ON THE RADICALS OF LATTICE-ORDERED RINGS

H. J. SHYR AND T. M. VISWANATHAN
ON THE RADICALS OF LATTICE-ORDERED RINGS

H. J. SHYR AND T. M. VISWANATHAN

In this note, it is shown that for several classes of lattice-ordered rings, the δ-radical $L(A)$ and the prime radical $P(A)$ coincide and that A modulo the δ-radical is an f-ring. In particular, this is true for the class of positive square rings satisfying the identity $a_+a_- = 0$.

The most well-behaved lattice-ordered rings are the f-rings satisfying the identities $xa_+ \wedge a_- = 0$ where x is an arbitrary positive element and a an arbitrary element of the δ-ring A. All other rings are then studied by dissecting the ring into parts—one part called the radical where the idiosyncracies of the ring play a role and the other is the ring modulo the radical where the ring is expected to behave more like an f-ring. The radicals are themselves varied: There is the δ-radical $L(A)$ of Birkhoff and Pierce which is the union of nilpotent δ-ideals of A and the P-radical $P(A)$, being the intersection of all the prime δ-ideals of A. It is known that $L(A) \subseteq P(A)$. The object of this note is to show that equality holds and that the radicals behave well for several classes of δ-rings.

2. Square-archimedean rings. A square-archimedean ring A is an δ-ring satisfying the following: Given x, y in the positive cone A_+, there exists a positive integer $n = n(x, y)$ such that $xy + yx \leq n(x^2 + y^2)$. The positive square δ-rings, having square elements positive or zero are indeed square-archimedean. The following is an example of a commutative δ-ring with identity which is square-archimedean but not positive square: The ring A has the additive group of two copies of the ordered group Z of integers with multiplication defined by $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_1 + a_1b_2)$ and order provided by $(a_1, a_2) \in A^+$ if $a_2 \geq a_1 \geq 0$ in Z. Notice also that the bound $n(x, y)$ may not be uniform.

It is appropriate at this point to introduce the upper δ-radical $U(A)$ which is the union of all nil δ-ideals of A. $U(A)$ is an δ-ideal whereas the set $H(A)$ of all absolutely nilpotent elements need not be an ideal. We have the containment relation $L(A) \subseteq P(A) \subseteq U(A) \subseteq H(A)$. Throughout the remaining part of this section A is assumed to be a square-archimedean ring.

Proposition 1. If x and y are elements of A^+ and m a positive integer, then there exist positive integers λ_m and μ_m such that $(x + y)^m \leq \lambda_m(x^m + y^m)$ and $(xy)^m \leq \mu_m(x^{m+1} + y^{m+1})$.

257
Proof. Use induction on m. For the second inequality, $xy \leq xy + yx \leq n(x^2 + y^2)$ and so $(xy)^m \leq n^m(x^2 + y^2)^m$ and now use the first.

Proposition 2. The set $H(A)$ is a sublattice subring of A which is also square-archimedean.

Proof. This is a consequence of Proposition 1 and the following identity in A: $a + b = (a \lor b) + (a \land b)$.

Theorem 1. If A is a square-archimedean ring, then $L(A) = P(A) = U(A)$. In particular, the three radicals coincide for positive square l-rings.

Proof. We shall obtain a reduction to the case when A itself will be a nil ring. For this, $U(A)$ is an l-ideal of A and so by (2.18) of [2], the l-radical of $U(A)$ is equal to $L(A)$. Since $U(A)$ is a nil ring, the theorem will be proved if we show that the l-radical of a nil ring is the whole ring. This is the next lemma.

Lemma 1. For every integer $m \geq 1$, let $p(m) = 2^m$. If A is a nil ring then the set $I_m = \{x \in A : |x|^{p(m)} = 0 \}$ is a nilpotent l-ideal. Hence $L(A) = A$.

Proof. It is enough to prove the result for $m = 1$, since the general case would then follow by induction by passing to the quotient say A/I_m. For $m = 1$, we already know from Proposition 1 that I_1 is a sublattice subring of A. Given $x \geq 0$ in I_1 and a in A^+, we have $xax = xax + ax^2 \leq n(ax)^2$ for some positive integer n and by iteration, $xax \leq n^a xax$ for every $s \geq 2$ and so $xax = 0$, making the square of both ax and xa vanish. Thus I_1 is a nilpotent l-ideal of index 2.

Remark 1. The question naturally arises whether there exists a positive square l-ring for which $U(A) \neq H(A)$. This is another form of a question of Diem. (See p. 79 of [2].)

3. **Rings with well-behaved radicals.** We shall now complete the work of Diem by showing that for several classes of rings satisfying specific l-ring identities, the l-radical equals the set N of nilpotents so that all the radicals coincide. A basic tool is the notion of an f-ideal, which is an l-ideal I such that A/I is an f-ring. Thus an l-ideal I is ad f-ideal if and only if it contains all elements of the form $xa^+ \land a^-$ and $a^+x \land a^-$ for all $x \geq 0$ and for all a in A. We observe that if the l-ring A has a nilpotent f-ideal, then $L(A) = N$, making all the radicals coincide and in this case the l-radical indeed behaves well since $A/L(A)$ is an f-ring without nilpotent elements.
Theorem 2. Let A be an l-ring which satisfies one of the following identities:

(i) $xa^+ \wedge xa^- = 0$ and $a^+x \wedge a^-x = 0$ for all $x \geq 0$ and a in A.
(ii) $xa^+x \wedge xa^-x = 0$ for all $x \geq 0$ and a in A.
(iii) $a^+xa^- = 0$ for all $x \geq 0$ and a in A.
(iv) $xa^+xa^-x = 0$ for all $x \geq 0$ and a in A.
(v) $a^+a^- = 0$ for all a in A. Then $L(A) = N$.

Proof. We shall produce a nilpotent f-ideal in all cases except (v).

(i) and (ii). Let $I = \{x \in A : Ax = 0\}$. Let us show that I is an f-ideal in the case of (ii). A similar proof works for (i). If $c, d,$ and $x \geq 0$ in A and a an element of A, then $c(xa^+ \wedge a^-)d \leq cxa^+d \wedge ca^-d \leq ea^+e \wedge ea^-e$ where e is any upper bound of $c, cx,$ and d and this last element is 0. Since any element is the difference of two positive elements, this shows that $xa^+ \wedge a^-$ belongs in I. Similarly $a^+x \wedge a^-$ belongs in I. Clearly I is a nilpotent l-ideal.

(iii) and (iv). It is clearly enough to prove (iv). Notice that for every $x \geq 0$ and a in A, the element $(xa)^2x \geq 0$. Using this, it is easy to show that the set $J = \{a \in A : (x \mid a \mid)^2x = 0 \forall x \in A^+\}$ is a nilpotent f-ideal.

(v) Since A in this case is a positive square ring, by Theorem 1, $L(A) = P(A)$ and by Corollary 4.6 of [2], $P(A) = N$.

Corollary. Let A be an l-ring. Suppose the upper radical is square-archimedean or satisfies one of the identities above, then $L(A) = P(A) = U(A)$.

Remark 2. The l-ring satisfying the identity $a^+a^- = 0$ also has a nilpotent f-ideal. The proof however requires that $H(A)$ be an l-ideal, a consequence of Corollary 3.8 of [2]. Since the existence of a nilpotent f-ideal implies that only a part of the l-radical behaves undesirably, it may be useful to describe this f-ideal.

From Lemma 1, if a and s are elements of A^+ and if $a^2 = 0$ and s nilpotent, then $asa = 0$. Now if $r \in A^+$ and $a \in A^+$ an element such that $a^2 = 0$, then rar is nilpotent, since $H(A)$ is an l-ideal. Hence for every $r \in A^+$ we have $arara = 0$.

Now if $a \in A$ and $r \in A^+$ then $(ra^+ \wedge a^-)^2 \leq ra^+a^- = 0$. Hence $(ra^+ \wedge a^-)^2 = 0$. Similarly $(a^+r \wedge a^-)^2 = 0$.

Let $Z_1(A) = \{a \in A : (x \mid a \mid)^2x = 0 \forall x \in A^+\}$. Since A is a positive square ring, $Z_1(A)$ is a nilpotent l-ideal. Since it may not contain $ra^+ \wedge a^-$, we construct $Z_2(A)$ as the inverse image of $Z_1(A)/Z_1(A)$, using the natural epimorphism $A \to A/Z_1(A)$. $Z_2(A)$ is a nilpotent f-ideal of A.

REFERENCES

Received July 14, 1972 and in revised form January 8, 1974.

UNIVERSITY OF WESTERN ONTARIO, LONDON
AND
IMPA, RIO DE JANEIRO, BRAZIL
Ralph K Amayo, *Engel Lie rings with chain conditions* ... 1
Bernd Anger and Jörn Lembcke, *Hahn-Banach type theorems for hypolinear functionals on preordered topological vector spaces* .. 13
Gregory Frank Bachelis and Samuel Ebenstein, *On Δ(p) sets* 35
Harvey Isaac Blau, *Indecomposable modules for direct products of finite groups* 39
Larry Eugene Bobisud and James Calvert, *Singular perturbation of a time-dependent Cauchy problem in a Hilbert space* ... 45
Walter D. Burgess and Robert Raphael, *Abian’s order relation and orthogonal completions for reduced rings* ... 55
James Diederich, *Representation of superharmonic functions mean continuous at the boundary of the unit ball* ... 65
Aad Dijksma and Hendrik S. V. de Snoo, *Self-adjoint extensions of symmetric subspaces* ... 71
Gustave Adam Efroymson, *A Nullstellensatz for Nash rings* 101
John D. Elwin and Donald R. Short, *Branched immersions onto compact orientable surfaces* ... 113
John Douglas Faires, *Comparison of the states of closed linear transformations* 123
Joe Wayne Fisher and Robert L. Snider, *On the von Neumann regularity of rings with regular prime factor rings* ... 135
Franklin Takashi Iha, *A unified approach to boundary value problems on compact intervals* ... 145
Palaniappan L. Kannappan and Che Tat Ng, *On functional equations connected with directed divergence, inaccuracy and generalized directed divergence* 157
Samir A. Khabbaz and Elias Hanna Toubassi, *The module structure of Ext (F, T) over the endomorphism ring of T* ... 169
Garo K. Kiremidjian, *On deformations of complex compact manifolds with boundary* ... 177
Dimitri Koutroufiotis, *Mappings by parallel normals preserving principal directions* ... 191
W. K. Nicholson, *Semiperfect rings with abelian adjoint group* 201
Norman R. Reilly, *Extension of congruences and homomorphisms to translational hulls* ... 209
Kalathoor Varadarajan, *On a certain problem of realization in homotopy theory* 277
Chi Song Wong, *Fixed points and characterizations of certain maps* 305