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H. J. SHEYR AND T. M. VISWANATHAN

In this nofe, it is shown that for several classes of
Iattice-ordered rings, the [-radical L(4) and the prime radical
P(A4) coincide and that A module the [l-radical is an f-ring.
In particular, this is true for the class of positive sguare
rings satisfying the identity ¢.c_ = 0.

The most well-behaved lattice-ordered rings are the f-rings satis-
fying the identities 2za. A ¢_ = 0 where 2 is an arbitrary positive
element and a an arbitrary element of the l-ring A. All other rings
are then studied by dissecting the ring into parts — cne part called
the radical where the idiosyncracies of the ring play a role and the
other is the ring modulo the radical where the ring is expected to
behave more like an f-ring. The radicals are themselves varied: There
is the l-radical L(A) of Birkhoff and Pierce which iz the union of
nilpotent l-ideals of A4 and the P-radical .Z7(A4), being the intersection
of all the prime [-ideals of A. It is known that L(4) =& P(4). The
object of this note is to show that equality holds and that the radicals
behave well for several classes of [-rings.

2. Sguare-archimedean rings. A square-archimedean ring A
is an l-ring satisfying the Following: Given #, v in the positive cone
A, there sxists a positive mtefe“ n = n{x, y) such that zy + yr =
n{z® + y3). The positive square i-rings, having square elements positive
or zero are indeed square-archimedean. The following is an example
of a commutative l-ring with identity which is square-archimedean
but not positive square: The ring A has the additive group of two
copieg of the ordered group Z of integers with multiplication defined
by (a,, @), 8,) = (b, a:b, + a,b,) and order provided by (e, ¢.) in
At if g, =0, =0 in Z. Notice alse that the bound n{z, ¥) may not
be uniform.

It ig appropriate at this point to introduce the upper [-radical
U(A) which is the union of all nil l-ideals of 4. U(A) is an [-ideal
whereas the set H(A4) of all absolutely nilpotent elements need not
be an ideal. We have the containment relation L{(A4A)<S P4)S
UA) € H(A). Throughout the remaining part of this section 4 is
assumed to be a square-archimedean ring.

ProrosiTion 1. If x and y are elements of AT and m a positive
integer, them there exist positive imtegers A\, and p, such thot
(x + )" = M@ + ") ond ()" £ e 4 ).
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Proof. Use induction on m. For the second inequality, xy <
xy + ye < n(x® + 9?) and so (zy)" < »™(x* + ¥?)*™" and now use the
first.

PROPOSITION 2. The set H(A) is a sublattice subring of A which
1s also square-archimedean.

Proof. This is a consequence of Proposition 1 and the following
identity in A:a + b= (a V b) + (& A D).

THEOREM 1. If A is a square-archimedean ring, then L(A) =
P(A) = U(A). In particular, the three radicals coincide for positive
square l-rings.

Proof. We shall obtain a reduction to the case when A itself
will be a nil ring. For this, U(4) is an I-ideal of A and so by (2.18)
of [2], the l-radical of U(A) is equal to L(A). Since U(A4) is a nil
ring, the theorem will be proved if we show that the Il-radical of
a nil ring is the whole ring. This is the next lemma.

LEMMA 1. For every integer m =1, let p(m) =2". If A is a
nil ring then the set I, = {xe A: |z |"™ = 0} is a nil potent l-ideal.
Hence L(A) =

Proof. It is enough to prove the result for m =1, since the
general case would then follow by induction by passing to the
quotient say A/I,... For m = 1, we already know from Proposition
1 that I, is a sublattice subring of A. Given =0 in I, and « in
A*, we have zax = zax + ax* < n{ax)® for some positive integer =
and by iteration, zax < n*a‘rax for every s =2 and so zax =0,
making the square of both ax and xa vanish. Thus I, is a nilpotent
l-ideal of index 2.

REMARK 1. The question naturally arises whether there exists
a positive square l-ring for which U(A4) = H(A). This is another
form of a question of Diem. (See p. 79 of [2].)

3. Rings with well-behaved radicals. We shall now complete
the work of Diem by showing that for several classes of rings
satisfying specific I-ring identities, the l-radical equals the set N of
nilpotents so that all the radicals coincide. A basic tool is the notion
of an f-ideal, which is an l-ideal I such that A/I is an f-ring. Thus
an l-ideal I is ad f-ideal if and only if it contains all elements of
the form xza* A a” and a*x A o™ for all x =0 and for all @ in A.
We observe that if the l-ring A has a nilpotent f-ideal, then L(4) = N,
making all the radicals coincide and in this case the I-radical indeed
behaves well since A/L(A) is an f-ring without nilpotent elements.
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THEOREM 2. Let A be an l-ring which satisfies one of the
following identities:

(i) 2za*Aza~=0and a*te Aaz =0 forall x = 0 and a in A.

(i1) za'x Aza™x =0 for all x = 0 and a in A.

(iii) a*za™ =0 for all © = 0 and a in A.

(iv) zatzax =0 for oll * =0 and a in A.

(v) a*a™ =0 for all @ in A. Then L(A4) = N.

Proof. We shall produce a nilpotent f-ideal in all cases except (v).

(i) and (ii). Let I = {xre A: AxA = 0}). Let us show that [ is an
f-ideal in the case of (ii). A similar proof works for (i). If ¢, d, and
2= 0 in 4 and « an element of A, then c(za™ A a™)d < cxatd Aca™d <
ea*eNea"e where ¢ is any upper bound of ¢, cx, and d and this last
element is 0. Since any element is the difference of two positive
elements, this shows that za™ A o~ belongs in I. Similarly a*z A o~
belongs in I. Clearly I is a nilpotent [-ideal.

(iii) and (iv). It is clearly enough to prove (iv). Notice that
for every © = 0 and a in A4, the element (xa)x = 0. Using this, it
is easy to show that the set J={aecA:(x]|a!)x =0vxec A’} is a
nilpotent f-ideal.

(v) Since A in this case is a positive square ring, by Theorem 1,
L(A) = P(A) and by Corollary 4.6 of [2], P(4) = N.

COROLLARY. Let A be an l-ring. Suppose the uvper radical is
square-archimedean or satisfies one of the identities above, then
L{A) = P(A) = U(A).

REMARK 2. The l-ring satisfying the identity a¢“e¢™ = 0 also has
a nilpotent f-ideal. The proof however requires that H(A) be an
l-ideal, a consequence of Corollary 3.8 of [2]. Since the existence of
a nilpotent f-ideal implies that only a part of the l-radical behaves
undesirably, it may be useful to describe this f-ideal.

From Lemma 1, if ¢ and s are elements of A" and if ¢* = 0 and
s nilpotent, then asa = 0. Now if r¢ A" and a ¢ A7 an element such
that ¢®> = 0, then rar is nilpotent, since H(A4) is an [-ideal. Hence
for every # in A' we have arara = €.

Now if acA and re A" then (ra™ ANa ) < raa” = 6. Hence
(ra™ A a7 = 0. Similarly (a™ A a™) = 0.

Let Z(A) ={acd:(x|alfx =0 xe A'}. Since A is a positive
square ring, Z(A) is a nilpotent [-ideal. Since it may not contain
ro™ A a7, we construct Z,(4) as the inverse image of Z,(4/Z.(4)),
using the natural epimorphism A — A/Z(A). Z{A) is a nilpotent
f-ideal of A.
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