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THE STRUCTURE OF GALOIS
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ZAHAVA SHMUELY

This paper deals with Galois connections between two partially
ordered sets (posets) 4, B. The first sections are devoted to the
construction of all Galois connections between 4 and B. The last
sections deal with properties of A ® B, the set of mappings 7: A —
B which “participate” in a Galois connection between 4 and B,
with the pointwise partial order.

Every Galois connection between two posets 4, B can be uniquely
extended to a Galois connection between »(4) and »(B), the completions by
cuts of 4, Bresp.,and 4 ® B is characterized as a subset of »(4) ® »(B). As
an application we get: The completion by cuts of a residuated groupoid
(semigroup) is a residuated groupoid (semigroup, resp.). The completion
by cuts of a Brouwerian lattice is a Brouwerian lattice. The completion by
cuts of a relation algebra is a relation algebra. When 4 and B are complete
lattices, 4 ® B is isomorphic to a certain set of semi-ideals of 4 X B. This
yields a procedure for constructing all Galois connections between any two
posets. By dualization all sup-preserving and inf-preserving mappings are
determined.

Bounded posets 4, B are embedded in 4 ® Bin a peculiar way.4 ® B
is a completely distributive, complete (Boolean) lattice iff 4 and B are
completely distributive, complete (Boolean, resp.) lattices. Formal pro-
perties of ® as a binary operation on bounded posets are investigated. In
particular 4 ® 2% = A ® when 4 is a complete lattice, implying 4 ® B¢ =
A€ ® B= (4 ® B)€ when 4, B are complete lattices and C is a poset. In
certain respects, the behavior of 4 ® B as a product of 4 and B resembles
that of the tensor product of linear spaces. '

1. In the following, A4, B, C denote partially ordered sets (posets). A”
is the dual 4. 4 is bounded if it contains universal elements 0, 1 with0 < p
< 1forevery p € A. 2is the poset {0, 1} with 0 < 1. A mapping T: 4 — B
is isotone or order-preserving (antitone) whenever p; < p, in 4 implies T(p,)
< T(p,) (T(p)) = T(p,)). Isomorphism here means order-isomorphism. 4
is a complete lattice if every set {x,} C A4 has alub., V,x, and a glb,,
NAoxq A complete lattice is completely distributive whenever

/\aEQVBEBuxaB = V¢EHBa/\aEQxa¢(a)
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holds for every set {x,5} C 4. X C A4 is a (dual) semi-ideal of A if (y = x)
Yy=x andx € Ximpliesy € X.

ForX C AletX*,X" C Abedefined by X* = {aja < xforeveryx €
X}; X" = {ala = x forevery x € X}. Adjoining 0 to 4 if necessary put (1]
p. 126): »(4) = {X"¥|X C A}. »(A), partially ordered by inclusion is the
completion by cuts of A. a— {a}"* embeds 4 in the complete lattice »(4).

A4 X Bis the Cartesian product of A and B, partially ordered by (a,, by)
< (ay, by) if a, < a,, b; < b,. A% is the set of all isotone mappings T: B— 4
partly ordered by the pointwise partial order,ie., T, < T, € A% if T\(q) <
Txq) for each q € B.

A pair (T, G) of mappings T: A — B, G: B— A is a Galois connection
between A and B [10]if: (i) T, G are antitone; (ii) for each p € 4, GT(p) =
p.foreach g € B, TG(q) = q. Galois connections are treated in [1], [4], [10],
[12] and used in many disciplines of mathematics (see for example [14],
[16]). A ® B denotes the set of mappings 7: 4 — B for which a (necessarily
unique) mapping denoted by T*: B — A exists, such that (T, T*) is a
Galois connection between 4 and B. 4 ® B is given the pointwise partial
order. If 4, B are complete lattices then ([12]):

) T € A ® Biff: (i) T(0) = 1; (ii) T(V a,) = N T(a,)
for every set {a,} C 4,

ie. Tis a complete join-morphism on 4 into B®. Galois connections are
also studied in a dualized form. The mapping 7: 4 — B is residuated
(residual) if T € A ® BX(T € A®” ® B). The semigroup of residuated
mappings, where multiplication is function composition, is studied and
used by many authors (see [2], [3], [5), [6], [8], [9]). By (1), residuated
(residual) mappings on complete lattices are exactly the sup-(inf-) pre-
serving mappings.

A procedure for constructing all Galois connections between comple-
tely distributive, complete Boolean lattices 4 = 2¥, B = 2" was given by
Birkhoff ({1} p. 122). Raney [13], presented a procedure for constructing
Galois connections between complete lattices. By his procedure all Galois
connections between completely distributive, complete lattices, can be
constructed.

2. In this section we prove:

TaEOREM 1.2.  Every Galois connection (T, T*) between two posets A
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and B can be uniquely extended to a Galois connection {T, T*) between v(A)
and v(B), the completions by cuts of A, B resp.

In the following let T(X) * stand for {T(x)}jcx, for X C A. Before
proving Theorem 1.2 we have:

LemMmA 1.2, Let (T, T*) be a Galois connection between the posets A
and B. Then X"+ C X,* in v(A) implies T(Xy)* C T(X))* in v(B).

Proof. We have
Xl/\ — X1A+A ) X2A+A — XZ/\-
Lety € T(X,)*. Since y < T(x) forevery x € X,, x < T *(y) forevery x €
X, follows. Thus, T*(y) € X, C X,". From x < T*() for every x € X,
we get y < T(x), forx € X and y € T(X,)* follows.

CorOLLARY 1.2 XY = X * in w(A4) implies T(X))* = T(X))"
in v(B).

Proof of Theorem 1.2.  Identifying 4, B with their images in »(4), »(B)
we define T': »(4) — »(B) by

Q) Tx ) = NFx), XC A.

Here we put 7(0) = 1, T(1) = 0if 0, 1 resp. are adjoined to 4 and
similarly for T*. Since N\ ,cxT(x) = T(X)*, it follows by Corollary 1.2 that
T is well-defined. By (1) T € »(4) ® »(B) since

T(VaXaA*-)' = T((UaXa)A+) - /\xEUaXuT(x)
= /\a(/\xeXaT(x)) = /\uT(XaA+)-

Since X" * = V,exxfor X C 4, it follows by (1) that T is the only possible
extension of 7. Obviously, 7* € »(B) ® »(A4) is given by

) T*(Y") = AT*(»), YCB
ye

CoOROLLARY 2.2. A4 ® B can be considered as a subset of v(A) ® v(B).
(T, T*) is a Galois connection between v(A) and v(B) which is an extension of
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some Galois connection between A and B iff it satisfies (identifying, as before,
A and B with their images in v(A), v(B)):

(3) foreverya € A, T(a) = b, for some by, € B;
for every b € B, T*(b) = a, for some a, € A.

Since pseudo-complementation defines a Galois connection on a
pseudo-complemented meet-semilattice 4, Theorem 1.2 can be used to
show that »(4) is pseudo-complemented. In particular, a direct application
of Theorem 1.2 yields the Glivenko-Stone Theorem, for the Boolean lattice
A, with (X" 7Y, the complement of X+ in »(4) given by {x'}ex = {X'}*.

Wecall T: 4 — B a polarized mapping if T€ A ® B.IfT: 4 X B— Cis
given put T,(b) = T,(a) = T(a, b), fora € A, b € B. The mapping T,
T: A4 X B— Cis bipolarized if the mappings T,: B— C, T,: A — C are
polarized for each a € A, b € B. Biresiduated mappings are defined
analogously.

THEOREM 2.2 Each bipolarized mapping T: A X B — C can be
uniquely extended to a bipolarized mapping v(T'): v(4) X v(B)— v(C).

Proof. ldentifying 4, B, C, with their images in »(4), »(B), »(C) we
define »(T'): »(4) X »(B) — »(C) by:

W) (X", Y = AT(x, )

yeyY

where 7(0, a) = T(b,0) = 1,a € 4, b € B; if 1 has to be adjoined then
I(1,b) = T(a, 1) = 0for0 # a € 4,0 # b € B. T,*(c), T,*(c), where either
a € A, b € Borc¢ € C are universal are defined accordingly.

Using the equivalence of T(x, y) = z with T¥(z) = yand T}(z) = x it
follows as in Lemma 1.2 and Corollary 1.2 that »(7) is well-defined. As in
Lemma 2.2 one can easily verify that both »(T)xn+: »(B) — v(C), »(T) yn+:
#(4) — v(C) are polarized for each Xt € »(4), Y € »(B) with

(D2 = ATi), ZcC

zeZ

»(D)¥~.(Z"*) is given similarly. Consequently, »(T) is bipolarized.»(T)
clearly extends 7. The uniqueness of the extension can be shown using (1)
asin Theorem 1.2.
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ReMark 1.2. Theorems 1.2 and 2.2 of course hold with “Galois
connections” and “polarized mappings” replaced accordingly by either
“residuated mappings” or “residual mappings.” The extensions are then
defined with appropriate dualizations.

A po-groupoid (G,-) is called residuated (see [1}, {3], [9]) if the mapping
T: G X G— G given by T(g}, g2) = g1°8» &1» & € G, is biresiduated. This
means that for every @, b € G there exist elements denoted by a.-b (right
residuals) and a-.b (left residuals) such that b-x < aiff x < a.-bwhile x-b
< aiff x < a-.b. By Theorem 2.2 and Remark 1.2 we get:

COROLLARY 3.2.  The completion by cuts of a residuated (commutative)
groupoid G is a residuated (commutative) groupoid. In v(G) multiplication is
given by:

XM YM = (xylx € X,y € VINM = (X- DM
Right residuation in »(G) is given by:
XN YN = {m.-ylm € XA,y eEY}t = x".- -t

and similarly for left residuation. If 0 is adjoined to G then0-g = g-0 = 0,
g € G;if 1 hasto be adjoinedweputl-g =g-1=1,0# g €G.

COROLLARY 3*.2. The completion by cuts of a residuated semigroup is
a residuated semigroup.

CoroLLARY 4.2. The conditional completion by nonvoid cuts of a
directed residuated groupoid is a lattice-ordered residuated groupoid.

A lattice 4 is called Brouwerian or relatively pseudo-complemented (see
[1,p.128)when T: 4 X A — A, givenby T(x,y)) = x A y,x,y EAisa
biresiduated mapping. We have:

CoOROLLARY 5.2.  The completion by cuts of a Brouwerian lattice A is a
Brouwerian lattice.

This is an easy consequence of Corollary 3.2 where “-” is replaced by
“/\” and both “-.” and “.-” by “:”. It can be shown that A\ defined here
coincides with the meet operation in »(4),i.e., X" * N M ={xA ylx €EX,
y EY}M = (X A\ Y)**. Note that 1(=x:x) € 4.
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A relation algebra ([1}, p. 344) is defined to be a residuated monoid
(G, -) with 0 and unity e, which is a Boolean algebra when considered as a
poset,in whiche’.-g = ¢+ gholds for each g € G, and denoting ¢’.- g’ by 2,
the converse of g, such that ¢ = gand g oh = h. g for g, h € G. By using
Theorem 2.2, the Glivenko-Stone Theorem, together with the natural de-
finitions of complementation, multiplication and residuation in »(G) we
get:

COROLLARY 6.2.  The completion by cuts of a relation algebra is a relation
algebra, with conversion given by

= @)= X"

3. Here we show that Galois connections between complete lattices
A and B stand in a one-to-one correspondence with certain semi-ideals of
A X B.

DeriNiTION 1.3, Let A, B be complete lattices.§ C 4 X Biscalleda
G-ideal of A X B when

(i) (x,»y) < (a,b)and (a, b) € 0 implies (x, y) € 0;
(i) if {(a,b,)} C 0 then (V,a,, A.by) € 0 and (Nele> Vabs) € 8;
Giii) (0,1) € #and (1,0) € 6.

K(A, B) denotes the set of all G-ideals of 4 X B, partially ordered by
inclusion. Since 4 X B € K(A4, B) and since N gg, where {05} C K(4, B) is
easily shown to be a G-ideal of 4 X B we get:

LemMA 1.3, K(4, B) is a complete lattice.

Observe that in K(4, B), N\ g0p, where 3 € K(A, B) satisfies:

(4) /\Baﬁ = {(x,y)|x = /\ﬁxﬁy)’ = /\ﬁyﬁ, where (Xﬁ,yﬁ) € 03}
We are going to prove:

THEOREM 1.3 4 ® B = K(A, B) when A, B are complete lattices.

The proof of this theorem is based on the following two lemmas.

LemMma 2.3. if (T, T*) is a Galois connection between the complete
lattices A and B, then
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) 0 ={(ab)T(@)=b} CAXB
is a G-ideal.

Proof. If (x,y) < (a, b) where T(a) = b, then T(x) = T(@) = b=y
since T'is antitone. If T(a,) = b, for some set {(a,, b,)} C A X B, then

T(Vaa.) = NaT(@:) = Nabq by (1),
and
T(N\.,a,) = V,T(a,) = V,b,
since T'is antitone. T(0) = 1 by (1) and 7(1) = 0 is clear.

LeMMA 3.3. Let§ C A X B be a G-ideal of A X B, where A, B are
complete lattices. If the mappings T: A — B, G: B— A are defined by

(6) I(a) = V{b|(a, b) € 0}; G(b) = V{a|(a b) € 6},
then (T, G) is a Galois connection between 4 and B.

Proof. T, G are well-defined and antitone by (i), (iii) in Definition
1.3; (ii) implies that if {(a, b,)} C 6 then (q, V ,b,) € 0. Thus (a, T(a)) € 0
for each a € A, and similarly, (G(b), b) € 6 foreach b € B. If a € A4 then
GT(a) = V{a,|(a,, T(a)) € 0} = a. Also TG(b) = b for each b € B. Thus
(T, G) is a Galois connection.

Observe that in Lemma 3.3 (g, b) € # is maximal in 8 iff a = GT(x), b
= T(x) for some x € A.

Proof of Theorem 1.3. Forevery TE A ® Blet o(T) = 0 be given by
(5), and for every § € K(4, B) let 7(6) = T: A — B be given by (6). By
Lemmas2.3,3.30: 4 ® B— K(A, B) while y: K(4, B)— A ® B. Foreach
a € A wehaveno(T)(a) = V{b|(a, b) € o(T)} = V{b|T(a) = b} = T(a),
hence 7o(T) = T holds.

For§ € K(4, B), on(6) = {(a HIn@®)a@) = b} = {(@ B)|V o{bdl(@ bo)
€ 0} = b}. If (a, b) € 0 then clearly (a, b) € on(f). Conversely, (a, b) €
on(f) implies b < Vb, where (g, b,) € 6, and by (i), (ii) in Definition 1.3
(a, b) € 6.1t follows that an(f) = 6. ¢ is thus one-to-one and onto with 67!
= 1. Both o and 7 are easily shown to be order-preserving and the proof is
completed.
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4. LetI' C A X B be given where 4, B are complete lattices. The
minimal G-ideal 6 of A X B which contains I' can be constructively
described as follows: @ is the semi-ideal generated by the “closure” of {T,
(O, 1), (1, 0)} with respect to the property described in (ii) Definition 1.3.
We call 4 the G-ideal generated by I'. Accordingly, the binary relation T’ C
A X B generates the Galois connection (7, T*) between the complete
lattices 4 and Bif @ = {(a, b)|T(a) = b} is the G-ideal generated by I'.

More generally, I' C 4 X B generates the Galois connection (7, T*)
between the posets A and B, if I embedded in »(4) X »(B) generates (¥(T),
»(T*)) (see §2).

ReEMARK 1.4. It is important to observe that for every Galois
connection {7, T*) between the posets A and B there is at least one binary
relation ' C 4 X B generating it, namely, I' = {(a, b)|T(a) = b}.

By Theorems 1.2, 1.3 we get:

Coroulary 1.4 T C A XB generates the Galois connection (T, T *
between the posets A and B iff T is the minimal element of A ® B which
satisfies T(a) = b for every (a, b) € T.

For a givenset I' C 4 X B we determine the Galois connection (7,
T*) between »(4) and »(B) generated by T, by constructing the minimal
G-ideal of »(4) X »(B) which contains T. (7, 7*) may be restricted to a
Galois connection between 4 and B in case it satisfies (3) (Corollary 2.2).
By letting I' pass over all subsets of 4 X B, all Galois connections between
the posets 4 and B are determined.

The procedure presented here extends the one given by Birkhoff ([1],
p- 122): If (T, T*) is the Galois connection between 4 = 2" and B = 2"
generated by p C M X N in Birkhoff’s sense then T'is the minimal element
of A ® B satisfying T(p) = q for each (p, q) € p. Therefore (Corollary 1.4)
(T, T*) is also generated by p, embedded in 4 X B, in our sense.

For completely distributive complete lattices we have:

LemMMA 14. Let A, B be completely distributive, complete lattices.
Then the G-ideal of A X B generated by ' C A X B equals

= (D=, Y, 02 = Yy 1 b

where

(@ups bog) €T U (0, 1) U (1,0)}.
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Proof. Since @ is conained in each G-ideal which contains T, it
suffices to show that @ is a G-ideal. (i), (iii) in Definition 1.3 are obvious,
while (i) can be easily proved by using the complete distributivity of both
A and B.

CoRrOLLARY 24. If {0.}, @ € Q, is a family of G-ideals of A X B,
where A and B are completely distributive complete lattices, then V 0,, the
G-ideal generated by U .0, satisfies

= < i L=\, by
) VO, = {(xy)lx = A Va,,y = Vier Naea
where (a,, b, ) € 0, foreachi € I}.

The results presented above can be applied to either residuated or
residual mappings. In particular, every residuated (residual) mapping
T A — B, A, B complete lattices is uniquely determined by a set
o(T) =0 C A X B,namely, 0 = {(a, b) | T(a) < b}( = {(a, b)| T(a) = b}
resp.) such that:

@@ (@b)€bandx <a,y=b(x =a,y< bresp.) implies (x, y) € 6;

() if {(a,, b,)} C 0then (V,a,, V,b,) €0
and (A a,, N\ b)) €6

(i) (0,0 €46,(1,1) €.

Call @ C A X B a G-relation if it satisfies unbracketed properties (i), (ii),
(iii) listed above. The following observation was made by M. F. Janowitz. If
0, =0(T)) CA X B, 0, = o(T,) C B X C are G-relations then o(T})
°o(Ty) = {(a, ¢)|(a b) € o(T}), (b, ¢) € o(T,) for some b € B} is a
G-relation of 4 X C, and o(T) ° o(T;) = o(T, - T,). Consequently, o
embeds the semigroup of residuated mappings on the complete lattice A
into the semigroup of binary relations on 4.

S. 'We now study order-theoretic properties of A ® B. Firstly observe
that T) = T, in 4 ® Biff Tf < T% in B ® A. This follows by the
equivalence of T(p) = g with T%(q) = p. Since (T*)* = Tin4 ® Bwehave

the well-known

THEOREM L5 4 ® B = B ® A, for any two posets A, B.

For A, B bounded posets let the mapping L;: A — B,a € A,b € Bbe
defined by:
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1 x=0
Li(x)={b 0<x<a
0 x¢

One can easily prove:

LEMMA 1.5. Let A, B be bounded posets. Then: (i) L," € A ® B with
(LyY)* = L, (ii) T € A ® B satisfies T(a) = biff T = L,".

By Remark 1.4, Corollary 1.4, and Lemma 1.5 we gety

THEOREM 2.5. Let A, B be bounded posets. Every T € A ® B can be
represented as al.u.b. of some set {L,;*} C A ® B,a € I

For complete lattices this result is independently proved in [11]. If 4, B
are bounded posets, 4 ® Bis also bounded with0 = L; = L,a € 4,b €
Band 1 = L}. The proof of the following lemma is straight-forward.

LEMMA 2.5. Let A, B be bounded posets. Then:
(i) Li<Liiffa<da € A,b<0b € B, whena,b are non-zero;
(i) if Va, = a,\p/bB = bthen Vv L‘;,;: o
[ 3 a’B
(iii) z_'f/\,,aa = a, N\oby = b then /\‘,‘ng‘L = L§.

NowputL, = L,' € A ® B, whereb € B. By Lemma 1.5 we can put
L} =L, € A ® B,wherea € A. Note that by Lemma 2.5:

® if Ayby = b(Vub, = b)in B
then
Nely, = LV, Ly, = Ly)in 4 ® B.
A similar result holds for the mappings L,*, a € 4. Also
® Li=L7% = LIANLy=L* N\ L,

In connection with (9) note:

LemMA 3.5 Let A, B be bounded posets. The mapping E;: A — B,
a € A, b € B, defined by:

1 x<a

Ej(x) = b xia
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belongsto A ® B with (E9)* = E%and
(10) EE=L*VL,
The proof is omitted. Using Lemma 2.5, (8), (9), (10) we conclude:

THEOREM 3.5. The mappings a — L,*, b — L, embed the bounded
posets A, Bresp. in A ® B. Under these embeddings;

@i lub.s.and glb.s. are preserved;

(ii)) O4and Oggointo O,ep 1, and 15 gointo 1,¢p;

(i) ifa € A, b € B then their images have both al.u.b. andaglb.;

(iv) the images of different pairs (a; b)) possess different Lu.b.s. and
different g.1.b.s. provided that a; € A, b; € B are not universal.

COROLLARY 1.5. A ® 2 = A4, when A is a bounded poset.

LemmAa 4.5. IfT = N\,Ly, € A ® B, with A, B bounded posets, then T
= L/\abd'

Proof. Foreach0<x, € 4, T(x,) < Ly (x,) = b,. Hence (Lemma
2.5 (i) Ln,(f) =< L,,, and therefore Ly,,y < T. For each 0 < x # x,in 4,

0) —

T(x,) = Lgy,) < T(x). Similarily T(x) < T(x,) = bholdsand T = L,
follows. b = V, b, is easily verified.

Note that by Lemma 4.5 and Theorem 1.5 T = A,L%¥ in4 ® B
implies T = L%,

6. It seems interesting to ask which properties of 4, B are inherited
by A ® B. In[7] an example is given of two bounded lattices 4, B for which
A ® Bis not a lattice. However, if 4, B are complete lattices sois 4 ® B
(Lemma 1.3). Actually, by using Lemma 4.5 and the remark after it we
have:

THEOREM 1.6  Let A, B be bounded posets. A ® B is a complete
lattice iff A and B are complete lattices.

We can also prove:

THEOREM 2.6. Let A, B be bounded posets. A ® B is a completely
distributive complete lattice iff A and B are completely distributive complete
lattices.
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Proof. The “only if” part follows by Theorem 1.6, (8) and the remark
following (8). We now prove the “if” part. By Theorem 1.3 it suffices to
show that K(4, B), the complete lattice of G-ideals of 4 X B, is completely
distributive. Let {65} C K(4, B) be given. Since

N VgD V Abyw,

aEQ BEB, PEIIR, aER

we have to prove the reverse inclusion. Assume (x, y) € A.ea Vpes,fap-
By (4) and (7) we have

(%)) < (Naea Nier, Vpen, x'a8> NacaVick Apep, Yop)s
where (xig, yig) € O.p.
Using the complete distributivity of 4, B and the identity

/\aen /\BEBaaaB = /\¢EHB., /\ueﬂamp(u)

we get:
%)) = (N\yNaca Vpes, x50, Vi Agen /\Begayﬁg’)) =
= (/\¢V¢enaa Naeg xﬁﬂ), V.p /\¢en3., /\aen}’ﬁ(&?x)) = (a, b)
By (4),each
(/\aeﬂxcﬁz)x)’ /\aen)’ﬁ?z))
belongs to

AN a€E ﬂaaqz(a) .

By (7) it now follows that
(x’ )’) = (a’ b) € VaEI‘IBa /\aeﬂ 0a¢(a)’
which completes the proof.

CoRrOLLARY 1.6. If A and B are finite distributive lattices then A ® B
is distributive.



THE STRUCTURE OF GALOIS CONNECTIONS 221

Now let T € A ® B be given where 4 and B are completely distri-
butive, complete lattices. By Theorem 2.5, (8) (9) (10) and Theorem 2.6 we
get:

(11) T =V, L§ = V, (L ALy,
= Nsear (Vaes LZ) V (Vaer-s Ls,))

= Njex (L’{‘/uema \% LVaEI—Jba)

:Jé\Z' LV Ly,) =J/E\2 b
(here 2! is the power-set of I, a; = 0 if J is empty and b; = 0if J = I).
Therefore o(T), the G-ideal of A X B associated with (T, T*) equals {(x,
y) | either x < a; or y < b, for each J}. This means that (T, T*) is a tight
Galois connection ([13]). (11) relates our characterization of Galois con-
nections to the one given by Raney for completely distributive complete

lattices.
We now prove:

TueoREM 3.6. A ® 2% = A® when A is a complete lattice and B a poset.
By [1] p. 56, the complete lattice 2% of all isotone mappings T: B — 2 is
isomorphic to the set of all dual semi-ideals of B, partially ordered by
inclusion. Under thisisomorphism B, = {x | x € B, f(x) = 1} corresponds
tof € 2% - f, € 2% is the characteristic function of {x | x = b} C B, ie.,
fitx)=1ifx=b € B.

Proof of Theorem 3.6. It suffices to prove that 22 ® 4 =~ 4® (Theor-
em 1.5). Foreach ¢ € 22 ® A let o(f): B— A be defined by o(£)(b) = 1(f;).
Since b < b in Biff f, = f;in 2% and since ¢: 2% — 4 is antitone, it follows
that o(¢) is isotone, i.e., 6: 22 ® A — A% Forevery T € A% let¢(T): 22—
A be defined by

(12 WD) = be/l}f T®), f#0in2%; n(DO) = 1.
If {f,} C 2% then
() (Vfe) feé\« 5 T(d)

= AN T®) = AuT)f).

a bEBf,
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By (1), %(T) € 2% ® A follows, hence : A% — 2® ® A. Forevery T € A%

and b € B, on(T)(®) = n(T)(f) = Np=pT(¥) = T(b); thus on(T) = T.
Conversely, for each t € 22 ® A, and f # 0 we get, using (1):

() = Neepo(O)®) = Noept(fs) = T(Viesfy) = Hf)-

Since no(£)(0) = 1 = #0), we proved that no(f) = ¢. Consequently, o is
one-to-one and onto with 6! = 7. ¢ and 7 are easily shown to be isotone,
hence 4% and 2% ® A are isomorphic.

Theorem 3.6 yields:

COROLLARY 2.6. 2™ ® 2V = 2M*¥ when M, N are posets.

If both M, N are totally disordered posets, 2M 2% are the lattices of all
subsets of M, N resp., and by Corollary 2.6, 2 ® 2" is the lattice of all
binary relations p C M X N (this is exactly Birkhoff’s and Everett’s
characterization). By Tarsk:’s Theorem ([1] p. 119) this proves the “if”” part
of

THEOREM 4.6. Let A, B be bounded posets. A ® B is a completely
distributive complete Boolean lattice iff A and B are completely distributive
Boolean lattices.

Proof of the “only if” part. Assume 4 ® B is a completely distribu-
tive complete Boolean lattice. By Theorems 1.6, 2.6, and by symmetry it
suffices to prove that 4 is complemented. Fora € 4 let T = V, L{:be the
complement of L}¥in 4 ® B. (We may assume b, # 0 for each a). By (9),

0=LXAV, L= V,L %

a

thusa A a, = 0and a/\ V,a, = 0 follows. Since L% = L, we get (see (11)):
1 =LV V,L§ = NjeuEy,

Taking J = I, E§YV+* = 1 follows. Hence aVV,a, = 1, and V,a, is the
complement of a.

7. We discuss here some formal properties of ® as a commutative
binary operation on posets. Using the G-ideal characterization of 4 ® B we
have:
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THEOREM 1.7. A ® (B ® C) = (4 ® B) ® C, when 4, B, C are
complete lattices.

This theorem is independently proved in [11] using basically different
ideas.

Proof. LetA ® B ® Cdenote thesetofallsubsetsY C 4 X B X C
satisfying:
(i) (x,»2)<(a b, c),and (g b, c) EYimplies (x, y,z) € Y;
(ii) {(a4 by c,)} C Y implies
(Vaaa’ /\ubaa /\acu) €Y,
(Aaaa’ Vaba’ NaCo) € Y,
(Ng@ys Nebys Ve ) €Y
) O0,L,1)eY,((101)eY,(,1,0)€ Y.Orderd ® B®C
by inclusion. Forany X € 4 ® (B ® C) leto(X) = {(a, b, ¢)| (b, ©) E
0, and (a, §) € X forsome § € B ® C}.o(X) € A ® B ® Cis easily
verified. f Y € 4 ® B ® C,let Y(a) = {(b,c)|a,b,c) € Y} € B® Cand
put

7(Y) = {(a,0)a € 4,6 € B® C, and 6 C Y(a)}.

n(Y) € A ® (B ® C)is easily shown. o and 7 are clearly isotone. By using
the definitions we get no(X) =X, on(Y) =Y, foreach X € 4 ® (B ® (),
YE A® B® C. Hence

A®B®C)=A®B®C

(A®B)® C=A4 ® B ® Ccanbeshown in a similar manner
Using Theorem 1.7, 3.6 and 1.5 we get the interesting:

COROLLARY 1.7. 4 ® B = A ® B = (4 ® B) where A, B are
complete lattices and C is a poset.

(this corollary together with Theorems 1.5, 3.6, 1.7 suggests the formal
notation 4 ® B = A1),

Let 11,4, denote the Cartesian product of the posets 4, , partially
ordered pointwise. We then have:

TueoreM 2.7. A ® I1, B, =1I,(4 ® B,) when A is a complete lattice
and the B, are bounded posets. If the number of posets B, is finite, it suffices
that A be a bounded lattice.
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Proof. IfT € A ® I1,B, then T*: A — B, defined by
T"(a@) = {T(@)}a a € 4,

belongs to A ® B, with (T*)*(b,) = T*0,0,...,5,0,...), b, € B,. Let

0:A ® II,B, — I, (A ® B,)be defined by [6(T)], = T* Conversely,
if + € (A ® B,) then %(): A — II,B, defined by
[m(H(a)), = t(a), a € A, belongs to 4 ® II,B, where

N()*(b1, by, ..., by, ..) = Noti(be),

for each (by, b, ..., b,, ...) € II,B,. One easily verifies that ¢ induces the
isomorphism between 4 ® I1, B, and I1,(4 ® B,) wheres~' = 1.

A certain formal similarity can be noticed between properties of
A ® Basa product of two posets A and B and those of the tensor product of
two linear spaces, with L; playing the part of the generators a ® b
(Theorems 2.5, 1.2, 1.7, 2.7, and Lemma 2.5). This similarity can be carried
further by:

LemMaA 1.7.  For every bipolarized mapping T: A X B — C (see §2),
where A, B, C are complete lattices, there exists a unique polarized mapping
t:A ® B— C,such that t(Ly) = T(a, b), foreacha € A,b € B.

This lemma also appears independently in [11] with a different proof.

Proof. ForeachG = V,L;* € A ® Bput{(G) = N, T(a,b,) - Since
T, b) = T(a,0) = 1 foreach b € B, a € A, and since
I(Va, Nb)) = NiT(a;, Nby) = NT(a;, by)
holds for every subset {(a;, ,)} C 4 X B itfollows that

NoT(ay, by) = N{T(a, b) |(a, b) € 0,
the G-ideal of 4 X B generated by {(a., bs)}}-

Thust: 4 ® B— Cis well
defined, with #(L) = T(a, b), a € A, b € B. By (1) one easily verifies that
t € (A ® B) ® C. (1) also implies the uniqueness of .

Lemma 1.7 together with Theorem 2.2 yield:

THEOREM 3.7.  For every bipolarized mapping T: A X B— C,where A,
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B, C are posets there exists a unique polarized mapping
t:v(A) ®v(B) — »(C) such that «Ly) = T(a b) for each
a€ACvd),beEBCvB)

Since T: 4 — B is residuated if T € 4 ® B? it follows that Theorem
3.7 holds also with “polarized” replaced by “residuated.”
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