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I. GLICKSBERG

Earlier Phragmén-Lindelof-like results for a function algebra
A are extended to deal with possible unbounded behavior of an
A-holomorphic function near a zero set rather than a peak set.

The present note is intended to supplement an earlier one [2] in which
Phragmén-Lindelof arguments were applied to a uniform algebra 4, with
the usual behavior near co replaced by behavior near a peak set. Here we
shall exploit the fact that an arbitrary zero set can be converted to a peak set
for a related algebra by slitting the spectrum along the inverse of an arc,
imitating familiar techniques in the plane. We assume the reader is familiar
with [2] and use much of the same notation.

Let A be a uniform algebra with spectrum M andlet X C M C M, be
two closed boundaries for A (closed sets containing the Silov boundary 9,
then). We shall say local maximum modulus holds (for 4) on M relative to
X (or simply, that (M, X) satisfies L m.m.) if each m € M \ X has a compact
neighborhood U C M\ X for which |a| < sup |[a(BU)|on U, alla € 4. A
fundamental observation about [2] that we shall need is that
its results hold with M, and 9, replaced by such a pair M, X. (There is one
point in the proof of [2, Th. 3] where M seemingly must be M, : that X there
maps into M (p. 404, 1.21). But in fact this follows trivially from the fact
that X is just the closure of M in Mj,.)

In all that follows we shall let J, be a simple closed arc joining 0 to coin
the Riemann sphere, with J = Jy\ {0}, and shall assume'

(1) By =sup {argw —argw:w,w’ € J} < co.

B, plays the role of determining the allowable order of growth in our
Phragmén-Lindelof-like results. Note that our initial hypothesis on L. m.m.
is automatically satisfied if M = M 4 in all our results.

THEOREM 1. Suppose local maximum modulus holds on M relative to
X, f € ANA™', g is continuous on M\f"'(0), A-holomorphic on
MN\(f~'(0) U X), and, for some k > 0and 3,0 < B < 72w + B;)”', we
have

(2) gexp(fﬁ) bounded on M\f1(0) .
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Iflgl < Kon(X U f~" ()N f~"(0), then |g| < Kon M\ f~'(0).
THEOREM 2. Suppose (M, X) satisfies lmm., f € ANA™, g
is bounded and continuous on M\ f~'(0), A-holomorphic on

MN\(f~'(0) U X), and

€)) c= lim g(m)
f(m)~0
mef'(J)ux
exists. Then g has an extension in C(M) constant on f~'(0), which, if A is
X-relatively maximal, lies in A.

Here “X-relatively maximal” means no properly larger subalgebra of
C(M) can have X as a boundary. More generally, the boundedness of g can
be replaced by the hypothesis of Theorem 1. Of more interest in applica-
tions is the following result.

TuEOREM 3.  Suppose (M, X) satisfies Lm.m., f € ANA~), g is con-
tinuous on M\ f ~(0), A-holomorphic on M \(f ~'(0) U X), bounded on
X\ f~Y0), and satisfies (2). If
4) lg(m)| < K [log| f(m)|l, m € f~'(J),

then g is bounded and sup |g(M\ f ~'(0)) | = sup|g(X\\ £ ~'(0))|.
Finally, if we have a finite limit

@) ¢ = lim  g(m)
f(m)=0
meXuf"(J)

then g has a continuous extensionto M, = con f~ Y(0), which lies in A ifAis
X-relatively maximal.

As an application we have?

CoOROLLARY 4.  Suppose f and g are holomorphic on an open set U in

C", and
g

f

Then g/f has an extension holomorphic on U.

< Klloglfll  on f1(J).

Thus, in particular, boundedness along the one parameter family of
varieties defined by fand J implies the boundedness of g/f.
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Our choice of the right side of (4) is.somewhat arbitrary; the really
relevant condition is simply that

4" lgm)|| f(m)f—0 as fm)—0,m in f~'(J)

for every € > 0, as will be seen in the proof.

Let fbe asin Theorems 1-3. Replacing £, J by e f, ¢'? J if necessary, we
can assume that a branch of arg w can be defined on C\J, which varies
between 7 4 B8,/2 and —7 — B;/2 in C\\J,. We use this branch of arg to
define powers f*(0 < a < 1) of fon M\ f~'(J) which are 4-holomorphic
on M\ f~'(Jy), and we now let M" be the spectrum of the closed self-
adjoint subalgebra of C(M\ f~'(J)) generated by 4 and the f°, so that
each a € 4 (and each /) has an extension ain C(M" ) while M\ Jae))
is dense in M". In fact the dual p to 4 — C(M" ) maps M” into M (because
p(M” ) must lie in the closure of M in M), and provides an inverse to the
(trivially) continuous inclusion of M\ f ~'(J) into M". Thus M\ f~'(J)
is imbedded homeomorphically in M”", and in fact p is 1-1 over
M\ f~'(J) (so that M\f“(]o) = p '(M\ f~'(Jy)) is an open subset
of M"): for if p(x) € M\ f~'(J) then our branch of z— z%is continuous
near f (p(x)) and so if xs— x,  Xs EMNST '(J), then f(x;5)*— f(p(x))", or
£2(x3) = /2 (p(x)), whence /2 (x) = I (p(x)), and, since 2(x) = a(p(x)) =
2(p(x)), no element of C(M") can distinguish x and p(x), and x = p(x) €
M\ f~H(D).

In partlcular pis1 — 1over f7'(0) C M\ f '(J); we can thus
identify f ~1(0) and £~ (0), for ifx € M and 0 = f (x), then since f E A,
f (p(x)) = f(x), s0 p(x) € f~'(0) and thus p(x) = x. Since l f“l | fl “
72-1(0) = £-1(0) as well. '

Now let B be the closed subalgebra of C(M ™) generated by 4" and
thef FOIX e M" \p‘l(f (J)UX)=p " MN\(f(Jy) UX) =
MN\(f~'(Jy) U X) we have a compact neighborhood U of x in
M\ (f~'(Jy) U X) on which all the f‘” are umformly approximable by
elements of 4 (because the power series for z% about f(x) = f(p(x)) has
radius of convergence | f (x)]). Hence |b(x)| < sup |b(3V)| by local maxi-
mum modulus for 4 on M relative to X and thus local maximum modulus
holds for Bon M" relative to p~' (f ~!(J,) U X); in fact we see the least set
forms a boundary for B. Because arg w varies between 7 + 8, /2and —7 —
B;/2 on C\J, arg f*(m) lies between ia(w/\-}- B;/2) for m €
M\ f~ (Jo) and the same is thus true of arg f* on M’\\f 0 =
M"N\f~'(0), which lies in the closure of M\ [ '(J;) =

M\ f )N f~1(0) in M. Consequently for a(m + B,/2) < Yx (or a
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< a@7 + B)"'), b = 1 —f%/n peaks on f~'(0) = (f2)~' (0) for n large;
choosing a larger than our 8 in Theorem 1, fory = a™'8 < 1 we have
Il — 8] = 1/ny| f*|' = 1/ny| f|"* = 1/ny| f|f, and (2) says

—k . .
g exp(————) is bounded on M\ f~1(0),
n'|1 - b|¥

in particular then on M\ p~'(f~'(Jy) U X). Consequently [2, Th. 1]
applies to the continuous function g ° p on M\ f~'(0) (which is B-ho-
lomorphic on M \p~!(f ~'(J5) U X) and bounded on p~!(f ~"(Jp) U
X)) to assert that g o p is bounded by sup|g < p(p~'(f~'(J) U X))| =
sup|g(f ~'() U X)|, yielding the assertion of Theorem 1.

To obtain Theorem 2 we have to first note that our g, A-holomorphic
on M\ (f~'(0) U X), is C + f4-holomorphic there: for m in that set we
have a compact neighborhood U with 0 & & (f(U)) (the closed convex
hull) and for which, for e > 0, thereisana € 4 with |g — a| <¢&¢/2on U.
But 1/fis uniformly approximable by polynomials in fon U since 0 &
% (f(U)), and thus we have b € A4 with |(1/f) — b| <e&/2|| f]| ||a]| on U, so
that |g — abf| < |g — a| + |a — abf] <eon U.

As a consequence we can replace 4 by its closed subalgebra of all
elements constant on f ~' (0), and in effect reduce f ' (0) to a point; doing
thlS first and constructing our algebra B on M” as before we have f ~' (0) =
f '(0) a peak point for B, and thus a zero set lying in the Choquet
boundary. By (3), if we extend g © p by giving it the value ¢ on f~'(0), its
restriction to the boundary p~'(f~!(J,) U X) for B is continuous, and the
resulting function is B-holomorphic on M"\p~'(f~'(J;) U X) and
continuous on M"\ f~'(0); thus® [2, Th. 3] applies to assert g p as
extended, is continuous on M”\, which of course means g extended to be ¢
on f~'(0), is also continuous on M with f~' (0) reduced to a point, hence on
M, as asserted.

The final assertion follows from the extension [1, Th. 3.2] of Rad6’s
theorem since g is 4-holomorphic on M\ (X U g~'(c)) (noting that 9, can
be replaced by a larger boundary there, with the interpretation of
“relatively maximal” made in Theorem 2).

As mentioned, we can combine Theorems 1 and 2 to obtain

COROLLARY 5. Suppose (M, X) satisfies Lm.m., f € ANA~", and g is
continuous on M\ f ~'(0), A-holomorphic on M\(f~'(0) U X) and (2)
and (3) hold. Then g has an extension in C(M) constant on f ~' (0), which, if A
is X-relatively maximal, lies in A.
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Our proof of Theorem 3 depends on Theorem 2. We can assume || f|
< 1, and will let ||g|ly = sup|g(X\.f'(0))|. Because of (4) and the
boundedness of g on X\ f~'(0) we have that

©) | f(m)'lgtm)]—0 as |f(m)]—0,mef'()UX,

and thus Corollary 5 applies to f € B\B~', M, p~'(X U f~'(J,)) and
the function (g ° p) for which (2) holds on M\ f~'(0) while (3) holds
because of (5); and of course it is B-holomorphic on M \[ f 10y U
p~'(f~'(Jo) U X)]. We conclude that

©6) f} (g ° p) is bounded by its bound on the B-boundary

p ' (f U U X)

(7) has a continuous extension to M”.

Because of (6) it suffices to know

® 17 gt =< 11 flxligllx on f~'()

for a sequence of e — 0. For then ﬁ(g ° p)is bounded by || f|I%|lg||xon M,
and letting ¢ — 0 we get |g(p(x))] < ||g]|x for all x in M with f(x) # 0, i.e.
for x in M™ \ f~'(0), which yields the first conclusion of Theorem 3; the
second then follows from Theorem 2.

It remains th/e\:n to show (8) holds for a sequence of e — 0. From the fact
((7) above) that f¢- (g ° p) has a continuous extension to M”, 0 on f ~10),
we conclude that | £(g © p)|(x)— 0as f(x)— 0,x €f~'(¢*’R, ), R, = (0,
oo), and thus that | f{im)|*|g(m)| — 0 as fm) — 0, m € f~'(¢*R, ). Now
replacing J in our considerations by an arc such as ¢’ R, will change our f*
(and our M") but does not of course change | f¢| = | f|'; thus it suffices to
know (8) with J replaced by some one arc ¢€*R, fore = g — 0, and if (8)
holds for one such arc it holds for all others, by Corollary 5 again, or, in
effect by (6).

Now suppose (8) fails for all positive ¢ < &,. Then for each such ¢ and
eachgp € R,

O Cep = sup{|f(m)[|g(m)| : fim) € e*R, } > || fllxllgllx-

and in fact C, , is independent of @, since it is also sup{| f(m)|° |g(m)| : m €

M\ fH(O)}.
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We next observe that if 1 = p © f. where p is a polynomial with p(0) =
0, then |h(m)[* |g(m)| — 0 as f(m) — O, f(m) € €"R, (since | f(m)|" |g(m)|
—> 0 forall ¢’ > 0). In particular if we choose p monotone on (— 1, 0) so that
h~'(e™R,) =f~'(€"R, ) then

h(m)[* |g(m)| — O as h(m)— 0, m € k™' (€"R,);

this is the case if p(x) = x?/2 + x for example, since X2 +x=-r<0
and -1 <x<0iffx = —1 + \/1—:_2;and0< r < 1/2,so that(—1,0)
N p~' (=00, 0) = (—1, 0), and thus A~ (—o0, 0) =f"p 7! (~00,0) =
[7(=1L0) = f!(~00,0).

Soletp(x) = x + x*/2, h = p « f. Since p~' (0) meets the unit discin C
at precisely 0 (and || f|| < 1), A~ (0) = £ ~'(0) as well, and thus if (8) holds
for h in place of ffor & = ¢;— 0 we again could conclude that g is bounded
on MN\h~'(0) = M\ f~'(0), which yields Theorem 3 as before. So now
for h we must have, as in (9)

(10) Ci = Cip = sup{|h(m)[%[g(m)|: h(m) & €*R,} > |[Alx]lgllx
where C;, = C;isindependent of ¢ for all positive e < ¢,. Butinfact C,, =
C.for e < ¢ in (9) implies C;, # Cofore <min(eo,¢,):forp(x) =x + x%/2
has the property that |p(x)| > |x| for x.> 0, [p(x)} < |x| for -2 < x <0,
and thus, since the suprema in (9) and (10) must be assumed for f(m) and
h(m) in € (8, 2), for §, > 0, we have

C;,vr < Ce,ﬂ = Cs,O < C;o

so that (10) must fail, and (8) holds for # in place of f for some & — 0
completing our proof of Theorem 3.

One case in which (2) holds automatically is that dealing with the ratio
of elements f, g of A: that |g/f] < c exp (1/|f|°) is a trivial consequence of
the boundedness of /¢~ for t > 0. Thus from Theorem 3 we obtain

COROLLARY 6. Suppose (M, X) satisfies Lm.m., f € ANA™, g is

continuous on M\ f~'(0) and A-holomorphic on M\(f~'(0) U X), while
g/fis bounded on X'\ f~'(0). Then

(11 |$1= Klloglf|| onf™()

implies |g/f | is bounded by its bound over X\ f ~' (0). Mareover, ifinstead of
(11) we have a finite limit
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c = lim —g—(i)
fmy—-0 S(m)
meXus(J)

then g/f has an extension in C(M ), = c on f~'(0), which lies in A if A is
X-relatively maximal.

Corollary 4 is one consequence. Indeed suppose f, g are holomorphic
on an open set U C C", |g/f| < K]log| f]| on f~'(J). For z° € £ ~'(0) we
choose coordinates so that on a neighborhood V of 2% f = pq, where ¢
doesn’t vanish on ¥ and p is a Weierstrass polynomial, regular in z,, say.
Then as usual for e > 0 we have an § > 0 for which |z, — 2} | <8,/ < n —
1, imply p(z,, ..., z,-1, z) = O only if |z] < &/2, where we can assume the
polycylinderA = {z:|z; — z)| <6, <n — 1, |z, — 23| < ¢} liesin V. We
now let 4 = P(A), the uniform algebra of functions continuous on A and
analytic on A% so that M, = A, and 94 isthe torus {z: |z; — 2} | = §,j < n
~ 1, ]z, — 23| = €}, which we take as our X. Since local maximum modulus
holds for (M, 3,), and 3, Nf~'(0) = ¢ so we have g/f bounded on 3,4,
Corollary 6 applies to show g/f is bounded on A, and so has a unique
holomorphic extension to A’; thus g/fhas an extension holomorphic on U.

In the context of Corollary 4 it is rather obvious (from the fact that fis
an open mapping) that our bound over the set f ~' (J) implies that f =" (0)
C g~ '(0), which the conclusion obviously also implies. (And of course in
Corollary 6 it also follows that £ ~'(0) C g 7'(0), but this does not seem
quite so obvious.)

COROLLARY 7. Suppose (M, X) satisfiesl.m.m.,f € ANA~", and F =
SO NXU YD Theng € A, g(F) = 0imply g(f~'(0)) = 0.

For g(F) = 0 says (4) holds for g, so that, by Theorem 3,
gl(M\ f~'(0)) has an extension in C(M), 0 on £ ~'(0), and thus g(3f ~' (0))
=0.Butg =0onsf~'(0) N X C Faswell,and since 3f ~'(0) U (f~'(0) N
X)is a boundary for 4| f =" (0) by local maximum modulus, g( f ~*(0)) = 0.

Along somewhat similar lines, we note the following extension of the
basic lemma of [1], which follows from it and our construction of M".

THEOREM 8.  Suppose (M, X) satisfies L m.m. for A and f € A. For each
neighborhood V of f~'(0) in X U f~'(J,) there is a neighborhood U of
S0y in M for whichg € A and g = 0 on Vimply g = 0 on U.

Constructing our algebra B on M”, there is a fixed neighborhood V"
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of our peak set f ' (0) —£-1(0) in the boundary p~'(f ' (Jy) U X) on
which £ vanishes for each such g € A, whence by [1, 2.1] there is a
neighborhood W of )/‘\"(0) in M”" on which each £ vanishes. But since
p(M"\W?) is a compact set disjoint from £ ~'(0) in M we have a neigh-
borhood U of f ~!(0) in M with U N p(M" \ W°) = ¢, and since

p(M™) = p(M"\W°) U p(W°)

and
M C oMMy U f'(Jy), UCp(W®) U f=' (o).

Firally, since all our g’s vanish on a fixed neighborhood ¥ N f~'(Jo) of
f71(0) in £7'(Jy) and g(p(W°)) =g(W°) = 0, we can shrink our U to
obtain a neighborhood of £ ~!(0) in M for which g(U) = Oforallg € 4
satisfying g(¥V) = 0.

In particular, Theorem 8 says certain sets in M cannot be zero sets: if I
is a closed nondegenerate arc in C and f~'(I) # ¢ and misses 94, then
f7'() # g7 ' (0)forany g € 4. Any g € A vanishing on f ~'(I) necessarily
vanishes on an open neighborhood of that set by Theorem 8, whence
g '(0) =f~'(I)impliesf~' (I )is open and closed, and so necessarily meets
94.)

Remarks (Added June, 1974)

1. We can improve this last observation and Theorem 8: Suppose (M,
X) satisfy Lm.m. for A. For a closed non-degenerate arc I inCandf, g € A
with @ # f~'(I) C g='(0)\3, we have g = 0 on f~' (W), where W is the
component of I in C\f(3,\ g~ "' (0)°).

For convenience take 0 € 1, f ~'(0) # ¢. We have g = O near f ~' (I)
in M by Theorem 8 (applied to subarcs), and so we can form the closed
subalgebra B of C(M\ g~'(0)°) generated by 4 and 1/ 'f. Moreover since
the elements of B are A-holomorphic, by local maximum modulus we
know

95 C (0\g~'(0)°) U 3g7'(0)

as in [1]. Because any point of 3,\(9,\g~'(0)°) would thus lie in the
boundary of g=!(0) in M\ g~'(0)°, which is impossible by [1, 2.2], we
conclude that 3; C 3,\ g~ ' (0)".

Now if W N AMN\g~'(0)°) # @ (so W meets the spectrum sp; f of f
relative to B) then since 0 & spgf, W must meet the boundary of sp, f
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which lies in f(3;). Since this implies W N f(3,\g"'(0)°) # ¢ which
contradicts the definition of W, we conclude that W N f(M\ g~ ' (0)°) = ¢
so that f ~' (W) C g~'(0)", yielding our assertion.

Note that the same argument applies if we suppose instead that ¢ #
S7'(0) C g7'(0)°\84; moreover the role of g~'(0) can equally well be
assumed by {m € M : lim q,(m) = 0} where {a,} is a bounded sequence
in 4, if one uses [1, 2.5]in place of [1, 2.1] to provide the analogue of [1, 2.2].

Actually the fact that Theorem 8 provides a fixed neighborhood U of
f~'(D) in M on which all g = 0 on £ ~' () must vanish provides a further
strengthening in case M = M 4, by a very similar argument.

THEOREM 8'. Suppose K is nondegenerate compact connected set m C
fE A and H = f Y(K) is a hull-kernal closed subset of M 4. Thenf f 1K)
—f (H) contains any component W of C\ f(0 ) which it meets.

Since M, is the spectrum of A and 9 sp f C f(3,), we know W C
f(MA\aA) So if W\ff‘ (K) = WN\K # ¢ then its boundary in W is
nondegenerate, and so has a nondegenerate component which, necessarily,
is arcwise connected. The component lies in 9K of course, so 3K contains a
closed nondegenerate arc I, I C W. By Theorem 8 (applied to subarcs) we
have a nexghborhood U of f~'(I) in M, for which g € 4, £ = 0 on f :
(I) implyg\(U) = 0, and thus U lies in the hull of the kernel of H — 7+ 1K),
1e.,in H.

A . A

But/~'(I) C Uimplies f ~'(I + eD) C U for all smalle > 0, where D
1s the closed unit disc in C. Taking & so small that I + ¢eD C W C
f(MA\a,,) we have

f”\fA—‘(1+ eD) =1 + ¢D Cf\(U) Cf\(H) :ff-'(K) =K,

desplte the fact that I C 9K, our contradiction, showing W Cf f "(K) =
i),

Note that the result of course fails trivially if K is degenerate. As a
special case we have the fact that any connected hull kernel closed subset H
of M, \3,4 1s not the complete inverse of its image K under any element fof
A", unless fis constant on H. (The same applies to any continuous 4-ho-
lomorphic function 4 on M in place of fsince the algebra generated by A4
and A has the same Silov boundary and spectrum [3, 14.9].)

There are some interesting special cases. For example, since any in-
terpolation set H is hull kernel closed (as the spectrum of the quotient
algebra A|H = C(H)), as all its closed sets must also be, f'e 4 and f\ (H) N
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f (M, \H) = ¢ imply f (H)\ f (9) is totally disconnected. Indeed if K isa
nondegenerate compact connected subset of a component of FUN\ i ©)]
then f~' (K) is hull kernel closed, whilef Ff (K) misses i (9), and so contains
at least one component of C\ f(3), by Theorem 8’, which of course implies
the compact set K meets f(3), our contradiction. Thus in particular, no €

A can map an interpolation set H into a nondegenerate continuum K C Cand
M\ H into C\ K unless K C f(0).

2. Aswe observe in footnote 3, we only needed a very weak form of [2,
Th. 3] in proving our Theorem 2, and of course there are stronger results
which more fully utilize that earlier result. For example,

THEOREM 2'. Suppose (M, X) satisfies Lm.m., f € AN\A -L gis
bounded on M, continuous on M\ f ~1(0), and A-holomorphic on
MN\(f~1(0) U X), while g(f ~"(Jo) U X) is continuous and f =" (0) carries
unique Jensen measures for pointsinf ~'(0). Theng € C(M),andg € A ifA
is X-relatively maximal.

Thus in effect we replace (3) by continuity of g on f~'(Jp) U X,
provided f~'(0) is rather special. In this form we require a slight im-
provement of [2, Th. 3]; note [2, p. 405, next to last paragraph] that
uniqueness of Jensen measures is an adequate replacement for the
uniqueness used there. For the proof of 2’ one constructs B as before but
without reducing f ~'(0) to a point. Then f ~'(0) appears as a peak set for
B, and any measure on X representing a point of £ ~!(0) on B must be
carried by f ~'(0); thus the points of £ ~'(0) have unique Jensen measures
(since such measures are necessarily Jensen for 4) and [2, Th. 3] applies to
assert g € C(M). Finally, our hypothesis implies £~'(0)\ X is all boun-
dary, since otherwise we have a nonvoid open U therein, and by L. m.m. for
m € U we have a Jensen measure carried by 83U C f~'(0)\ {m}, contra-
dicting our uniqueness hypothesis. Since f~'(0)\ X is all boundary the
arguments of [1] show the subalgebra of C(M) generated by 4 and g has X
as a boundary, whence g € 4 if 4 is X-relatively maximal.

Of course our hypothesis on f ~'(0) is quite strong, so it may be worth
noting that the result applies whenever g is continuous on a quotient of
f~'(Jp) U X obtained by injecting it in the spectrum of a subalgebra 4, of
A, provided the image of f ~'(0) carries unique Jensen measures for 4,. In
particular, for 4, the closure of C + JA, Theorem 2 reappears.

3. Next we want to point out a consequence of our construction which
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shows the range of f near certain subsets F of £ ~'(0)\.X cannot be too
small; for the special case of M = M, and F = f~'(0) C M\ X it follows
directly from Theorem 8 and the Silov idempotent theorem.

THEOREM 9. Suppose (M, X) satisfies Lmm., f € ANA™', F in
f~YO)\X is a peak set for the uniform closure (A|f = (0))~ of A|f " (0),
while F N 3f ~'(0) # @ if M # M. Then for any e > 0 and neighborhood V
of Fin M\ X, no curve joins 0 to {z: |z| = €} in 0 U (C\ f(V)).

In particular this applies to any peak point for (4| f ~* (0))~ lying off X
(and consequently in 3/~ (0) by Lm.m.). In fact if M = M, it applies to
any component F of f ~' (0) which misses X, since any neighborhood ¥ of F
contains another, W, with f ~'(0) N W open and closed in f ~'(0), and so a
peak set for (4| f~'(0))~ by Silov’s theorem (since f7'(0) in M, is the
spectrum of this algebra). Thus our result applies to the neighborhood ¥V of
Fy = f~'(0) N W to yield the conclusion.

Now suppose our result fails. Then we can extend our curve to a J,
joining 0 to oo, with f(¥) N {z : |z] <&} N Jy = {0}, and then slit M and
construct our algebra B as before, making f ~'(0) into a peak set for B. But
recall that p~' (M\ £~ (J)) = M\ f~'(J) so that (M \ M) C f~'(J).
As a consequence some neighborhood W C V' N f~! {z:|z] <e} of Fin M
remains a neighborhood in M” : otherwise a net {m;} in M" \ M con-
verges to x € F C f~'(0), whence p(ms) — p(x) = x and flp(ms)) — f(x)
= 0,so that, since p(mz) € f =" (J),f(p(ms)) Ef(V) N {z:]z]<e} NJ =
¢ for 8 = §,, our contradiction. Evidently wnXcvyvnX=2ae.

Now B|f~'(0) is closed in C(f~'(0)), and so contains the closure
A\ f- (0)) of A|f~1(0) in C(f~'(0)). On the other hand B|f~'(0) (;\
(4| f~1(0))~ since polynomials in the various f"‘ with coefﬁcrents in 4
are dense in B, and these restrict to elements of A] £71(0). Thus
B f71(0) = (4| f~'(0)), so that Fis a peak set within f~'(0) of B; since
f7'(0)is a peak set for B, Fisitself a peak set for B by Bishop’s lemma. But
in the boundary p~'[X U f~!(J,)] for B, fvanishes on the neighborhood

o™ W N (X U £~ U] = p~' W N /=" ()]
=p ' W NSOl = W[ (0 of

and thus f'vanishes near Fin M", hence near Fin M, exactly as in the proof
of Theorem 8.

Now F C £~ (0)° so we have clearly reached our final contradiction if
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F N 3f~'(0) # ¢, and it only remains to see this hypothesis is redund.ant if
M = M. In that case we let W be the neighborhood f ~10)’\X of Fin M,
and note that we have a uniform limit  on f ~1(0) of elements in 4, for
which A(F) = 1and |#| < lonf~'(0)\ U, where Uis a neighborho‘od o'f F
with U~ C W. Thus sup|h(W~\ W )| < 1 so that for some approximating
ain A and some m € F, |a(m)| = 1and supla(W~\W)| <1, contradicting
Rossi’s local maximum modulus theorem.

Evidently the distinction between our two cases arises from the fagt
that we have chosen a weaker notion of local maximum modulus for a pair
(M, X) than actually obtains for (M4, 94), in using “some” neighborhood,
rather than “all.”

4. Finally we should note the applicability of Theorem 2 and Corol-
lary 6 to some relatives of the question of which functions operate on A4.
Applied directly to that question the first yields only a very special case of
the result of de Leeuw and Katznelson [3]; it just shows that if 4 contains an
element a, for which a, (M, ) # a,(9) then any ¢ defined on an open subset
U of C for which a € 4 implies ¢(a) € A must be analytic (while [3] shows
this for a general nonself-adjoint uniform algebra). Indeed if ¢ is not
analytic one has a nearby C"’ nonanalytic ¢ which operates (using convo-
lution exactly as in [3]). Now for any z in the domain of y and m, with
ag(my) & ay(9) we can replace ay by @ = cay + d, ¢, d €C, s0 as to get
a(My) = z & a(9), and since ¢ is CV

L plalm) - y(e)

a(m)-z-0 a(m) -2z
a(m)-zeR,

exists; since the ratio is 4-holomorphic offa~'(z) = (a — z)~'(0), the limit
exists without the second restriction by Theorem 2, and since a neighbor-
hood of z lies in the spectrum of g, that implies y satisfies the Cauchy-Rie-
mann equations at z, yielding our contradiction.

4.1.  As a variant, suppose ¢ is C" on an open set U C a(M )\ a(d),
while for each z € U we have ¢(a), on a™'(z + [—e¢,, &,] + i[—¢,, &,]), a
uniform limit of a bounded sequence in A (¢, > 0 of course). Then ¢ is
analytic on U. This follows from the argument below for our next remark,
but is easily seen when ¢(a) coincides with an elementb = b,of Aona~'(z
+[—¢., 8]+ i —¢,, ¢ ]) foreach z € U; taking z = 0, if a(my) = z = Owe
have
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b - b(my) b - bmy)
a-a(my) a

A-holomorphic off a~'(0), and bounded on a~' (R +) where it has a limit
as a(m)— 0. Thus by the second half of Corollary 6 there is an unrestricted
limit as a(m) — 0, so since U lies in the spectrum of a this says

lim p(z+h) - ¢(z) - im b(m) - b(my)
h=0in R h a(m)=0in R a(m)
i b(m) — b(my)
= im @———
a(m)-0in iR a(m)

i (p(Z+th? - ¢(z2)
h=0in R ih

It

so that ¢ satisfies the C.-R. equations at z = 0.

The more general assertion follows from the same argument as our
final remark where again M = M,:ifa='(0) N 3 = ¢ thena™'([—¢, €] +
i —e,€]) = F has the property that for any ¢ which is CV near 0 and does not
satisfy the C.-R. equations at 0, ¢(a) is not the uniform limit on F of a
bounded sequence {a,} in A. (Since P(a(F)) = C(a(F)), ¢(a) is in the
uniform closure (4|F)~ of A|F, and so (4|F)~ # A, the uniform limits on
F of bounded sequences in 4.)

Indeed otherwise, by the argument of the latter half of [1, 2.5] {a, }
converges uniformly on a neighborhood ¥ of a='(0) to some function b,
and we can assume V' N 9 = 9, in fact, that V = a~'(rD), where D is the
closed unit disc and » > 0 is small, and then Vis precisely the spectrum of
(4|¥V)~. So since ¥ contains the Silov boundary of (4|V)~, b € (4|V)~,
a'(Q) N oV = ¢ while b = ¢(@),on a~'([—¢, €] + f[—e, ) NV =
(@)~ ([—&, €] + i[ —¢&, e]), we now have precisely, for (4|V)~, the situation
in the already treated special case of 4.1, so the C. — R. equations for ¢ at 0
follows as there, our contradiction.

(In the same vein, if ¢ is C" and nowhere analytic (¢(z) = |2|* - z + 2
for example), a € 4 and ¢(a) € A4 then a(M,) = a(d): otherwise for m
with a(m) & a(9), (¢(a) — ¢(a(m))/(a — a(m)) has a limit as a — a(m), so
that ¢ satisfies the C. — R. equations at a(m).)
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FooTNOTES

'As will be seen, J, can always be replaced by a neighborhood of 0in J
extended by part of a ray through the origin; thus 8, really depends on J
near 0. In fact (1) is not needed in Theorems 2 and 8.

2This much weaker than what can be obtained if one is willing to use
more of the theory of several complex variables, as was pointed out to me
by H. Alexander: it suffices to assume our bound only on f ~'({z,}), for
some sequence z, — 0 in C. (For this implies f ~'(0) C g~'(0), and at each
point of £~ (0) the unique factorization of germs and the nullstellensatz
imply that fmust divide g locally.)

3 After this was written I noted that a much simpler argument applies
here since we are dealing with a peak set. Indeed, just the classical argu-
ment [S, p. 179] with z replaced by 1/ Fapplies: for suppose g is a bounded
A-holomorphic function off £ ~'(0) which — 0 as f— 0 in X, where f € 4
has |arg f| < 7/4, and |g| < K. Choose § > 0so |g] <eonf~'(8D) N X
andset G = gf ~!/(f™' + N = g/(1 + Af).A>0,50|G| < |g| < Kand
onf~'(8D) N X, |G| < |g| < e On X\f~'(0D), |G| < K/A|f|, and so will
be < eif we set A = K/e inf|f (X\ f~'(8D)|(which is < K/e8). But now
|G| < eon X\ f~'(0), and so on M,\ f~'(0) by [1,4.8].So|g| = (1 +
AfDIGl <eon{m:1+ A|f(m)] < 2}.

In fact this argument does not apply in the setting of [2, Th. 3], since a
zero set in the Choquet boundary need not be a peak set; for example, if A
is Basener’s algebra [4, p. 202] built over a compact E C C for which R(E) is
regular, and F C E is a zero set for R(E) which is not a peak set, then the
points of M, over F cannot form a peak set for 4, but do form a zero set.
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