected compact set.

Suppose first that there exist a natural number q and an element
y e G such that

E(q, y) = {x e supp λ0: qx = y}

has positive λo-measure. Let q0 be the smallest natural number such
that λQ[E(q0, yQ)\ > 0 for some yQ e G. Fix any element xQ e E(qQ, yQ).

Then X0[E(q, qxQ)] = 0 for all q e N with 1 <̂  q < q0, so that there
exists a compact subset KQ of E(q0, yQ)\{\Jq

q

0^Ίι E(q, qx0)} with λo(iQ > 0.
Replacing Ko by the support of λ01 KQ, we may assume that KQ is
perfect and satisfies (a). Evidently (b) holds. Suppose now that (c)
holds for some me N (note that (c) is trivial for m = 1). Let Vl9 ,
Vm, Vm+1 be m + 1 disjoint, nonempty, open subsets of KQ. There are
m points x1eVXf •• , x w e F w such that x1 — xQ, , xm — x0 are inde-
pendent. Let H be the subgroup of G which is generated by xQ, x19

••-, xm. By minimality of q0, we have \[E(q, y)] = 0 for all qeN
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with 1 <: q < q0 and all y e H. Since λo(Fm + 1) > 0 by (a) and His at
most countable, we can find an element xm+1 e Vm+ι so that

xm+ι £ E(q, y) (q = 1, 2, - , g0 - 1; y e H) .

It is now easy to prove that the elements xγ — x0, , xm — x0, xm+1 — xQ

are independent. By induction on m, we obtain (c).
Suppose next that XQ[E(q, y)\ = 0 for all q e N and all yeG. Then

F = {x 6 supp λ0: ord x < <>o} has λo-measure zero, so that there exists
a nonempty compact, perfect subset Ko of (supp X0)\F which satisfies
(a). It is now easy to prove that (b) and (c) hold for xQ = 0.

LEMMA 3. Let K be a totally disconnected, compact subset of G,
and σ a nonzero measure in Mj{G) with supp σ = K. Then, for
each compact subset F of G and ε > 0, there exists a finite partition
{Kj}n

j=ι of K into disjoint clopen subsets such that:
( i ) 0 <

( π ) Σ (χeF)

whenever v3 e M+(K3) and \\ v3 \\M = 1 for all j = 1, 2, , n.

Proof. Since F is compact while K is totally disconnected and
compact, there is a finite partition {Kj}"=1 of K into disjoint clopen
subsets which satisfies (i) and

sup {| χ(x) - χ(y) |: x, y e K3) < (3 \\ σ \\M)-ιε

for al l χeF a n d al l j = 1, 2, -, n. I f v3 e M+(K3) and || v3 \\M = 1
for j = 1, 2, , n, t h e n w e h a v e

{χ) - £\K, (χ) \<\\σ \]ΰMK3)e (χeF).

T o s e e t h i s , t a k e a n y x o e K 3 . T h e n χ e F i m p l i e s

σ{Kό) \ χdv3 - \ χdσ

£ σ(Ks) \ I χ - χ(xs) \dvs + \ | χ - χfo) |

Adding these inequalities for all i 's, we obtain (ii).
To prove the following lemma, we need a definition. Let K be

a subset of G whose elements have the same order qo(2 <£ q0 <; oo).
Let also L^ L2, •••, Ln be finitely many subsets of K, and ilί any
natural number. We say that Lly L2, -—,Ln are ikf-independent if
and only if Σ? = 1 m3x3 Φ 0 whenever my e Z (the integers), | m3 \ < go»
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xs e Lj (j = 1, 2, , n) and 0 Φ ΣU I ™; I < M.

LEMMA 4. Suppose that G is metrizable, and that {λfc}?=0

r=o α r e α s ^ Theorem 1. Lei αiso x0 G G cm<2 if0 c supp λ0 6e as
m Lemma 2. Then there exists a nonzero measure a e Mt(K0) such
that (supp σ) — x0 is independent and

(Pi) λja? + Ck + (supp σ)J = 0 (x e G; k = 0, 1, 2, •) .

Proo/. Write

G=(jE» and CΛ = U CfcΛ (A; = 0, 1, 2, . .) ,
W = l 7 1 = 1

where the i£Λ are compact subsets of G while the CΛ% are compact
subsets of G such that Ckn c CΛ(%+1) for all k and w. (It is well-known
that G is metrizable if and only if G is σ-compact. See, for example,
[4].) Let λ be the measure in M(G) defined by X(E) = λo[(JS? + x0) Π Ko]
for all Borel subsets E of G. Then, O ^ λ e Mt{G) and the elements
in supp λ = Ko — x0 have the same order q0.

We shall now construct a sequence (np)"=ι of natural numbers, a
sequence MQΓ=i of finite collections of disjoint clopen subsets of
Ko — x0, a sequence (crn)n=i of probability measures in Lx(λ), and a
sequence {Fn)^λ of compact subsets of G. They will satisfy the follow-
ing three conditions. Every σn has the form

( i ) σn = X ajXj

where each α7 is a positive real number, λ7 = λ 11 the restriction of
λ to /, and

= Σ
l

(ii) sup {| ί j / ( χ ) I: χ e G\Fn} < 2~*σn(I) V 7 e ^ .

For n — 1, such ^J\y σlf and Ft may be quite arbitrary. We set
%x = 1, and suppose that np, <J^p, σnp, and Fnp have been constructed
for some p e N. Let lp — Card ^J^ , and write

Let ilίp be the largest natural number such that

(1)

and set
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(2) TP = {Ad^n;. 1 ^ Card A ^ MP) = {Ar)\U .

We may assume

(3) Ar = {Ir} = {I?} (r = l,2, . - , « .

We shall inductively construct the J?n, σn, and Fn for all n e N with
nP < n tί np + sp as follows. Suppose that «J ,̂ σn and ^ have been
constructed for some n — nv + r — 1 (r — 1, 2, , sP), and put

(4) J^; = { J e ^ I c J for some Je^.r} .

We can find (finite) collections {bf}j of real numbers and collections
{Lf}j of disjoint clopen subsets of K e SΓn which satisfy the following
six conditions:

(5

(6

(7

(8

(9

)

)

)

)

)

0 < bfσn(Lf) < 2rισn(K) VKeSTn and V,

Σ bfσn(Lf) = σn(K)

Σ bfσn I Lf{χ) - σn \ K(χ) < 2~nσn(K) V K e JTn and V χ e Fn

The sets {Lf}KJ are Mp-independent

sup λίx + Ckn + (U Lf) Ί <{nlpγ
ι

(10) xeG L Vj /ij

tl and Vfc = 0, 1,

The above conditions are met as follows: For each KeJ tl, apply
Lemma 3 to σ = σ n\ K, e = 2~nσn{K) and F = Fn. Let {iQy be a
finite partition of K as in Lemma 3. Using property (c) in Lemma 2,
we can find xfeKά so that U {{xf}3: Ke JsΓn} is independent. If we
choose Lf c K3 so that xf e Lf and the diameter of each Lf is
"sufficiently small", then (8) and (9) hold and so does (10) by Lemma
1. Finally, it suffices to set bf = σn{Kj)jσn{Lf).

We now define

(ii) j*fw = ^ J Ϊ ; , ^ + 1 = J5f* u ( U {Lf}

(12) θn+ί = Σ α,λ/ + Σ Σ bfσn \ Lf ,

and take a compact subset Fn+1 of G, with F Λ + 1 Ό En+ί U FΛ, so that
(ii) holds with n replaced by n + 1.

We repeat the above process with np replaced by np+ί = np + sp,
which completes our induction. Let σ^ be a weak-* cluster point of
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(tfn)»=i i n Λf(G), and σ the measure in M((?) defined by σ(E) =
0Όo(2£ — &0) for all Borel sets E in G. We claim that σ has the required
properties.

First note that

U Id {J 1= s u p p l e KQ - xQ ,

and so we have

(13) ^ ^ 0 , ^ ( G ) - 1 and supp σTO c f) ( U

Let p e iV be given. It is easily seen from (3), (4), and (11) that

^np+lp = {L'jήj U {Lfij U U {Lftj , where i - lp .

This, combined with (10) and (13), shows

λfc[α + CAWp + (supp σ ̂ ),]

for all x e G and all k = 0, 1, , np. (Note that Ckn c Ck{n+1) for all
k and %.) Thus, fixing x e G and & G {0, 1, 2, •}, and letting p —> <>o,
we have

λjbfa; + Ck + (supp σ J J = 0 (x e G; k = 0, 1, 2, •) .

But evidently supp σ — (supp O + xQ, and so (Px) holds.
It remains to show that σ vanishes at infinity and that (supp σ) — x0

is independent. Although these are proved in [5:Ch. XIII, 151-153
and 155-156], we give their proofs to make the paper self-contained.

Suppose np ^ n < np+1 (p, n e N), and write n = np + r — 1 (r =
1, 2, , sp). Then we have

(14) Σ σn(K) = Σ σ (J) ^ (Card Ar) max α. (J) g M~ι .
Λ t J? w J £ Ar J £ Aγ

Here the equality follows from (4), (6) and (12) while the last inequality
follows from (1) and (2). If χ e Fn9 then

I σn+1(χ) - σn(χ) \ ^ ^Σ
K e jtr.

< Σ 2-Λσ,(K) ^ 2"*

by (i), (12) and (7). It follows that

I σjjύ ~ σ»+1(χ) | < 2"" V χ e F. + i ,

since Fn c F κ + 1 c by construction. For χ e G\Fn, we have
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I σn+1(χ) I ̂  7 Σ I α/λ/(χ) I + ^ Σ

< v I (CT/(z) I + Σ

-^ 2 Σ C0 ί ^
7 e ^ Λ

by (12), (i), (6), (ii) and (14). Hence

2 - + 2~n + M-1 V χ e Fn+1\Fn .

But G = Ui=i -PV by (in) and limp ilί* = oo by construction. Thus the
above inequality shows that σ^ e C0(G), or equivalently, that σe C0(G).

Finally we prove that (supp σ) — x0 — supp σ^ is independent.
Let xu x2j * ,Xt be distinct elements of suppσ^. It is easy to see
that

max dia (/) > 0 as n • c>o .

Therefore, there is an noeN such t h a t xlf x2, •••,»« belong to distinct
sets in ^ whenever n ^ n0. Take any p e N so that np ^ n0 and
MP > t, and let

A = {I e w ^ : I contains some xn} .

Then 1 <: Card A = ί < MP; hence A = Ar for some r = 1, 2, , sp.
Thus xx, a?2, , xt belong to distinct sets in U {{Lf}ά: KeSί^, where
n = np + r — 1. It follows from (9) that xlf x2, ••-,#* are Mp-inde-
pendent. Since p can be taken as large as one pleases, we conclude
that xlf x2, •••,#* are independent.

This establishes Lemma 4.

LEMMA 5. Let G, {Xk}~=0 and {Ck}ΐ=0 be as in Lemma 4. Let
also {Kj}f=1 be finitely many, disjoint, compact subsets of G such that
M0(Kj) Φ 0 for all j = 1, 2, , m. Then, for each neN, there exist
m nonzero measures μ0- e Mt(Kό) such that

(PJ xlx + Ck + ( u SUPP Pi) Ί = ° (a? e G; A; = 0, 1, 2, •)

Proof. For each i = 1, 2, , m, choose and fix a measure τ,- e
M^iΓj ) with Hollar = m"1 whose support is totally disconnected. In
the proof of Lemma 4, replace λ and Ko — xQ by λ' = ΣΓ=i TJ and
Ui^iSuppr^, respectively; take off condition (9); and let σTO be any
measure constructed as there with σx = λ' and ^f\ = {supp ?".,•}f=1. Then

0 * /ιy = ( j . I KjeM+iKj) (j = 1, 2, , m ) ,

and {/iy}£=i satisfy (PJ. We repeat the same argument replacing
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{Q?=o and {K^ by {Ck + flj?=i supp μΛlϊU and {supp μ3]]L19 respec-
tively; and continue this process. At the nth step, we will obtain m
nonzero measures satisfying the required condition. This completes
the proof.

Proof of Theorem 1 for metrizahle groups. Suppose that G is
a given metrizable group. Let {Xk}7?=0> {Ck}ΐ=ot #o> a n d Ko be as in
Lemma 4. Let also G = UΓ=i En be as in the proof of Lemma 4. We
construct a sequence (^Q~=i of finite collections of disjoint compact
subsets of KQ, a sequence (σw)Γ=i of probability measures in M0(K0),
and a consequence (JFΛ)~=i of compact subsets of G. They satisfy the
following four conditions. Every σn has the form

where each az is a real positive number, μτ a probability measure in
MQ(I) with supp j«z = I, and

ll<rΛ |U= Σ α i = = l .

(ii) sup {( ̂ ( χ ) ! : χ e G\Fn} < 2~na2 Vle^n.

(iϋ) EnaFn.

(iv) λ j ^ + C, + (Z,), + (IQ 2 + + (IC)J - 0

(xeG k = 0,1, 2, -••) ,

where i f ^ U R ^ e ^ } and 2fΛ = U tfe^: J g ^ - i } f or w = 2, 3, •••.
For n — 1, we apply Lemma 4 to obtain a probability measure

σ j. G M0(K0) such that (supp σj — xQ is independent and

λ*[α + Cfc + (supp σJJ - 0 (ajGG;fc = 0, l ,2, . . - ) .

Set û T = {/ = supp σj, μΣ = G19 α f = 1, and take any compact subset
JF\ of G satisfying (ii) and (iii) for n = 1.

Suppose that GX)?=1, (σ,)?=1 and ( ^ )?=1 have been constructed for
some ne N. Choose and fix any In e J^ with

( 1 ) aIn = sup { α / . / G ^ } .

Applying Lemmas 3 and 5, we can find a (finite) collection {δWJ }y of
real numbers, a collection { L ^ of disjoint compact subsets of In, and
a collection {μ%i}y of probability measures in MQ(In) with supp μnj =
LWJ which satisfy the following four conditions.

(2) 0 < 6ΛJ < ^ "
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(3) ΣKj = aIn

( 4 ) Σ KβniiX)

(5) λk\x + Ck + (K& + + (£.). + ( u LnJ) 1 =
L V 3 /Λ+lJ

0 Vα e G

for all fc = 0, 1, 2, . Put ^ + 1 - p*Λ{JJ) U {LJjf and α, - bnj9

t*z = i"»i for / = L n i V j . Define σn+1 by the right-hand side of^(i)
with n replaced by n + 1. Finally, we take any compact subset Fn+1

of G, with Fn+1 ZD En+1 u F n , so that (ii) holds with n replaced by
n + 1.

This completes the induction. Let σ be a weak-* cluster point of
(tfJΓ=i in M(G). Then it is easy to prove that σ has all the required
properties (see [5: Ch. XIII, 151-153]). This establishes Theorem 1
for metrizable groups.

To prove the general case, we need one more lemma.

LEMMA 6. Let {λfc}~=0 and {Ck}ΐ=Q be as in Theorem 1. Then,
given a σ-compact subset F of G, we can find a σ-compact, noncom-
pact, open subgroup Γ of G so that FaΓ and

( i ) Xk[x + Ck + HΓ] = 0 (x e G; k = 0, 1, 2, •) ,

where HΓ denotes the annίhilator of Γ.

Proof. Let Ckn be as in the proof of Lemma 4, and let ^ be
the family of all σ-compact, noncompact, open subgroups of G which
contain F. Since every Ckn is compact, we have

( 1 ) Ckn = Γi{Ckn + HΓ:ΓejT} (6 = 0,1,2, .••;* = 1,2, ••.).

Applying Lemma 1, we can find neighborhoods Vkn of 0 so that

( 2 ) Xk[x + Ckro + V k n ] < n ~ ι (k = 0 , 1 , 2 , . . . ; w = l , 2 , - > : x e G ) .

By (1), there exist subgroups Γk% in Jf such that

( 3 ) Ckn + HkndCkn + Vkn (fc = 0, l ,2, . . . ; n = l,2, .••),

where Hkn is the annihilator of Γkn. Let Γ be any subgroup in
which contains all Γkn. Then, it follows from (2) and (3) that (i)
holds. This completes the proof.

Proof of Theorem 1 for general groups. Let G be an arbitrary
nondiscrete LCA group, and let {Xk}ΐ=0 and {Ck}ΐ=Q be as in Theorem 1.
For F= {χeG: λo(χ) Φ 0}, take a Γ c G as in Lemma 6. Setting
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H = HΓ, we denote by π and mH the natural mapping of G onto
Go = G/iϊ and the Haar measure of H with mH{H) — 1, respectively.
For each / i e I ( G ) , define a measure μ' e M(G0) by setting

\ fdμ'=\ f° πdμ Vfe C0(G0) .
JG0 JG

Identifying Γ with GQ in the usual way, we see p! ~ μ\Γ for all
μeM(G), so that 0 Φ X'oeMQ(Go). On the other hand, we have

( 2 ) KW + C[] = 0 ( X ' G G 0 ; ^ 0 , 1 , 2 , . . . )

by (i) in Lemma 6 and (1), where Cr

k = π(Ck). Therefore {λi}?=ocilC(G),
and we can apply our result for metrizable groups to find a nonzero
measure σ' e Mt(supp λό) with compact support such that

(3 ) x'k[x' + Cl + G,(supp σ')\ = 0 (x'e Go; fc = 0, 1, 2, •)

Now define a measure σ e M(G) by setting

( 4 ) ί fdσ = \ \ \ f(x + ί)^m 7 / (ί)k^(x') V/G C0(G) .
JG JG0 \JII )

As is easily seen, we then have

( 5 ) supp σ = π^tsupp σ'] and supp λ0 = π~x[supp X'o]

(note that α*m 7 / = σ and λo*m 7 / = λ0). It is also easy to check that
0 Φ σeMo(G), that suppσ is a compact subset of supp λ0, and that

\k[x + Ck + G>(supp α )] = λί[.τ' + C'k + G^supp σ')] = 0

for all xeG and all k = 0, 1, 2, - - .
This establishes Theorem 1.

Proof of Corollary. Let F be as in the present Corollary. Set-
ting Ck = {0} for all k and applying Theorem 1 to {| Xk \}ΐ=0, we obtain
a nonzero measure σ e MJ(supp λ0) with compact support such that

(1) I τ I [x + GP(supp σ)] = 0 (xeG)

holds for all τ e (JΓ=0 L
1^). But then we have

v * τ I [x + G > ( s u p p σ ) ] ^ ( \ v \ * \ τ\)[x + G P ( s u p p σ)\

g I I r I [a? - y + Gp(supp cr)]d | y | (T/) = 0
JG

for all X G G whenever veM(G) and τ G |JΓ=O ^ 1 ( λ ^) Since the ideal
7 is generated by \Jΐ=0 L^λ^), this implies that (1) holds for all τ e Y.

The last statement in the Corollary is now trivial and the proof
is complete.
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To prove Theorem 2, we need some notation. Let ^ be a non-
empty family of (locally) Borel measurable subgroups of G such that
for any countable subfamily J7\ of ^f there exists a subgroup He
which contains all L e ^~0. Define

= {μeM(G):\μ\(x + H) = 0 Va eG and

and

&g{^) = {ve M(G): | v \ (G\(D + H)) = 0 for some countable

DdG and some HeJ7~) .

Then it is easy to prove the following (cf. [1]):
(a) J ( J Π is a closed ideal in M(G) such that I{^Ύ
(b) ^ ( ^ H is a closed subalgebra of M(G) such that

(c) ikf((?) - 7(JT) + ^ ( J Π and / ( ^ ) n ^ ( J T ) - {0}.
We denote by Φ -̂ the projection of M(G) onto &{J?~) which is induced
by the direct sum decomposition M(G) = / ( J Q + ^ ( ^ ~ ) . Note that
Φ^ is a *-homomorphism of Jk^G) onto

Proof of Theorem 2. Let {λJΓ=0

 a n ( i ^ be as in Corollary; without
loss of generality, we may assume that Xk >̂ 0 for all k. By Lemma
6, there is a σ-compact, noncompact, open subgroup Γ of G such that

( 1 ) Xk(x + H) = 0 ( x e G k = 0 , 1 , 2 , • - - ) ,

where H is the annihilator of Γ. Let Go = G/ίί, and let μ-+ μr be
the mapping of M(G) onto ilί(G0) defined in the proof of Theorem 1
for general groups. Note that μ—>μ' is a *-homomorphism. Since
(1) implies X[ e Me(G) for all ft, Theorem 1 assures that there exists
a nonzero measure σf e MQ(G0) with compact support such that Kf —
supp σr is independent and

( 2 ) \'h[χ' + GP(1Π] - 0 (x'e Go; k = 0, 1, 2, . •) .

Let ωx be the first countable ordinal and let W = {1, 2, •••} be
the well-ordered set consisting of all ordinals smaller than ωl9 We
now construct a family {Lr

a: a e W) of disjoint compact subsets of Kr

such that

( 3 ) M0(L'a)*{0} and σ'(L'a) = 0

for all ae W. First, by Theorem 1, there exists a compact subset
L[ of iΓ' having property (3). Let β e W, β ^ 2, and suppose that
L'α has been constructed for all ae W with a < β. Then 2?/ =
U {L«: a < β] is σ-compact, and by (3), has σ'-measure zero. There-
fore, there exists a compact subset F'β of K'\Er

β having positive σ'-



SYMMETRIC MAXIMAL IDEALS IN M(G) 241

measure. Applying Theorem 1 again, we can find a compact subset
Lβ of Fβ so that (3) holds for a = β. By transfinite induction, we
obtain a family {L'a: a e W) of disjoint compact subsets of K' satisfy-
ing (3).

Let &*(W) be the family of all nonempty subsets of W; hence
Card^(ΫF) = 2ω, where ω denotes the smallest uncountable cardinal.
For each Ae^(W) and χe Γ, we construct a complex homomorphism
ΨAχ of M(G) as follows. Let ^~ — ̂ A be the family of subgroups
of G each of which is generated by U {L«: a e B) for some countable
subset B of A. We define ΨAX by setting

( 4) ΨAX(μ) = C

It is easy to see that ΨA1 is a symmetric complex homomorphism of
M{G). Also ? ^ Φ 0 because

(5) Γ^(δ.) - χ(x) Φ 0 (xeG),

where δx denotes the unit mass at x.
Fixing an Ae^(W) and χeΓ, we now prove

( 6 ) U {L\μ): μeY}U Ma(G) c Ker ΨAχ bu t M0(G) ςC Ker ?Γ^ .

First note that i; G M+(G) and ^ G L\v) imply /̂ ' e L1^'). In fact, if
w is a bounded Borel function on G, we have

(\f\<>π)\w\dv
G

for all / G C 0 ( G 0 ) , SO that (wv)f e Lι(vr). Since the mapping r—>τ' is
norm-decreasing, we see

inf {|| ^ - T' |U: τ' G L1^)} ^ || ^ - (iw)' |U ^ II μ ~ wv \\M .

Since w was arbitrary and μeL^v), this implies μ' e L\v'). Suppose
now that v e M(G) and λ e L 1 ^ ) for some k. Then, the above observa-
tion and (2) show

* λ ) ' I {x' + T') = \v'*X'\ {x' + T ) ^ ( \ v ' \ * \ λ '

for all a;' G Go and all T' G ^ " = , ^ . Since the linear span of the
sets M{G)*L\Xk), k = 0, 1, 2, •••, is dense in Γ, it follows that

\τ'\(x' + T) - 0 ( ^ ' G G 0 ; Γ ' G ^ " )

holds for all τ e Y, and so for all τ G U {L\μ): μe Y}. Therefore we
have
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\J{L1(μ):μeY}a'KeτWAχ.

Note now that \Ό Φ 0, and so (?P(supp σ') has no interior point by (2);
hence the Haar measure of Gp(supp σ') is zero. Since Ma{G)' = Ma(G0),
it follows that Ma(G) c Ker ΨAχ. To prove that M0(G) (£ Ker ΨAχ, take
any a e A. Then L'a c Gp(L'a) G J/~, and so Φ [M0(L^)] - Λfo(L

f

rt) ^ {0}.
This establishes (6) because M0(G)' = M0(G0).

Finally, take any A, Be^(W) and any χ, yeΓ. li χΦ y, (5)
implies that ΨA1 Φ ΨBr. If A Φ B (say A 2 B), take any β e B\A; we
claim

( 7 ) Me(L'β) c Ker Φ .- where ^ = j ^ .

In fact, let T" be an arbitrary subgroup in J7~\ there exists a countable
subset Ao of A such that T' = GP({J {Lr

a: a e Ao}). Since K' is inde-
pendent and since L'β and !J {L«: α G AJ are disjoint subsets of K',
it follows that L^ Π {xf + ϊ7') contains at most one point for each
xf e Go. In particular, if μr e Mc(Lr

β), then | μr \ {%' + T) = 0 for all
cc' G Go. Since T' e ̂  was arbitrary, we see that (7) holds. On the
other hand, we have Φ*{M(L'β)) = M(L'β) for ^/ - ^~B. Thus ΨAX Φ
ΨBr, as is easily seen. This clearly establishes Theorem 2.

REMARKS. ( i ) If G is a metrizable /-group, then the element
xQ in Theorem 1 (and Corollary) can be chosen xQ = 0. In fact, take
any nonzero λ0 G Mt(G), and assume that Eqy = {x e G: qx = y} has
positive λo-measure for some qe N and some yeG. Let μ0 be the
restriction of λ0 to Eqyf so that 0 ψ μQ = Λfj"(G). It is trivial that
Eqy is a coset of some closed subgroup H of G v/hich is of bounded
order. If Γ is the annihilator of H, we see \βo\ = const =£ 0 on Γ.
Since /ϊ0 vanishes at infinity, it follows that Γ is compact, or, equiv-
alently, that H is an open subgroup of G. This is a contradiction
because G is an /-group while H is of bounded order. Thus, our
assertion follows from the last paragraph of the proof of Lemma 2
and the proof of Theorem 1 for metrizable groups.

(ii) Let G~ denote the closure of G in the maximal ideal space
ΔG of M(G), and let Γ b e as in Theorem 2. Then, for some τ e Mt{G),
the set Eτ of all symmetric Θ e ΔG such that

U {L\μ)\ μeY}\J Ma(G) c Θ and τ{Θ) = 1

has cardinal number ;>2ω, where τ denotes the Gelfand transform of
τ. Note that E- is a closed subset of ΔG disjoint from G~. To see
this, redefine ^(W) in the proof of Theorem 2 to be the family of
all subsets of W containing 1 e W, and fix any probability measure
τ e Mt(G) such that τ' e M(L[). Then we have
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WA1(τ) = r'(l) = τ(l) - 1 (Ae^(W)).

(iii) Let Y be as in Theorem 2. Then there exist a measure
τeMt(G), a nondiscrete LCA group G09 and an independent compact
subset Kr thereof, with MQ(K') Φ {0}, having the following property:
the set of all asymmetric Θ e ΔG such that

(J {L\μ)\ μeY}ϋ Ma{G) c Θ and τ(Θ) = 1

has cardinal number ^Card MC(K')*, where Me(K')* denotes the
conjugate space of Mc(Kr). This can be proved using the proof of
Theorem 2 and a theorem of Hewitt and Kakutani [2]. We omit the
details.

(iv) Some analogs to our results hold for non-abelian groups.
For example, we have the following: Let G be a nondiscrete locally
compact group, {λj~=,o c M?(G), λ0 Φ 0, and let {Ck}^0 be a countable
family of d-compact subsets of G such that

Xk(xCk) = 0 (zeG;& = 0, 1, 2, •••)

Then there exists a nonzero measure σ e ikΓ6ί(supp λc) with compact
support such that

λJ.τG>(supp σ)Ck] = 0 (x e G; k = 0, 1, 2, •) .
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