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FOR SOME SPACES OF ANALYTIC
FUNCTIONS IN THE UNIT DISC

A. STRAY

Let U be a bounded open subset of the complex plane C such
that U and C\\ U are connected. (If B C C, B denotes its closure in
C.) H” (U) is the space of all bounded analytic functions defined
on U.Let S C U be the zero set of a nonzero function in H* (U).

Necessary and sufficient conditions on S are given for the
existence of an open set 0 O U\ (S\\S) such that H* (0) and
H®* (U) have the same restrictions to S. If U is the unit disc D =
{z: |z] < 1} and S is as above, the following result holds for all the
Hardy spaces H? (D), 0 < p < co: Given g € H? (D), thereis a
function fanalytic in C\ (S\ S)such thatf| ,€ H? (D)andf =g
on S.

If S and U are as above, H *°(U)|s denotes the set of restrictions f|s of
alfe H*(U). If § = {z,} C D satisfies Z,(1 — |z,]) < oo, Detraz [3]
proved the following result

(*):  There exists an open set 0 O D\ (S\\S) such that
H%(0)|s = H*(D)|s.

In this paper we give two extensions of this result. First we show that (*)
holds for domains of a somewhat more general type than the unit disc D.
Consider the following statement which is very similar to (*):

(**) There exists an open set ¥ such that P\ (§\\S) C D and
H”(V)|s = H*(D)ls.

It turns out that conditions (*) and (**) are equivalent, even with D
replaced by a somewhat more general set.

We shall make some use of the theory of the classical H” spaces. We
refer to [4] or [9] in this connection. Before stating our first result, we
mention some more notation. If fis a complex valued function defined for
eachz € Bwe put ||f]|z = sup {|f(2), z € B}.If U C Cisopen, H*(U)is
a Banach algebra with sup norm on U and we denote by M the maximal
ideal space of H*°(U). The maximal ideals m € M are identified with the
multiplicative functionals on H*(U) they correspond to. If § C U is
relatively closed and I denotes the set of all f € H *°(U) which are zero on
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S,wedefineS ={me M:m(f) =0  f€& I}.(Cf.p.345in[3]). We have
a projection II:M — U given by m — m(e) where e € H*(U) is the
function z — z. For a detailed study of M we refer to [7] and Ch. 10 in [9].
Other results like (*) can be found in [1], [5], [8], [11] and [14].

With the notation as above we now state:

TueOREM 1.  Let U be the interior of a compact set X and assume both
U and C\ X are connected. If S C U is the zero set of a nonzero function in
H>(U), the following statements are equivalent:
(i) There exists an open set 0 DO UN(S\S) such that H*(0)|s =
H=(U)ls -
(ii) There exists an open set V such that S C V C U, Y\(S\S) C U
and H(V)|s = H®(U)|s
(i) TIS) C S

Remark. The author is indebted to the referee for an example where
(iii) fails. For details of this example see the final remarks. If the boundary
oU of Uis a Jordan arc, it is easy to verify that (iii) holds, but considerably
weaker conditions on dU also imply (iii).

Proof: If § D 9U, the theorem trivially holds with 0 = ¥V = U.
Assume now (QU)\ S # ¢. We prove the implications (ii) = (i), (i) =
(iif) and (iii) = (ii). We assume first that (ii) is true and consider the
restriction map R:H* (0) — H ®(V)|s where 0 D U\ (S\\S) is some open
set and where H *(V)|s has the quotient norm induced from H* (V). We
need to prove that R maps H *(0) onto H*(V)|s. It is sufficient to find
constants L > 0 and € € (0, 1) such that the image by R of the L-ball in
H*(0) is e-dense in the unit ball in H *°(V)|s. (See for example Lemma 1.4.
in [11].) Choose fin the unit ball of H* (V)|s. By (ii) and the open mapping
theorem there is a constant ¢; independent of £, and f; € H ®°(U) such that

fils =fand || fi|lv = ¢;. By Lemma 3.2 in [11] we can choose 0 such that
for each g € H*(U) there exists g; € H > (0) such that

M gl = allgllu
Q@ lig—ally=Qe) gl

where ¢, isindependent of g. (That we actually can apply Lemma 3.2 in [11]
in this situation follows from well known estimates of analytic capacity. See
for example the proof of Theorem 7.4 on page 213 in [6]). If we replace g by
(f1)in(1) and (2), we see that withe = 1/2and L = ¢, ¢,, Lemma 1.4in [11]
can be applied.

To see that (i) = (iii) we first observe that the restriction map R
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defined above is not one-to-one. If it was, ||f}|, and ||f]|y would be equi-
valent norms on H *(0) by (i) and the open mapping theorem, and that is
absurd. Hence there is some function A € H *°(0) which is zero on S but not
identically zero in U. Choose m € M such that II(m) = z, € U\ §. Since
is analytic near z, we can write A — h(zy) = (z — zp)h, where h; € H* (0).
If we apply m on the right side we get zero and therefore m(h) = h(zo).
Since we clearly can assume h(z,) # 0 we have proved thatm & § and (iii)
follows.

It remains to prove that (iii) = (i) and here we apply Carleson’s
lemma. (See [2] or on page 203 in [4].) Let :U — D be a conformal map
and put S; = ¢(s). By (iii) S| must be countable and we let B denote the
Blaschke product corresponding to S;. For definition and basic properties
of Blaschke products we refer to [4] page 20 or [9] page 66. From these
properties it is easy to see that V; = {z : |B(z)] < 27!} satisfies
Vi\(51\\S\) C D and Carleson’s lemma ([4] page 203) combined with a
simple normal family argument, gives that H*(D)|s, = H>®(V})|s,. If we
define V = ¢! (), it only remains to prove that P\ (S\.S) C U.Putg =
B ° @. Choose an arbitrary point z, € (AU)\S. If we can show that |g(w, )|
— 1 whenever {w, };2; C U converges to z,, the proof will be complete.

Let {z, } be an arbitrary sequence in U converging to z,. We denote by
Jtheideal of all » € H *°(U) satisfying lim A(z,) = 0. We want to show that
g & J. Let m denote some maximal ideal containing J. Since J contains the
translation z — z — 2z, we get that II(m) = z,. If g € Jand f € H*(U)
vanishes on §, we can write f = gf;, with f; € H*(U). (see Thm. 2.8 on
page 24 in [4]) and hence we get m(f) = m(g)m(f,) = 0. This impliesm €
S which is impossible by (iii) and since II(m) = z,. We can therefore
assume that |g| > ton U, = U N {z:|z — zy| < t} for some ¢t > 0.

The proof is completed using some well known facts about H* (V)
which we shall not prove. But references will be given below. We fix a point
w € U and let A denote the harmonic measure on dU which represents w.
There is a (unique) function g* € L*(\) whose harmonic extension to U
equals g. (See for example [15] page 26.) We now claim:

(a) Since |B| = 1a.e. on 9D with respect to linear measure, |g*| = 1
a.e. with respect to A.

(b) Define gy on 39U, by gy = gon (3U,) N U and g = g* on
(3U,)\U. Then the harmonic extension of g, to U, equals the restriction g,
of gto U,. We can also assume that |g;| = 1 on (QU,)\\U.

Since |g| > t on U, we have from Jensen’s inequality ([6] page 33-34)
and (b) that the harmonic extension of log|g; | to U, equals log|g, | = log|g|-
But if {w,} C U converges to z,, we get that log|g, (w,)| — 0 since z, is
regular for the Dirichlet problem for U,. Since g, = g in U, this completes
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the proof that (iii) = (ii). The claims (a) and (b) above are easy to justify
using well known theory about harmonic measure and algebras of analytic
functions. A convenient reference is the introductory part of [7]. (See in
particular Lemma 2.2 and Lemma 4.4 in [7].)

We shall now prove that (*) holds for all the Hardy spaces H? (D), 0 <
p < ooand with 0 = C\ (§\\ S). We first prove a general result which may
be of independent interest.

THEOREM 2. Let A be a Banach space of functions on D with norm
N(-). Assume A contains the polynomials in z and there exists constants M ,,
n=1.12,...suchthat:

) N@lp) = M,sup {p@@)|: |zl <1 +n"}forn=12, ...

if p is a polynomial. For each z € D assume the map f— f{(z) is continuous on
A

Let S C D and assume there exists an open set 0 O D\ (S\D) such that
each g € A|s extends to a function f analytic in O such that flp € A. Then
such a function exists which even extends to be analytic in C\(S\ D).

RemMARrks. Note that (1) implies f], € 4 whenever fis analytic in a
neighbourhood of D and that we have estimates like (1) also for such
functions.

Proof of Theorem 2. Denote by A4, all analytic functions in 0 whose
restriction to D are in 4. We topologize 4, by saying that a sequence {f, }
€ A, converges to f € 4, if and only if N((f, — Hlp)— 0and ||f — fo||x—
0if K is a compact subset of 0.

With this topology A4, is a Frechet space and we can apply the open
mapping theorem to the restriction map A, — A|s where A|s has the
quotient norm induced from A. A|s is then a Banach space since the set of
functions in 4 vanishing on S must be closed by hypothesis. Choose an
open set 0, O DN\ (S\\D) such that 0;\ D C 0. By the open mapping
theorem there exists a constant M and constants My for each compact
subset K of 0, \.(S\\ D) such that each g in the unit ball of 4|5 extends to »
€ A, such that

(i) Nhp)<M

(i) |k < Mgon Kif K C O\ (S\\ D) is compact
Now redefine k by setting & = 0in C\\0,. When we in the rest of the proof
of Theorem 2 claim that a property holds independent of &, we shall mean
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that this property holds for all 2 € A, satisfying (i) and (ii) as above and
extended to C as above.
We can and shall assume 0, has the following property:

(2) C\0; is connected and there exists a constant L such that each z €
C\0, can be connected to a point in S by an arc y, C C\0, such that
(length of y,) < L dist (z, S\\D).

With the notation as above the following lemma completes the proof
of Theorem 2:

LeMMA 1. Given t > O there exists constants Cx for each compact
subset K of C\.(S\S) such that for each function h as above we can find h,
analytic in C\(S\D) such that h, |, € A with the following properties:

@ N(h—h)p)=t _

(b) |h| = Cxon each compact subset K of C\\(S\\ D).

Indeed if Lemma 1 is proved, Theorem 2 follows by the same iteration
argument as in the proof of Lemma 1.4 in [11].

The first part of the proof of Lemma 1 is very similar to the proof of
Lemma 3.2 in [11], but for completeness we give most of the details.

Let {K, }»=, be compact sets, {V, };>; open sets with the following
properties:

(i) K,CV,,n=12 ..

(i) V,NnD=9¢,n=12, ..

) V,NV,=9 ifjn —m| > 1

@(iv) (30,)\D = UK,

(v) For each con;pact set FC C\S\D), FN V, = ¢ ifnis
sufficiently large.

Fixn: PutK =K,, V= V,andlete = ¢, be a positive number. Let
0 > 0 be given. Then cover C by open discs A, = A(z, 8) (of radius § and
centered at z;) and choose continuously differentiable functions ¢, (sup-
ported at A, ) as in the scheme for approximation described on page 210 in
[6].

Let T, be the integral operator on L*(dxdy) defined by

T, (N (w) = }ZHME’—‘/’dxdy

w-2z oz

_ )W) + 1HM%dmy
iz —-woz
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We mention that T, (f) is analytic outside the support of ¢, and wherever f
is and that T, (f) is continuous wherever fis. Also f — T,,(f) is analytic in
the interior of the set where ¢, attains the value 1. (See on page 28—29 in [6]
for more details.)

Put G, = T, (k) where h is as above. We are only interested in those k
for which A, N K # . Assume this happensif and only if 1 = k < N.

Then » — 3= Gy is analytic near K since = G, = Tzy,, (k)and 310k =
1in a neighborhood of K. We can assume 8 > 0is so small that {z : |z — z|
=2} CVforl<k=<N.

Now there exist functions Hy, k = 1, ..., N analytic outside a compact
subsetof D, = {w: |w — z;| < 28} \0, such that G, — H, has a triple zero
in the Taylor expansion at infinity, and in our situation (since C\.0, is
connected) we obtain ||H,|| < C,||h||y where C, is an absolute constant.
(See [6], Theorem 7.4 on page 213 and the proof of it). The important fact is
that C, is independent of A.

We now list the facts which will be needed to prove Lemma 1.

(a) One can choose 8 depending only on & and dist (K, C\\ ¥) so small that
the function f = 2}(G, — H,) satisfies

S llesw < ellh]ly

and we also have || f||.c = C;||h||y where C, is independent of &. (|| f]|o
denotes ess.sup. of | f| with respect to plane measure.)
(b) The functions H, can be written as

Hy = opy(WFy 1 + Bi(h)Fy 2

where F; | and F; , both are analytic outside a compact subset of D, they
are independent of z and ||Fy. 1 ||oo + [|F 2|]eo = 20.

Here a, (1) and B, (h) are complex numbers depending linearly on &
and we have

©)) lew ()] + 1B (M)} = Gsllhlly

where C; is independent of h. (See the proof of Theorem 3.1 in [11] for
more details about this.)

The functions Fy , and F, , can now be approximated as well as we
please in C\ D, by rational functions R, ; and R, , with their polesin D, k
= 1,2, ..., Nso thatif we define

C)) ff= % Gy~ ar (B)Ryy + B(h) Ry,
k=1
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then we have

(5) ”f*“c\y < ellhll, < eCy

where Cy is a constant depending only on V. The existence of C, comes
from property (ii) of 4 listed above, and since ¥ N D = ¢.
Note that from the remark following Theorem 2 there exists a constant
" also depending only on ¥ such that from (5) we have

©) N(f*|o) < eC} ||hl]y < £C, Cy.

Let now n vary and carry out this construction with V' = V,,_;and e =
€., n = 1,2, ... . In this way we obtain functions f,*, n = 1, 2, ... with the
same properties as f* has above. We can choose ¢, independent of & such
that

(6) I flleavans + N(f*lp) < 8272)27"

where ¢ is the number in Lemma 1.
Now define »’ = h — Z,f,*. By (6) and property (iii) of {V,}, b’ has
the following property

0 Kip € Aand N(W — h)|p) <t-22

We now wish to repeat this construction with 4 replaced by 4’ and ¥,,_, by
Vo, n = 1,2, ... . We have to be a bit careful because A’ can be unbounded
in V5, for some n. But forn = 1, 2, ... it is easy to see that we can find open
sets W, C V,, such that K,, C W, and such that none of the rational
functions R, ; or Ry , used in the definition of f,*, n = 1, 2, ... has poles in
W,. But then it follows that there exists constants E,, n = 1, 2, ... inde-
pendent of 4 and A’ such that

®) W|lw, < E, for n=12, ...

We can now repeat the above construction with 4 replaced by 4’ and
Vaa-11eplaced by W, forn = 1, 2, ... . We obtain functions g,* analytic in
C\ W, in the same way as we obtained f,*.

Define h* = h — Z,f,* — =, g,* In the same way as we obtained (7)
we get

©) K p €A and N((h* — h)p) <t-2-\
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From the properties of the T,-operator mentioned above one can also
deduce that A* is analytic in C\ (S\ D) except for the poles of the rational
functions R, ; and R, , corresponding to each f,* and each g,*.

Let now K be a compact subset of C\(S\\ D) and let =, denote
summation over those n for which W, N K = ¢ and V,,_, N K = &.Itis
easy to see that there exists a constant Ex depending on K but not on 4 such
that

(10) o =3 (fs + &)k < Ex.

We conclude that our function A* satisfies almost Lemma 1. We getrid
of the rational functions R, ; and R, , by the following lemma

LEMMA 2. Suppose n > 0 is given. Let p be a rational function with
poles only at the points zy, ... , z,, in C\0,. Then there exists a function s
analytic in C\(§\ D) and an open set W C C\(S\D) such that

(i) slp € A and s — plleww + N(s — pllp) <7

(i) dist(z, S\D) < 2L max dist (z;, S\ D) for

each z € W, where L is as in condition (II) mentioned above.

Proof. 1t is clearly sufficient to prove this lemma when m = 1. We
choose a polygonal arc y = v,, as in condition (2).

Divide y into subarcs v, with endpoints z; and z, . ;, k = 1, 2, ... such
that z , , is the only common point of y, and y,,, for each k.

Choose connected open sets U, D y, for k = 1, 2, ... and rational
functions py, k = 1, 2, ... (with p = p,) with poles only at z such that

Pes1 = Pellesue + N@icsr — plp) <n27*

k = 1,2, ....Since each U, is connected and since we can assume U, N D
= ¢ this is easy to obtain. We can also assume U, N K = ¢ if k is
sufficiently large and X is a given compact subset of C\ (S\\ D). Since the
length of y is less than L dist (z,, S\ D) it is easy to see.that we can choose
Uik = 1,2, ... such that W = U, U satisfies (ii). But then p, converges to a
function s which satisfies our requirements.

It is now relatively easy to complete the proof of Lemma 1. Each of the
functions f,* and g,* can be written as finite sums of the form (4). (For g,*
one must replace & by #’ in (4).) The rational functions R,  and R, , are
independent of # and we have also bounds for the constants a, (k) and
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By (k) which are independent of 4. (See [3] and the remark following (5).) If
one applies Lemma 2 with care and approximate the functions R, , and
R, , by functions S, | and S , analytic in C\\(S\ D) using that lemma, we
get “new” functions f,** and g,** by replacing R, ; and Ry ; by Si ; and
Sy 2 in the expressions of the form (4) for £,* and g,*. Define then

(11 thi=h— S (fi** + g%,

Note from property (v) of {¥, } that if UD (S\\D) is open then there
exists a number N such that the poles of the rational functions R, ; and Ry ;
corresponding to f,* and g,*, must be contained in U if n = N. From this
fact and (ii) in Lemma 2 it is easy to see that the series (11) will converge
uniformly on compact subsets of C\ (S\ D). From (9) and (10) it follows
that h, will satisfy Lemma 1 if Lemma 2 is applied carefully. We don’t want
to go into further details about this.

Using Theorem 2 we shall now prove:

THEOREM 3. Assume S = {z,} C D satisfies Z,(1 — |z,|) < co. If0
< p < coandf € H?(D)|s, there exists g analytic in C\(S\ D) such that
glp € H*(D)and g = fon S.

Proof. Assume first Theorem 3 is proved for 1 < p < c0. If g €
HP (D) has no zeros in D, g has a k’th root for some integer & such that kp >
1. By assumption we can find fin H* (D) which interpolates this k’th root
on S and extends to be analytic in C\(S\\D). But f*|, € HP(D) and
interpolates g on S. Since an arbitrary function in H? (D) can be written as
the sum of two functions in HP (D) with no zeros in D, ([4], page 79)
Theorem 3 will be true for all p > 0if it holds for 1 < p < oo. By Theorem
2 we need only prove the following for 1 < p < oo:

(***) There exists an open set 0 O DN\ (S\ D) such that each f in
HP (D)|s extends to a function h analytic in 0 such that h|, € HF (D).

If p = oo this is just the result (*) proved by Detraz [3]. Her methods
seem to work also if 1 < p < oo, but some additional results from the
theory of HP-spaces are needed. We give here a different proof for1 <p <
oo,

We first need an approximation result for H? (D) similar to Lemma 3.2
in[111.If f € H?(D), 1 < p < o0, || f||» denotes its norm in H? (D).
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LeMMA 3. Assume 1 < p < co. There exists a constant C, depending
only on p such that for each ¢ > 0 and each relatively closed set F C D we can
find an open set 0 O D\ (F\ D) with the following properties:

Given f € HP there exists g analytic in O such that g|, € HF and
(@) sup{|flz) — g(2)]. 2 € F} <]l fll,,

® lghll-=< G Ifl, )
(c) for each set K C 0 with dist(K, F\ D) > 0 we have sup{|g(z)|, z € K}

< Ck|| f||, where Ck is independent of f.
To prove Lemma 3 it is convenient first to establish the following:
LemMMA 4. Assume 1 < p < oo and f € H? (D). If ¢ is a measurable

function on the unit circle T we define

Sef(z) = —21; "16* Z Ref(e®) p(e®) do
- e V4

if z is outside the closed support supp @ of @. Assume 0 < @ < 1.
IfK C Cand dist(K, supp ) > 0 we have sup{|Sef (z),z € K} = M,
dist(K, supp @)~ || f||p where M , is a constant depending only on p.

Proof of Lemma 4. Since we on T have Re S¢f = ¢ Ref, Lemma 4 is
an immediate consequence of a well known theorem on M. Riesz ([4], Thm.
4.1, page 54) and H®lder’s inequality.

Proof of Lemma 3. We choose open plane sets V;, j = 1, 2, ...
satisfying:

(i) TN\FcC ufyy,

(i) ¥n V~_<Z>1f|z—j|>1

(iii) Fﬂ Vi,=¢forj=12,.
and (iv) if K C C\(F\D)is compact there are at most finitely many j
suchthat K N V; # ¢.

We also choose functions ¢; € C*°(T) such that 0 < ¢; < 1, suppg; C
Vyand 2%, = 1on T\ F.

Givenf € H' weputf; = Sg;(f),j = 1,2, ... where Sg;(f)is defined
asin Lemma 4. From the arguments used to prove Lemma 4 it is easy to see
that we can choose numbers r; € (0, 1), j = 1, 2, ... independent of f'such
that the functions h; : z — f(r;z) satisfies

(1): sup{|fi(2) — kj(2)|:z € C\V;} <e&27/||f||, for j=12,....
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Define g = f — =72, (f; — ;). By (1), (a) in Lemma 3 is valid.
Consider a point w € T\ F. There exists by (i) and (ii) a number k and a
disc A(w) centered at w such that A(w) N V; = @ ifj & {k, k + 1}.

Write

g=(~fi=fir)+ M+ )+ Y B—f)
=F + F K+ F J=k k+1

say. Here F, can be written as Spf where ¢ = 1 — @, — ¢, must have
compact support disjoint from A(w). So F, is analytic in A(w) and by
Lemma 4 sup{|F,(z), z € Aw)} =< C,||f||, where C, depends only on
dist(supp @, A(w)). Clearly also F; is analytic in A(w) and by (1) sup{|F3 (z)|,
z € Aw)} < ¢| f|,- Putz = max{ry, 7,1 }. Then F,is analyticin {z : |z| <

')

Define D(w) = A(w) N {z: |z} < (1 + ¢7')27'}. Again by Lemma 4
we obtain sup{|F,(2)|, z € D(w)} < C,|| f||, where C, depends only on ¢.

Let D; = D(w;),j = 1,2, ... denote a locally finite covering of T\ F by
such sets. We define 0 = D U (U, D).
To verify (c) in Lemma 3 let K C 0 have positive distance from F\ D.
Then we can write K = K; U K, where K, is a compact subset of D and K,
C U{D,for some number N. It is easy to verify (c) on K| and K, separately.
It remains to verify (b). Consider the point w € T\ F again. We have
[Re g0w)| < el| fllp + (LW + s W)

IA

& + su w + su w
”f”p 0<I'I<)1!fk( )[ 0<’31|fk+1( )l

IA

elfl, +2 50 u(rw) = el + n(w)

where u is the harmonic extension to D of | .
Finally let w € F\ D. We can clearly assume 7; N rz = ¢ for all j, all
z € F\Dandallr € (0, 1). But this implies

[Re gw)| = &l fl, + [Re f(W)].

By a theorem of Hardy and Littlewood |||, =< 4, || f||, where 4, depends
only on p. But then ||Re g||, < K, || f||, where K, depends only p and by the
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theorem of M. Riesz used in the proof of Lemma 4, (b) follows. The
Hardy-Littlewood result is in [4, Thm. 1.9, p. 12].

To complete the proof of the above claim about H? (D) we need a
result similar to (**) for H? (D) when 1 < p < co.

We need some notation. Let I' be a simple closed rectifiable curve and
denote by Or the bounded component of C\T. Let p denote the arclength
measure associated with I. So p(E) is the length of E N T for each Borel set
E.If 1 < p < oo, H? (T') denotes the closure in L (u) of the polynomials in
z. The functions in H”(T') can be extended to analytic functions in O by
Cauchy’s integral formula and we shall assume them extended in this way.

LeMMma 5. Let S = {z,} C D satisfy Z,(1 — |z,|) < co. Then there
exists a contour T such that Oy\(S\S) C D, Oy O S and H’' (T)|s =
H? (D)|sfor1 < p < co.

Proof. This result is essentially contained in Carleson’s lemma ([4],
page 203) and the proof we give has all its basic ideas contained in the proof
of Carleson’s lemma. Let B(z) be the Blaschke product corresponding to S
and let By consist of the first N factors in the product defining B. Let

Si = {z € D:|B(z)| < 2~'}. Then §,\S; = S\5.

Let now T\ 3 consist of the disjoint arcs J,, n = 1,2, ... . For each n
we choose a simple arc I, C. D\ {0} with endpoints equal to the endpoints
of J, and with the radial projection onto T equal to J,,. We wish to do this in
such a way that the arclength measure associated with U, I, is a Carleson
measure. (See [4] page 157 for definition.) We indicate one way of doing
this. Assume for simplicity that J, = {¢? : —a < 8 < a} for some a € (0,
7). Let {a;} C (0, a) and {r,} C (1 — a/=, 1) be monotonic sequences
converging to a and 1 respectively. Assume that R, = {re?: || < a;, r <
r <1} isdisjoint from S;and 1 — r, < a — a,forallk. Define [, =D N 9
(Ug Ry). Itis easy to verify that {I,} has all the required properties.

DefineT' = (§\\S) U (U, 1,). Fix an integer N and choose f € H? (T').
As in [4] page 204 and 139-140, we get that the function gy in H? (D) of
minimal norm which interpolates fon {z;, ..., zy } must satisfy

(1) llgnll, < 1@7)~" f ch(2) f(2)(Bn(2)~'dz]

for some h € H?(D) of norm one and where p~! + ¢! = 1. Since |By| =
|B| = 27" on T and the arc length measure associated with T' N D is a
Carleson measure we get by using Holder’s inequality that
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12) ligl> < Cill fllPe Where Cy

depends only on I'. (See Theorem 9.3 on page 157 in [4].) A subsequence of
{gn ) converges uniformly on compact subsets of D to a function g which
satisfies Lemma $.

The result (***) for 1 < p < oo is now easy to prove. It follows from
Lemma 3 and Lemma 5 in the same way as we proved (ii) = (i) in Theorem
L.

We finally apply Theorem 2 to a result of Vinogradov [12]. Againlet S
= {z,} C D. We shall need the following condition on S:

© inf J] |Z2=2%| > 0.
k n=1 |1-7Z,z
n+k k=n

This is a condition which is necessary for solving many interpolation
problems. See [2], [13] and [14] for example.
Denote by BV, all sequences {a, },2; such that =° |a,, — a,| < oo.

BV, is a Banach space with norm
Hantnaill = lag] + Yy, - a,l.
1

We also let B, denote the Banach algebra of all analytic functions in D
whose derivative belongs to H' (D). The norm on B, is given by N(f) =
1£1lo + 1 1.

If S = {z,}.21 C D satisfies (C) and converges to 1 non-tangentially,
(which means that |1 — z,| < M1 — |z,]), n = 1, 2, ... for some A > 0)
Vinogradov proved that B, |s = BV;.

Our result is:

THEOREM 4. Assume S = {z,} satisfies (C) and converges to 1 non-
tangentially. For each {a,} € BV, there exists f analytic in C\ {1} inter-
polating {a, } at {z, } such that fis bounded in {w: |1 + w| <2} andf’|p €
H'

Proof. We first prove that each g € B,|s extends to a bounded
analytic function A in {w: |1 + w| < 2} with #'|, H".

Define ¢(z) = (1 + 2)/2, z € C. By the theorem of Vinogradov it is
sufficient to show that { #(z,)};2 satisfies (C). (Observe that f € Bj=>h =
fo @ B,y). Clearly w, = ®(z,) — 1 non-tangentially.

By a recent result of Kam-Fook Tse [12], Theorem 1, page 352, it is
sufficient to find ¢ > 0 such that
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inf | ——-

Lj

2t

Since {z,} satisfies (C) this is easy and we omit it. But then we can deduce
Theorem 4 from Theorem 2.

Final remarks. We now give the example showing that (iii) in
Theorem 1 may fail. Let R = {z =x +iy:0<x <1, -1<y<1l}and
defineR, = {z=x +iy: 27" 2= x <271 |y >¢,}forn =12, ..
where {e,} is a sequence to be specified. Let I, = (27>"% 273"~?) and
choose a finite set of points S, C I, with the following property: If fis an
analytic function vanishing on S, and bounded by one on the rectangle D,
={z=x+iyix€L,|y|<1}then|fQ "3+ i) <nlifjy]<1 -
n~'. Letnow U = R\U,R,and § = U, S,. Clearly S\ S = {0} and if f
€ H®(U) then f (2™ + iy)— 0 as n— oo if | y| < 1. It follows that II(S)
includes the segment {x = 0, — 1 < y < 1}. It only remains to show that
{e, } can be choosen such that S is the zero set of a nonzero function % in
H>(U). Let g, correspond to S, and D, in the same way as g corresponded
to S and V in the proof of Theorem 1. Define g, = 1 outside D,. Using
Vitushkin’s scheme for approximation ([6], page 210) it is easy to find
functions h, such that 4, g, is analytic near the endpoints of I, h, is analytic
where g, is and |l — h,(2)] < 27" if dist (z, I,) is less than n=' 27"
(Approximate log(g,) near the endpoints of I, and take exponentials and
call this function 4,.) Moreover sup{|h,(z)|, z € C} < A where 4 is an
absolute constant. It follows that the infinite product consisting of all the
factors ,g,, n = 1,2, ... is analyticin U, D, and in a neighbourhood of the
closure of I, forn = 1, 2, ... . So if the ¢, tend sufficiently rapidly to zero, h
will be in H* (U) and S will be zero set of A.

The author wishes to thank the referee for some very useful criticism
and for the example related to Theorem 1. He also wishes to thank Dr. A.
M. Davie for some useful communication.
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