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A functor from the category of topological spaces to the
category of groups is said to be homotopy invariant if it
carries homotopic mappings to the same mapping. It is well
known, for example, that the homology and homotopy functors
are homotopy invariant. On the other hand, the functor
which takes each topological space M to the free abelian
group generated by the points of M is not homotopy invariant.
It will be shown that a functor which is not homotopy
invariant must take topological spaces to groups which are
very ‘“‘large’. For example, the homology groups of a
simplicial complex are finitely generated, while the free
abelian group generated by the points of a typical simplicial
complex is uncountably generated. Among other results, it
will be shown that every functor from simplicial complexes
to finitely generated groups is homotopy invariant.

Notation.

1. Throughout this paper En3 will denote the category of sets
and Top will denote the category of topological spaces. We will denote
by P the full subcategory of Zop whose objects are simplicial com-
plexes. The closed interval [0, 1] on the real line will be denoted I,
and the full subcategory of Top whose only object is I will be denoted
3. ® will denote an arbitrary category.

We will use the word “functor” to mean a covariant functor
and the word “cofunctor” to mean a contravariant functor. This
allows us to say, for example, that homology is a functor and
cohomology is a cofunctor. Thus a functor 2: JF— & assigns to the
object I in & an object 2(/) in @ and to each continuous mapping
f+I— I a morphism 2(f): 2(I) — 2(I) in such a way that composition
and identity morphisms are preserved.

Fundamentals.
2. For each xzel, let k, be the constant mapping from I to I

which takes every element of I to .

3. THEOREM. Let Q:J— @€ be a functor. If there exist distinct
continwous mappings f, g:I— I such that 2(f) = g), then there
exist distinct x, y € I such that 2k, = 2k,).
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Proof. Since f = g, there exists z e I such that f(z) == g(2). Let
¢ = f(z) and y = g(2). Then 2(k,) = 2ksw) = 2(fk.) = 2()2(k,) =
Q(g)Q(kz) = ‘Q(gkz) = ‘Q(ky(z)) = ‘Q(ky)'

4. THEOREM. Let 2:F— ® be a functor. If there exist distinet
z, y eI such that 2k, = Qk,), then k) = Ak).

Proof. It is clear that there exists a continuous mapping f: I—1T
such that f(x) =0 and jf(y) =1. So k) = 2k, = 2(fk,) =
AN)Rk,) = A2k, = Afk,) = Akesiy) = 2ky)-

5. THEOREM. If® is a category such that every functor 2: I—G
satisfies Qk,) = k), then every functor 4: P— & is homotopy in-
variant.

Proof. Let f, g: M— N be homotopic mappings in . Define
JoM— M x I by jfx) = (z,0), and define j,: M— M x I by j(x) =
(x, 1). Since f and g are homotopic, there exists a continuous mapping
h: M x I— N such that f = hj, and g = hj,.

Define the functor II: 3 — P by letting I7(I) equal M X I and,
for each continuous mapping d: I— I, II(d) equal the mapping from
M x I to M x I which takes (x, y) to (x, d(y)). It is easy to verify
that II(k)j, = j, and II(k)j, = j,. And 41:JF— S is a functor, so
All(k,) = 41I(k,).  Thus 4(f) = 4(kj)) = 4(R)4(G,) = 2(h)A(1T(ko)jo) =
A(R) 41T (ko) 4(5,) = AR AT (k) 4(5,) = A(h) AL (ke))go) = 4(h)4(5)) = A(hg)) =
4(g).

6. THEOREM. If for every functor 2: I — & there exist distinct
continuous mappings f, g:I— I such that 2(f) = 2(g), then every
Sunctor 4:B— & is homotopy invariant.

Proof. Combine Theorems 3, 4, and 5.

7. All of our results on homotopy invariance will be based on
Theorem 6. To get these results, we must find methods of showing
that for certain categories &, every functor 2: 3 — @ takes two distinct
continuous mappings to the same morphism. We will present several
methods, each applicable to a certain type of category. Our first
method is quite simple.

First Approach — Functors.

8. THEOREM. Let & be a category such that for every object
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G in & the set of morphisms from G to G is countable. Then every
functor 4: P —® is homotopy itnvariant.

Proof. Consider any functor 2: & — &. The set of morphisms
from Q(I) to Q(I) is countable, but the set of continuous mappings
from I to I is uncountable. Hence there exist distinet continuous
mappings f, g: [ — I such that 2(f) = 2(g).

9. For example, every functor from 3 to the category of finitely
generated abelian groups must be homotopy invariant. Thus Theorem
8 constitutes a proof that the homology functors, with domain P, are
homotopy invariant. This is rather surprising, since we have made
very little use of the definition of homology. Similarly, every functor
from P to the category of finitely generated groups must be homotopy
invariant. This proves that the first homotopy functor 7,, with domain
B, is homotopy invariant. And Theorem 8 can be applied to many
other categories whose objects are finite or finitely generated in some
sense.

First Approach — Cofunctors.

10. Now we will turn to cofunctors. In view of the fact that
a cofunctor to ® is the same thing as a functor to &%, where ®* is
the category dual to &, Theorems 6 and 8 may be restated to deal
with cofunctors as follows:

11. THEOREM. If for every cofunctor Q2:J— & there exist
distinct continuous mappings f, g: I— I such that 2f) = 2g), then
every cofunctor 4P — & s homotopy invariant.

12. THEOREM. Let © be a category such that for every object
G in © the set of morphisms from G to G is countable. Then every
cofunctor 4. P— & is homotopy invariant.

13. For example, every cofunctor from % to the category of
finitely generated abelian groups must be homotopy invariant. This
proves that the cohomology cofunctors are homotopy invariant. Here
is a more unusual example. A functor or cofunctor 4: P — P is said
to be homotopy preserving if, for any two homotopic mappings
f,9:M— N in B, 4(f) is homotopic to 4(g).

14. THEOREM. Ewvery functor or cofunctor 4: X— P is homotopy
preserving.

Proof. Let ThH denote the category whose objects are simplicial
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complexes and whose morphisms are homotopy classes of continuous
mappings. Let @: B — PY be the functor given by O(M) = (M) and
O(f) = the homotopy class of f. Given any simplicial complex M,
the simplicial approximation theorem says that every continuous
mapping from M to M is homotopic to a simplicial mapping. And
the set of simplicial mappings from M to M is obviously countable.
Hence the set of morphisms from M to M in PY is countable. Thus,
by Theorems 8 and 12, every functor or cofunctor from % to F3h is
homotopy invariant. In particular, @4: B — P is homotopy invariant.
And this says precisely that 4 is homotopy preserving.

Generalizations.

15. We will say that a category £ is “admissible” if Theorems
6, 8, 11, and 12 remain true when P is replaced by £. For example,
let T be a full subecategory of Iop. It is clear that the proofs of
these theorems stand without modification provided that I is an object
of ¥ and T is closed under the operation product-with-I. Hence all
such categories are admissible. Moreover, T may be admissible even
if € is not closed under product-with-I or if I is not an object of Z.
For if the real line R is an object of ¥ and T is closed under product-
with-R, we may replace I by R in the proofs of 6, 8 11, 12, and all
preceding theorems. This does not change the meaning of homotopy:
Two continuous mappings f, g: M — N are homotopic in the usual sense
if and only if there exists a continuous mapping h: M X R— N such
that iz, 0) = f(x) and A(x, 1) = g(x) for all x € M. Hence the category
of topological manifolds with boundary is admissible, even though it
is not closed under product-with-I. And the category of topological
manifolds is admissible, though it does not contain the object I.
Similarly, if the circle S* is an object of ¥ and ¥ is closed under
product-with-S', then ¥ is admissible. Hence the category of compact
topological manifolds and the category of compact topological manifolds
with boundary are admissible. In general, given a topological space
H, distinet points ¥, 2 € H, and continuous mappings f, g: M — N, we
say that f and ¢ are (H, y, 2)-homotopic if there exists a confinuous
mapping h: M x H-— N such that k(z, y) = f(z) and k(z, 2) = g(z) for
all e M. It is not hard to verify that (H, y, z)-homotopy is equivalent
to ordinary homotopy if

(a) there exist continuous mappings i: I — H, j: H— I such that
10) =y, 1) = 2, j(y) = 0, and j(z) = 1.
And the proof of Theorem 4 remains valid if

(b) given distinet s, te H, there exists a continuous mapping
m: H-— H such that m(s) = y and m(t) = z.
Thus, if (a) and (b) are satisfied, every category £ which contains
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H and is closed under product-with-H is admissible.

16. There are some admissible subcategories of Top which are
not full. Consider, for example, the category of smooth manifolds.
As was said in 15, two continuous mappings f, g: M — N are homotopic
if and only if there exists a continuous mapping h: M x R— N such
that Z(z, 0) = f(x) and Z(z, 1) = g(x). And it is well known that if f
and ¢ are smooth, we may take % to be smooth. (Smooth homotopy
is equivalent to continuous homotopy.) Thus, replacing I by R, we
find that the category of smooth manifolds is admissible. Similarly,
replacing I by R or S', we find that the following categories are
admissible: smooth manifolds with boundary, compact smooth manifolds,
compact smooth manifolds with boundary.

17. Let 0, denote the category of pairs of simplicial complexes.
An object in B, is a pair (M, M,), where M, and M, are simplicial
complexes and M, is a subset of M,. And a morphism f: (M, M,) —
(N, N,) is a continuous mapping from M, to N, such that f(M,) C N,.
We say that two morphisms f, g: (M,, M,) — (N, N,) are homotopic if
and only if there exists a continuous mapping %: M, x I— N, such that
h(z, 0) = f(x) and h(x, 1) = g(x) for all x € M, and h(M,, y) N, for all
yel. If we replace I by the pair (I, I) in the proofs of 6, 8, 11, 12,
and all preceding theorems, it follows that %3, is an admissible category.
Likewise, the category of pairs of any category in 15 or 16 is
admigsible.

A Generalization That Fails.

18. Since the cardinality of I is C, the cardinality of the con-
tinuum, one would expect the set of continuous mappings from I to
I to have cardinality greater than C. But a continuous mapping from
I to I is determined by its restriction to the set of rational numbers
in the domain. Hence the set of continuous mappings from I to I
has cardinality C. Thus the proof of Theorem 8 does not work for
categories & in which the set of morphisms from G to G can have
cardinality C. We will now strengthen Theorem 8 to make it work
for many such categories.

Second Approach — Functors.

19. Let B be a set, and let B be the full subcategory of En3
whose only object is B. Suppose there exists a functor 2:J— B
such that Q2(f) = 2(g) only if f=g. We will prove that B is un-
countable. As in 2, let k,: I — I be the mapping which takes every
element of I to x. Let e, = Q(k,).
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20. THEOREM. For all x,ycl, ee, =e,.
Proof. e,e, = k,)Ak,) = Ak,k,) = Ak,) = e,
21. COROLLARY. For all z€l, e,e, = e,.

22. THEOREM. Consider be B and distinct x, yel. If e, (b) =
e,(b), then e, (b) = e, (b) for all ze L.

Proof. Clearly there exists a continuous mapping f: I — I such
that f(x) =« and f(y) = 2. Then fk, =k, and fk, = k..  So 2(f)e, =
QNHAk,) = Afk,) = 2k,) = e,. Likewise, 2(f)e, = e,. Thus e,(b) =
2(f)e,(b) = 2(f)e,(b) = e.(b).

23. Let B, be the set of all be B such that e,(b) = b for all
xel. And let B, be the set of all be B such that e¢,(b) = b for exactly
one x ¢ I.

24. COROLLARY. Considerbe Band distinct 2,y l. Ife,(b)=5>b
and e b) = b, then be B,.

25. COROLLARY. Consider be B and x€l. If e,(b) =b, then
either be B, or be B,.

26. THEOREM. B, is not empty.

Proof. Suppose B, = . Consider any b€ B and distinct 2, y € I.
By Corollary 21, e,(e, (b)) = e,(b). Hence, by Corollary 25, ¢,(b) is an
element of either B, or B,. Since B, = @&, ¢,(b)e B,. Thus e¢,e,(b)) =
e,(b). But by Theorem 20, ¢,(e,(b)) = e,(b). Since b was arbitrary, we
have ¢, = ¢,, or 2k,) = 2(k,). This contradicts 19.

27. Let ¢ be any element of B,. Define a mapping w: [— B by
w(x) = e,c).

28. THEOREM. ® 18 one-to-one.

Proof. Suppose that there exist distinet «, y € I such that w(z) =
w(y); that is, e,(c) = ¢,(¢). Then Theorem 22 says that e,(c) must be
the same element of B for all zeI. But there is exactly one zel
such that e,(¢c) = ¢, since ¢ B,. This is a contradiction.

29. COROLLARY. If B s a set as in 19, then B is uncountable.

30. THEOREM. Let & be a subcategory of &n3 im which every
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object is countable. Then every functor 4:P— & is homotopy in-
variant.

Proof. Consider any functor 2:JF— ®. Let B = 2(I), and let
B denote the full subcategery of Gng whose only object is B. We
may view £ as a functor from ¥ to B. Since B is countable, Corol-
lary 29 says that there exist distinet continuous mappings f, g: I—1T
such that 2(f) = 2(g). Hence, by Theorem 6, every functor 4: L— &
is homotopy invariant.

31. For example, every functor from 3 to the category of count-
able abelian groups must be homotopy invariant. This proves that
the nth homotopy functor =,, with domain %3, is homotopy invariant.
Similarly, every functor from 3 to the category of countable rings
must be homotopy invariant.

32. For completeness, we will prove two more theorems at this
point. Let B, B, and 2 be as in 19,

33. THEOREM. w({x)e B, for all xel.

Proof. For any yel, e,w(x) =e,e.(c) =efc) = ®{y). Thus e,w(x) =
w(zx) precisely when y = x.

34. THEOREM. [For any continuous mapping /21— 1, Q(f)o = wf.

Proof. For any xc I, 2(f)w(@)=Q2(f)ec)=2()2k.)e) = (fr) )=
..Q(kf(x))(c) - 6f(ac)(c) = C()f(x).

35. This theorem asserts the naturality of w. Strictly speaking,
it says that w is a natural transformation from the forgetful functor
(from ¥ to Gng) to 2 (viewed as a functor from I to €Eng). [1].

Second Approach — Cofunctors.

36. Now we would like to prove that Theorem 30 remains true
if 4 is a cofunctor instead of a functor. Unfortunately, the proof
of Theorem 30 relies on the construction of a mapping w: I — B, and
this construction does not work for cofunctors. Hence we must take
a slightly different approach.

37. As before, let B be a set and let B be the full subcategory
of €n3 whose only object is B. Suppose there exists a cofunctor
2: 3 — B such that 2(f) = 2(g) only if f=g.
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38. Recall that I is a linearly ordered set. Given z,yel, let
20.(y) denote the smaller of x and y. Then p,: I — I is a continuous
mapping. And let ut, denote the set of all continuous mappings
f: I— I such that f~': I— I exists (f'f and ff~* are the identity) and
such that x <y implies f(x) < f(y). It is easy to verify that:

39. If z <y, then p,p, = p, and p,p, = D,.
40. Given zel and feWut,, fo.f™ = Drw-
Let ¢, = 2(p.).

41. THEOREM. If xz <y, then ¢.q9, = q, and ¢,4, = ¢..

Proof. Using 39, we have q,q, = 2(p,)2(p,) = 2p,p.) = 2p.) =
q,. Likewise ¢,9, = Q(»,)2(.) = 2(p.p,) = Ap.) = ¢..

42. THEOREM. Given xel and feAnt,, 2(f )¢.2(f) = Qrw-
Proof. Using 40, we have

2 ¢2(F) = 2 )Ap)AS) = .S = 2vsw) = Qi -
43. THEOREM. For any fe€ut,, 2(f") = [2())].

Proof. Let 1; and 1, denote the identity mappings on I and B
respectively. Then Q2(H)Q(f™) = (S 'f) = 2QA,) =1z  Likewise
QNS = 2™ = L4,) = 1,

44. Define a mapping »: B — I by letting A\(b) equal the greatest
lower bound in I of {xeI]|q,(d) =b}. Note that we do not know
whether ¢,,;,(0) = b. But we can at least say the following.

45. THEOREM. Constder xel and be B with x # M0b). Then
MD) < x of and only if q,(b) = b.

Proof. If q,b) =b, it is obvious that A(b) < z. Conversely, if
AMb) < z, there exists we I such that Mb) < w <« and ¢,(0) =b. By
Theorem 41, ¢.9, =¢.,. Thus ¢.q.,(b) = q.(b), which says that ¢,(b) = b.

46. THEOREM. For any feWUut,, f~n = A2(f).
Proof. Consider el and be B such that z is not equal to

FND) or A2(F)(D). It suffices to show that f\(b) <z if and only
if A2(F)(®) < z. Our approach will be the following.
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FIN0) < @
@)
AMb) < flx)
(i)
Ura(b) =0
(ii1)
QSN2 )b) = b
(iv)
2.2(f)(0) = 2()()
()
A2 <z
(i) follows from the fact that f and f~' belong to ut,. Note that,
since « == f"\(b), we have f(x) == Mb). Thus (ii) follows from Theorem

45. (iii) follows from Theorem 42, and (iv) follows from Theorem 43.

And, since we have assumed that z = A2(F)(3), (v) follows from
Theorem 45.

47. This theorem asserts a kind of naturality of \. Viewing
Aut, as a category whose only object is I, we may define a cofunctor
A: Aut, — En8 by letting A(I) = I and A(f) = f'. Then ) is a natural
transformation from @ (viewed as a cofunctor from ut, to €ng) to

4. Note that this kind of naturality is much more restricted than
that of Theorem 34.

48. THEOREM. There exists ce€ B such that 0 < Ac) < 1.

Proof. Suppose there is no such ¢. By Theorem 41, ¢,.(q.:(0)) =
¢u2(b) for all be B. Thus by Theorem 45, M\q..(0) < 1/2. So \gy:(b)
must equal 0. Therefore, by 45 again, ¢,.(q..(0)) = ¢.(b) for all
be B. But, by Theorem 41, q,/q,)) = g,(b) for all beB. So
@2 = ¢ys, Which says that Q(p.,) = 2(p,). This contradicts 37.

49. THEOREM. )\ maps B onto the interior of I.

Proof. By Theorem 48, there exists ce B with 0 < ) < 1.
Given any xel with 0 < <1, there exists fe%ut, such that
F7\() = . Thus, by Theorem 46, M2(f)(e)) = x.

50. COROLLARY. If B is a set as in 37, then B is uncountable.
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51. THEOREM. Let & be a subcategory of &nd in which every
object 1is countable. Then every cofunctor 4:P— S is homotopy
invariant.

Proof. Corollary 50 says that for every cofunctor 2: 3 — &
there exist distinct continuous mappings f, g: I— I such that 2(f) =
2(g). Hence the assertion follows by Theorem 11.

Generalizations.

52. In Theorem 30, T may be replaced by any of the categories
named in 15,16 or 17. If we replace I by a space H as in 15, the
proof of Theorem 22 requires that H satisfy the added condition that

(¢) given distinct s, ¢t € H and any u € H, there exists a continuous
mapping m: H— H such that m(s) = s and m() = u.

This is satisfied by R, S', and many other spaces.

In Theorem 51, P may be replaced by any of the categories named
in 15 or 17. We may replace I by R or S' as in 15, but our con-
struction of A makes it difficult to replace I by anything more general.
Likewise, the construction of \ rules out the categories in 16, which
admit only smooth mappings. This happens because the mappings
p,: I — I have no smooth analog.

53. Note that the proof of Theorem 51 is very symmetrical. In
particular, this proof can be daulized to give a proof of Theorem 30.
But the proof we have given of Theorem 30 is simpler and more
general, in that it applies to smooth structures as well as topological
structures.

54. There is one important category & to which Theorems 30
and 51 do not apply: the category L% of countable dimensional vector
spaces over a fleld K. The problem is that a countable dimensional
vector space (or even a finite dimensional vector space) may have an
uncountable number of elements. It will now be shown that Theorems
30 and 51 remain true when & = 7.

55. THEOREM. Evwery functor 4: % — 8% is homotopy tnvariant.

Proof. We will proceed as in Theorems 20-29. Let B be a vector
space over K, and let B be the full subcategory of the category of
vector spaces over K whose only object is B. If there exists a functor
2:F— B such that 2(f) = 2(g9) only if f =g, then there is a one-
to-one mapping @:I— B such that 2(f)o = wf for all continuous
mappings f: [—I. Suppose that the image of w is a linearly dependent
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set. Then there exists an element x ¢ I, a finite set Y < I — {x}, and
scalars a, € K indexed by y € Y such that w(x) = 3,y a,0(y). It is
easy to construct a continuous mapping f: I— I such that fly) =y
for all ye Y and f(z) = 2. Then

O(f @) = Ao() = 2 (S a0@)) = 3,62 )ow)
= S a0(0) = S a0l) = o) .

yey

This is a contradiction, since ® is one-to-one. Hence the image of @
is a linearly independent set. And the image of ® is uncountable,
so it follows that the dimension of B is uncountable. Thus for every
functor 2: Y — B there exist distinet continuous mappings f, g: I— 1
such that 2(f) = Q(g). Therefore, by Theorem 6, every functor
4: 9 — Be is homotopy invariant.

56. THEOREM. Every cofunctor 4:P— By is homotopy in-
variant.

Proof. This is analogous to the proof of Theorem 55. Proceed
as in Theorems 41-50, and use naturality of \.

57. Note that we may replace B3 by the category U3 of countable
dimensional algebras over K in Theorems 55 and 56, because every
functor 4:3— %% can be viewed as a functor from B to L.

Conclusion.

List A: simplicial complexes
topological manifolds
topological manifolds with boundary
compact topological manifolds
compact topological manifolds with boundary
pairs in any category above
List B: smooth manifolds
smooth manifolds with boundary
compact smooth manifolds
compact smooth manifolds with boundary
pairs in any category above
List C: finitely generated abelian groups
finitely generated groups
finitely generated rings
List D: countable abelian groups
countable groups
countable rings
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countable dimensional vector spaces over a field K
countable dimensional algebras over a field K.

58. We have shown that every functor from a category in List
A or B to a category in List C or D is homotopy invariant. And
every cofunctor from a category in List A to a category in List C
or D, or from a category in List B to a category in List C, is
homotopy invariant. And these results can be extended to many other
categories by the methods developed herein. Some questions that
remain are:

1. Is every cofunctor from smooth manifolds to countable groups
homotopy invariant?

2. For which rings R can the category of countably generated
E-modules be placed in List D?
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