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The study of finite groups having a Self-Centralizing Sylow
subgroup of prime order p is an important part of the theory of
finite groups. In this paper these groups are studied under some
arithmetical hypotheses. A rational number r, depending on the
group and the prime p, is defined and some classification results
are obtained by assuming that r is bounded as a function of the
prime p.

Let G be a finite group, P a Sylow p-subgroup of G of order p, for an
odd prime p. '

Fix an element 7 € G such that P = (7), and assume Cg(P) = P,
q=|Ng(P): P| = (p — 1)/t # p — 1, where C;(P) and N;(P) denote the
centralizer of P in G and the normalizer of P in G, respectively.

Let 7 = =, m,, ..., m, be the representatives of conjugacy classes of
elements of order p, wheren; € P,1 <i < t.Forl < i,j, k < t,denote by
sy the number of times a product of a conjugate of =;, in Ng(P), by a
conjugate of 7;, in N (P), equals 7.

Denote by Cy; the number of times a product of a conjugate of m;, in
G, by a conjugate of 7;, in G, equals 7.

This paper studies the relation between the numbers s, and Cyy,
l=ijk=t

Suppose G satisfies the condition

) Cii=0 whenever sm =0, 1I=i<ut

Define a rational number r = r(G, p) and a rational number a = a( p,‘ 1)
(p-average of G) as follows:

C'Il

n|1<i<t

511 * 0

r(G,p) = max

Si11

Z:=1Si11

t

a(p,t) =

This number r = r(G, p) has some interesting properties. For instance,
itis true that

(a) r = l(mod p) as a rational number.
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(b) lim r(4,, p) = oo where 4, denotes the alternating group on p
letters.

There is also a conjecture involving this number .

Let x be the degree of the exceptional character in the principal
p-block of G.

If the order of G is equal to r-p-x and G is a simple group, does it
follow that G is isomorphic to 4,?

Using the theory of R. Brauer for prime to the first power [2] and a
theorem of W. Feit [4] the following results are proved:

THEOREM 1. Let G be a simple group with a(p, ©) = 1 and
r* <20 - 521 - p. Then G is isomorphic to one of the following groups:

(i) PSL(2,7) (=7
(i) 4, rp=7
(iii) U;(3) =7
(iv) PSL@3,4) =7
(V) 4 =7

THEOREM 2. Let G be a simple group with a(p, t) = 2 and
r*> < 9310 - p. Then G is isomorphic to one of the following groups:

(i) PSL2,11), p=11, r=1

(i) M, , p=1] r=375.
(i) My . p=11, r=320.

1. Proofof Theorem 1. Let G be a counter example for Theorem 1, if
one exists.

Asa(p,t) = 1, thenp = t*> + t + 1 where g = (p — 1)/t =
|INg(P): P|. Thus G cannot be of type (A) PSL(2, p) since here,
t =2, p =Tand PS2, 7) is in the list. G also cannot be of type (B)
SL(2, p—1) where p—1 = 2™, m = 2 since for this type,g=t+ 1 =2
and ¢ = 1. This gives ¢ = p — 1, which is against the hypothesis.

By Lemma 1.4 of [7], it follows that

1 IG5NG(P)|=-£§ r-v  where v=(q—1).p_t.g
pq p-4q
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PROPOSITION 1.1.  Let G be a simple finite group as in the introduction
and a(p, t) = 1 (p-average of G = 1). Then one of the following is true:

(i) su=sy=...=5; =1

(ii) Gis of type (A) PSL(2, p) or type (B) SL2,p—1),p—1=2",
m=2.

(i) t=2

@iv) (p + q)divides g = |G|

Proof. Assume neither (i), (ii), nor (iii) holds. Then it can be shown
that (iv) holds.

If (i) is false, then some s;;, = 0,1 < iy, < tsincea(p, 1) = 1.

By (*), Cion = 0.

Using character theory, the following formulas are obtained (see [3]):
) s,,k=!;%[q+3,jk], 1<ij k<t
3) Con=S[1+A4,), 1Sij kst

p

4) t =3 = Ay = €qBj; /x, where x = degree of exceptional
character in the principal p- blocke = 1, x = bp + €g, b = integer, | <
Ljk=<t Smce it is assumed that ¢ = 3, it follows that B,;; = —g, ! =

— Ay =g e/x=>e= +landx = bp + ¢q.

&) p—-Di=zp—qg
-1)q?
So CRSIELACER A .
(p-1)1
Thus x< =D& o -1a-(r-4)g
p-q P—-4q
pp< P -0 -pa+q® _ palg-1)
P-4 (r-aq)
and p<dla-1) _ (t+1)¢ (s t+l o
pP-q (P+t+1)-(t+1) 12 t

Thus b < 1. Since G is not of type (A) nor of type (B), then by a
theorem of Feit[4], b = 1and x = p + ¢, dividing g. Hence the Proposition
LL
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PROPOSITION 1.2.  There are the following possibilities for t and p:

(i) t=2, p="T.

(ii) t=3, p =13

@) t=5  p=3L

(lV) t =6, P = 43,

) t=8 p=19

Proof. First t < 13 is proved. For, if ¢ > 14 is assumed, then
p=1t>+1t+1=2IL

By (1) (see Lemma 1.4 of [7]), it follows that

|G:NG(P)|=Mp+1gr.v=r(q_1)<P_i£).

P-4

Now, (p + @/(p — @) < (t + 1)/(t — 1) since p + ¢ = p +
p-D/t=((@+1)p—-1)/tandp — g = ((t — Dp + 1)/t

Thus

t+1

Mp+1<r(g-1). .
p+1<r(g=-1)-—

Since (¢ + 1)/(¢ — 1) is a decreasing function of ¢+, Mp + 1 <
r(g — 1)15/13.

By a theorem of Brauer-Nagai [5], it may be assumed that M = p + 3.
Thus it follows that

15
3). ~1).22,
(p+3)p<riqg )13

1=p—1_1=p—(t+1)

Now, q -
t t
+3 '[P—(t+1)].1__§ Ip-(+1)]15
(p+3)a<r : BT TaB
2
. 205212><(15)2 < 140
(14)%x (13)
15
3 r
Pre<14m3
(p+3)? < r?.(15)2 < 20521-p-(15)?

(14)*x (13)2  (14)%*x (13)?

and this contradicts p = 211. Thus 7 < 13.
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For the cases t = 4, 7,9, 10, 11, 13, p = ¢* + ¢ + 1 is not a prime
number.
For case t = 12, it follows that p = 157 and

2
Mp+1§r-v=r(q-—1)p+q giving M%p < 20521 (85)°
p-4q 157 36

20521 85

157 6

and M < 163.

But by Brauer-Nagai [5], 160 < M < 163 and there are only three
possibilities for M = 160, 161, 162. Here ¢ = 12, g = 13, p = 157. Hence

g =pq(Mp + 1) = odd X (M x 157 + 1).

If M is even, g becomes odd and this case is out by Thompson-Feit odd
order paper.
If M = 161, then it becomes 161 x 157 + 1 and in this case,

g = (13) x 157 x (161 x 157 + 1) = 13 x 157 - 298

g = 2 X (odd number), and G is not simple by Burnside. Hence the
Proposition 1.2.

ProrositioN 1.3.

(i) Forcaset = 8,p =173,q =9, it follows that M is odd and of type
719+4K=M,K=0,1,2,...,23and g = 657 - (713M + 1).

(ii) Forcaset = 6,p = 43, q = 17, it follows that M is odd and of type
499+4K=MK=0,1,2,...,33,g=301- (43 - M + 1)and (5)° divides
G.

(i) Forcaset = 5,p = 31,q = 6, it follows that M is odd and of type
354+2K=M,K=0,1,...,72,g =186 - (31 - M + V) andp + q = 37
divides g.

(iv) For case t = 3, p = 13, q = 4, it follows that 16 < M < 225,
g=52-(13-M+ 1)andp + q = 17 divides g.

(v) Forcaset=2,p="1,4q =3,it follows that M is odd and of type
B+4K=MK=0,1,...,64,g=21-(7-M+ 1)



44 ADILSON GONCALVES

Proof. All these bounds are obtained by using

Mp+1<rv=r(q- 1)§—+—g— and r<,/20521-p,

Thompson-Feit odd order paper, Burnside Theorem for g = 2 X (odd
number) and Brauer-Nagai [S], M = p + 3, are also used.

In order to have p 4 ¢ divides gin casest = 6, ¢t = 5 and ¢t = 3,
Lemma 2.1 [7] and Proposition 1.1. may be used.

Hence Proposition 1.3.

Caset=3,p=13,9=4.

Using a simple computer program, only 10 possibilities arise, and all
of them may be eliminated by using the results of Burnside [9], Fong [6],
Alperin-Brauer-Gorenstein [1], Gorenstein-Walter [8] and Walter [11].

Caset = 5,p = 31,4 = 6.

In this case, only 2 possibilities arise, and they are eliminated by using
Fong [6], Alperin-Brauer-Gorenstein [1], Gorenstein-Walter [8] and
Walter [11].

Caset =6,p =43,9q=1.

In this case there is only one possibility and it is eliminated by using
Fong [6], Alperin-Brauer-Gorenstein [1], Gorenstein-Walter [8] and
Walter [11].

Caset = 8,p = 73,9 =9.

Theng =657 - (13 - M+ 1))M =79 +4Kand K =0, 1,2, ...,23.

Using some characterization’s theorems previously mentioned, all but
one case are eliminated. That case is:

m=135 g=2"-3>.7-11-73.

This case is eliminated by using character theory as follows:

M=135g=2"-32-7-11-73.

Let S be a Sylow 11 subgroup of G. Let n = |G : N(S)|. Assume n # 1.
By Burnside w.m.a., |N(S)/C(S)| = 2. Now 73|n, and by calculation the
possibilities for n # 1, n = 1 (mod 11) are:

(a) 73 x8

(b) 73 X 8 x 32

(¢) 73X7x64

d 73XxX7x9,
where |N(S)/C(S)| = 2.
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Let f; be the degree of exceptional character in B, (11) (= principal
11-block), and let 1 # f; be the degree of nonexceptional character in

By (11).
fo = £ 2 (mod 11); f{ = £1 (mod 11). There are signs ¢, ¢, such

that:
1 + efo + efi = 0. Also, f;, fi both divide 2n.
Note also that C(S) # S is in all the possibilities (a), (b), (c), and (d).
Case (a). n = 73 x 8 Here 2n = 16 X 73, fo, fi | 16 X 73 and
(o, fi) = L Since 73 = £ 1 (mod 1) = f; | 16, f; = £ 1 (mod 11)
=f =1

Case(b). n =32 x 3 X 73;herefy, fi |2n = 64 X 3 X 73.
Assume first 73 | f5. Then, by calculation, f, becomes even= f; |3 =
fi = 1. Thus, 731 f;. Hence, f; | 64 X 3.
By calculation there are two possibilities for f;:

() fo=64=-2(mod1l)=f; = 65164 X 3 X 73.
2 fo=8%x3=24=4+2(modll)=>¢ = —li=>f; =24 =
1+ fi=fi =23

Case(c). 2n =128 X 7 X 73; fo, f1 | 2n.
Assume first 73 | f;. By calculation f; becomeseven=f, | 7= f; = L
Thus, 731 f,. Hence, f; | 128 X 7. By calculation the possibilities for f, are:

(1) fo =64 = —2(mod 11)=f; = 65t2n.
Q) fo=Tx16=2(modI)=f, = —1+7x 16 =111tg

Case(d). 2n=T3 X 9 X 7 X 2; fo.fi | 2n.

Assume first 73 | fo. By calculation f; becomeseven=f; |9 X 7, f; =
Tl(mod1)=f =21= —1(mod1)=¢ = —1=¢ = +1landf] =
1+ fo=/y =20t2n

Thus 731 f5. Hence f; | 9 X 7 X 2. By “Stanton condition” it may be
assumed thatfp =2 x 11 — 1 = 21

By calculation f; = 2 X 3 x 7 is the only possibility for f; = 21. But
here fy = 42 = —2(mod 11),¢y = +1= f; = 43t g. Hence, this case is
out.

Caset:Z,p: 7,q:3.

Inthiscaseg =21 - (TM + H)) M =13 +4K, K =0,1, ...,64

The following is true:
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(i) M=1%,g=2-3".5-7=|44].

(i) M=4,g=2°-3*-7=|U:03)

(v) M=137,g=2%-3>-5-7 = 45| = |PSL3, 9.

All these groups appear in the list and they are not counter-examples
for the proposed Theorem.

The other possibilities are eliminated by using previously mentioned
theorems or character theory as in the preceding case.

This finishes Theorem 1.

2. Proof of Theorem 2. Let G be a counter example for Theorem 2.
From a(p, f) = 2, it follows that p = 2¢> + ¢ + 1and g = 2t + 1, where
qg=(p—1/t=|Ng(P):P|

G cannot be of type (A) since here z = 2, p = 11and G =~ PSL(2, 11)is
not a counter example. Also G cannot be of type (B) sinceq = 2t + 1 # 2.

By Lemma 1.4 of [7], there is

€)) |G:Ng(P)| =2 < rv where v=(¢g-1)212
pq p-q
PROPOSITION 2.1.  There are the following possibilities for t and p:
(iii) t=6 p=179
(IV) t =28, p= 137

Proof. p = 2t* + t + 1 prime number implies that ¢ is even. First,
assume ¢t > 10, hence r = 12.

As before, by Brauer-Nagai Theorem [5].

It may be assumed that

(p+3)p+1sMp+1<r(qg-1)222
D-q

p-(t+1) t+1
t

p— and

(p+3)p<r

since (1 + 1)/(t* — f)isa decreasing function, then

2 2
(0 +3)? < < r~l3> < 9310.p-(13)
12-11 (11)2.(12)2

9310-(13)? <91

?+3) < m)?

and p < 88.
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Butr =z 2=p=2x (12)2 + 12 + 1 > 88, a contradiction. Thus
t < 10.
Now, if ¢ = 10, then p = 211, g = 21.

Mp+1<rv=r(g-1).274
D—-q

232 464
d Mp< r2022_3%
an p < r-20 19 T r

This implies M < 180 < p + 3 and this situation is eliminated by the
theorem of Brauer-Nagai [5].

PROPOSITION 2.2.
(ii) Forcaset=6,p =79,9q =13, M =85+ 4K, K =0, ..., 26;

andg = 2329 - (137 - M + 1).

(ii) Forcaset=6,p=179,q=13, M =85+ 4K, K=0,...,26;
andg = 1027 - (79M + 1).

(ili) Forcaset=4,p=37,9q=9, M =43 + 4K, K =0, ...,41; and
g=333-(37-M+ 1)

(iv) Forcaset=2,p=1,9g=5M =17+ 4K, K=0,...,73;and
g=5-(1-M+1).

Proof.  All bounds for M are obtained by using the same argument,
Mp + 1 < r - v and to complete the proof the odd order paper of
Feit-Thompson and Burnside’s result for g = 2 X (odd number) are used.
Brauer-Nagai [S] is also used to get M = p + 3.

Caset =8,p=137,q =117

These 7 possibilities are eliminated by using the already mentioned
characterization theorems.

Caset =6,p =179, g9 = 13.

All possibilities but one are eliminated, by using directly the
characterization results previously mentioned. This case is finished by
eliminating g = 2% - 13 - 79 - 179 which is a N-group but not a Suzuki
group.

CaSCt:4,p = 37,q =9

All cases but one are eliminated by using directly characterization
results previously mentioned, the possibility is,

g=2%-3*.5.17-37.
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and this is eliminated as follows:
m=147,g=2°-3%.5-17-37.

Let S = Sylow 17 subgroup of G. Let n = |G :N(S)|. Assume n # 1.
By Burnside (see [9]) |N(S) / C(S)| = 2, 4, 8, or 16. Also, 37 | n.

By calculation we have the following possibilities for n:

(@) n=37Tx3x2

(b) n=37x35x%x8

(c) n=37x5x9x16

Case(a). n=37TX3 X2 |NS)/CS)| =¢qo =27378o0rlé6.

The degrees f, (degree of exceptional character), fi, f3, ... » fg,-1, all
not equal to 1, in B,(17) = principal 17-block, must divide g, - n. Thus,
they must divide 32 x 3 x 37.

The nonexceptional ones, fi, ..., f;,—1 areall = +1(mod 17)and f; =
+¢, (mod 17).

Now, by calculation the possibilities for numbers # = 1 (mod 17)
dividing 32 X 3 X 37 are:

() 37%x3x2= +1(mod 17)
() 37x3x32=—1(mod 17)
(3) 16 = —1 (mod 17).

Inany case allf}, f;, ... .Jq, are even. By relation 1 + €fy + € f] + ...
+ ‘qo—lﬁlo—l =0, whereeg, = £1,i =0, ..., g — 1, f, becomes odd
dividing 32 X 3 X 37= f; | 3 X 37. Then the only possibility for f; is f, =
3X37=111= —8(mod 17) g, = 8.

Thus,ep = +1,andsomee; = —1saye;, = —1. Thenf, =37 X 3 X
32 or 16.

Assume f; = 37 X 3 X 32 = 3552.
1+3X37T-3TX3X32+efr+... +f=0
112 — 3552 + &f, + ... + f; = 0.
Now since [112 — 3552| > 6 X 37 X 3 X 2, itis not possible that f; = 3552.
Hence, the situation is:
1+37%x3—-16—-16 — ... —16 = 0. Hence,
fi=16<2x 17 -1
By “Stanton condition” [10] we have C(S) = S.
But |N(S)/C(S)| = 8.
n =37 X 3 X 2= 2||C(S)|. Hence, we finish Case (a).
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Case(b). n=37X5X 8 |N(S)/C(S)| = qo = 2,4, or8since |G|, =
64.

Here, fy, fi, ... f,—1 divide 64 X 5 X 37. By calculation the only
possibilities for f;, i = 1 are:

(1) 37X5X 8= +1(mod 17)

2) 16 = —1(mod 17).
Since both are even we have f; odd | 37 X 5. Hence, by calculation f; = 37
X 5= —2(mod 17), ¢o = 2, ¢, = +1. Now, (fo, fi) = 1> fi =16 <2 X
17 — 1 = 33, by “Stanton condition” [10] C(S) = S. But [N(S)/C(S)| = 2
andn = 37 X 5 X 8= 2| |C(S)).

Case (c). n=37X5X9 X 16, |N(S)/C(S)| = qo = 2 or 4, since
|G|, = 64.

Here fo, f1, ..., fo, -1 divide 64 X 9 X 5 X 37.

By calculation the possibilities for the degree of nonexceptional
characters in B, (17) are:

(1) 37Xx2x3=222= +1(mod 17)

(2) 73%x32x3=1332= —1(mod17)

3) 37x8Xx5=1480 = +1 (mod 17)

4 37%x9x5=1665= —1(mod 17)

(5) 37X 9Xx5X16=246640 = —1 (mod 17) 1

6) 5x8x3=120= +1(mod17)

(7)) 32x9=28= —1(mod17)

B 18=18= +1(mod 17)

) 16 =16 = —1(mod 17)

By calculation the possibilities for f = & 2 (mod 17) (g, = 2) are:

(1Y 37x5=-2(mod17) € = +1

(2 37TX3X4= +2(mod17) € = —1

(3 37%x3x64= —2(mod17) € = +1

(4 37X5x%16= +2(mod17) € = —1

(5 37TX9X5X2= —2(mod17) 6 = +1

(6 37X9X5X%X32= +2(mod 17) 6 = —1 (ny
(7Y 5X3=-2(mod]l17) € = +1

(8 5%X3x%x16= +2(mod17) € = —1

(9 32= —-2(mod]17) € = +1

(10y 36 = +2(mod 17) € = —1

(11y 9% 64 = —2(mod 17) € = +1

By calculation the possibilities for f; = +4 (mod 17), g, = 4, are:
(1) 37X 3 X 8= +4(mod 17) 6 = —1

)" 37X 5X2= —4(mod17) € = +1

B)" 37 % 5X 32 = +4(mod 17) 6 = —1
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4 37x9Ix5x4=—4(mod17) € = +1

(5)" 37X 9XS5X64= +4(mod17) 6 = —1 (”
6)) 5x3x2=—4(modl7) ¢ = +1
(7" 5%x3X%x32= +4(mod 17) € = —1
8)Y’ 64 = —4 (mod 17) ¢ = +1
9)’ 8 X9 = +4(mod 17) € = —1

Case. |N(S)/C(S)| = qo = 2, fo one of values in list (1), (2)’, ...,
(11y.

Heree, f; = —1 — ¢f;. Note that: g, = 2=> |C(S)| is divided by 2=
C(S) # S. Also, f; divides: 64 X 9 x 5 X 37. Using condition (fo, fi) = 1
and “Stanton condition” (see [10]), the following possibilities are elimi-
nated at once for f; in list (1), (2)', (3)', (4)’, (5)’, (6)’, (7).

Now, by calculation and using formula ¢, f; = —1 — ¢f; and list (1)
and (1)’ all other cases are eliminated.

Case. qy = 4. Here |[N(S)/C(S)] = 4 n = 16 X 9 X 5 X 37,
IC(S)] = |S].

1l +efs +afi +afi +6f; =0
Looking at list (1)” we see that f; is even. Hence,
afi + &f; + €f; isodd.

Assume first: f}, f; and f; are all odd. Looking at list (1), it follows that
fi=f =f =37 X 5% 9= —1(mod 17). This implies: ¢, = +1 and f;
=3 X 37 X 5 X 9 — 1 = 4994 and this possibility is out by looking at list
(1)1!.

Thus, only one of £}, 3, f5, say, f1, is odd. This implies f; = 37 X 5 X
9 = 1665 = — 1 (mod 17). Then ¢ fy + €,/ + €3f; = 1664.

Note. f;, f; are even in list (1).

Now, by calculation (analyzing each case) and using the signs €, €,, €;
and checking list (1) and (1)”, all possibilities are eliminated. Hence, this
case is out.

Caset = 2,p = ll,q = 5.

Wehave g = 55 - (11M + 1).

The following is true:

(i) M =1,g=|PSL(2 11)|



STRUCTURAL CONSTANTS 51

(i) M=13,g=|M,|=2*-3>-5-11
(i) M=157,g=|M,|=2°-3"-5-11

and all these groups appear in the proposed list.

The other possibilities are eliminated by using either characterization
results or character theory methods as before.

This finishes the proef of Theorem 2.

Note. M), and M,, are the Mathieu groups on 11 and 12 symbols.

Acknowledgments—The author wishes to thank professor G. Glau-
berman, of University of Chicago, under whom his doctoral dissertation
was written.

REFERENCES

1. J. L. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasi-dihedral and
wreathed Sylow 2-subgroups, I, Trans. Amer. Soc., 151 (1970).

2. R. Brauer, On groups whose order contains a prime to the first power, I, II, Amer. J. Math.,
64 (1942).

3. W.Feit, On a class of doubly transitive permutation groups, Illinois J. Math., 4 (1960).
4., On finite linear groups, 1. Algebra, 5 (1967).

5., The Current Situation in the Theory of Finite Simple Groups, Dedicated to
Richard Brauer on the occasion of his 70th birthday. Actas, Congrés Intern. Math. I (1970),
55-93.

6. P. Fong, Sylow 2-subgroups of small order, I, to appear.

7. Adilson Gongalves, Structural Constants I, J. Algebra, 26 (1973).

8. D. Gorenstein, and J. Walter, The characterization of finite groups with dihedral Sylow
2-subgroups, 1, I1, 111, J. Algebra, 2 (1965).

9. M. Hall, The Theory of Groups, Macmillan, New York, (1959).

0., 4 search for Simple Groups of Order less than a million, Computational
Problems in Abstract Algebra, edited by J. Leech, Pergamon Press, New York, (1968).

1. J. Walter, The characterization of finite simple groups, with Abelian Sylow 2-subgroups,
Ann, Math., 189, 3 (1969).

Received September 27, 1972 and in revised form November 6, 1973.

UNIVERSITY OF BRAZILIA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDII
University of California Department of Mathematics
Los Angeles, California, 90024 University of Southern California
Los Angeles, California 90007
R. A. BEAUMONT D. GILLBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305
ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN F. WoOLF K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA

CALIFORNIA INST. OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but
they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in
typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek
letters in red, German in green, and script in blue. The first paragraph or two must be capable of being
used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there
unless absolutely necessary, in which case they must be identified by author and Journal, rather than
by item number. Manuscripts, in duplicate if possible, may be sent to any one of the five editors.
Please classify according to the scheme of Math. Rev. Index to Vol. 3. All other communications to
the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los
Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid.
Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription

rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting
institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal
of Mathematics, 103 Highland Boulevard, Berkeley, California 90708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT
CORPORATION

Copyright ©1974 by Pacific Journal of Mathematics
Manufactured and first issued in the U.S.A.



Pacific Journal of Mathematics

Vol. 54, No. 2 June, 1974

John Edward Coury, Walsh series with coefficients tending monotonically to

TOTO . oottt e e 1
Patrick Michael Fitzpatrick and Walter Volodymyr Petryshyn, Fixed point

theorems for multivalued noncompact acyclic mappings.............. 17
Irving Leonard Glicksberg, More on Phragmén-Lindelof for function

AlEDTas. . ... o 25
Adilson Goncalves, Structural constants. Il ............................. 39
Richard P. Gosselin, Closure theorems for affine transformation groups .... 53
Ralph Peter Grimaldi, Baer and UT-modules over domains ............... 59
Edward Grossman, On the prime ideal divisors of (" —b")............... 73
A. Hedayat and Ester Seiden, On the theory and application of sum

composition of Latin squares and orthogonal Latin squares. . ......... 85
Gerald L. Itzkowitz, Continuous measures, Baire category, and uniform

continuity in topological groups ...............cceuiuiiiiinnennn. 115
Francis Masat, Right simple congruences on a sSemigroup ................. 127
Robert Harvey Oehmke, Right congruences and semisimplicity for Rees

TRALFIX SEMIGEOUDS . . o o e e e et e e e e e e et ettt 143
Qazi Ibadur Rahman and Jan Stankiewicz, Differential inequalities and

local valency ......... .. 165

William John Reed, Random points in a simplex . ........
Mohan S. Shrikhande, Strongly regular graphs and group
deSigNS. ..o
Zahava Shmuely, The structure of Galois connections .. . .
Robert C. Shock, Dual generalizations of the Artinian an
CONAIIIONS . ..o
Arne Stray, Approximation and interpolation for some sp
functions in the unitdisc ..........................
Eldon Jon Vought, Monotone decompositions into trees o
continua irreducible about a finite subset .. .........
James Wirth, The mapping cylinder axiom for WCHP fibr
Gordon S. Woodward, Invariant means and ergodic sets i
ANALYSIS .ot



http://dx.doi.org/10.2140/pjm.1974.54.1
http://dx.doi.org/10.2140/pjm.1974.54.1
http://dx.doi.org/10.2140/pjm.1974.54.17
http://dx.doi.org/10.2140/pjm.1974.54.17
http://dx.doi.org/10.2140/pjm.1974.54.25
http://dx.doi.org/10.2140/pjm.1974.54.25
http://dx.doi.org/10.2140/pjm.1974.54.53
http://dx.doi.org/10.2140/pjm.1974.54.59
http://dx.doi.org/10.2140/pjm.1974.54.73
http://dx.doi.org/10.2140/pjm.1974.54.85
http://dx.doi.org/10.2140/pjm.1974.54.85
http://dx.doi.org/10.2140/pjm.1974.54.115
http://dx.doi.org/10.2140/pjm.1974.54.115
http://dx.doi.org/10.2140/pjm.1974.54.127
http://dx.doi.org/10.2140/pjm.1974.54.143
http://dx.doi.org/10.2140/pjm.1974.54.143
http://dx.doi.org/10.2140/pjm.1974.54.165
http://dx.doi.org/10.2140/pjm.1974.54.165
http://dx.doi.org/10.2140/pjm.1974.54.183
http://dx.doi.org/10.2140/pjm.1974.54.199
http://dx.doi.org/10.2140/pjm.1974.54.199
http://dx.doi.org/10.2140/pjm.1974.54.209
http://dx.doi.org/10.2140/pjm.1974.54.227
http://dx.doi.org/10.2140/pjm.1974.54.227
http://dx.doi.org/10.2140/pjm.1974.54.237
http://dx.doi.org/10.2140/pjm.1974.54.237
http://dx.doi.org/10.2140/pjm.1974.54.253
http://dx.doi.org/10.2140/pjm.1974.54.253
http://dx.doi.org/10.2140/pjm.1974.54.263
http://dx.doi.org/10.2140/pjm.1974.54.281
http://dx.doi.org/10.2140/pjm.1974.54.281

	
	
	

