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In this paper it is shown that given any group = and
any subgroup G of the centre of = there exists a O-connected
CW-Complex X with 7,(X) = under an isomorphism carry-
ing the Gottlieb subgroup G(X) of =, (X) onto G.

Introduction. Let X be a 0-connected CW-Complex and z,< X.
In [2] Gottlieb defined a certain subgroup G(X, x,) of the fundamental
group 7(X,x,) of X at x, and studied some of its properties.
Earlier [4] Jiang Bo Ju defined a subgroup G, of 7 ,(X, f(x,)) corre-
sponding to any map f: X— X. The group G, when f = Id, turns
out to be precisely G(X, x,) studied by Gottlieb. These groups play
a role in Nielsen-Wecken theory of fixed point classes and were
investigated by R. F. Brown, W. J. Barnier, etc. In [3] Gottlieb
defined the higher dimensional analogues G.(X, x,)C 7, (X, z,) of
G(X, ©,) and studied their properties. For any path ¢ joining z, to
2, in X the isomorphism o,: 7,(X, x,) — 7.(X, x,) carries G, (X, z,) onto
G.(X, x,) for all » = 1. Thus one can talk of the nth Gottlieb group
G.(X) of X without reference to a base point. In [2] it is shown
that always G,(X) is a subgroup of the centre of 7,(X) and that if
X is a K(m, 1) CW-Complex G(X) is precisely the centre of 7.

Given any sequence of groups (7). With =, aberian for £ = 2
it is known that there exists a 0-connected CW-Complex X with
(X)) = m, for all k. A natural question that suggests itself is the
following:

Given a sequence of groups (7,).., Wwith 7, abelian for k= 2
and subgroups G, of 7, under what conditions does there exist a
0-connected CW-Complex with 7,(X) = 7, under isomorphisms carry-
ing G,(X) onto G,?

Though we do not attempt to solve this general problem in this
paper, we prove the following

THEOREM. Given any group 7 and a subgroup G of the centre
of @ there exists a 0-connected CW-Complex X with m(X) = w under
an isomorphism carrying G(X) onto G.

Finally I wish to thank Professor W. Browder for some very
profitable discussions I had with him in connection with this problem.

1. Discrete group actions. This section deals with some results
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278 K. VARADARAJAN

that we need regarding the action of the fundamental group on
the higher homotopy groups of a space. As we could not find any
explicit reference we felt we should include them here. But before
dealing with these results we recall briefly how the action of the
fundamental group =,(X, «,) on the homotopy group 7,(X, x,) is
defined.

Let 0: I— X be any path in X with a(0) =, and a(1l) = z,.
Let cerm, (X, x) be represented by f:(S” *) — (X, x,) where x denotes
the base point in S* Let A *xXxIUS"x1—X be given by
ho(*, t) = o(t) for all teI and h,(z, 1) = f(z) for all ze S". Then the
isomorphism o 7,(X, x,) — 7,(X, x,) carries ¢ into the clement of
7,.(X, x,) represented by g:(S”, *) — (X, x,) where g(?) = F(z, 0) with
F:S8* x I— X any extension of A&, It is known that o, depends
only on the homotopy class [o] of the path ¢ and that if o, v are
paths in X with o) =%, o(1) =2 =7(0) and t(l) =x, then
o-7.:7,(X, x)— 7,(X, ) is the same as the composite o407, In
particular the assignment a-c¢ = gy(c) for every acm(X, ) and
cen, (X, z,) where ¢ is any loop at x, representing a, gives rise to
an action of 7,(X, x,) on 7 (X, x,).

Let mw be a group and X, Y spaces on which 7 acts on the left.
As usual we define an action of 7 on X X Y by a(z, y) = (ax, ay)
for any aem and (x,y)e X x Y. The quotient space of X XY
under this action of © will be denoted by X X.Y. We recall the
following.

DErFINITION 1.1. 7 is said to act properly discontinuously X if
given x e X there exists an open set U of X with z€ U and satisfy-
ing the following condition:

a,a'c ;aUNa'U# @ =—0a=a'.

LEMMA. 1.2. Suppose the action of @ on X is properly dis-
continuous. Then for any action of ™ on Y the action of @ on
X X Y described above is properly discontinuous.

Proof. Let (x,y)e X x Y. Let U be an open set in X with
ze U and satisfying the requirement in Definition 1.1. Then V =
UxYis open in X X Y;(x,y)eV and aV=aUxaY=aUx Y
for any aen. Hence aVNa'V @=aUNad U= @=0a0=a.

For the rest of this section X will denote a 0-connected
space admitting of a simply connected covering space X*— X.
The Deck transformation group of the covering X*— X will be
denoted by =(X). Let &, be a chosen base point of X and z, =
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p(%,). As is well-known < (X) is isomorphic to 7,(X, x,). A specific
isomorphism

(1) Ayt D(X) — (X, x,)

is got as follows. For any ae &(X) let &, be any path in X joining
%, to a%. Then pod, = «a, is a loop at x, in X and \y(a) = the
homotopy class [a,] of the loop «,. This isomorphism ), definitely
depends on the choice of the base point %, in X.

Let us denote the group <7(X) by n. Let Y be a l-connected
space and y, a base point in Y. Assume that the group 7 acts on
the left on Y further satisfying the condition ay, = y, for all aex.
By Lemma 1.2 the action of 7 on X x Y is properly discontinuous.
Denote the quotient space X X.Y by @ and the canonical quotient
map X x Y—@Q by ¢. Since X x Y is simply connected and the
action of 7 on X x Y is properly discontinuous it follows that
¢: X x Y— @ is the universal covering of @ and 7 is the Deck
transformation group of the covering ¢: X x Y— Q. Let ¢, ¥,) =
u,. Using (%, ¥)) as the base point in X x Y as described in the
previous paragraph we have an isomorphism '

(2) Aot T —— (&), o)

Let now % be an integer =2 and let us assume 7,(X) = 0.
Let j: Y— X x Y be the inclusion given by j(y) = (&, ¥). From the
fact that 7,(X) = 7,(X) = 0 we see that

-7* ﬂ'-fw(y: yo) — 71'”()? X K (5,‘70’ yO))

is an isomorphism. Since ¢: X x Y— @ is the universal covering
of @ the map ¢.:7.(X x Y, (%, Y,)) — T.(Q, u,) is an isomorphism.
Denoting the composite ¢oj by ¢’ we thus see that ¢%: 7. (Y, y,) —
7. (Q, u,) is an isomorphism.

For any vemn(Q, w,) and werm,(Q, u,) we denote by v-w the
element in 7,(Q, u,) got by the action of v on w under the usual
action of 7,(Q, u,) on 7@, u,). Since ay, =y, for any acrm the
action of 7 on Y gives rise to an action of 7= on #,(Y, ¥,). For any
ecenw and cex, (Y, y,) we denote the element of 7, (7Y, y,) got under
this action by a=c. The following proposition assets that under the
isomorphisms \g: 7 — 7,(Q, u,) and ¢%: 7, (Y, ¥,) — 7.(Q, u,) these two
actions correspond. More precisely we have

PROPOSITION 1.3. ¢i(a*c) = No(a)- qi(c) for all aerm and cec
(Y, yo).
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During the course of the proof of this proposition we will make
use of the following well known

LeEmMA 1.4, Let @: A— B be a continuous map of topological
spaces. Let o be any path in A with o(0) = a, 6(1) = a,. Let
b, =9(a;) (1 =0,1). Then the following diagram tis commutative

n'-n(A: a’l) Mjf_) Tcn(Ay a'o)

lﬁﬁ* 14’*
g%

7.(B, b) ——Z 1(B, b,

DiaGraM 1

Proof of Proposition 1.3. Let f:(S" x)— (Y, vy, represent ce€
(Y, y,). Let aexw choose any path #:I— X joining %, to aZ, in
X. Then @,I—X x Y defined by &) = (4(@t),y,) is a path in
X x Y joining @.,(0) = (%,, ¥.) to &,(1) = (a%, ¥.) = (a%, ay,) = a(Z, Yo)-
By the definition of A, we have N\y(a) = [a,] Where a,=¢q- &, By
Lemma 1.4 we see that

(X X Y, (a8, 1) — 2 T (X X T, @&, )

J» B

7@, uo) 2 7,(Q, )

DiaGgraM 2

is a commutative diagram. Since A\,(a) = [@,], by definition of the
action m,(Q, u,) on 7, (Q, u,) we have

(3) No(@) - @5(0) = a(di(e))

The element ¢%(c) € 7,.(Q, u,) is represented by the map ¢ o f: (S”, x) —
(@, u,). Denote by d the element in 7,(X x Y, &, x ¥,) represented
by the map h:(S*, ) — (X X Y, & X ¥,) given by k(z) = (a&, af(z))
for all ze S*. Then

g h(z) = q(ay, af(2)) = ¢(®,, f(2)) = q°3(f(2)) = ¢’ flz) forallzeS".

¢ h represents ¢.(d) in 7,(Q, u,) and ¢’ o f represents ¢i(c) in 7, (Q, u,).
Since goh = ¢’ - f we have

(4) 7x(¢) = ¢«(d) .

Consider the map H:S" x I— X x Y given by H(z, t) = (4(t),
af(z)). We have
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H(x, t) = (0(t), ay,) = (@(t), yo) = A.()

and

H(z, 1) = (0(1), af(2)) = (af,, af(2)) = Mz) .

Hence &, (d)en, (X x 7Y, (&, y,)) 1is represented by g:(S" *)—
(X x Y, (%, y,)) where ¢(2) = H(z,0). Now H(z, 0) = (4(0), af(z)) =
%, af(z)). Hence

(5) 9(z) = (T, af(?)) .

The element axc¢ of 7Y, y,) is represented by I:(S" =) — (Y, y,)
where l(z) = af(z). Hence qi(a = ¢) is represented by ¢'-l. But

¢ o U2) = 9(F, af(z)) = qo9(z) by (5).

Since g represents @,.(d) it follows that gog represents ¢.(d..(d)) in
T,(Q, u,). From ¢ ol = gog we immediately get ¢i(axc) = q.(&,.(d)).
But ¢.(&,Ad)) = a.q.(d)) by commutativity of Diagram 2. Hence

¢:(axc) = a.(g+(d))
= (g (c)) by (4)
= No(@) - ¢%(c) by (3) .

This completes the proof of Proposition 1.3

2. Study of U(r) x | K(M, n)| for a m-module M. Let = be a
a given group and K a K(z, 1) CW-complex. The universal covering
K of K is a contractible CW-complex and the Deck transformation
group of the covering K -5 K is 7. We will denote the contractible
complex K by U(x).

Let M be any left m-module and 7 any integer = 2. Consider
the Eilenberg-Maclane semi-simplicial complex K(M, ). The action
of T on M gives rise to an action of 7 on the semi-simplicial com-
plex K(M, n). This in turn gives rise to an action of 7= on the
geometric realization | K(M, n)| (Milnor’s geometric realization [5]).
We would like to apply the results of §1 to the case when X = K
and Y =|K(M,n)|. For that purpose we should make sure that
there exists a base point y,e Y such that a-y, =y, for all aex.
For this purpose we briefly recall the definition of the semi-simplicial
complex K(M, n).

For any integer & = 0 let 4, be the set consisting of the integers
j such that 0 < j < k. Let C"(4, M) denote the set of “n-cochains”
of 4, in M, namely functions @: 4, — M. For any integer k=1 let
eody,— 4, for 0<t<k and s;:d,—4,_, for 0<1<k—~1 be
given by
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7 for 0= pusi-—-1
p+lforispu<k-1
7 for0=pu=<=<

p—Llfori+1=2pu=sk.

&) = {

s = |
Let ¢f: C"(4,, M)— C*(4,_,, M) and s}:C*(4,_, M)— C"(4,, M) be
induced by ¢, and s,. More specifically
for any v, v, ++-, v, in 4,_, and e C™(4,, M)
8?@(?]0’ ct ’U,,) = g)(ei(vo); ei(vo), 6i(vl)y ) 51-(’0,,,,))
and

for any x, 2, ++-, %, in 4, and e C"(4,_,, M)
S?H(wo, tt xn) = (9(3,-(.’1/'0), Sl(xl), Tty Si(x'lb)) .

Let Z™(4,, M) be the subset of C"(4,, M) consisting of element ¢
satisfying the following two conditions:

(i) oz, +--,x,) =0 if =, -+, xz, are elements of 4, not all
distinct
(ii) (1Y p(xg, + v, By o0, Xury) =0 for any x, X, -2,

in 4,. It is known that

ef(Z2"(dw, M) C Z™(ds—y M)

for a k=1.
SHZ (L, M) C Z(4,, M) ny e =

For k=0 the set of k-simplices K,(M, n) of the semi-simplicial
complex K(M, n) is the same as Z"(4,, M). For any k=1 the face
maps K, (M, n) — K,_(M, n) and the degeneracy maps K, ,(M, n) —
K. (M, n) are given by ef for 0 <1<k and s} for 01k — 1
respectively. It is clear that the set K, (M, ») for any kin 0 <k <
n — 1 has only one element, namely the zero element of C*(4,, M).

The action of # on M gives rise to an action of # on K(M, n)
as follows. For any @€ K, (M, n) let ap be the function 47— M
defined by

((I'@)(xw ) xn) = a{gv(xo; ct xn)} .
Then it is easy to see that ap € K, (M, n) and that the map
Ba: K(M7 ’}’b) - K(My ’I’&)

given by B.(®) = ap for any @e K (M, n) is a semi-simplicial iso-
morphism. Moreover for any a, o’ in 7 it is clear that B, = B.° Be-
If we denote the only 0O-simplex of K(M, n) by e, clearly B.(e,) = e,
for all aexw. If we take Y =|K(M, n)|, ¥, = |e,| and define ay =
[B.| (y) for any ye Y it is clear that we get an action of 7 on Y
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satisfying a-y, =y, for all aen. The resulting action of = on
.| KM, n) |, y) = M agrees with the original m-module structure on
M that we started with.

Let % e Um), @=U@m)X.Y, ¢ Ux) x Y—Q the canonical
quotient map and u, = ¢(&, ¥,). Let Mo 7 — 7 (Q, u,) be the iso-
morphism given by (). Let H={aenw|am = m for all me M}

H ={ver(@Q, u)|v-w=w for all wer,(Q, u,)} .
As an immediate consequence of Proposition 1.3 we get the following

PropoSITION 2.1. The isomorphism Ng: T — w,(Q, u,) carries the
subgroup H of w onto the subgroup H, of 7(Q, t,).

3. A subgroup of the Deck transformation group. Let X be
0-connected topological space and X” — X a covering space of X (X
not necessarily simply connected). Let us denote the Deck trans-
formation group of the covering X? — X by <. Recall the usual

DEFINITION 3.1. A homotopy F: X x I— X is said to be fibre
preserving if there exists a homotopy H: X x I— X such that
- F oo
X xI— X

lpxld lp
xxI1-Lx

DIAGRAM 3

is commutative.
Let & denote the set of Deck transformations of X which are
homotopic to Idy through fibre preserving homotopies.

LEMMA 3.2, & is a subgroup of 2.

Proof. Let a, b be arbitrary elements of <. Let

- F . ~ T

¥x151x ¥x1L %

lpxld lp and lpxld lp

X x I__H_>X X % [ﬂ,X
DiAGRAM 4

be fibre preserving homotopies satisfying

F(% 0) = % F( 1) = af

7 _
’ for all Fe X .
P@@:aﬁ@n:w}m” ve
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It follows that

H(x, 0) = ¢ = H(x, 1)
H'(x,0) = x = H'(x, 1)

Let F": X x I— X and H": X x I— X be given by

} for all xe X .

F'(@, 2t) for 0 <t < 1/2
F@Oz 2t — 1) for 1/12<¢t <1
H'(z, 2t) for 0t <£1/2
H(x, 2t — 1) for 1)2<t<1.

F"#, t) = {
H'(z, t) = {

Then F"(%, 0) = %, F"(%, 1) = abZ% and

¥x1 2%

lpxId lp
HII
XxI— X
DIAGRAM 5

is commutative. Hence abe Z.
Let A: X x I— X and B: X x I — X be defined by

A%, t) = F(a™'%, 1 — t); Bz, t) = H(x, 1 — t)
Then A%, 0) = %, A(%, 1) = ¢™'Z and

TxI-A %

pxId »
X >l< I—B—Jl{

DIAGRAM 6

is commutative. Hence a '€ <.

Thus for any a,b in & the elements ab and o™ are in <.
This proves that & is a subgroup of =.

Let S(X) denote the singular C.S.S. complex of X and |S(X)]|
the geometric realization of S(X). Let j;:|S(X)|— X be the
canonical map [5]. Let

D1AGrAM 7
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denote the pull-back of the covering space X - X. Then EZ
|S(X)| is a covering space with the same Deck transformation group
2 as X 5 X, Let 2’ be the subgroup of those Deck transforma-

tions of E which are homotopic to Id, through fibre preserving
homotopies.

THEOREM 3.1. & C Z'.
For the proof of this theorem we need the following

LEmMMA 3.3. Let A, B be topological spaces and h, h, homotopic
maps of A into B under a homotopy H: A x I— B. Then there
extsts a homotopy P:|S(A)| x I— |S(B)| between |S(h,)| and | S(k,) |
such that

1S(4)| x T2 |S(B)]

leX[d ljB
Ax1 -2 B

DiaGrAM 8
18 comutative.

Proof. Let 4, be the C.S.S. complex whose p-simplices are
(p - 1) tuples (a, -+, @,) with ¢, = 0 or 1, the face and degeneracy
operations being the usual ones.

~

ey <7 vy @) = (@, ~ v, Gy v+, Qp)

S,‘(G,O, Ty aP—l) = (G’O, Tty a’i~17 ai; @iy, °° % ap-—i) .

Let | 4,| denote the standard Euclidean p-simplex in R?* with the
usual unit vectors e, ---, ¢, as its vertices. For any p-simplex
0= (a, +++,a,) of 4, let 6,:|4,|— I be the simplicial map deter-
mined by 0,(¢) =a, Let ¢ S(A) x 4,— S(A x I) be defined as
follows. For any @ e S,(A) and any p-simplex o of 4, let «(p X o)
be that singular p-simplex in A x I which satisfies ¢(@ x o) (x) =
(), 6,(x)) for all ze|4,]. Then ¢: S(A) x 4,— S(A x I) isa C.S.S.
inclusion. It is easily checked that P = |S(H)|o|¢| satisfies the
requirements of the Lemma.

Proof of Theorem 3.1. Observe that
E ={#& w)e X |S(X)|| p(@) = jx(w)}

and p'(%, w) = w. For any ae < the action of a on E is given by
a(®, w) = (a%, w).
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Let now be &. Then there exists a commutative diagram

¥xI-.%

pXxId D
X >l< I_izlc

DiAGRAM 9

with F(% 0) =% and F(% 1) = b%Z. Then H(x, 0) =& = H(x, 1) for
all re X. By Lemma 3.3 there exists a homotopy P:|S(X)| x [—
| S(X)| between | S(Id;)| and |S(Idy)| such that

1S(X) | x I35 8(X)]|

ljxxld 11}
H
XxI — X
Diacgram 10

is commutative. But | S(Idy)| = Id,sx,. Hence P(w, 0) = w = P(w, 1)
for all we|S(X)|.

Let L:E x I—E be defined by L((Z, w), t) = (F(Z, t), P(w, t)).
To make sure that L((%, w), t) e E we have to check that j (P(w, t)) =
p(F(%, t)). But commutativity of diagram 10 yields j (P(w, t)) =
H(jz(w), t). Since (%, w)e E we get jz(w) = p(F). Hence

H{(jx(w), t) = H(p(%), t)
= p(F(%, t)) by commutativity of Diagram 9.

Hence

It is easy to see that

ExI -2 E
lp’xId 11}’
PS(X) | X T— [S(X)]
DiaGrAM 11

18 commutative. In fact

P(p'(Z, w), t) = P(w, t)
and
P’ o L((Z, w), 1) = p"(F(%, t), P(w, t)) = P(w, 1)

Moreover
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L((Z, w), 0) = (F(%, 0), P(w, 0)) = (%, w)
L((®, w), 1) = (F(&, 1), P(w, 1)) = (0%, w) = b(&, w)

This proves that be &’. Since b is arbitrary in & we get ¥ C &'.

4. The main result. As stated in the introduction the main
result proved in this paper is:

THEOREM 4.1. Let 7 be any group and G any subgroup of the
centre w. Then there exists a 0-conmected CW-Complex X such that
(X)) =7 under an isomorphism carrying the Gottlieb subgroup
Gi(X) of mw(X) onto G.

Let M be any nonzero free left 7/G-module, for instance M =
Z(r/G) the integral group ring of 7w/G. Using the canonical quotient
map 7: T — /G we consider M as a left m-module. More specifically
for any aen and any me M we set am = n(aym. Then it is clear
that G ={aezw|am = m for all me M}. Consider the covering
space U(m) x YL Q where ¥ = | K(M, n)| (with % an integer = 2)
constructed in §2. Since a-m = m for a e G and all me M the iso-
morphism B,: K(M, n) — K(M, n) reduces to the Identity of K(M, n)
whenever ¢ € G. Hence |gB,| = Id,. It follows that ay = y for all
y€ Y whenever a ¢ G. For the covering space U(w) x Y—(LQ let I
be the subgroup of 7 consisting of those Deck transformations which
are homotopic to Idy. .y through fibre preserving homotopies. As
a first step towards proving Theorem 4.1 we show

ProposiTION 4.2. GC 1.

For the proof of this proposition we need the following well

known results. Let A be a 0-connected space and A2 4a covering
space of A. Let < be the Deck transformation group of this
covering.

PROPOSITION 4.3. A homotopy F: A x I ~+f4.~ 18 fibre preserving
if and only if aF(%, t) = F(a%, t) for all (& t)c A X I and all a e =.

This is Theorem II.2 of [2]. The proof given there is valid for
a covering space of any O-connected space A. (A need not be a
CW-complex).

PROPOSITION 4.4. If A is a CW-complex and A 2, A the universal
covering of A, the subgroup of D(A) which corresponds to the
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Gottlieb group G4, a0) under the isomorphism <D(A)— (A, al)
consists precisely of all those Deck transformations which are
homotopic to Idy under fibre preserving homotopics.

This is Theorem II.1 of [2].

ProrosITION 4.5. If A is a K(z, 1) CW-complex then G,(A) is
the centre of .

This is Corollary I1.13 of [2].

Proof of Proposition 4.2. Since G is in the centre of 7 and
by Proposition 4.5 G (K(zw, 1)) = the centre of = we see that GC
G,(K(z, 1)). By Proposition 4.4, for any be G the Deck transforma-
tion % — b% of U(ir)—p»K(ﬂ, 1) is homotopic to Id,. by fibre pre-
serving homotopy F: U(w) x I— U(r). By Proposition 4.3 we have
aF(%, t) = F(a&, t) for every aex and (%, t)e U(x) x L

Consider the homotopy L: U(n) x Y x I— U(r) x Y given by
L((#,y),t) = (F(@,t),y). We have L(&,y),0) = (F(&,0),y) = (%, y) and
(L#, v), 1) = (F&, 1), v) = (bZ, v) = (bF, by) since by = y for any ye Y
whenever be G. Hence L((Z, v), 1) = (b%, by) = b(ZE, ).

Also if a e we have

al((®, ), t) = (F(&, 1), v) = (aF(F, ), ay) = (F(aF, 1), ay)
= L((aZ, ay), t) = L(a(@, ), V) .

It now follows from Proposition 4.3 applied to the covering
U(rm) x Y2 Q that L: Ur) x Y x I— U(r) x Y is a fibre preserving
homotopy. Since L((%, v), 0) = (%, v), 0) and L((Z&, ¥), 1) = b(&, y) we
see that be " and b is arbitrary in G. Hence G I

Proof of Theorem 4.1. Consider the O0-connected space @ =
Ur) X.|K(M, n)| where » =2 and M a nonzero free m/G-module
converted into a w-module using the natural homomorphism 7:7—
w/G. Since G = {aem|am = m for all me M} by Proposition 2.1 we
get

(6) (@) = H ={ven(Q, w)|v-w = for all wen,(Q,u)}

If Q happens to be CW-complex Propositions 4.2 and 4.4 immediately
yield

(7) Ae(G) C Gi(Q, o)

We now recall the following
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PROPOSITION 4.6. Let X be a CW-complex and x,¢e X.

Let P(X, z) = {ven (X, z)|v-w=w for all wer,(X, x,) and all
n = 1}. Then G(X, #,) C P(X, x,).

This is Proposition 1.4 of [2]

It follows from (6) and Proposition 4.6 that if @ happens to be
a CW-complex

(8) GA(Q, uo) T No(G)

(7) and (8) yield M(G) = G\(Q, u,). Thus if @ happens to be a CW-
complex X = @ will satisfy the requirements of Theorem 4.1. Even
though U(r) and | K(M, n)| are CW-complexes the product U(w) X
| K(M, n)| with the product topology need not be. Even if it is (or
even if we alter the topology to the weak topology and get a CW-
structure on the set U(r) x | K(M, n)|) there is no guarantee that
@ will be CW. However it is possible to rectify the situation. It
turns out that X = |S(Q)| satisfies the requirements of Theorem 4.1.

First of all observe that there exists a point ¢, X = [ S(Q) ]
such that jo(c)) = u,. In fact if we take the O-singular simplex «,,
corresponding to the point u, then ¢, = |, || S(Q)| satisfies jo(c,) =
U It is known that jo.: 7,(S(Q)], ¢co) — 7(Q, u,) is an isomorphism
for all + = 1. [5].

Let H(X, ¢) = {vern(X, ¢)|v-w = w for all we (X, ¢)}. Using
Lemma 1.4 and the fact that j,: 7 (X, ¢)— 7(Q, u,) is an iso-
morphism for all 7 we see that

(9) Je(H(X, &) = H,
Let

E - Uxn)xY

s

1S@)] % @
DiaGraM 12

denote the pull back of the covering space U(x) x v5Q. Let I
be the subgroup of @ consisting of those Deck transformations of

the covering EH[S(Q)( which are homotopic to I, through fibre
preserving homotopies. By Theorem 3.1 we get "< [’ We take
e = ((¥y, ¥o), ¢;) as the base point in E and use it to get the iso-
morphism

rMeem— (X, ¢) .

It is easy to see that
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T

/N
/7-,1'/ \ZQ
G
/ N

7(X, &)~ ——T(Q, u)

D1AGrAM 13

is a commutative diagram. In fact if & is a path in E joining
e, = (T, Yo), €) to a-e, = (a(®, ¥), ¢,) it is clear that »& is a path
in U@) x Y joining (&, ¥,) to a(Z, ¥,). This fact yields commuta-
tivity of Diagram 13.

From Proposition 4.4 we have G,(X, ¢,) = Mz(I"). Commutativity
of Diagram 13, the fact that j,, is an isomorphism together with
(6) and (9) yield

(10) Me(G) = H(X, ¢) .
From Proposition 4.6 we get G(X, ¢,) C H(X, ¢,). Hence
(11) G(X, ¢) CAx(G) .

Also from GCI'cI” we get Me(G)CAN(I) Crx(I) and Ne(I) =
G.(X, ¢,). Hence

(12) M (@) C Gu(X, @)

(11) and (12) together yield My (@) = Gi(X, ¢,).

Thus N7 7 (X, ¢) — 7 is an isomorphism carrying G,.(X, ¢,) onto
the subgroup G of =.

This completes the proof of Theorem 4.1.

Finally we end the paper by raising a question. Let

E -4
O
|S(4)] —— A
DiAGRAM 14
be the pullback of a covering A2 A of a 0-connected space A. Let

Z and &’ be the subgroups associated to the covering A2 A and

E&]S(A)l respectively of the Deck transformation group &2. We
have proved in §3 that & < &’ (Theorem 3.1).

PrOBLEM. Is & = &?
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