FIXED POINT THEOREMS FOR MULTIVALUED NONCOMPACT ACYCLIC MAPPINGS

Patrick Michael Fitzpatrick and Walter Volodymyr Petryshyn
FIXED POINT THEOREMS FOR MULTIVALUED NONCOMPACT ACYCLIC MAPPINGS

P. M. Fitzpatrick and W. V. Petryshyn

Let X be a Frechet space, D a closed convex subset of X, and $T: D \to 2^X$ an upper semicontinuous multivalued acyclic mapping. Using the Eilenberg-Montgomery Theorem and the earlier results of the authors, it is first shown that if $W \supseteq T(D)$ and $f: W \to D$ is a single-valued continuous mapping such that $fT: D \to 2^X$ is Φ-condensing, then fT has a fixed point. This result is then used to obtain various fixed point theorems for acyclic Φ-condensing mappings $T: D \to 2^X$ under the Leray-Schauder boundary conditions in case $D = \text{Int}(D)$ and under the outward and/or inward type conditions in case $\text{Int}(D) = \emptyset$.

Introduction. Let X be a Frechet space and D an open or a closed convex subset of X. It is our object in this paper to establish fixed point theorems for not necessarily compact (e.g. condensing) multivalued acyclic mappings $T: D \to 2^X$ which need not satisfy the condition “$T(D) \subseteq D$” but instead are required to satisfy weaker conditions of the Leray-Schauder type. Our results are based upon the Eilenberg-Montgomery Theorem [4] and upon our Lemma 1 in [16]. The fixed point theorems presented in this paper for multivalued maps in infinite dimensional spaces strengthen and extend certain fixed point theorems of Górniewicz-Granas [7] and Powers [17] for acyclic compact maps, the results for star-shaped-valued maps of Halpern [8] for compact maps and our own [16] for condensing maps, and a number of fixed point theorems for convex-valued compact and noncompact maps (see Ky Fan [5], Browder [1], Reich [18], Ma [12], Walt [20], and [20, 8, 15] for related results and further references).

1. Let X be a Frechet space. If $D \subseteq X$, then we will denote by \bar{D} and ∂D the closure and boundary of D, respectively.

Definition 1. If C is a lattice with a minimal element, which we will denote by 0, then a mapping $\Phi: 2^X \to C$ is called a measure of noncompactness provided that the following conditions hold for any A, B in 2^X:

1. $\Phi(A) = 0$ if and only if A is precompact.
2. $\Phi(\text{co}A) = \Phi(A)$, where $\text{co}A$ denotes the convex closure of A.
3. $\Phi(A \cup B) = \max \{\Phi(A), \Phi(B)\}$.

It follows that if \(A \subseteq B \), then \(\Phi(A) \leq \Phi(B) \). The above notation has been used in \([16, 19]\) and is a generalization of the set-measure \([11]\) and the ball-measure of noncompactness \([6]\) defined either in terms of a family of seminorms or of a single norm when \(X \) is a Banach space. Specifically, if \(\{P_\alpha | \alpha \in \mathcal{A}\} \) is a family of seminorms which determines the topology on \(X \), then for each \(\alpha \in \mathcal{A} \) and \(\Omega \subseteq X \) we define \(\gamma_\alpha(\Omega) = \inf\{d > 0 | \Omega \) can be covered by a finite number of sets each of which has \(P_\alpha \)-diameter less than \(d \}\), and \(\chi_\alpha(\Omega) = \inf\{r > 0 | \Omega \) can be covered by a finite number of \(P_\alpha \)-balls each of which has \(P_\alpha \)-radius less than \(r \}\).

Then letting \(C = \{f: \mathcal{A} \to [0, \infty]\} \), with \(C \) ordered pointwise, we define the set-measure of noncompactness \(\gamma: 2^X \to C \) by \((\gamma(\Omega))(\alpha) = \gamma_\alpha(\Omega) \) for each \(\alpha \in \mathcal{A} \) and the ball-measure of noncompactness \(\chi(\Omega) \) by \((\chi(\Omega))(\alpha) = \chi_\alpha(\Omega) \) for each \(\alpha \in \mathcal{A} \) (see\([15]\) for more details and properties of \(\gamma \) and \(\chi \)).

The class of mappings considered here is given by the following.

Definition 2. If \(\Phi \) is a measure of noncompactness of \(X \) and \(D \subseteq X \), an upper semicontinuous (u.s.c.) mapping \(T: D \to 2^X \) is called \(\Phi \)-condensing provided that if \(\Omega \subseteq D \) and \(\Phi(T(\Omega)) \geq \Phi(\Omega) \), then \(\Omega \) is relatively compact.

It follows immediately that a compact mapping is \(\Phi \)-condensing with respect to any measure of noncompactness \(\Phi \). Classes of \(\Phi \)-condensing mappings which are not compact have been considered in \([19, 13, 14, 18]\). In particular, if \(X \) is a Banach space, \(D \subseteq X \) is closed, \(C: D \to 2^X \) is compact, and \(S: X \to 2^X \) is such that \(S(x) \) is compact for each \(x \in X \), and \(d^*(S(x), S(y)) \leq kd(x, y) \) for all \(x, y \in X \) and some \(k \in (0, 1) \), where \(d^* \) denotes the Hausdorff metric on the compact subsets of \(2^X \) generated by the norm \(d \), then \(S + C: D \to 2^X \) is \(\gamma \)-condensing.

By homology we mean Čech homology with rational coefficients, and call a compact metric space \(Y \) acyclic if it has the same homology as a one point space. In particular, any contractable space is acyclic and thus any convex or star-shaped subset of \(X \) is acyclic. A mapping \(T: D \to 2^X \) is called acyclic if \(T(x) \) is compact and acyclic for each \(x \in D \).

The following theorem of Eilenberg and Montgomery \([4]\) together with the succeeding result from \([16]\) will form the basis from which we will deduce our results.

Theorem A. \([4]\) Let \(M \) be an acyclic absolute neighborhood retract (ANR), \(N \) a compact metric space, \(r: N \to M \) a continuous single-valued mapping and \(T: M \to 2^N \) a u.s.c. acyclic mapping. Then the mapping
$rT: M \to 2^M$ has a fixed point, i.e., there exist $x \in M$ such that $x \in r(T(x))$.

Lemma A. [16] Let $D \subset X$ be closed and convex and $T: D \to 2^X$. Then for each $\Omega \subset D$ there exists a closed convex set K, depending on T, D, and Ω, with $\Omega \subset K$ and $\overline{\text{co}}\{T(D \cap K) \cup \Omega\} = K$.

Our first result is the following fixed point theorem.

Theorem 1. Let X be a Frechet space with $D \subset X$ closed and convex. Suppose $T: D \to 2^X$ is u.s.c. and acyclic and $f: W \to D$ is single-valued and continuous, where $W \supset T(D)$. If $fT: D \to 2^X$ is Φ-condensing, then fT has a fixed point. In particular, if $T(D) \subset D$ and T is Φ-condensing, then T has a fixed point.

Proof. Choose $x_0 \in D$. By Lemma A, we obtain a closed convex set K such that $x_0 \in K$ and $\overline{\text{co}}\{f(T(K \cap D)) \cup \{x_0\}\} = K$. Since $f(T(D)) \subset D$, we see that $K \cap D = K$ and so $\overline{\text{co}}\{f(T(K)) \cup \{x_0\}\} = K$. By the defining properties of the measure of noncompactness Φ, and, since fT is Φ-condensing, K must be compact. In view of the results in [3, 10], every compact convex subset of a Frechet space is an ANR, and is acyclic. Consequently, letting $M = K, N = T(K)$, and $f = r$ we may invoke Theorem A to conclude that fT has a fixed point. The last part of the theorem follows by letting $f =$ identity.

Remark 1. Using the above result, it is clear that a theorem analogous to Theorem 3.4 in [15] is valid for acyclic 1-set and 1-ball contractive mappings.

The second part of Theorem 1 has been obtained in [7, 17] for the case when T is compact and X is a Banach space.

Theorem 2. Let X be a Frechet space and $D \subset X$ open and convex with $0 \in D$. If $T: \bar{D} \to 2^X$ is a Φ-condensing and acyclic mapping such that

\[(4) \quad T(x) \cap \{\lambda x| \lambda > 1\} = \emptyset \quad \text{for} \quad x \in \partial D,\]

then T has a fixed point. In particular, if $T(\partial D) \subset \overline{D}$, T has a fixed point.

Proof. Let $\rho: X \to \bar{D}$ be the single-valued mapping defined by: $\rho(x) = x$ if $x \in \bar{D}$, and $\rho(x) = x/p(x)$ if $x \in X \setminus \bar{D}$, where p is the support function of \bar{D}. Since $0 \in D$, it follows that ρ is continuous. Furthermore, for each $A \subset X, \rho(A) \subset \overline{\text{co}}\{A \cup \{0\}\}$, so that, by the defining properties of Φ,
Φ(ρ(A)) ≤ Φ(A). Hence, ρT is a Φ-condensing mapping of \(D \) into \(\mathcal{D} \) because if \(Ω \subset \mathcal{D} \) and \(Φ(ρ(T(A))) ≥ Φ(Ω) \), \(Ω \) must be relatively compact. Thus, by Theorem 1, we may choose \(x \in \mathcal{D} \), with \(x = ρ(z) \) and \(z \in T(x) \), i.e., \(x \in ρT(x) \). It follows from (4) that \(x \in T(x) \). Indeed, if \(z \in \mathcal{D} \), then \(ρ(z) = z = x \) and so \(x \in T(x) \), and if \(z \notin \mathcal{D} \), then \(ρ(z) = βz \) for some \(β < 1 \) and so \((1/β)x \in T(x) \), in contradiction to (4). The last assertion follows from the fact that, for each \(y \in \partial D \) and \(β < 1 \), \(βy \in D \) and so \(T(\partial D) \subset \mathcal{D} \) implies (4).

In case \(T(x) \) is convex for each \(x \in \mathcal{D} \), the above result has been obtained in [15] by use of a topological degree argument, without the assumption that \(D \) is convex.

1. In case \(X \) is a Banach space, whose norm has certain additional properties, we will now prove some results for acyclic mappings \(T: D \rightarrow 2^X \), where \(D \) is closed and convex, without the assumption that \(T(D) \subset D \). In particular, we strengthen the results of [8, 16] for mappings satisfying the so-called "nowhere normal outward" condition and without the assumptions (as in [8, 16]) that \(D \) contains a set with a nonempty core and that \(X \) is equipped with a collection of approximation maps (see [8] for definitions of these concepts).

We recall that a Banach space \(X \) is said to have Property (H) if \(X \) is strictly convex and whenever \(\langle x_n \rangle \subset X \) is such that \(\langle \|x_n\| \rangle \rightarrow \|x\| \) and \(\langle x_n \rangle \) converges weakly to \(x \), then \(\langle x_n \rangle \rightarrow x \). Every locally uniformly convex Banach space has this property. We will use the following lemma concerning such spaces, and use the notation \(\langle x_n \rangle \rightarrow x \) to denote the weak convergence of the sequence \(\langle x_n \rangle \) to \(x \).

Lemma 1. Let \(X \) be a reflexive Banach space with Property (H), and suppose \(D \subset X \) is closed and convex. Then to each \(x \in X \) there exists a unique point \(N(x) \) in \(D \) such that \(\|x - N(x)\| = \inf_{y \in D} \|y - x\| \). Furthermore, the mapping \(x \rightarrow N(x) \) is continuous.

Proof. Let \(x \in X \) and let \(d = \inf_{y \in D} \|y - x\| \). Choose \(\langle u_n \rangle \subset D \) such that \(\langle \|u_n - x\| \rangle \rightarrow d \). Then \(\langle u_n \rangle \) is a bounded subset of \(D \) and since \(X \) is reflexive and \(D \) is weakly complete we may choose a subsequence \(\langle u_{n_k} \rangle \) of \(\langle u_n \rangle \) with \(\langle u_{n_k} \rangle \rightarrow z \in D \). Since \(\langle u_{n_k} - x \rangle \rightarrow z - x \),

\[
d = \lim_k \|u_{n_k} - x\| = \lim_k \inf \|u_{n_k} - x\| \geq \|z - x\|.
\]

But \(\|z - x\| \geq d \), and so \(\langle \|u_{n_k} - x\| \rangle \rightarrow \|z - x\| \). Since \(X \) has Property (H) we must have \(\langle u_{n_k} \rangle \rightarrow z \). The point \(z \) with \(z \in D \) and \(\|z - x\| = d \) is unique
because X is strictly convex, and since, by the above argument, any subsequence of $\langle u_n \rangle$ will in turn have a subsequence which converges to z, we see that $\langle u_n \rangle \to z = N(x)$.

We now show that N is continuous. Let $y \in X$ with $\langle y_n \rangle \subset X$ such that $\langle y_n \rangle \to y$. For each n we have $||y_n - N(y_n)|| \leq ||y_n - N(y)||$, so that $\limsup ||y_n - N(y_n)|| \leq ||y - N(y)||$. Since $\langle N(y_n) \rangle$ is a bounded subset of D we may choose $\langle N(y_{nk}) \rangle$ such that $\langle N(y_{nk}) \rangle \to z \in D$. Then

$$||y - N(y)|| \leq ||y - z|| \leq \liminf ||y_{nk} - N(y_{nk})|| \leq \limsup ||y_{nk} - N(y_{nk})|| \leq ||y - N(y)||.$$

Consequently, $\lim ||y_{nk} - N(y_{nk})|| = ||y - N(y)||$, and so by the first part of the proof, $\langle N(y_{nk}) \rangle \to N(y)$. This argument shows that any subsequence of $\langle N(y_n) \rangle$ in turn has a subsequence which converges to $N(y)$, so that $\langle N(y_n) \rangle \to N(y)$.

We point out that any uniformly convex Banach space is reflexive and has Property (H).

Following Halpern [8], for a subset D of a Banach space X, we define the outward set of a point $x \in D$, denoted by $n_D(x)$, to be

$$n_D(x) = \{y \in X| y \neq x, ||y - x|| \leq ||y - z|| \text{ for all } z \in D\}.$$

We add in passing that, as was shown in [9], if $I_D(x)$ is the inward set of $x \in X$, i.e., $I_D(x) = \{y \in X|\lambda x + (1 - \lambda)y \in D \text{ for some } \lambda \in [0, 1)\}$, then $n_D(x) \cap \overline{I_D(x)} = \emptyset$.

Theorem 3. Let X be a Banach space with $D \subset X$ closed and convex. Suppose that $T: D \to 2^X$ is acyclic and "nowhere normal outward," i.e.,

$$(5) \quad T(x) \cap n_D(x) = \emptyset \quad \text{for } x \in D.$$

Furthermore, suppose that one of the following conditions holds:

(i) X is strictly convex and D is compact.

(ii) X is reflexive, satisfies condition (H), and $T(D)$ is compact.

Then T has a fixed point.

Proof. (i) Since X is strictly convex and D is compact, the mapping $N: X \to D$ defined by the inequality $||N(x) - x|| \leq ||y - x||$ for all $y \in D$, is well defined and continuous [8]. Since D is an acyclic ANR, we use
Theorem A to conclude that NT has a fixed point in D. Since T satisfies (5), the fixed point of NT must also be a fixed point of T.

(ii) By Lemma 1, the above mapping N is continuous. Since $T(D)$ is relatively compact, NT is condensing, and so NT has a fixed point by Theorem 1. Again, using (1), this fixed point must also be a fixed point of T.

COROLLARY 1. Theorem 3 holds with the hypothesis "T is nowhere normal outward" replaced by either of the stronger conditions, "$T(x) \subset \overline{I_D(x)}$ for all $x \in D$" or "$T(x) \subset I_D(x)$ for all $x \in D.$"

In case $T(x)$ is star-shaped for each $x \in \partial D$, Theorem 3 has been proved in [8, Theorem 20] under the additional condition that X is equipped with a collection of approximation maps and that the core $(D) \neq \Phi$.

THEOREM 4. Let X be a Banach space with $D \subset X$ closed and convex. Suppose $T: D \to 2^X$ is acyclic and Φ-condensing. Furthermore, assume that one of the following conditions holds:

(i) X is strictly convex and $T(x) \subset I_D(x)$ for x in D.

(ii) X is a Hilbert space, $T(x) \cap n_D(x) = \Phi$ for each $x \in D$, and Φ is either the ball-measure or the set-measure of noncompactness defined in §1. Then T has a fixed point.

Proof. (i) Let $x_0 \in D$. By Lemma A, we may choose a closed convex set K which contains x_0 and such that $\overline{\co(T(D) \cap K)} \cup \{x_0\} = K$. By previously used arguments, K must be compact. Let $x \in K \cap D$ with $z \in T(x)$. Then $z \in I_D(x)$, so that for some $\lambda \in [0, 1)$, $\lambda x + (1 - \lambda)z \in D \cap K$. This shows that $T(x) \subset I_D \cap K(x)$ for each $x \in D \cap K$. Hence, by Corollary 1, T has a fixed point.

(ii) Let $N: X \to D$ be defined by $\|N(x) - x\| = \inf \{ \|z - x\| \text{ for each } x \in D \}$. Now, X is a Hilbert space, and Cheney and Goldstein [2] have shown that $\|N(x) - N(y)\| \leq \|x - y\|$ for each x and y in X. It is not hard to show that this implies that for each $A \subset X$, $\Phi(N(A)) \leq \Phi(A)$. Consequently, $NT: D \to 2^D$ is Φ-condensing, and hence, by Theorem 1, NT has a fixed point. Since $T(x) \cap n_D(x) = \Phi$, this fixed point must also be a fixed point of T.

Under hypothesis (i) the above result strengthens Theorem 3 in [16] and, in particular, Theorem 24 in [8].

REMARK 2. If X is a Hilbert space and $D = B(0, 1)$, then for $x \in \partial D$, $n_D(x) = \{\lambda x | \lambda > 1\}$. Hence for a mapping $T: D \to 2^X$ the Leray-Schauder
condition (4) of Theorem 2 coincides with the requirement that $T(x) \cap n_D(x) = \emptyset$ for all $x \in D$.

References

Received May 16, 1973. Supported in part by the NSF Grant GP-20228.

RUTGERS UNIVERSITY

Current address: P. M. Fitzpatrick
Department of Mathematics
University of Chicago
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the five editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California 90708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Copyright ©1974 by Pacific Journal of Mathematics
Manufactured and first issued in the U.S.A.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Edward Coury, Walsh series with coefficients tending monotonically to zero</td>
<td>1</td>
</tr>
<tr>
<td>Patrick Michael Fitzpatrick and Walter Volodymyr Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings</td>
<td>17</td>
</tr>
<tr>
<td>Adilson Goncalves, Structural constants. II</td>
<td>39</td>
</tr>
<tr>
<td>Richard P. Gosselin, Closure theorems for affine transformation groups</td>
<td>53</td>
</tr>
<tr>
<td>Ralph Peter Grimaldi, Baer and UT-modules over domains</td>
<td>59</td>
</tr>
<tr>
<td>Edward Grossman, On the prime ideal divisors of $(a^n - b^n)$</td>
<td>73</td>
</tr>
<tr>
<td>Gerald L. Itzkowitz, Continuous measures, Baire category, and uniform continuity in topological groups</td>
<td>115</td>
</tr>
<tr>
<td>Francis Masat, Right simple congruences on a semigroup</td>
<td>127</td>
</tr>
<tr>
<td>Robert Harvey Oehmke, Right congruences and semisimplicity for Rees matrix semigroups</td>
<td>143</td>
</tr>
<tr>
<td>Qazi Ibadur Rahman and Jan Stankiewicz, Differential inequalities and local valency</td>
<td>165</td>
</tr>
<tr>
<td>William John Reed, Random points in a simplex</td>
<td>183</td>
</tr>
<tr>
<td>Mohan S. Shrikhande, Strongly regular graphs and group divisible designs</td>
<td>199</td>
</tr>
<tr>
<td>Zahava Shmuely, The structure of Galois connections</td>
<td>209</td>
</tr>
<tr>
<td>Robert C. Shock, Dual generalizations of the Artinian and Noetherian conditions</td>
<td>227</td>
</tr>
<tr>
<td>Arne Stray, Approximation and interpolation for some spaces of analytic functions in the unit disc</td>
<td>237</td>
</tr>
<tr>
<td>Eldon Jon Vought, Monotone decompositions into trees of Hausdorff continua irreducible about a finite subset</td>
<td>253</td>
</tr>
<tr>
<td>James Wirth, The mapping cylinder axiom for WCHP fibrations</td>
<td>263</td>
</tr>
<tr>
<td>Gordon S. Woodward, Invariant means and ergodic sets in Fourier analysis</td>
<td>281</td>
</tr>
</tbody>
</table>