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CONTINUOUS SPECTRA OF A SINGULAR SYMMETRIC
DIFFERENTIAL OPERATOR ON A HILBERT SPACE

OF VECTOR-VALUED FUNCTIONS

ROBERT ANDERSON

Let H be the Hubert space of complex vector-valued
functions /: [α, oo) -» C2 such that / is Lebesgue measurable

S CO

f*(s)f(s)ds < oo. Consider the formally self
α

adjoint expression c(y) = — y" + Py on [α, oo), where y is a
2-vector and P is a 2 x 2 symmetric matrix of continuous real
valued functions on [a, oo). Let D be the linear manifold
in H defined by

D — {f&H: f, f are absolutely continuous on compact
subintervals of [α, oo), / has compact support
interior to [α, oo) and c(f)εH} .

Then the operator L defined by L(y) = c(y), yεD, is a real
symmetric operator on D. Let Lo be the minimal closed
extension of L. For this class of minimal closed symmetric
operators this paper determines sufficient conditions for the
continuous spectrum of self adjoint extensions to be the
entire real axis. Since the domain, DQf of LQ is dense in H,
self adjoint extensions of LQ do exist.

A general background for the theory of the operators discussed
here is found in [1], [3], and [5]. The theorems in this paper are
motivated by the theorems of Hinton [4] and Eastham and El-Deberky
[2]. In [4], Hinton gives conditions on the coefficients in the scalar
case to guarantee that the continuous spectrum of self adjoint ex-
tensions covers the entire real axis. Eastham and El-Deberky [2]
study the general even order scalar operator.

DEFINITION 1. Let L denote a self adjoint extension of Lo.
Then we define the continuous spectrum, C(L), of L to be the set
of all λ for which there exists a sequence (fn) in D2, the domain
of L, with the properties:

( i ) HAH - 1 for all n,
(ii) </w> contains no convergent subsequence (i.e., is not com-

pact), and
(iii) | | ( L - λ ) Λ | | - + 0 as n~* ^
For the self adjoint operator L we have the following well-

known lemma.

LEMMA 1. The continuous spectrum of L is a subset of the real
numbers.
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Proof. Let λ = a + iβ where β Φ 0. Then for all /eZ>2 we
can see by expanding | | (£ — λ)/||2 that

which implies XgC(L).

THEOREM 2. Let L(y) = y" + P ( % for a^t < oo, where P(t) =

I oY£) /9fr) 1 w^ere ^(*) ^ s positive and has two continuous derivatives.

Let g(t) > 0 be one of a(t) or β(t)9 where both a and β are con-

tinuous on [a, oo) and g(t) has a continuous derivative. Then

if for some sequence of intervals {Am} where Am S [&, °°)> -4-m ==

[cm — α w cTO + am] and αm—> oo, ί/?,̂  following are satisfied:
( i ) min {g(x)} — oo,

(ii) ( ((9f(x)Y)K9(x)) dx = o(am),

(iii) ( g(x)dx = o(a3

m),

(iv) ( γγ(x)Ydx = o(oj f

conclude that C(L) is (— oo, oo).

Proof. We will establish the theorem for #(£) = α(£) since the
other case follows in exactly the same way.

Note that to prove the theorem then we need only show that
for any real number μ there is a sequence </m> in D(L) such that
\\fm II = 1, Λ — 0 a.e., Λ vanishes outside A, and || (L - μ)fm \\ — 0
as m —* oo.

Let </&m> be defined by

- {(« ~ O K ) 2 ] 3 for I ί - c,I ̂

l for I t - c ^

Then define </»(«)> by

( 2 )

where Q1? Q2 are real functions with two continuous derivatives and
δmi, bm2 are normalization constants.

To find I δm I = i/δ2

w l + δ2

TO2 we have

μ-(-)

'(2α
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Hence for some positive constant K

( 3 ) | δ m | 2 -

and

Hence

fm —> 0 as m •

where Kr does not depend on t or m.
Since fm e D(L), we have

(L - μl)fm = fZ + (P - μl)fn

7/ w 2 Ί

OS -

+ (α

+ 08
(L - μl)fm =

Now if Qi is chosen so that

and δm2 is chosen to be identically zero we have that

VI + 2iQ[bmle^h'm(L - μl)fm =

By the way Qt is chosen,

o

+ £II +

Now, by (ii)

a' -f.\

By condition (iv),

II7/. || ^ ( ^ ί I 712)1'' = 0(1) as

Next, by (iii), (3) and (6)

as

m > &o .
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m > oo .r M (α - ^))1 / 2 - o(l) as

Then, by (3), (6), and the Cauchy-Schwartz Inequality

G \ 1/2/ f \l/2

Am / \jAm /

= o(l) as m > oa .

Hence it follows that

\\{L~μI)fm\\ >0 as m

which is what we were to show.

COROLLARY 3. If P(t) = \*ζ ^ Π on some half-line d£t < oo

Theorem 2 and

( i ) α, c > 0 wΐέft <5 < 0, 0 < σ < 2, or
(i i) 6, c > 0 wΐίΛ, δ < 0 , 0 < > 7 < 2

C(L) = (— oo, CXD) .

THEOREM 4. Suppose L(y) is as in Theorem 2, where 7(0 is
positive and has two continuous derivatives. If for some sequence
of intervals {Am}, where Am = [cm - am, cm + αm], Am S [α, c>o)
αm—* oo, ί/̂ β following are satisfied:

(i ) min

(ii) ( ((Y(t)Y)/(l(t)) dt = o(am),

(iii) \ Ί{t)dt - 0 ( 0 ,

(iv) ( a\t)dt and \ β\t)dt are o(am),

m m

then C(L) = (-oo, oo).

Proof. In the proof of Theorem 2 choose Q[2 = Q? = 7(ί) - μ,
so that fmί - /m 2. Then Q[' - Q'2

f = (Y(t))/(2V7(t) - μ) and applying
conditions (i) — (iv) as before where g(t) is replaced by 7(0 we get
that || (£ - μl)fm\\-+θ as m-> oo.

COROLLARY 5. Let P(t) = K J*Π in Theorem 4. I / O 0,

0 < δ < 2 and σ, η < 0 then C(L) = ( - oo, oo).
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Let H be the Hubert space L2([a, oo), w) of complex vector-valued

functions /: [α, oo) — C 2 such that | | / | | 2 = Γ w(f*f) < <*>, where w is
Ja

positive and weC{2)[a, oo). Let l(y) = (l/w)y" + Py. Then define Lo

as before and let L be a self adjoint extension of LQ.

THEOREM 6. Suppose there is a sequence of intervals, Am £

m[α, oo), Am = [cm — αm, cm + αm] where am—» oo

( i ) ί (a(wΎ)lv? - o(| am I), ί a/w - o(| ̂ m |)3, min a(t)
JAm }Am teAm

ί (w'Y/w° = o(| A . I), ( (w"Jwγ = o I),

), and

(iv)

as m—> C(L) =

Note that (ii) implies that ( (w'/w2)2 = o(| Aw |3) by (w'/w2)2 =

(wΎ/w*Ί/w and Cauchy-Schwartz Inequality.

Proof. As is the previous theorem define

where / „ = 0 and / m l = ( J . β « Λ > - 1 "

Then again 6L = K/an and | / m l | ̂  δm^~1 / 2 = (K/(wam))112. Calculating

]

(w')a » lβw'W + iQ"\

Then (L — μl)fm = (l/w)fi[ + P/m, where the top element is

1 / i

w m m w

w + W ( W )
4

iQ^'m - w~Wh'

= £sL[-(Qγ + (or
w

—
4

Of course, the second element of (L — μl)fm is 7/w l. By choosing
(Qf)2 = (a — μ)w we have that by (i)
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t2 = O((aw)112) as t

a s ί _ c > o .

Then by the calculations above

( 7 )

w2

1 !L w l̂

w
bjw-^w'h'

Since |/m l |
2 £ K/(wam) and {QJ = (α - /*)«;,

= o(l) as m

Similarly,

by (i)

\\fnίw'\wj || g (—

By the definition of Q and fml,

by (ii) .

by(iii).

And by condition (ii),

\\fmlw~W II ̂  ( —

Since I bm |2 = iΓ/αm and | A^ | ^ iΓ ,/^,

|| bmw~^Q'h'm || ^ ((KKϊ/al) \ i^^R))1'2 = 0(l) by (i)
V jAm \ W ) I

Similarly, by the remark at the end of the theorem,

|| bmw-*»w'h'm |j ^ ((KKilO \ {w'fw-'Y = o(l) .

Since | hZ I £ KJal,

II bmw-^K II ^ ((iΓίΓί/αί.) ^ w-2)1'2 = o(l) by (ii) .

By (iv),
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l II ^ ((K/am) ^ 72)1/2 - o(l) as m

Hence, by the above calculations and (7),

\\(L-μI)fm\\ >0 as m

Since this is what we were to show, this conclude the proof.
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THE ISOMETRIES OF LP{X,K)

MICHAEL CAMBERN

Let (X, Σ, μ) be a finite measure space, and denote by
LP{X, K) the Banach space of measurable functions F defined
on X and taking values in a separable Hubert space K, such
that II F(x) \\p is integrable. In this article a characterization
is given of the linear isometries of LP(X, K) onto itself, for
1 ^ p < oo, p Φ 2. It is shown that T is such an isometry
iff T is of the form (T(F))(x) = U(x)h{x)(φ(F))(x), where φ is
a set isomorphism of Σ onto itself, U is a weakly measurable
operator-valued function such that U(x) is a.e. an isometry
of K onto itself, and h is a scalar function which is related
to φ via a formula involving Radon-Nikodym derivatives.

Throughout this paper the letter K will represent a separable
Hubert space which may be either real or complex. We denote by
< , •) the inner product in K, and by S the one-dimensional Hubert
space which is the scalar field associated with K.

A function F from X to K will be called measurable if the scalar
function (F, e) is measurable for each ee K. Then for 1 S V < °° >
we denote by LP(X, K) the Banach space of (equivalence classes of)
measurable functions F from X to K for which the norm

\\F\U = ess sup 11^0*01!

is finite. (Here || ||p denotes the norm in LP(X, K) and LP(X, S),
and || . || that in K.) If FeLp(X, K), we define the support of F
to be the set {x e X: F(x) Φ 0}.

Let {elf e2, •} be some orthonormal basis for K. For Fe LP(X, K),
we define the measurable coordinate functions fn by fjx) = (F(x), en).
Then almost everywhere we have Σ^ \fn(%) I2 < °°> &nd F^) =
Σ»/n(»)βΛ Moreover, it is easily seen that each fn belongs to
Lp(X, S).

Here we investigate the isometries of LP(X, K), for 1 ̂  p < oo,
p Φ 2. For the case in which X is the unit interval, μ Lebesgue
measure, and K — St the isometries were determined by Banach in
[1, p. 178]. In [4], Lamperti obtained a complete description of the
isometries of LP(X, S) for an arbitrary finite measure space (X, Σ, μ).

Following Lamperti's terminology, we will call a mapping Φ of
Σ onto itself, defined modulo null sets, a regular set isomorphism if
it satisfies the properties
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Φ(A') = [Φ(A)]' ,

φ(0 An) = U Φ(An) ,

and

μ[Φ(A)] = 0 if, and only if , μ(A) = 0 ,

for all sets A, An in Σ. (Throughout, A! will denote the complement
of A.) A regular set isomorphism induces a linear transformation,
also denoted by Φ, on the space of measurable scalar functions defined
on X, which is characterized by Φ(χA) — %*u), where χA is the char-
acteristic function of the measurable set A. This process is described
in [3, pp. 453-454]. The induced transformation, moreover, has the
property that it preserves a.e. convergence:

(1) if UmfM = f(x) a.e., then lim {Φ{fn)){x) = (Φ(f))(x) a.e.
n n

Now given a regular set isomorphism Φ of Σ onto itself, and
F = Σ*f«en G LP(X, K), we define Φ(F) by the equation

(2) (Φ(F))(x) = Σ(Φ(Λ))(*K .
n

For the case in which K is infinite dimensional, one must, of course,
verify that the series on the right in (2) is indeed convergent in K
for almost all x. But, for all scalar simple functions, we have
(Φ(\f\2))(x) = \Φ{f)\\x) and hence, by (1), this identity holds for all
measurable scalar functions. Thus, as || F(x) ||2 = Σ» \fJ&) I2 —

ΣίU \fn(x)\2> again using (1), we have

\Φ(\\F\\)\\x) = (Φ(\\F\mx) = Km(<p(Σ \fn\2))(x)
(3) N

 N K U l ^
N

Σ i (Φ(Λ))(a) I2 = Σ I (Φ(fn))(x) I2 - II (Φ(F))(x) ||2 .
N n=l n

Moreover, it is readily verified that the definition of Φ(F) is inde-
pendent of the choice of orthonormal basis for K.

For the case in which K is one-dimensional, Lamperti has shown
that if T is an isometry of LV(X, S) onto itself, l^p < °°, P ^ 2,
then there exists a regular set isomorphism Φ, and a measurable
scalar function h(x) such that for feLp(X, S)

( 4 ) (T(f))(x) - h(x)(Φ(f))(x) .

Moreover, if the measure v is defined by v(A) — μ[Φ"\A)\f AeΣ,
then

(5 ) I h(x) \p = dv/dμ a.e. on X .
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Conversely, given any regular set isomorphism Φ of Σ onto itself,
and a function h(x) satisfying (5), the operator T defined by (4) is
an isometry of LP(X, S) onto itself. Here we establish that the
isometries of Lp(Xf if), for any separable Hubert space if, closely
resemble those of LP(X, S), except for the emergence of a measurable
operator-valued function.

2. The isometries* We begin with a lemma whose proof exactly
parallels that of Lemma 14, [5, p. 331], with the real numbers ζ and
7] in that lemma replaced by vectors in if.

Lemma 1. Let φ and ψ be two elements of K. If 1 ^ p ^ 2,
then

and if 2 ^ p < oo,

\\ ψ + ψ \\p + || φ — ψ \\p ̂ > 2(11 φ \\p + || ψ \\p) .

If p Φ 2, equality can hold only if φ or ψ is zero.

By integration, we then obtain the following:

Lemma 2. // 1 ^ p < <χ> and p Φ 2, and if F and G are in
LP(X, if), then

if and only if F and G have a.e. disjoint supports.
Throughout the remainder of this article we assume that p is

a given real number with l ^ p < ° ° , p Φ 2. We define q to be that
extended real number such that 1/p + 1/q = 1. (The usual conven-
tions are in effect.) T will denote a fixed isometry of LP(X, K) onto
itself.

We will repeatedly use the map T* ~ι defined on Lq(X, K) by

\(F(x), {T*~ι{G)){x))dμ = [((T^iFMx), G(x))dμ ,

for FeLp(X, K), GeLq{X,K), which is, almost, the Banach space
adjoint of T~\ For the dual space of LP{X, K) is L\X, if*), where
if* is the dual of K, [2, p. 282]. And if σ is the usual conjugate-
linear isometry of K* onto K, σ induces a conjugate-linear isometric
mapping of Lq(Xt K*) onto Lq{X, K), which we shall also denote by
σ, and which is determined by (tf(G*))(aO = σ(G*(x)), G* e Lq(X, if*).
Our map Γ*^1 is then actually σoT^^oσ"1, where T^1 is the true
Banach space adjoint.
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For any element e e K, we denote by e that element of LP(X, K)
which is constantly equal to e. If e Φ 0, it is an easy consequence
of (6), and of the fact that T is onto, that the support of T(e) must
be equal to X a.e.

LEMMA 3. Let e be any vector in K. If A is any measurable
subset of X, then T(χAe) is equal to T(e) on the support of T(χAe).

Proof. The functions χAe and χA,e have disjoint supports, and
thus (6) holds if F and G are replaced, respectively, by χAe and χA>e.
Since T is isometric, it follows that (6) also holds for T(χAe) and
T(χΛ^)f and hence that these latter two functions have disjoint sup-
ports. Since T(e) = T(χAe) + T(χA,e), the desired conclusion follows.

LEMMA 4. Let e be an element of K with \\e\\ = 1, and let F =
T(e). If E is the vector function defined a.e. by E{%) - F(x)/\\ F(x) ||,
then T*-\e) is that element of Lq(X, K) determined by {T*~ι(e)){x) =
\\F(x)\\*-ιE(x) for almost all xeX.

Proof. We have \\F\\P = || e \\P - [μ(X)]llP. Moreover, as Γ*"1 is
an isometry of Lq(X, K) onto itself, we also have || T*-X(e) \\q = [μ{Xψ\
this latter equality holding even in the limiting case q = co, since
| | e | L = l .

Let G = ^""'(e), and define the vector function H by H(x) =
G(^)/|| G(α ) || if & belongs to the support of G, and ίφ;) = 0 otherwise.
(If q — oo, we do not yet know that the support of G is equal to
X a.e., although this fact can readily be established by a separate
argument involving extreme points.) We then have

μ(X) =

= \ (F(x), G(x))dμ

( 7 )

= γ\F(x)\\\\G(x)\\(E(x),H(x))dμ

S \ II F{x) || || G(x) || dμ£\\F\ \, \G ||, =

Hence we must have equality throughout in (7). Thus, by a known
result for scalar functions, [5, p. 113], for p > 1 the equality

G(x)\\dμ=\\F\\P\\G\\q implies that^\\F(x)

a.e., so that || G(x) || = \\F(x) \\'~x a.e. If p = 1, the equality
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F(x) !| II G(x) || dμ = μ(X) = \\F\\, implies that ||G(a?)|| - 1 = | | 2 W ~ ι

a.e. in this case too. Finally, the equality

F(x) || || G(x) || <E(x), H(x))dμ = J || F(x) || || G{x) \\ dμ

yields the fact that H(x) = i?(#) a.e., which completes the proof of
the lemma.

LEMMA 5. Let e and φ be two orthogonal elements of K, each
with norm one, and let Fe — T(e) and Fψ = T(ψ). If Ee and Eφ are
the vector functions defined a.e. by Ee(x) = Fe(x)/\\ Fe(x) \\ and Eψ(x) =
Fφ(x)l\\Fφ(x)\\, then (Ee(x), Eφ(x)) = 0 a.e.

Proof. Let A be any measurable subset of X. Then Fe =
χAFe + χA'Fe, and since the two functions on the right have disjoint
supports, (6) holds when F and G are replaced, respectively, by χAFe

and χAFe. Hence (6) also holds for T~ι{χAFe) and T~ι{χA,Fe)y and
these latter functions thus have disjoint supports. Since e =
T~\χAFe) + T-ι(χA,F.)9 if we let B denote the support of T~\χAFe),
it follows that T(χBe) = χAFe.

We then have, using Lemma 4,

0 = j <XBe, 9>dμ =

= \<XA\\ F.(X) |ί E.(x), || Fv{x) \Y~ι Eφ{x))dμ

|| F.(x) || || Fφ(x) [I""1 (Ee(x), Eφ(x))dμ .

Since || Fe(x) \\ \\Fφ(x) H2'"1 is an a.e. positive element of Lι(X, S), and A
is an arbitrary measurable subset of X, we must have (Ee(x), Eφ(x)} =
0 a.e. on X.

LEMMA 6. For any element e of K with norm one, let Fe and
Ee be defined as in the previous lemma. Then for feLp(X,S),
(T(fe))(x) = f(x)Ee(x) for some scalar function / , and the mapping
f{%)-*({T{fe)){x), Ee(x)) is an isometry of LP(X, S) onto itself.

Proof. If A is any measurable subset of X, we know from
Lemma 3 that (T(χAe))(x) is equal to 11 Fe(x) \\ Ee{x) on the support of
T(χAe). It thus follows that for any simple function feLp(X,S),
(T(fe))(x) = f(x)Eβ(x), where / is a function in LP(X, S) with the
same norm as /. For arbitrary feLp(X, S), let {fk} be a sequence
of simple functions converging to / in the norm of LP(X, S). Then
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lim j || (T(fke))(x) - (T(fe))(x) ||* dμ = 0 .

Hence \\{T{fke)){x) — (T(fe))(x)\\p tends to zero in measure, and so a
subsequence tends to zero a.e. That is, (T(fk.e))(x) tends to (T(fe))(x)
almost everywhere.

Now, for almost all x, the elements of K given by (T(fkje))(x),
j = 1, 2, lie in the one-dimensional (hence closed) subspace of K
spanned by Ee(x), and thus (T(fe))(x) must lie in this subspace. That
is, (T(fe))(x) = f(x)Ee(x), for some feLp(X, S) with | | / | | P = | | / | | , ,
and the given mapping is an isometry of LP(X, S) into itself.

It is readily seen that the map is, in fact, onto LP(X, S). For
suppose we are given a function of the form f(x)Ee(x), where
fe LP(X, S). Incorporate e into an orthonormal basis for K — say
e = eιy where {en: n = 1, 2, •} is such a basis. Let F(x) — Σnfn{x)en

be the element of LP(X, K) which maps onto f(x)Ee(x) under T.

Now F0(x) = Σ . « / . ( Φ . belongs to LP(X, K), where K is the
Hubert space which is the closed linear span of {en: n ^ 2}, and vector-
valued simple functions of the form G = Σj=i XA^ ΨS e %> a r e dense
in L*(X, K). By Lemmas 3 and 5, for all such G, <(Γ(G))(α?), Ee(x)) = 0
a.e., from which it follows that ((T(F0))(x), Ee(x)) = 0 a.e. Thus as
f(x)Ee(x) = (T{fγe))(x) + (T(F0))(x), with (Tif^ix) pointwise a scalar
multiple of Ee(x) and (T(F0))(x) a.e. orthogonal to Eβ(x), we conclude
that T(F0), and hence FOf are both equal to the zero element of
LP(X, K). It follows that the mapping given by the lemma is indeed
onto LP(X, S).

LEMMA 7. Let {en: n = 1, 2, •} be some fixed orthonormal
basis for K, and for each n define Fnj En by Fn = T(en), En{x) =
Fn(x)l\\Fn(x)\\. Then there exists a regular set isomorphism Φ and
a fixed scalar function h(x) defined on X and satisfying (5), such
that for all n = 1, 2, and for all feLp(X,S), (T(fen))(x) =
h(x)(Φ(f))(x)En(x)>

Proof. By Lemma 6 and Lamperti's result for scalar functions,
we know that if em and en are two elements of the given orthonormal
basis and if feLp(X, S), then (T(fem))(x) = hm(x)(Φm(f))(x)Em(x) and
(T(feMx) = K(x)(ΦΛf))(x)En(x), where λj») and hn(x) are scalar
functions defined on X, and ΦTO, Φw are linear transformations induced
by regular set isomorphisms. We wish to show that hm — hn and
Φm = Φn modulo sets of measure zero.

If A is any measurable subset of X, we have

(8) (T0Uβm))(x) = K(x)χΦmU)(x)Em{x) ,
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and

( 9 ) (T(χAen))(x) = M * » W

Consider χA(em + en)/VΊϊ. If we let Fm,n = T[(em + eJ/VΊΪ], and define
J E ^ by ^^(α?) = Fmιn(x)/\\Fm,n(x)\\, again by using Lemma 6 and
Lamperti's result, we conclude that there exists a scalar function
hmtn and a regular set isomorphism ΦW ι Λ such that

(10) (T[χA(em + en)/vΎ])(x) = hmJx)χΦm>nU)(x)Em>M .

Now, using the linearity of T, we have

(11) - (Fm(x) + F.(a?))/|| ί ^ s ) + Fn(x) \\

= (|| Fm(z) II Em(x) + || i^(aθ || En(x))/\\ Fm(x) Hh

And, combining (11) with Lemma 4, we have

(T*- ι[(β. + Ύ

(12) - || (Fm(x) +

+ || FM || JS?.(a?))/|| F,(α) + Fn(x) \\ .

Also, using Lemma 4 and the linearity of ϊ7*"1, we find that

U3) ( Γ *" ι Kβ- + O A ^ ] ) ( « ) = || Fm(x)

+ \\FJi

Since Lemma 5 shows that 2£w(α0 and JE (̂O?) are a.e. linearly inde-
pendent, we conclude from (12) and (13) that

2'1-'"" || Fm{x) + FM | | - 2 1 ! Fm(x) || = || F,(aj) H ^ V ^ T , a.e.,

from which it follows that \\FJp) + FM II = V"2~|| Fm(α?)|| a.e. Simi-

larly, ||jPm(a?) + i^(a?) || = V~2\\FM\\ a.e., so that (11) then gives

Em.M = EMt^Z + EMfi/~2 . _
Thus from (10) we conclude that (T[χ^(em + eH)/τ/2 ])(«) =

hmtMχφM(A)(x)Em(x)/V~2 + hUtMXφM,nu>(x)En(x)/vΎ. But the line-
arity of T, together with (8) and (9), implies tha,t(T[χΛ(em+en)/V 2 ])(x) =
hMχΦmu)(x)Em(x)/VΎ + hn(x)Xφnu)(x)EM/VΎ. Hence, once again
employing the a.e. linear independence of EJx) and En(x)f we find

that hm(x)X mu)(x) = hm,MXφMu)(v) = Λ»(»)Z W(̂ >(«) a e S i n c e t h i s

equality holds for every measurable set A, we can conclude that
hn = hm and Φn — Φm, modulo sets of measure zero.

Thus, if we let Φ = Φ, and h = fcx, then for all / e LP(X, S) and
all n, we have (Γ(/βΛ))(a?) = h(x)(Φ(f))(x)En(x) a.e., and fc = ht satisfies
(5) by Lemma 6. This concludes the proof of lemma.
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A function U defined on X and taking values in the space of
bounded operators on K is called weakly measurable if (U(x)e, φ) is
measurable for all e, φeK.

THEOREM. Let T be an isometry of LP(X, K) onto itself, and
let {en: n = 1, 2, } be some fixed orthonormal basis for K. Then
there exists a regular set isomorphism Φ of the σ-algebra Σ of measur-
able sets onto itself (defined modulo null sets), a scalar function h
defined on X satisfying (5), and a weakly measurable operator-
valued function U defined on X, where U(x) is an isometry of K
onto itself for almost all xeX, such that for FeLp(X, K),

(T(F))(x) = U(x)h(x)(Φ(F))(x) ,

where Φ(F) is defined by (2). Conversely, every map T of this
form is an isometry of LV(X, K) onto itself.

Proof. If T is of this form, then it follows from (3) and the
fact that U(x) is almost everywhere an isometry, that

\\U(x)h(x)(Φ(F))(x)\\ = \h(x)\\Φ(\\F\\)\(x), for FeLp(X,K),

so that T is norm-preserving by Lamperti's result for the scalar
case. The fact that T maps LP(X, K) onto itself can readily be
established, for example, by noting that since Φ is onto, and U(x)
is a.e. an isometry of K onto K, no nonzero element of Lg(X, K)
can annihilate the range of T.

Now suppose that T is any isometry of LV(X, K) onto itself. We
define U(x) on the basis vectors en of K by U(x)en = En(x), where
the En are determined as in Lemma 7, and then extend U(x) linearly
to K. Since by Lemma 5, {En(x): n — 1,2, •} is almost everywhere
an orthonormal set in K, U(x) is an isometry of K into itself a.e.,
and if K is of finite dimension, the remaining assertions of the
theorem then follow immediately from Lemma 7.

Thus we may as well assume that K is infinite dimensional. Let
F(x) = YAnfn{x)en belong to LP(X, K). Then the sequence {FN}, where
FN{x) = Σ»=i/n0*0eΛ, converges a.e. to F and is dominated by | | ί Ί | .
Hence by the dominated convergence theorem, || FN — F\\p —>0. We
thus have T(F) = lim^ T(FN) in LP(X, K), and so at least a subse-
quence of the T(FN) converges a.e. to T(F). But we know from (3)
and the fact that U(x) is almost everywhere norm-preserving that
U(x)h(x)(Φ(F))(x) = \imNU(x)h(x)(Φ(FN))(x) = limN(T(FN))(x) exists in
K for almost all xeX, and thus it follows that (T(F))(x) =
U(x)h(x)(Φ(F))(x), as claimed. Finally, since the elements of
T(LP(X, K)) take their values a.e. in the range of U(x), and since
T is onto, U(x) must map K onto K for almost all xeX.
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3* Remarks and problems* ( i ) Throughout we have assumed
that the measure space is finite, but the theorem is also valid for
tf-finite measure spaces, and the generalization to this latter case is
largely straightforward. We say "largely" only because there are
a few modifications (other than the obvious ones) of statements and
proofs necessary for the σ-finite case, whose necessity might easily
be overlooked. For example, if the space is σ-finite, a suitable
reformulation of Lemma 4 is the following:

Let A be a measurable subset of X with finite positive measure
and let e be an element of K with \\e \\ — 1. If T(χAe) = F, and if
E is that vector function defined by E(x) = F(x)/\\F(x)\\ if x belongs
to the support of F, and E(x) == 0 otherwise, then T*~ι(χAe) is de-
termined by (T^iχ^Xx) = \\F(x)\\p-Έ(x), for almost all xeX.

The proof of this fact is analogous to that given for Lemma 4,
provided p > 1. However, in the case p = 1, additional arguments,
unnecessary if μ{X) is finite, have to be introduced.

(ii) For a certain class of measure spaces, the set isomorphism
Φ may, of course, be repleaced by a measurable point mapping
[5, Chap. 15].

(iii) In [4], Lamperti provides a description of all isometries of
LP(X, S) into itself, not just the surjective ones. One may ask if
such a description is attainable in the vector case. The type of
argument needed would presumably differ substantially from that
used here, since we often rely on the existence of the mapping T*"1

from Lg(X, K) to itself.
(iv) Can a reasonable description of the isometries be obtained

if the Hubert space K is replaced by a suitable class of Banach spaces?
In particular, it might be of interest to see if K can be replaced by
an arbitrary finite dimensional Banach space.
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TWO RELATED INTEGRALS OVER SPACES
OF CONTINUOUS FUNCTIONS

R. H. CAMERON AND D. A. STORVICK

In this paper the authors evaluate Yeh-Wiener integrals
(which apply to functionals of a variable continuous
function of two arguments) in terms of multiple Wiener
integrals (which apply to functionals of several variable
continuous functions of one argument). First somewhat
specialized cases are given where the multiplicity of the
Wiener integral is finite, and then quite general Yeh-Wiener
integrals are evaluated in terms of limits of n-folά Wiener
integrals as n->oo.

Introduction* James Yeh [5]1 defined Wiener measure in the
space C2[S] of continuous real valued functions of two variables
defined on the square S O ^ s ^ l , 0 <. t <>1 and vanishing whenever
s or t equals zero. More recently James Kuelbs [3, 4] extended
Yeh's integral to integration over C2[X], the space of continuous real
valued functions on any compact subset X of the plane. Kuelbs
also defined a similar integral over spaces of functions of several
variables and even infinitely many variables [4]

In the present paper we shall consider integration over C2[X]
in the case where X is the rectangle R = {(s, t) \ a ^ s <;&, a <; t <; β}.
We note that this is closely connected with Yeh's integral over C2[S]
and that Kuelbs has given a formula for relating integrals over
C2[R] with integrals over C2[S], [3, p. 18].

Yeh's measure as applied to the space

C2[R] Ξ {&(., •) I Φ, *) = Φ, a) = °, Φ, t)
continuous for α ^ s ^ δ , a <^ t <^ β}

is defined as follows. Let a = s0 < ^ < < sm = 6, and a - ί0 <
tt < - < tn — β be subdivisions of [α, b] and [a, β] respectively and
let — co <ς pj k <; Qj Jc ̂  i co be given for j = 1, , m and k —
1, •••, n. Then

I = {x e C2[R] I Pj>k < x(sh tk) ^ QStk for j = 1, , m, k = 1, , n}

will be called an "interval" in C2[R], He defines the measure of the
interval / by

1 See also reference to Kitagawa in [5].
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m(I) = π — ' ί [ ( β 1 - s 0 ) ( s m - S m _ 1 ) ] - M / 2 [ ( ί 1 - « . ) • • • ( ί .

f«-.-<»») fβi,i ί_ - [%.lt-ltf_1,t-%,t_1 + tty_1,t-
i \ e x P 1 2-J2_J 7 Γ7T — :

where ^0)fc == ujfQ = 0 for j = 1, - , m; k = 1, , w.
This measure is countably additive on the set of intervals in

C2[R] and can be extended in the usual way to the sigma-algebra of
sets generated by the intervals and can then be further extended so
as to be a complete measure. Thus "Yeh-Wiener measurable set"
and its "measure" are defined in C2[R].

The integrals of functionals integrable with respect to this
measure will be called "Yeh-Wiener integrals".

In Theorem 1 of the present paper we establish a formula for
evaluating in terms of a Wiener integral the Yeh-Wiener integral of
a functional of x( , •) which actually depends solely on the values
of x on one horizontal line.

Theorem 2 treats the case of a functional depending only on the
values of x on a finite number of horizontal lines.

Theorem 4 deals with the case of a functional depending only
on the values of x on the two (perpendicular) free edges of R.
Examples are given to show how Theorem 4 can be used to evaluate
Yeh-Wiener integrals of specific functionals.

Finally in Theorem 5 we consider a class of functionals that may
depend on the values which x assumes at all points of the rectangle
R and not only on the values x assumes on some restricted set.

l The one line theorem* Let C^a, b] = {y( ) | y(a) = 0, y(t)
continuous on [α, 6]}, let R = [a, b] x [a, β] and let

CAR] = M , •) I x(a, t) = x(8, a) = 0, φ , t)
continuous for a ̂  s ^ 6, a <̂  t ^ β) .

THEOREM 1. Let a < 7 ̂  β, and let /(•) be a real or complex
valued functional defined on C^a, b] such that /(l/(7 — a)j2y) is a
Wiener measurable functional of y on Cι [α, b]. Then f(x( , 7)) is a
Yeh-Wiener measurable functional of x(-, •) on C2[R] and

where the existence of either integral implies the existence of the
other and their equality.

Proof. Let g(y) = /(V(7 — oc)βy). Then it suffices to prove that
#(α/2/(7 — ά)x(-9 7)) is Yeh-Wiener measurable and that
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(1.2) \ g(J—*—χ(., i))dx = ( g(y)dy

where the existence of either implies the existence of the other and
their equality.

Case I. Let us consider a subdivision a = s0 < sλ < < sm = 6
and let #(?/) = Xz(y) where I is the interval

1= {ye C^a, b]\ —oo <> Zi < y(s%) ̂  w< <: + oo, i = 1, . . . , m}

so that

where

K=\xe Ct[B] I - 00 ^ J 1 ^ L z i < x(sit 7) ^

^ +00, i, , m .

Thus in this case, flr(i/2/(7 — φ ( , 7)) is Yeh-Wiener measurable on
C2[R] (see Definition (2.1) of [4, p. 434]).

Because g(l/2/(y — a)x( f y)) is the characteristic functional of
an interval, the left member of equation (1.2) equals the measure of
the interval K, i.e.,

ί oi-J—— *(-, y))dx = \ Xκ(x( , ))dx
JC2[RJ \ f 7 — a / JC2ίB]

S V( r -«)/2w w (m) f V' {y-a)\lwχ

•••
V (r-α)/2zTO J V (ϊ-ot)l2z1

J V (^ %-i)

I -1 (β, - 8 W ) ( 7 -

V( r -«)/2w w (m) f V' {y-a)\lwχ

l2z1

QYrJ V ( ^ % i ) \7 J

exps

where ^0 = 0.

The right hand member of (1.2) can be evaluated in the following

manner,

g(y)dy = Uv)dy = [(2π)-(βl -«,)••• (βw - s^Γ'2

J
I

2

where v0 = 0. If we set vt = 1/2/(7 — ̂ ) ^ έ we obtain (1.2) and hence

(1.1).

Case II. Let g(y) = χβ(τ/) where β is the union of the disjoint
intervals Ilf I2, . Then by Case I, we have
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C2ίR]

including the measurability of the left hand integrand. The functional
obtained by summing over k is Yeh-Wiener measurable, i.e.,

Σ
Jfc=i

is Yeh-Wiener measurable. Then summing the integrals we have

Λ ΊLΩ\ V ^v > Ί)\ax — i XΩKVJ^V

Thus (1.2) holds in this case.

Case III. Let #(?/) = χΔ{y) where A is a countable intersection
of sets Ω of the type considered in Case II. Since finite intersections
of such sets are of the same type, we can set

where Ωλ z> Ω2 Z) £?3 z) and each Ωk is of the type considered in
Case II. Thus

g(y) - lim χQjc(y) ,

and g(y) is Yeh-Wiener measurable. If we now apply (1.2) to χΩ]c

and take limits we obtain (1.2) for g(y) = χΔ(y), including the meas-
urability of flf(l/2/(τ - φ ( , 7)).

Case IV. Let g(y) = χN(y) where N is a Wiener null set. Let
Nx be a Wiener null set of the type discussed in Case III such that
JVΊ=) N. Then (1.2) holds for χNι{y) and we have

Ί
cLia,b]

including the measurability of the left hand integrand which we now
know to be Yeh-Wiener almost everywhere zero. Thus

Ί — a

is also Yeh-Wiener almost everywhere zero and (1.2) holds.

Case V. Let g(y) = χE(y) where E is any Wiener measurable set.
Then E = A — N where A and N are sets of the type considered in
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Cases III and IV. By applying (1.2) to Δ and to N we obtain (1.2)
for E including the measurability of the left hand integrand.

Case VI. Let g(y) be a simple functional (with respect to Wiener
measure). Then g(y) is a linear combination with constant coefficients
of a finite number of functionals of the type considered in Case V.
Hence (1.2) holds.

Case VII. Let g(y) be a real nonnegative Wiener measurable
functional. Then g(y) is the limit of a monotone increasing sequence
of simple functionals and (1.2) follows from Case VI by monotone
convergence.

Case VIII. General case: Because any complex valued functional
can be decomposed into its real and imaginary parts and they into
their positive and negative parts, the theorem is proved.

2* The ^-parallel lines theorem* Having obtained a formula
for Yeh-Wiener integrals where the functional of x( , •) actually
depends only on the values of x(>, 7), i.e., on the values of x on one
horizontal line of the fundamental rectangle R, it is natural to
inquire next concerning functionals that depend solely on the values
of x on a finite number of horizontal lines, i.e., functionals of the
form

(2.0) F(x) = /[&(., O, a(. f t2), , x( , Q] .

One might expect to obtain the Yeh-Wiener integral of F as an
%-fold Wiener integral over the product of n Wiener spaces. Since
it is not immediately apparent what the formula should be, we begin
with the case where / depends on the values of the yk{ ) at a finite
number of points. Thus we let

(2 1)

where

<P(ultί, w2,i, , umtl; ••;%!,», , umιn) == φ{U)

is defined on Rmn and U denotes the rectangular array
{ ;̂}ί=i, .,m ,;=i,...,%. Then from (2.0) and (2.1) we have

(2.2) F(x) - φ({x(sίf «,)}«,..,.) .
i=i, ,n

Integrating over C2[R] and evaluating the Yeh-Wiener integral we
have
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S Γ ' m n η-1/2

F(x)dx = \π™ Π Π («< - s^Jitj - tj-d
C2lR] L <=ι 3=1 J

(2.3) ( φ{U) exp f- Σ Σ (™<>y " ^ " 1 ; i ~ Γ/̂ '"1 + Ui-ι'j-ι)

where dU = d ^ ώ^m>w, where w0>i = w<>0 = 0 .
We now make the transformation

Vi,j = YJ-—

so

and obtain

ί ^(α )d^ - Γ(2ττ) Π (β* - β ί.i)T*/1

JC2\RΊ L i=i J

Π exp {--1 Σ ( ^

where vO)J = 0 .

For each fixed j , the sums in the exponential are those which
would occur in the evaluation of a Wiener integral, and so we see
that the whole expression is the evaluation of an w-fold Wiener
integral. Thus

\ F(x)dx = ί - ί
JC2[i2] JCΊCβ.6] JCΊCcδ]

(2.5)

We shall use the following notation for the cartesian product of n
n (n)

Wiener spaces X C^α, b] ~ Cλ[a, b] x x Cx[a, b].
We have given the motivation for the following theorem:

THEOREM 2. Let a = to<tι< < tn = β and let f[yu , yn]
n

be a real or complex valued functional defined on X CJα, b] such that
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(2.6)

is a Wiener measurable functional of (ylf •• ,yn) on X Cx[a, b\.
Then f[%( , tt), •••, #( , tn)] is a Yeh-Wiener measurable functional
°f %(*, •) o n C2[R] and

(2.7)

i x x v.)

where the existence of either integral implies the existence of the
other and their equality.

Proof.2 Let

., ±
Making the substitution zv = Σϊ=i "^(ί* — ί*-i)/2 2/̂ , we have

2 . («i ~ «o), , V-T—^7—(«• ~ «

Thus it suffices to prove that if g(yu , yn) is a Wiener measurable
functional of (yίf •••, 2/J, then

(2.8) .f t ί ) ,

is a Yen-Wiener measurable functional on C2[B] and

(2.9)
r W r

Case I. Let •,!/») = %/G/i, , i/n), where / is the interval
2 The proof has to proceed in the opposite order from the motivation because of

the measurability argument.
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/ = {(yi9 " j j e χ d [ α , 6] I ~ oo ^ ^>fc < Vk(Sj) ^ w i (Jb ^ + oo, for j
1, , ra, & = 1, , w}. Clearly J = Λ Π /2 Π Π /» where /,

n
{(Vi, , Vn) e X Q α , 6] I - oo ^ siffc < # fc(Si) ^ Wi>Jfe ^ + oo, for fc
1, , n). Now

(2.10) = π χJ\/—?—χ( , ίt), , V, 2 , N > *.) - *(•> *-0

Π

where

W , •))

~ ^ B J ^ +CO for Λ = l, •••,»},

and

(2.11)

where

jzJi=LWjik ^ + oo for fc = 1, -. .,

Thus in this case (2.8) is Yeh-Wiener measurable on C2[B] since χL.
is a Lebesgue measurable function in Rmn. Integrating the expression
(2.8) we obtain by using (2.10) and (2.11),

r m

— _-(mw)/2Γ/Q Q \ . . . (Q Q M~W/2IY/ ί \ . . . if t \\~ml2

r oo (mn) roo m

— Σ Σ ^—^ 3-Ltzλ 3~uk —L=hh=iLKdZJ ,

w h e r e ujtθ = uQ>k = 0. If we set vjtk = l/2/(ί f c — tk^)(uj}k — M/,fc_i) so
that u i | f c - Σ L i V ^ - ti-Jβv^i, we obtain
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G = (2τr)-"-" 2[( S l - β.) (β . - s^)]-"'*

" Γ π v / J ^ , ... ^ / v ^ w ...ί oo

g ΞEZ,,,) βxp {_

• Π X r ? 0 / i ( s ; ) , , 2/t(Si), , vΛs^dy, ••> dyn

( » ) r

JCΊ[α,6]

and Case I is proved. The remaining cases are analogous to those
of Theorem 1 and are proved in the same way.

3* The orthogonal transformation* Theorem 2 which we have
just proved gives us an evaluation of the Yeh-Wiener integral of a
functional F(x( , •)) which depends only on the values of x on n parallel
lines. It is natural to inquire next concerning functionals that depend
solely on the values of x on two perpendicular lines. We shall limit our
investigation in this paper to the case where the two perpendicular
lines are the free edges of the fundamental rectangle. Before we
can obtain such a theorem, we will need to establish a generalization
of Bearman's theorem [1, 130] on rotations in the product of two
Wiener spaces. (A theorem of this sort was once proved by Edwin
Sheffield, but so far as the authors know, it was never published.)

T H E O R E M 3. Let F(ylf '9-fyn) be any Wiener integrable func-
n

tional of 2/i( ), •••, 2/»( ) on X Cx[a9 b] and let (ci>j)i>j==u...,n be a real

orthogonal matrix (so that Σ2=i Gi,kCj,k — δtj for i, j = 1, , n).

Then the transformation

/QΠ) y (A — V n -7 •( A fnr i — 1 . . . ΎΪ

n
is a measure preserving transformation of X C^a, b] onto itself.
Moreover,

r (n) Λ

)c [α 6] ' " )c a 6 ^ * ' ' " ' V ^ l " ' ^ "

= L [«6] " " L [α δ] Fxjk CltjZj' "*'% °»jZs)dZi " dzn .

Proof. Case I. Let F depend only on the values of yl9 , y%

at a certain finite set of points, a — sQ < st < < sm — δ, i.e., let



28 R. H. CAMERON AND D. A. STORVICK

F(yl9 yn) =
6Δ

where /(tt l f l, u1>m; •; wWfl, , wΛflll) is a bounded measurable func-
tion of its nm arguments. It is clear that F is Wiener measurable

n
and bounded on X CJα, 6]. Now we have

(n)
I = \ \ F(Vi, , Vn)dyι - dy«

(mn)S oo {mn) r°°

2 J 2JI —jfi r~̂

where ui)0 = 0.
Let us make the transformation uί)k = Σ?=ici,ivi,fc where i =

1, , w and & = 1, , m, to obtain

S
oo (mn) roo

. . .
-oo J-oo

( n n

ΣCi.yVy.i, •••, Σ ^ Λ ' , .
i=i i=i/ Λ \ 2

» ΣCu(^t-^t-l)
Σ ^ ^ ^ 7 r Lexp i - Σ Σ ^ ^ ^ 7 r L\dv1Λ - ώ^w,m .

Since (cί}y) is an orthogonal matrix,

n / n \ 2 n

Σ Σ C i . ^ .fc - Vi.fc-i) = Σ (̂ i.fc - ^i.fc-i)2

and we obtain

S
co (mn) r 00

. . .

-00 j-00

. ft V /• ?; . . . V r 7; 1 e x n - Y V W>fe — Vj,k-i)

VJ=I i=i / I *=i i=i 2(sk — Sk-i)

(3.4) dv1Λ - - - dvn,m

( cuizs{sύ, - , Σ ^.,^,(
i

• \ i^(Σc uM ), • -, Σ C,A-(

In the above argument, the measurability of each successive inte-
grand follows from the measurability of f(ultl, " ,un>m), and the
boundedness of / implies the integrability of each integrand. Thus
(3.1) is established for Case I. If we apply (3.1) to the case where
/ is a characteristic function of a measurable set we observe that

n
(3.0) is a measure preserving transformation of X CJα, 6] onto itself.
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Case II. Let F(yίf •••,#») = 1Ω{VU , 2/»), where i2 is the union
of a countable disjoint set of intervals Ω = (JΓ=i ̂  a n ( i e a c ^ •'y *s

an interval in the product space X C^a, b], (as in the proof of
Theorem 2, Case I). Because each χz. satisfies the hypothesis of
Case I, the theorem holds when F is of the form F(yu •••, 2/*) =
Xijiϊli, •", Vn)' Since Ω is the countable union of measurable sets, it
is measurable, and by summing both sides of (3.1) applied to χIό we
obtain (3.1) applied to χΩ.

Case III. Let F = χE(yί9 , yn) where E is a Wiener measurable
set in Xn Ct[a, b]. The result of Case II can be extended from Ω =
[JT^iIj to countable intersections of sets of this form and then to
null sets and then to general measurable sets in the usual way.

Case IV. Let F be a nonnegative functional. If F is actually a
simple functional the result follows from Case III by multiplication
by constants and addition. If F is not a simple functional, it can
be expressed as a limit of a monotone increasing sequence of simple
functionals, and the theorem follows for this case.

Case V. General Case: If F is real, we write F = F+ — F~
and apply Case IV to F+ and to F~ and thus establish the theorem
for real functionals. The extension to complex functionals is
immediate.

4* The two perpendicular lines theorem* We now proceed to
establish a formula for the evaluation of the Yeh-Wiener integral of
a functional that depends solely on the values of x on two perpen-
dicular lines.

THEOREM 4. Let f{z, y) defined on Cx[a, b] x C\a, β] be a functional
such that

(4.0) +
-) τ - a V2(β - a)

is Wiener measurable on C^a, b] x C\a, β\. Then it follows that
f[x( , β), x(b, •)] is Yeh-Wiener measurable on C^B], where R =
[a, b] x [a, β]. Moreover,

\ fM; β), x(b, )\dx

*(&) ,,„„. χ
1/209 - a).
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where the existence of either member implies the existence of the
other and their equality.

Proof* Case I. Let f(z, y) = g(z; y{tx), , y(tn))f where a = t0 <
ίi < <tn = β and let g(z; uu , un) be the characteristic functional
of a half-open interval / in C^a, b] x Rn; i.e., I— {(z; ult , un) | — oo <ς
7, < z(sj) <; δy ^ +00 for j = l, - -, m) — 00 <^ ck < uk S dk S + 00 for

fc = 1, , w}, α = s0 < βi < < sm = 6.

The right member of (4.1) becomes

+
r - α τ/2(/3 - a)(4.2)

{ t n " V2(/S - a)

We now apply the well-known result : If φu — ,φn are ortho-

normal on [a, b] and of bounded variation on [α, b] and if h(ul9 •••,%*)

is measurable, then

I h\\ φ^dxit), •••, I ^Λ(£)dcc(ί) Wcc

(4.3) _ _^ p (n) p , . u]

J-oo J-oo 1? ' I i = l 2

where the existence of either member implies that of the other and
their equality.

To apply this result, we let

for i = l,

and note that θn{t) = 0, so

MEL = V θά{t)dy(t), for j = 1, . , n .
ίy τ — a J«

3 This proof is given in the logical order. For motivation read in reverse order,
using the inverse of the matrix (ckj).
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θffifdτ

θj(t)] for j = 1, , n - 1 ,

and observe that {̂ Ί, •• ,<?>

ίl-i} forms an orthonormal set on [a, β].
To solve for θά we write

and sum from j — fc to j — n — 1 to obtain

and consequently (4.4) becomes

'MEL= Σ J t%-t< \' φί(t)dy(t).
k T - a i=* v (ίy - α)(ί, + i - oc) J«

Substituting the value of \ (dy(τ))/(τ — a) for ft = 1, , n

into (4.2) we obtain

'δ - α
/2 =

Φ)

(4.4)
i/2Gβ-α)

1 8 - α)J' V
1/208 - α)

We now use (4.3) to evaluate the inner Wiener integral above
and obtain

(»-DS C~ (n—i) (••*>
( 2 f f ) - « - »'2 . . .

CΉM] J-oo J -
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If we set vό = up/ b — a, then
(n — 1)S

roo (n — 1) roo
(2π(b - α))"""- 1 " 2 ' . . . \

C7i[α,δ] J-oo J -

- y J
- α)

( ί y _ α ) ( ί / + ι _ α )

Γ V
- α) +

V2C8-α)J P l 2(6 - α)V2C8-α)J P l 2(6 - α)

• dVi dv^ίdz .

Using the formula

/

 1 Γ F{v)e'v%ιwh-a))dv =
V2π(b — a) J-~ j

(n — 1) times, we see that (replacing z by zn)

2(δ - α)

F(xφ))dx

JCΊCα.δ] JCΊ[α,δ] ^ V 2 1/2 L1//S — <X

- t,

J
V (

VΎ
zn(b)

(t._x - a)(tn - α) _Γ l/ 2 Vβ

We next apply Theorem 3, using the transformation
n

where for k ^ n — 1

- a)

-VA^iL

0
and

l ί J ^ fC

if i = fc + i

if i > k + 1

for j = 1, •••, w .

We note that (cfc,, ) forms a real orthogonal matrix and that

= Σ i/*y ~ ίy-ii/y , for Λ = 1, , n .
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Thus by Theorem 3

Γ w r r* It
i*=\ ••• g Σ V h

and by Theorem 2,

/« - ί 0(&( , U; »(6, ίi), , Φ, t%))dx = \ /[«(., /S), a?(6, -)]dx ,

and Case I is established.

We then proceed as in Theorem 1 to establish Theorem 4.

5* Applications of Theorem 4*

EXAMPLE 1. Let us apply Theorem 4 to the functional:

(5.0) f{z, y) - Γ p(s)[z(s)Yds V q(t)[y(t)Ydt

where p e L\a, b] and q e L^a, β]. Then

I = \ \\bp(8)[x(8, β)]2ds\βq(t)[x(b, t)γdt\dx

(5.1) = \ \ \" p(s)(^-=-^)z\s)ds V q(t)[(t - aγ\

2 J« r - a V2(β - ά)Δ

and each expression can be evaluated by known techniques to yield

(5.2) 4 J* J«

+ 2(β - a)(t - a)]dxdt .

EXAMPLE 2. We next show how to calculate the following
integral using Theorem 4: (the authors know of no way of evaluat-
ing the integral without applying Theorem 4)

(5.3) I~\ exp \A Γ [X(8, β)Yds + B V x(b, t)dt\dx .\
JC2ίRi

Let us set

(5.4) f(z, y) - exp j A j * [z(s)Yds + B ^ y{t)dt\ .
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By Theorem 4,

exp { A($ ~ a) [ [z(s)Yds
{ 2 JC1[α',/9]

= /i I2 where

(5.6) Jx = ί exp \Mβ-«) Γ [φ)γds\ e x p \B f'«• -

and

(5.7) 72 = ί exp {B^TΞK V (t - a) \' M&dtldy .

To evaluate /^ we shall use the following theorem of Cameron
and Martin [2, 75] where we have changed the scale and the variance:

THEOREM la. Let q(t) be continuous and positive on [a, b] and
let μ0 be the least characteristic value of the differential equation

(5.8) h"{β) + μq(s)h(s) = 0

subject to the boundary conditions

(5.9) h(a) = h'Q>) = 0 .

Then if F(x) is any Wiener measurable functional, if μ < μ0, and
if hμ(t) is any nontrivial solution of (5.8) satisfying h'μ(b) = 0, we
have

[ F(x) exp { ϋ Γ q(s)x2(s)ds\dx
JCΊEα.6] ( 2 Jα )

where the existence of either member implies that of the other and
their equality.

We now identify in the expression for Iλ in (5.6)

Let g(s) = 1, μ = 4̂(/9 — α:). An examination of the differential system
shows that the least characteristic value is μ0 = ττ2/(4(δ - α)2). We
must therefore have A < τr2[4(δ — a)\β — oc)]"1. Now
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hμ(s) = cos ((s - b)μι<*)

= c o s ( ( s - b)VA(β -a)) ,

and our integral lx may be evaluated:

\ \

cos ((δ — a)V A(β — a)) MCMI

exp \B(P-^ cos ((<j -

In order to employ (4.3), we normalize the secant function ap-
pearing in the Stieltjes integral, i.e., since

Γ sec2[(<7 - b)VA(β- a)]dσ = tan [(6 - a)VA{β - «)]

we let p(α) = sec [(σ — b)VA(β — α)](tan7)~1/2[A(/3 — ^)] 1 1 4, where 7 =
(6 — α)l/A(/3 — a). Our integral ^ becomes

I1 = Vsecrί \ exp \c 1 p(σ)dy(σ)\dy
JCΊCcδJ ί Jα )

where c - J5((/S - a:)/2)3/2τ/tarΓ7[A(/S - a)]~{1^.

We apply (4.3) to obtain

e

2π J -oo

exp

2

[sec [(6 - α)(A(/S - α))1"]]1*

[(6 - α

In J2, we set

r — a

= \\\τ - a)dy{τ) .

We normalize the integrand of this Stieltjes integral and set p(τ)
(τ - a)(β - a)-*t2VΎ, so the integral becomes
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and (5.7) becomes

Thus our original integral has the value I = It-12, so that

I = [sec [φ - a)(A(β - a))1"]]1'2

. e χ p I B\β - ay* tan [(6 - a)(A(β - aψ*) )

where A < 7Γ2/(4(δ - a)\β - a)) and A Φ 0.

6* General functionals* Finally we consider a class of func-
tionals which are not required to depend only on the values of x on
a restricted set. We do this by approximating F(x) by a sequence
of functionals F(xn) where xn is determined by the values of x on
n horizontal lines and is defined in between the lines by linear inter-
polation. We then apply Theorem 2 to F(xn) and take limits.

THEOREM 5. Let F{x) be a functional which is bounded and
continuous in the uniform topology on CZ[R]. Let

(6.0) g.[yu •., yn; s, t] =

for a ^ s ^ b, tk^ ^ t ^ tk, yke Cx[α, b] for k = 1, , n; where σ is a
subdivision, a = t0 < ίx < < £Λ = β, and

. . = 0.

Then

00r w r
\x)dx = lim I F

. _ . . *-vjjLjt"J n o r m σ—»0 J (7^[α,&] J ( 7 I [ G I & ]

( 6 . 1 )
2/1 + + V - 2 — ^ J L = 1 y » r d ^ i - m dVn-



TWO RELATED INTEGRALS OVER SPACES OF CONTINUOUS FUNCTIONS 37

ΆVi, * * , V») = F{9o[Vi, '' , Vn, , •]}

so that

f[x(., ίθ, . . , a?(., Q] - F{sφ( , ί j , , &(-, ί J ; •, •]} ,

our functional / satisfies the hypotheses of Theorem 2 and we have

If we let

we obtain

ί Fa{x)dx
J C2[Λ]

JCAa.bl JcΊ[α,δ] ί L r 2 k=l V 2 J)

It is clear that limnorm σ^0 Fa(x) = F(x) for all xeCz[R] and since F is
bounded we may apply Lebesgue's convergence theorem to obtain
(6.1).
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RAMSEY THEORY AND CHROMATIC NUMBERS

GARY CHARTRAND AND ALBERT D. POLIMENI

Let χ(G) denote the chromatic number of a graph G. For
positive integers nίf n2, , nk (k ̂  1) the chromatic Ramsey
number χ(nίf n2, , nk) is defined as the least positive integer
p such that for any factorization Kp — U*=i Gif χ{Gt) Ξ> w* for
at least one i,l ^i ^k. It is shown that x(nu n2, , nk) =
1 + ΓR=i (nt — 1). The vertex-arboricity a(G) of a graph G is
the fewest number of subsets into which the vertex set of G
can be partitioned so that each subset induces an acyclic
graph. For positive integers nlt n2, , w* (ft ^ 1) the vertex-
arboricity Ramsey number a(nltn2, - ,nk) is defined as the
least positive integer p such that for any factorization Kp —
U*=i Gi> d(Gt) ̂  Ύii for at least one i, 1 rg % <Ξ k. It is shown
that a(nlt n2, , nk) = 1 + 2k ΓR=i (nt — 1).

Introduction* The classical Ramsey number r{m, ri), for positive
integers m and n, is the least positive integer p such that for any
graph G of order p, either G contains the complete graph Km of
order m as a subgraph or the complement G of G contains Kn as a
subgraph. More generally, for k(^ 1) positive integers nίf n2, , %,
the Ramsey number r(nlf n2, •••, nk) is defined as the least positive
integer p such that for any factorization Kv — G1\J G2\J U Gk (i.e.,
the Gi are spanning, pair wise edge-disjoint, possibly empty subgraphs
of Kp such that the union of the edge sets of the G, equals the edge
set of KP), Gi contains Kn. as a subgraph for at least one ί, 1 ^ i ^
k. It is known (see [5]) that all such Ramsey numbers exist; how-
ever, the actual values of r(nl9 n2, , nk), k ^ 1, are known in only
seven cases (see [2, 3]) for which min {nlf n2, , nk} ^ 3.

A clique in a graph G is a maximal complete subgraph of G.
The cϊΐgwe number ω(G) is the maximum order among the cliques of
G. The Ramsey number r{nu n2, , nk) may be alternatively defined
as the least positive integer p such that for any factorization Kv =
ftU^U UGfe, ωίGJ ^ w, for at least one i, l^ί<,k.

The foregoing observation suggests the following definition. Let
/ be a graphical parameter, and let nu n2, , nkf k^l be positive
integers. The f-Ramsey number f(nlf n2, , nk) is the least positive
integer p such that for any factorization Kp = G1 (J G2 (J U Gk,
f(Gi) ^ Πi for at least one i, 1 <Z i <Z k. Hence, ω(nu n2, , nk) =
KΛi> %2, •••, ̂ fc)> i e., the ω-Ramsey number is the Ramsey number.

The object of this paper is to investigate /-Ramsey numbers for
two graphical parameters /, namely chromatic number and vertex-
arboricity.

39
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Chromatic Ramsey numbers* The chromatic number χ(G) of a
graph G is the fewest number of colors which may be assigned to
the vertices of G so that adjacent vertices are assigned different
colors. For positive integers nlt n2, -—,nk, the chromatic Ramsey
number χ(nίy n2, , nk) is the least positive integer p such that for
any factorization Kp = Gx U G2 U Gk, χ{G%) ^ nt for some i, 1 <̂  i g;
k. The existence of the numbers χ(nu n2, •••, nk) is guaranteed by
the fact that χ(nίf n2, , nk) ^ r(^x, n2, , wA). We are now pre-
pared to present a formula for χ(nlt n2, ---,nk). We begin with a
lemma.

LEMMA. If G = Gx u G2 U U Gk, then

Proo/. For i = 1, 2, , k, let a χ(Gt)-coloring be given for Gt.
We assign to a vertex v oΐ G the color (clf c2, •••, cfe), where ct is
the color assigned to v in Gt. This produces a coloring of G using
at most IK«iZ(G<) colors; hence, χ(G) ^ Π t

THEOREM 1. For positive integers nlf n2, , nk,

lt n2, . , nk) = 1 + Π (nt - 1) .
l

Proof. The result is immediate if ^ = 1 for some ϊ; hence, we
assume that ^ ^ 2 for all i, 1 ^ ΐ ^ Λ. First, we verify that

X(nlt n2, - *,nk)^ Π

Let p = 1 + Πi=i (^ί ~ 1)> and assume there exists a factorization
if* = G1UG2U U Gk such that %((?*) ^ ^ - 1 for each i = 1,2, ••-,&.
Then by the Lemma, it follows that

1 + Π (*« - 1) = X(K,) ^ Π Z(G.) ^ Π (nt - 1) ,
ί=l < = 1 i=l

which produces a contradiction. Thus, in any factorization Kp =
(?i U G2 U U Gk for j> = 1 + Π?=i (nt - 1), we have χ{Gτ) ^ ^ f for
at least one i, 1 <* i <^ k.

In order to show that

k

X(nlf n2, , nk) ^ 1 + Π (nt - 1) ,

we exhibit a factorization ^ f c = Gx U (?2 U U Gk9 where Nh =
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Πl=i (% — 1) and χ(Gi) <; nt — 1 for i = 1, 2, , k. The factorization
is accomplished by employing induction on k. For k = 1, we simply
observe that χ(KN) — χ(Kni_^ — nt — 1. Assume there exists a fac-
torization KNk_l = JE?! U JBΓ2 U U -fiffe.i such that χ(H"<) ̂  ^ — 1 for
i = 1, 2, •••,& — ! . Let JP denote % — 1 (pairwise disjoint) copies of
KNk χ and define Gk by G& = F. Thus, Gk contains nk - 1 pairwise
disjoint copies of Ht for i = 1, 2, , k — 1, which we denote by G>
Hence, i^ f c = Gx U G2 U U Gk, where χ(G%) ̂  nt — 1 for each ί,
1 g ΐ ^ ί;, which produces the desired result.

Vertex-arboricity Ramsey numbers* The vertex-arboricity a{G)
of a graph G is the minimum number of subsets into which the ver-
tex set of G may be partitioned so that each subset induces an
acyclic subgraph. As with the chromatic number, the vertex-arbo-
ricity may be considered a coloring number since a(G) is the least
number of colors which may be assigned to the vertices of G so that
no cycle of G has all of its vertices assigned the same color.

Our next result will establish a formula for the vertex-arboricity
Ramsey number a(nu n2, , nk)f defined as the least positive integer p
such that for every factorization KP = (?! U G2 U U Gk9 a(Gt) ̂  nt for
some i, 1 <£ i <£ ifc. Since a(Kn) = {n/2}, it follows that a(nlf n2, ,
%) ^ r(2nt — 1, 2n2 — 1, , 2nk — 1). In the proof of the following
result, we shall make use of the (edge) arboricity αx(G) of a graph,
which is the minimum number of subsets into which the edge set of
G may be partitioned so that the subgraph induced by each subset
is acyclic. It is known (see [1, 4]) that aJJK,) — {n/2}.

T H E O R E M 2 . For positive integers n l f n 2 , ' " , n k ,

a(nlf n2, . , nk) = 1 + 2k Π fa< - 1) .

Proof. In order to show that

k

<Φi, n2, , nk) ^ 1 + 2k Π (nt - 1) ,

we let p = 1 + 2k Πi=i (n{ — 1) and assume there exists a factoriza-
tion Kp = G1 U G2 U U Gk such that a(G^) <. nt — 1 for each i =
1, 2, •••,&. For each i — 1, 2, , Λ, there is a partition {£/",,!, Ϊ7<fϊ, ,
t7ifW<_J of the vertex set V(Gt) of Gf such that the subgraph {Uii5}
of Gi induced by Uifj is acyclic, j = 1,2, , ̂ έ — 1. At least one
of the sets U1Λ, Ult2, , U1%%1-19 say UUmι, contains at least 1 +
2k Πi=2 (w>i — 1) vertices. Thus, at least one of the sets UttU U2}2, ,
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ίf2,tt2-i> say U2>m2y contains at least 1 + 2ft ΠLs (^i — 1) vertices of
U1>mi. Proceeding inductively, we arrive at subsets i7lfWl, U2>m2, •••,
Ukίm]e such that f|l=i Ui)m. contains at least 1 + 2ft Πtί+i i^i — 1) ver-
tices, 1 ^ ί <£ ft — 1. In particular, ΠLi Ui>m., contains a set U hav-
ing 1 + 2k vertices. For each ί = 1, 2, « ,ft, <ί7> is an acyclic
subgraph of the graph (Ui>mi). This implies that αx(ίΓ1+sjfe) ^ ft, which
is contradictory. Therefore, &((?*) ^ nt for at least one i, 1 ^ i ^ k.

The proof will be complete once we have verified that

k

a(nl9 n2, , nk) ^ 1 + 2k Π ( ^ - 1)
1• = 1

Let r = Πί=i (^i ~" 1) We shall exhibit a factorization K2kr = G1\J
G2 U U Gk such that a(Gt) ̂  w, - 1 for i = 1, 2, , &. We begin
with r pair wise disjoint copies of K2k, labeled K2\, Kikf , K2k. Since
î(̂ 2&) = >̂ it follows that K2k — (Ji=i Fif where each Ft is an acyclic

graph. We introduce the notation Fit to denote the Ft contained in
Kι

2k, 1 = 1,2, - - , r and i = 1, 2, •••,&. With each of the r Λ-tuples
(clf c2, , ck), cά = 1, 2, , % — 1 and i = 1, 2, , ft, we identify
a complete graph K\k, I = 1, 2, , r, in such a way that the identi-
fication is one-to-one. Then, for each i = 1, 2, , ft and I = 1,2, ,
r, we associate with ί7^ the ft-tuple identified with K2\. Define the
graph Gif i = 1, 2, , ft, to consist of the graphs Filf Fi2, , i^ r ;
in addition, each vertex of Fis is adjacent to each vertex of Fίt,
s, t = 1, 2, , r, provided the ΐth coordinate is the first coordinate
in which their associated ft-tuples differ (otherwise, there are no edges
between Fi8 and Fίt). It is then seen that K2kr = UiU <?,. For
each i — 1, 2, , ft, define F<,y to be the set of all vertices v such
that v is a vertex of an Fu whose associated ft-tuple (clf c2, , ck)
has ct = i ; i = 1, 2, •••, ̂  - 1. Then {V<fl, Fi>2, •••, F^^.J is a
partition of F(GJ for which the subgraph (Vij) consists of
rftibi — 1) pairwise disjoint copies of Ft9 j = 1, 2, , ̂  — 1. Thus,
< F i f J > is an acyclic graph for each such j . Hence, α(G{) ̂  nt — 1,
i = Ί f 2 f . . ., ft.
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CHARACTERIZATION OF COLLECTIVELY COMPACT
SETS OF LINEAR OPERATORS

J. D. DEPREE AND H. S. KLEIN

The basic results in this paper show that each collec-
tively compact set of linear operators can be viewed as an
equicontinuous collection followed by a single compact
operator. This observation not only gives insight into the
character of collectively compact sets of linear operators,
but also yields easier proofs of many of the results obtained
by earlier workers in the field.

I* Factorizations of collectively compact operators* A fairly
complete treatment, with applications, of collectively compact sets
of linear operators is given in the recent book [1] by Anselone.
Collectively compact sets of linear operators on normed linear spaces
were originally studied by Anselone and Moore [2] in connection
with approximate solutions of integral and operator equations.

The general properties of such sets of operators, again in normed
linear spaces, were studied by Anselone and Palmer in [3] and [4].
Collectively compact sets of linear operators were studied in the
more general setting of linear topological spaces by DePree and
Higgins [5]. In the current work new characterizations are given
for collectively compact sets of operators on a linear topological
space.

We assume that X and Y are separated topological vector spaces
and that [X, Y] is the space of all continuous linear operators from
X to Y. For a collection &~ £ [X, Y] and U a subset of X, let
jτ(χj) = {T(x):xe U, Γ e ^ } . For a set Ω with topology τ, we
adopt the notation (Ω, r>. For a set ^ of operators, we will be
making statements of the following nature: Viewed as mappings
between the unit ball of Y* endowed with its relative weak-star
topology and X* equipped with norm topology, ^K is equicontinuous;
we shall simply say that <^:<F*, weak*) —• <X*, norm) is equi-
continuous.

Following the work of DePree and Higgins [5], we make the
following definition.

DEFINITION 1.1. Let X and Y be separated topological vector
spaces. Then &~ £ [X, Y] is collectively compact if there exists a
neighborhood U of the origin in X such that ^(U) has compact
closure in Y.

The easy proof of the following lemma belies its importance for
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the situation described in it is typical of collectively compact sets
of operators; i.e., they can always be factored as in Theorem 1.3.

LEMMA 1.2. Let X, Y, and Z be separated topological vector
spaces, ^V £ [X, Z] an equicontinuous collection, and Ke [Z, Y] a
compact operator. Then the collection K<yV* = {KN: Ne ^V) is
collectively compact.

Proof. Let V be a O-neighborhood in Z such that K{V) is
compact. Since the family ^V is equicontinuous, there is a 0-
neighborhood U in Xsuch that ^K(U) g V. Thus ΈJpΊJT) £ K(V).
It follows that K^V is collectively compact.

THEOREM 1.3. Let J^ £ [X, Y] be such that there exists a
O-neighborhood U in X with the closure of the balanced convex hull
of ^(U) compact in Y. Then there exist

( a ) a Banach space Z,
(b) an equicontinuous collection y^ £ [X, Z\, and
( c) a compact operator Ke [Z, Y]

such that ^ = KN.

Proof. The following proof is based upon the construction of
an auxiliary normed space.

Let the set C be the closure of the balanced convex hull of
^~{U) and Z the span of C in Y. Since C is balanced and convex,
Z = (J~=i nC a n d C is absorbing in Z. Hence p, the Minkowski
functional of C, is defined on Z.

If (Z, p} denotes the set Z endowed with the topology generated
by p, then let K: (Z, p) —> Y be the natural injection which maps a
point z e Z to the same point z considered as an element of Y. K
is a compact operator since C, the unit ball of Z, is compact in Y.
In particular, K is continuous and the p-topology on Z is stronger
than the Hausdorίf relative topology on Z. So (Z, p) is Hausdorff
and Z is a normed linear space.

Let {zn} be a Cauchy sequence in (Z, p). Since {zn} is a bounded
subset of (Zf p) and if is a compact operator, {K(zn)} is a Cauchy
sequence with {K(zn)} compact in Y. So there exists ayeY such that
lim% iΓ(2j = ?/. For a > 0, choose £ such that n, m^l implies that
p(zn — zm) ̂  a. For these n and m, £„ — zm is an element of aC.
In Y, C is a closed set and # = Urn,, zn. So y — zm is an element of
aC for m^l. We see that | / e ^ and that p(y — zm) ̂  a for m ̂  I.
It follows that <^, p} is a Banach space.

Let xeX and Γe JF'. Since 0-neighborhoods are absorbing and
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U is such a neighborhood in X, there exists an a > 0 such that
x G a U. Hence, T(x) e αC and T(x) e Z. So let ΛT £ [-X, ^] be defined
as the collection ^ mapping X to <i?, #>>. The collection Λ"
is equicontinuous since ^/K{ϋ) is a subset of the unit ball of Z.
Obviously,

Suppose ^ £ [X, F] satisfies the hypothesis of Theorem 2.3
and can be factored, J^~ — K<yΓ, as above. The single compact
operator K has been the object of study for years. The next section
shows that our knowledge about K gives insight into the collection ^ .

2* Characterizations of collectively compact operators defined
on Banach spaces* Throughout this section, X and Y will be
Banach spaces with closed unit balls Xx and Yί9 respectively, X*
and X** will denote the first and second duals of X with their
usual norm topologies, and [X, Y] will be the space of continuous
linear operators from I to 7 endowed with the uniform operator
topology.

Note that ^~ S [X, Y] is collectively compact if and only if
has compact closure in F.

LEMMA 2.1. Let &~ £ [X, F ] . ^ is collectively compact if
and only if there exist

(a) a Banach space Z,
(b) an equicontinuous collection Λ^ £ [X, Z\, and
( c) a compact operator Ke [Z, Y]

such that

Proof. Mazur's theorem [6, p. 416] states that if ^(Xi) is
relatively compact, then so is the balanced convex hull of ^ - (X 1 ).
Apply Lemma 1.2 and Theorem 1.3.

For Te [X, F], let T* e [Y*9 X*] denote the adjoint of T. While
Schauder's theorem implies that the adjoint of a compact operator
is compact, the following example shows that this phenomenon has
no generalization for collectively compact sets of operators. This
example will also serve as an illustration for the results of the
remainder of this paper.

EXAMPLE 2.2. Let X = Y = l2 with the usual orthonormal basis
{ek:k — 1, 2, •••}. For each positive integer n, define Tn by letting
TJx) = (χ, e»)ele The set {Tn:n ^ 1} is collectively compact since
UL ^(XO is a bounded subset of the finite dimensional subspace
generated by et.

However, the collection of ad joints {T*} is not collectively compact
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since T*(x) — (x, e^)en and U* T*(X*) contains the orthonormal basis

LEMMA 2.3. Let &~ £ [X, ΓJ. Then j T * - {ϊ7*: Γe H
[F*, X*] is collectively compact if and only if there exists a Banach
space Zf an equicontinuous collection S^ £ [Z, Y], and a compact
operator Ke [X, Z] such that j r = S^K = {SK: Se

Proof. Assume that JΓ = S^K, with K a compact operator and
£f equicontinuous. The process of taking ad joints is an anti-
homomorphism which preserves operator norms. So if J?~ — S^K,
then ^ * = i ί * ^ * . If S? is an equicontinuous (i.e., bounded)
subset of [Z, Y], then 6^* is an equicontinuous subset of [Y*, Z*].
Lemma 2.1 implies that ^^* is collectively compact.

Conversely, if _^r* is collectively compact, there exists a Banach
space W, an equicontinuous collection & £ [Y*f W], and a compact
operator Le [W, X*] such that ^ " * = L&*.

Let Jx and Jy denote the natural injections of X into X** and
Y into Y**, respectively. Note that ^ = J^^**J9 - (J?&>*)(L*J9).
Let iΓ = L*/,,. Then ίC is a compact operator mapping X into TF*.

Since J^ is an isometry and ^ * is equicontinuous, it follows
that S? = J^ 1 ^ 5 * is an equicontinuous subset of [W*, F] such that

A description of the bounded weak-star topology of a Banach
space Y is given in [6, pages 427-430]. The feature of the bounded
weak-star topology that will be of interest to us is the equivalence
of parts (i) and (ii) of the following theorem.

THEOREM 2.4. Let Y be a Banach space. If Y* denotes the
closed unit ball of Y*f then a set U £ Y* is a bounded weak-star
neighborhood of 0 if and only if either one of the following are
satisfied:

( i ) For each ct > 0, ( J Π ^ Y* is a relative weak-star neigh-
borhood of 0 in aYf.

(ii) There exists a sequence {yn} £ Y such that limn\\yn\\ = 0
and {y* G 7 * : | <J/*, yn) \ <; 1 for each n) is a subset of U.
Of course, statement (ii) may be rephrased in the form: There is a
sequence {yn} £ Y converging to 0 in norm such that the polar of
{yn} is a subset of U.

THEOREM 2.5. For ^ £ [X, Y], the following are equivalent:
( a ) &~ is collectively compact.
(b) t ^

r * : {Y*f weak*) —> <X*, norm) is equicontinuous.
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( c ) ^ ~ * : <YΊ*, weak*)—> <X*, norm) is equicontinuous at the
origin.

(d) {y*: || T*(y*)\\ ^ 1 /or each T*eJ^*} is a bounded weak-
star neighborhood of 0.

( e ) There exists a sequence {yn} £ Y such that \\yn\\—+0 and
^ is a subset of the closure of the balanced convex hull of {yn}.

Proof, (a) implies (b). If &~ is collectively compact, Lemma
2.1 implies that there exists a Banach space Z and a factorization of
J^, which, after taking adjoints, is of the form:

(1) j ^ * - r̂*^*.

(2) K*: <F*, norm) —• <Z*, norm) is a compact operator.

(3 ) ^V**\ <#*, norm) —> <X*, norm) is equicontinuous.
Now since If* is a compact operator, if*: <Y"*, weak*) —> <Z*, norm)
is continuous: It maps bounded nets which converge in the weak-
star topology to weak-star convergent nets which are also totally
bounded in the norm topology of Z*. By (3), ^V**K* is an equi-
continuous collection of mappings of <Yi*, weak*) into <X*, norm).
We see that (b) follows immediately from (1).

(b) implies (c). This implication is obvious.
(c) implies (d). If the situation || T*(y*) \\ ̂  r for each T* e ^ ^ *

is abbreviated \\^~*(y*)\\ S r, then for any a > 0, (c) implies that
{y* \\^*(y*)\\ ^ Va) Γl Y* is a relative weak-star neighborhood of
0 in Y*. Multiplication by a yields that {y*: \\^*(v*) II ̂  l}ΠaY*
is a relative weak-star neighborhood of 0 in aY*. Theorem 2.4,
part (i), yields (d).

(d) implies (e). Statement (d) together with Theorem 2.4, part
(ii), guarantee the existence of a sequence {yn} £ Y such that
WVnW-O and

(4) {y*: I (y*t yn}\£l for each n) S {#*: || ^~*(y*) \\ ̂  1}. Now
take polars in Y of both of the above sets. By the Bipolar Theorem
[7, p. 141], the polar of the left-hand side of (4) is the closure
of the balanced convex hull of {yn}. Since \\^*(y*)\\ ^ 1, implies
that ||2/*(J^(Xi))|| ^ 1, the polar of the right-hand of (4) contains

(e) implies (a). The set {yn} is compact. Therefore, the closure
of the balanced convex hull of {yn} is also compact.

The following corollary was first proved by Palmer [8]. A new
and simpler proof is given below.

COROLLARY 2.6. Let &~ g \χ9 γ]m if

( a ) F is collectively compact, and if
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(b) for each y* e Y*, ̂ ~*(y*) is totally bounded in the norm
topology of X*,
then &~ is totally bounded in [X, Y].

Proof. By Theorem 2.5, (a) implies that if we consider ^~* as
a set of mappings between <Fi*, weak*) and <X*, norm), then <^~*
is equicontinuous with respect to these topologies. Since <F*, weak*)
is a compact topological space, (b) together with the Ascoli theorem
[7, p. 81] imply that the collection J^"* is totally bounded in the
topology of uniform convergence on Y*, that is, in the uniform
operator topology. Since the adjoint is an isometry between [X, Y]
and [Y*,X*], ^ is totally bounded in [X, Y].

COROLLARY 2.7. If ^V § [X, Y] is totally bounded and each
member of ^V is a compact operator, then ^V is collectively
compact.

Proof. If Λ" s [X, Y] is totally bounded, so is ^ T * S [Y*f X*],
i.e., Λf* is totally bounded in the topology of uniform convergence
on Γj*. Since each T* e ̂ ^ * is a compact operator, each

(5) Γ*: <Γ*, weak*) > <X*, norm)

is continuous. Considered as a collection of mappings between the
topological spaces of (5), ̂ Y** must be equicontinuous. By Theorem
2.5, Λ" is collectively compact.

In order to extend the range of application of Corollary 2.6, the
following theorem is stated.

THEOREM 2.8. Let S^ = {Sn: n :> 1} be a sequence of bounded
linear maps from X to Y. Suppose there exists a collectively
compact set {Vn: n ̂  1} £ [X, Y] such that lim^^ || Sn — Vn \\ — 0.
If &**(y*) is a totally bounded subset o / χ * for each y* e Y*, then
S^ is a totally bounded subset of [X, Y].

Proof. Since lim, || Sn - Vn\\ = 0, lim% || S; - F* || = 0. Let
y* G y* and ε > 0 be given. Choose an integer N such that

(6) \\S;(y*)-V;(v*)\\t*eβ for n^N.

<9**(y*) is totally bounded and consequently has a finite ε/3-net.
The inequality (6) then implies that {F*0/*): n ̂  N} has a finite
ε-net. Since the excluded points are finite in number and ε > 0 is
arbitrary, the set {V%(y*):n^> 1} is totally bounded. By Corollary
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2.6, {Vn:n^l} is a totally bounded subset of [X, Γ]. However,
lim% || Sn — Vn || = 0. By using an argument similar to the one above,
it follows that Sf is a totally bounded subset of [X, Y\.

LEMMA 2.9. Let S? £ [X, F]. If for each xeX, S^(x) is totally
bounded in Y, then <£**: <Γ*, weak*) —> <X*, weak*) is equi-
continuous at the origin.

Proof. Let x be any fixed element of X. Then

W= {x*:\(x*, x)\ ^ 1 }

is a neighborhood of 0 in the weak-star topology of X*. In fact,
the family of all such W form a sub-basis of the neighborhood
system of 0 for the weak-star topology. Therefore, it suffices to
show that YfΓiiy*: S^*(y*) £ IF} - YfΠiy*: | <^*0/*), %> I ύ 1} =
Y*Π{y*:\ < y*, S^{x)) | ^ 1} is a neighborhood of 0 in the relative
weak-star topology on FΛ

Let {yίf y2, , yn} be a 1/2-net for £^(x). Consider F =
[V^ I < » * , Vi) I ̂  1/2, l ^ i ^ n ) . If y * e V Π Γ * , a n d y e £S(x),
choose i such that || y - yy || ^ 1/2. Then | <»*, y > ^ | <y*, i/y) I +
I <V*, V - Vi> 1 ^ 1 / 2 + || y* \\\\y~ ys \\ ^ 1 since y* e Y*. So VΠ Y? &

Y? Π {y*: <9**{y*) S W}. It follows that

^ * : <Γ*, weak*) > <X*, weak*)

is equicontinuous at the origin.

THEOREM 2.10. Let X, Y, and Z be Banach spaces and let
S [X, Z] be collectively compact. For 3^ £ [Z, Y], suppose
z) is totally bounded in Y for each Ze Z. Then

is collectively compact.

Proof. Since S?(z) is bounded for each ze Z and Z is complete,
there exists a constant m such that \\S\\^m for each Se^. If
U is any 0-neighborhood in the norm topology of X*, choose, by
Theorem 2.5, a weak-star neighborhood W of 0 in Z* such that
^*(WΠZ*) £ (l/m)U. Lemma 2.9 guarantees that there exists a
weak-star neighborhood V of 0 in Γ* such that <S^*(Fn F^) £ mΐF.
So (l/m)y*(7Π Ft*) £ TΓn (l/m)^*(Γ*) £ WΠ Zx*. It follows that
, Π ( l / m ) y * ( F n Y1*))£(l/m)i7 and that ( ^ ^ ) * : <F1*, weak*) —
<X*, norm) is equicontinuous at the origin. Theorem 2.5 implies
that the set S^^ is collectively compact.

EXAMPLE 2.2 continued. Let C = {x: || Tn(x)\\ ^ 1 for each n}.
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Then C = {x: \ (x, en)\£l for each ri) and C is the polar of {en}. C
is not a bounded weak* neighborhood of 0, since if it were, the
Bipolar Theorem would then imply that the orthonormal basis {en} is
a compact subset of l2. Since l2 is a Hubert space, one can view
{Tn} as the adjoint of the collection {Γ*}. Theorem 2.5, part (d),
implies that {T*} g [l2, Q is not collectively compact. In particular,
an explicit calculation of the adjoints is unnecessary in determining
whether or not {T*} is collectively compact. The next theorem
shows that it is unnecessary to calculate the adjoints even when
the operators involved are acting on arbitrary Banach spaces.

THEOREM 2.11. For ^ ~ S [X, Y], the following are equivalent:
( a ) J^*[Y*9 X*] is collectively compact.
( b ) &~\ (Xlf weak topology) —+(Y, norm) is equicontinuous.
( c) &~\ {Xu weak topology) —> < Y, norm) is equicontinuous at

the origin.
( d ) There exists a sequence {xt} g X* such that \\xt || —*0 and

{xeX:\ <a£, x) | ^ 1 for each n) g {%: II ̂ (x) II ^ 1}.
( e ) There exists a sequence {α;*} g X* such that \\ x* || —> 0 αwώ

^-*(3Γi*) is α subset of the closure of the balanced convex hull of {#*}.

Proof. The equivalence of (a) and (e) follows from Theorem 2.5.

The polar of the closure of the balanced convex hull of {xt} is
{x: I <a£, £> I ̂  1, n ^ 1}. Also, the polar of ^ - * ( F 1 * ) is {α: || ^ -(a?) || ^
1} since | <^'*(Γ 1*), α?> | ^ 1 if and only if | <Γ*, J?~(x)) \ ̂  1. The
equivalence of (d) and (e) follows from these two observations.

(a) implies (b). By Lemma 2.3, there exists a Banach space Z, a
compact operator Ke[X,Z], and an equicontinuous collection ^ g
[Z, Y] such that J^ = S^K. Since K is a compact operator

K: (Xlf weak) > (Z, norm) is continuous .

Moreover, Sf\ (Z, norm) —> < Y, norm) is equicontinuous. Hence,
\ <Xi, weak) —> {Y, norm) is equicontinuous.

(b) implies (c). This implication is obvious.
(c) implies (a). By Theorem 2.5, it suffices to show that

: (χ**9 weak*) —» <F**, norm) is equicontinuous at the origin.
If J denotes the natural injection of X into X**, (c) implies that

( 7) JT**: <J(XJ, weak*) > <Γ**, norm)

is equicontinuous at the origin.
Let V be a 0-neighborhood in the norm topology of F * * .

Choose a 0-neighborhood U such that U g V, where the bar denotes
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closure in the norm topology of F * * . By (8), choose W9 a 0-
neighborhood in the weak-star topology of X**, such that

(8) ^**(J(XdnW)S U.

Let T** be an element of ^ r * * and x**eXf* Π W. Since J(Xt) is
weak-star dense in X**f it is possible to choose a net {xa} S Xι such
that the wτeak-star limit of [J{Xa)} is £**. {«/(&«)} is eventually in
W since x**e W. Therefore, {T**(J(xa))} is eventually in U, by (8).
Since T** is^a compact operator, || T**(x**)-T**(J(xa)) || — 0. Hence
y **(£**) G jr/g ^ So in addition to (8),

In order to indicate how some previous results in the theory of
collectively compact operators follow from our results, we prove the
following lemma.

LEMMA 2.12. Let L £ [X, Y] be bounded in the uniform
operator topology. The following are equivalent:

(a ) L: (Xlf weak) —> (Y, norm) is equicontinuous at the origin.
( b ) For each ε > 0, there exists a subspace X(ε) of finite

codimension in X such that the restrictions of operators in L to
X(ε) have operator norms no greater than ε.

Proof. Let the bound on &> S [X, Y] be M, i.e., || T\\ £ M for
each Γ G ^ .

(a) implies (b). Let ε > 0. By (a), there exists a finite set
{x?f , x*} S X* such that {x: \ (xf, x) | ^ 1, 1 ^ i ^ p) Π Xi £
{x: || ^(a?) 11 ̂  ε}. Let X(ε) - {x: (xf, x) = 0, l ^ i ^ ] ) } . Then (b)
follows since X(ε) n Xi S {̂ : || £f(x) || ^ ε}.

(b) implies (a). Let ε and X(ε) be given. If TeSf, then the
operator norms of the restrictions of T to X(ε) and X(ε) are the
same. Consequently, we may assume that X(ε) is a closed subspace
of X.

Choose linearly independent {xl9 •••, xp} S X such that H^H = 1
for each i and X = X(ε) 0 Span {xt}. Since for each j , X(ε) 0
Span {a?!, , Xj-U ^y+i, •••,#?} is a closed subspace which does not
contain x3 , there exists {xf: 1 ^ i ^ ^} S X* such that #*(X(ε)) = 0,
1 ^ i ^ίp> and &*(#,-) = δ i f i , 1 ^ i, j ^ p. Consider the weak open set

W={x:±\(xt,x)\^mm{ε,l}} .

If £ e T7 Π Xi, then x has the representation
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X = X, θ Σ <X*f X>Xt
ii

with xε e X(ε). Since || xt || = 1,

Then for TeL, || T(Xe) || ^ 2e and

i = l *

We have shown that for any ε > 0, {#: || ^ ( # ) || <̂  2ε + Mε} Π Xi is
a relative weak neighborhood of the origin. Hence, statement (a)
follows.

Finally, in view of Theorem 2.11, one obtains the result of
Palmer [8] that for the collection ^f above, £f* is collectively
compact if and only if condition (b) of the above lemma is satisfied.
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SEMI-GROUPS AND COLLECTIVELY COMPACT SETS
OF LINEAR OPERATORS
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A set of linear operators from one Banach space to
another is collectively compact if and only if the union of
the images of the unit ball has compact closure. Semi-groups
S = {T(t): t ^ 0} of bounded linear operators on a complex
Banach space into itself and in which every operator T(t),
t > 0 is compact are considered. Since Tit, + t2) = T(tJT(tJ
for each operator in the semi-group, it would be expected
that the theory of collectively compact sets of linear operators
could be profitably applied to semi-groups.

1* Introduction* Let X be a complex Banach space with unit
ball Xλ and let [X, X] denote the space of all bounded linear
operators on X equipped with the uniform operator topology. The
semi-group definitions and terminology used are those of Hille and
Phillips [6]. Let S be a semi-group of vector-valued functions
T: [0, oo)—>[X, X]. It is assumed that T(t) is strongly continuous
for t ^ 0. If l i m ^ || T(t)x - T(to)x || = 0 for each t0 ^ 0, xeX and
if there is a constant M such that the || T(t) || ^ M for each t ^ 0,
then S — {T(t): t >̂ 0} is called an equicontinuous semi-group of class
Co. The infinitesimal generator A of the semi-group S is defined by

Ax = lim— [T(s)x - x]
s->o S

whenever the limit exists. The domain D(A) of A is a dense
subset of X consisting of just those elements x for which this
limit exists. A is a closed linear operator having resolvents R(X)
which, for each complex number λ with the real part of λ greater
than zero, are given by the absolutely summable Riemann-Stieltjes
integral

(1) R(X)x = Γ e~uT(t)xdt, x e X .
Jo

It follows from (1) that

(2) M-M τ >rβ(λ)>0.
re(X)

In particular, sets of the type {R(X): re(X) ^ a > 0} are equicontinuous
subsets of [X, X].

Results yielding the collective compactness of the resolvents of
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A have recently been obtained independently by N. E. Joshi and M. V.
Deshpande.

2* Semi-groups of compact operators* First, note that (1)
states that the resolvents of A are Laplace transforms of the semi-
group S. Consequently, there are many other important integral
expressions involving the elements of the semi-group and the re-
solvents. In order to take advantage of these, we prove the follow-
ing lemma, in which | v \ denotes the total variation of a complex
measure v.

LEMMA 2.1. Let Ω be a topological space and ^€ a collection
of complex-valued Borel measures on Ω. Suppose there exists a
constant a for which \ v \ Ω ̂  a for each v e ^f. Let J%Γ: Ω —> [X, X]
be an operator-valued function defined on Ω which is strongly
measurable with respect to each veM [6, page 74] and suppose
3ίΓ — {K(w): w 6 Ω} is a bounded subset of [X, X], For each v e ^

and x 6 X, let Fυ(x) = \ K{w)xdv, where the integral exists in the
\\K(w)x\\d v\ < oo [6, page 80]. Let ^

Ω

{Fv\vz^£). Whenever 3ίί(5ίr*) is collectively compact,
is also collectively compact.

Proof. Assume that 3ίΓ is collectively compact. Let B —
{K(w)x:we Ω, \\x\\ <; 1} and let C denote the balanced convex hull
of B. Both B and C are totally bounded subsets of X. It suffices
to show that Fυ(x)eaC for any Fve^ and x with ||a?|| <£ 1. Let
ε > 0 and choose {K{w^)xu , K(wn)xn), an ε/α-net for B. For
i = 1, . . .9n, let Ω, = {w: || K(w)x - K{wτ)x% \\ ^ ε/a} and let Ω\ =
Ωj\\J}z\ Ω3 be a decomposition of the Ωt into pairwise disjoint sets.
Then

ψv(x) - ± KiwJxMΩ'dW ^ Σ \Q, II K(w)x - K(wt)xt \\d\v\(w)

Since Σ?=i I vW) I = a> Σ?=i K(wt)XiV(Ωi) is an element of aC. It
follows that Fv(x) e aC and so ^ is also collectively compact.

Now assume that «_̂ ~* is collectively compact. Let V be any
neighborhood of 0 in the norm topology of X. There exists an
ε > 0 such that U = {x: \\ x || ^ ε} s V. Since J Γ * is collectively
compact, [2, Theorem 2.11, part (c)] implies that there exists a weak
neighborhood W of the origin with J T ( W Π Xd S (1/α) U. For

G WΠXlf \\Fv(x)\\ £ \ \\K(w)x\\d\v\ ^ (ε/α) | v \ (Ω) ^
JΩ
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ε. So J^(WΠ X,) S V. Again using [2, Theorem 2.1, part (c)], we
see that J^* is also collectively compact.

The following is essentially a result of P. Lax [6, page 304],
Rephrased in the terminology of collectively compact sets of operators,
it becomes quite transparent.

THEOREM 2.2. Suppose that some T(t0), tQ > 0, is a compact
operator. Then JίΓ = {T(t): t ;> t0} is a totally bounded, collectively
compact subset of [X> X], Consequently, T(t) is continuous in the
uniform operator topology for t ^ t0.

Proof. Since T(t) = T(t - to)T(to) = T(tQ)T(t - t0) for ί ^ ί0, it
follows that ST = T(Q<9* = S^T(Q. T(tQ) is a compact operator
and the collection Sf is equicontinuous. By Lemmas 2.1 and 2.3 of
[2], both JίΓ and ̂ * are collectively compact. [2, Corollary 2.6]
implies that JίΓ is a totally bounded subset of [X, X], Since T(£)
is continuous in the strong operator topology, T(t) is continuous in
the uniform operator topology for t ^ ί0.

COROLLARY 2.3. Suppose every T(t)> t>0, is a compact operator.
Let J^ — {lϋ(λ): re(X) ^ 1} be the collection of the resolvents of the
infinitesimal generator A corresponding to the half-plane {λ e
C:re(λ)^l}. Then J?~ is a totally bounded, collectively compact
set of operators.

It should be noted that for any a > 0, the following arguments
can be applied to {R(X): re(X) Ξ> a}. One particular half-plane is
chosen simply to keep the notation as uncomplicated as possible.

Proof. It will suffice to show that for each ε > 0, there exists
a totally bounded, collectively compact set of operators ^Γ such
that for any R(X)e^9 there exists a KeST with || JK(λ) - K\\ ̂  e.

e"*dt < ε/M, where M is such that

|| T{X) || £ M for t > 0. Let X be any complex number with re(X) ̂  1

and xeX. Since R(X)x = Γ e~λtT(t)xdt, R(X)x - Γ e~λtT{t)xdt g

Γ e~λt || T(t)x || d ί ̂  Γ e-*dtM]\ x \\ £e\\x | |. C o n s e q u e n t l y , | |ϋί(λ) -
Jo^ Jo 11

^e'ztT(t)dt^e. Now ^ r = {Γe-*Γ(ί)eiί: rβ(λ) ^ l j is a totally

bounded, collectively compact set of operators. To see this, note

that sup | ϊ I e~u \ dt: re(X) ^ l l ^ 1 and that both {T(t): t ^ d} and

{T*(t): t ^ δ} are collectively compact. Lemma 2.1 implies that both
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and ^ ^ * are collectively compact. As before, [2, Corollary 2.6]
implies that 3tΓ is a totally bounded subset of [X, X].

The following lemma will be useful in the next section. Since
a quotable reference cannot be found, a brief proof is included.

LEMMA 2.4. Let Sf be an equicontinuous semi-group of class
Co. Then R(X) converges to zero in the strong operator topology as
I λ I —> oo, re(λ) ^ 1. Whenever {R(X): re(X) ;> 1} is a totally bounded
subset of [X, X], the R(X) converge to zero in the uniform operator
topology as \ X | —> oo, re(X) ^> 1.

Proof. The second assertion follows immediately from the first.

Let x e D(A), the domain of the infinitesimal generator A. Since
R(X)(X — A)x — x, we have the identity

R(χ)x = λ.[χ + R(χ)Ax] .
X

By (2) of § 1, {R(X)Ax: re{X) ^ 1} is a bounded subset of X. It follows
that ||.R(λ)cc||->0 as |λ|-->oo, re(X) ^ 1, for each xeD(A). Since
D(A) is dense in X, the Banach-Steinhaus theorem implies that this
type of convergence holds for each xeX. We see that the first
assertion of this lemma holds also.

3* Semi-groups with compact resolvents* Suppose that the
domain of the infinitesimal generator of a semi-group can be given
a topology τ such that the topological space (D(A), τ> is a Banach
space and the natural injection i: (D(A), τ> —> X is a compact operator.
In such cases, it might be possible to prove that certain sets of the
resolvents of A are equicontinuous subsets of [X, (D(A), τ>], i.e.,
collectively compact subsets of [X, X]. A specific example is the
case in which X is some Lp space and A is the negative of a
uniformly strongly elliptic differential operator defined on a Sobolev
space H = (D(A), τ). The so-called "a priori inequalities" [4,
Theorems 18.2 and 19.2, pages 69 and 77] imply that, after a
suitable translation, {12(λ): re(X) ^ 1} is an equicontinuous subset of
[Lp, H], Since the injection i:H—+Lp is a compact operator [4,
Theorem 11.2, page 31], {R(X): re(X) ^ 1} is a collectively compact
subset of [Lp, Lp]. The obvious question is what are the implications
of such assumptions for a general semi-group Sf.

We first consider the case in which A has one compact resolvent.
Of course, the first resolvent equation,
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R(\) - R(\) = (λ, - xJRixjRixj,

then implies that all resolvents of A are compact operators.

LEMMA 3.1. Suppose A has one compact resolvent. Let Q be a
compact subset of {X: re(X) > 0}. Then {R(X):XeΩ} is collectively
compact.

Proof. Since R(X) is a holomorphic function in the right half-
plane, {R(X):XeΩ} is a totally bounded subset of [X, X\. Each
element in this collection is a compact operator. So [2, Corollary 2.7]
implies that {R(X):XeΩ} is collectively compact.

The following is a partial converse of Theorem 2.2.

PROPOSITION 3.2. Suppose A has compact resolvents. Let tQ > 0.
// T(t) is continuous in the uniform operator topology for te [tQi oo),
then T(t0) is a compact operator.

Proof. Since the resolvents are Laplace transforms of {T(t): t ^
0}, we may use the formula based upon fractional integration of
order two [6, page 220] which states that

(" (s - t)T(t)dt = -L ( 1 + I t o ^ ( λ ) Λ , s > 0 .
Jo 2π% Ji-ioo λ 2

For ε > 0, choose N such that

r%f1 + <" 1 | | e i . Λ ( λ ) | | d | λ | < e .
Ji-ioo h+iN \X2

Then

1 f 1 + tJV ^ s

(s - ί)Γ(t)cZt - — \ —R{X)dX
27Γί Ji-<iv λ 2

By Lemmas 3.1 and 2.1, the integral of (eλ8/X2)R(X) over the finite
segment of the vertical line is a compact operator. It follows that
for each s >̂ 0, \ (s — t)T(t)dt is a compact operator.

Jo

Consider the function

F(s) = Γ (s - t)T(t)dt, s ^ 0 .
Jo

Each value of JP is a compact operator. Elementary calculations
show that JP is differentiate in the uniform operator topology. Con-
sequently, each
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F'(s) = [' T(t)dt, S ̂  0 ,
JO

is the limit in the uniform operator topology of a sequence of com-
pact operators. Hence, each Ff(s), s ^ 0, is a compact operator. In
taking derivatives again, we see that for h > 0,

^ sup {|| T(t0 + a)- T(tQ) ||: 0 ^ a ^ h] .
1 CQ

-f T(t)dt - T(t0)
h }t0

If T(t0 + a) is continuous in the uniform operator topology for
a Ξ> 0, then

1 Co
Γ(ί0) = uniform - lim — T(t)dt .

+ h Jί

It follows that T(t0) is a compact operator.

See [6, page 537] for a discussion of the following example.

EXAMPLE 3.3. Consider the semi-group &* of left translations on
the space C0[0, 1] consisting of continuous functions x(u) vanishing
at 1, where the norm \\x\\ = sup {| x(u) |: 0 ^ u ^ 1}. Let [Γ(ί)x](^) —
x(u + t), for 0 ^ ^ ^ max {0, 1 - t}, and 0 for max {0, 1 - ί} g u £ 1.
The infinitesimal generator of S^ is the operator of differentiation
d/(du) with domain

The compact resolvents are given by

[B{X)x]{u) = ί1 U e-λtx(u + ί)dί, λ 6
J

For t ;> 1, T(t) is the compact operator 0 while for t, s < 1,
|| T(t) - T(s)\\ = 2. This can easily be seen by evaluating T(t) -
T(s) at a function x e C0[0, 1] with || x || ^ 1 and x(t) = 1, x(s) = - 1 .
So T(£) is continuous in the uniform operator topology only for
t ^ 1.

Choose a monotonically increasing sequence of positive functions
{yn} s C0[0, 1] such that limΛ ^/w(̂ ) = 1 for each u < 1. For ί < 1,
{T(t)yn} is a sequence of functions having no subsequence which can
converge uniformly. So T(t), t < 1, is not a compact operator.

For λ = σ + ir, let xw(w) = eiτuyn(u) in the definition of
We see that

[i2(λK](0) =
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Since | |cc Λ | | = 1 for each n,

|| R(X) || ^ sup I [R(X)xn](0) | = Γ e~σtdt .
n JO

It follows immediately from the definition of R(X) that the reverse

inequality holds also. Consequently, || R(X) || = 1 e~σtdt. In particular,
Jo

lim,rHoo II i2(α + ΐτ) | | ̂  0. This serves to distinguish this differential
operator from the class of infinitesimal generators which we consider
next.

LEMMA 3.4. Suppose S^ is a semi-group such that the set of
resolvents {R(X): re(X) — 1} corresponding to the vertical line re(X) —
1 is collectively compact. Then {R(X): re(X) ^ 1} is also collectively
compact.

Proof. For each x e X, R(X)x is a holomorphic and bounded
function of λ, re(X) > 1/2. So R(X)x admits Poisson's integral re-
presentation [6, page 229]

for σ > 1, xeX. Since {R(l + iβ): — oo < β < oo} is collectively
compact and the integral of the Poisson kernel over — oo < β < oo
is identically one, Lemma 2.1 implies that {R(X): re(X) > 1} is collec-
tively compact. Taking the union of this set and {R(X): re(X) = 1},
one obtains the desired result.

For xeX and a ; * e Γ ,

<>*, R(σ + iτ)x) = Γ e-ίrί(β"σί<x*, T(t)x))dt .
Jo

This is this Fourier transform of the absolutely summable function
6Γσί<#*, T(t)x), t^O. The convergence of

|| R(σ + iτ) \\ - s u p {| < * * , R(σ + iτ)x) \ : \ \ x ||, || x* \\ ^ 1}

to 0 as I σ \ and | τ | approach infinity can be viewed as a "uniform"
Riemann-Lebesgue lemma.

T H E O R E M 3.5. If &~ = {R(X): re(X) ^ 1} is collectively compact,

then | | j β ( λ ) | | converges to 0 as \X\ approaches oof re(X) ^ 1.

Proof. Throughout the following proof, we assume that re(X) ^ 1.
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Let ε > 0 be given and choose real β so large that 1 + β ^
M/ε, where M is the constant in § 1 which bounds the operator
norms of elements of &L By (2),

+ β) 11 ^ - 7 ^ ^ ^ e
re(λ

λ) + β 1 + β

In view of Lemma 2.4, ^ * is an equicontinuous collection with R(X)
converging to zero as | X | —> oo pointwise on the relatively compact
set ^"XXΌ. Therefore, \\R(\)F\\-+0 as | λ | - > o o uniformly for

Choose JV such that \X\^ N implies that

\\R(X)R(X

The first resolvent equation states that

R(X) - R(X + β) = (λ + β - X)R(X)R(X + /9) .

So, for I X I ̂  iV,

^ || βR(\)R(\ + β)\\ + || 2?(λ + /S) || ^ 2ε .

Note that we have used the fact that &~ contains those re-
solvents jβ(λ) with re(X) arbitrarily large in an essential way.

COROLLARY 3.6. Let Sf he any semi-group whose infinitesimal
generator A has compact resolvents, i.e., each R(X), re(X) > 0, is a
compact operator. Then ^ = {R(X): re(X) ^ 1} is collectively com-
pact if and only if \\ R(X) \\ —> 0 as | λ | —• oo, re(X) ^ 1.

Proof. The assumption that || R(X) (| —> 0 as | λ | -> oo, re(X) ^ 1,
simply implies that R(X) can be extended to a continuous function
on the compactification of the half-plane {λ: re(X) ^ 1}. Consequently,
if A has compact resolvents, J^ is a totally bounded set of com-
pact operators. [2, Corollary 2.7] implies that &~ is collectively
compact.

The converse is simply Theorem 3.5.

The behavior of the holomorphic function R(X) on the vertical
line re(X) = 1 is of fundamental importance. For example, if d(X)
denotes the distance of the complex number X from the spectrum of
A, then [3, page 566]

%τ)

We see that the spectrum of A must be bounded on the right by
the curve
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In particular, it follows from Theorem 3.5 and Lemma 3.4 that
when {R(X): re(X) — 1} is collectively compact, the spectrum of A is
severely restricted.

The usual methods of inverting Fourier transforms can be
typified by the use of (C, 1) means. In [5, page 350], it is shown
that for each t > 0

T{t) - l i m — Γ (l - ! l lV+ < Γ ) ' jβ(l + iτ)dτ .

However, the measures involved no longer satisfy the requirements
of Lemma 2.1. As this situation is typical, we are not able to
prove that if {R(X): re(λ) = 1} is collectively compact, then each
T(t) G S^, t > 0, is a compact operator.

REFERENCES

1. P. M. Anselone and R. H. Moore, Approximate solutions of integral and operator
equations, J. Math. Anal. Appl., 9 (1964), 268-277.
2. J. D. DePree and H. S. Klein, Characterizations of collectively compact set, of
linear operators, Pacific J. Math., 55 (1974), 45-54.
3. N. Dunford and J. T. Schwartz, Linear Operators, Part I, New York: Inter-
science, 1958.
4. A. Friedman, Partial Differential Equations, New York: Holt, Rinehart and
Winston, 1969.
5. A. Grothendieck, Sur les Applications Lineaires Faiblement Compactes D'Epaces
Du Type C(K), Canad. J. Math., 5 (1953), 129-173.
6. E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Providence, R. I.:
American Mathematical Society, 1957.

Received April 4, 1973.

NEW MEXICO STATE UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 1, 1974

CHAIN BASED LATTICES

G. EPSTEIN AND A. HORN

In recent years several weakenings of Post algebras
have been studied. Among these have been P0"lattices by
T. Traezyk, Stone lattice of order n by T. Katrinak and
A. Mitschke, and P-algebras by the present authors. Each
of these system is an abstraction from certain aspects of
Post algebras, and no two of them are comparable. In the
present paper, the theory of P0-lattices will be developed
further and two new systems, called Pi-lattices and P2-lattices
are introduced. These systems are referred to as chain
based lattices. P2-lattices form the intersection of all three
weakenings mentioned above. While P-algebras and weaker
systems such as L-algebras, Heyting algebras, and P-algebras,
do not require any distinguished chain of elements other
than 0, 1, chain based lattices require such a chain.

Definitions are given in § 1. A P0-lattice is a bounded distributive
lattice A which is generated by its center and a finite subchain con-
taining 0 and 1. Such a subchain is called a chain base for A. The
order of a P0-lattice A is the smallest number of elements in a chain
base of A. In § 2, properties of P0-lattices are given which are used
in later sections. If a P0-lattice A is a Heyting algebra, then it is
shown in § 3, that there exists a unique chain base 0 = e0 < ex < <
en_x — 1 such that ei+ί —* et = et for all i > 0. A P0-lattice with such
a chain base is called a Pi-lattice. Every Pi-lattice of order n is a
Stone lattice of order n. If a Pi-lattice is pseudo-supplemented then
it is called a P2-lattice. It turns out that P2-lattices of order n are
direct products of finitely many Post algebras whose maximum order
is n. In § 4, properties of P2-lattices are studied. In § 5, equational
axioms are given for P2-lattices. P2-lattices share many of the proper-
ties of Post algebras and have application to computer science. Among
examples of P2-lattices are direct products of finitely many p-rings.
These further remarks on P2-lattices are in § 6. In § 7, prime ideals
in P0-lattices are studied. It is shown that the order of a P0-lattice
is one more than the number of elements in a chain of prime ideals
of maximum length. A characterization of P rlattices by properties
of their prime ideals is given. Such a characterization of P2-lattices is
also indicated.

l DEFINITIONS. We use φ for the empty set. Let A be a
distributive lattice which is bounded, that is, has a largest element
1 and a smallest element 0. The dual of A is denoted by Ad. The
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complement of x is denoted by x or — x. The center of A is the set
B of all complemented elements of A. We use x\/y for the join,
and x A y or xy for the meet of two elements x, y in A. x—>y denotes
the largest ze A (iΐ it exists) such that xz ^ y. A is called a Hey ting
algebra if x—>y exists for all x, y e A. — χ = x—>0 is called the
pseudo-complement of x (when it exists). An element x is called
dense if —\x = 0. A is called pseudo-complemented if —1# exists
for all α?e A. x=>^/ denotes the largest 2 el? such that xz^y. A
is called a B-algebra if x=>y exists for all x,yeA. Ix = 1 => a? is
called the pseudo-supplement of α?. A is called pseudo-supplemented
if !cc exists for all xeA.

A Stone lattice is a pseudo-complemented lattice satisfying the
identity —?05 V —>—i a? = 1. An L-algebra is a Hey ting algebra satis-
fying (#—>#) V(y—>x) = 1. A P-algebra is a i?-algebra satisfying
(& => 2/) V 0/ => a?) = 1. We denote the interval {z: x ^ z ^ y} by [x, y].
A is an L-algebra if and only if every interval in A is a Stone lattice
[1, 3.11]. The identity x-+(y V z) — (x —* y) V (x —• z) is satisfied in
an L-algebra. The identity x => (y V z) = (x => y) V (x =* «) is satisfied
in a P-algebra.

2* P0-lattices. Let A be a bounded distributive lattice and let
ΰ be a Boolean subalgebra of the center of A. A chain base of A
is a finite sequence 0 = eQ ^ eL <: ^ ew_! = 1 such that A is gener-
ated by B U {e0, , en_J. If A has a chain base then A is called a
Po-lattice [13], in which case every element xeA can be written in
the form

( l ) « = V M i ,
* = 1

where 6t G 5 . If bt ^ δ<+1 for all i, then (1) is called a monotone
representation (abbreviated mon. rep.) of x. If btb3 — 0 for i Φ j ,
then (1) is called a disjoint representation (disj. rep.) of a?. Every
element in a P0-lattice has both a mon. rep. and a disj. rep.

LEMMA 2.1. / / (1) is a mon. rep. of x and y — ViC^ is a

mon. rep., then xV y = ViΦiV c^βi and xy — Vib^i are mon.
reps.

Proof. This follows from the distributivity of A.

The following theorem shows that B must coincide with the
center of the P0-lattice A, and gives a method for constructing
P0-lattices.

THEOREM 2.2. Let A be a bounded distributive lattice. Let
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B be a subalgebra of the center of A and let 0 = e0 ^ ^ en^ = 1.
If Ao is the sublattice generated by B U {eOy , βΛ_J, cmd i?0 is £/te
center of AQ, then BQ — B.

Proof. Let x = Vy My be a disj. rep. of an element xeBQ. For
each i, #&* = 6 ^ is in J30. Let V* ci ei = 0 be a mon. rep. of the
complement of 6 ^ . Then δ ^ V i ^ i —0 implies ft^c^ = 0, hence
δϊβi ^ 6*^. Also 1 = btet V V3 c3e3 implies 1 ^ etV ci9 hence 6^^ ^ b^.
Thus 6^^ = 6^^ 6 B for all i, and so x e B.

DEFINITION 2.3. A P0-lattice A is said to be of order n if n is
the smallest integer such that A has a chain base with n terms.

LEMMA 2.4. If (A; e0, •••, ew_i> is & P0-lattice, then (Ad; en_19

•••, eo> ^ s α P0-lattίce. Ad has the same order as A.

Proof. This is obvious by inspection.

THEOREM 2.5. 1/ <A; e0, ••-, e»_i> is α P0-lattice with center
B and A' = [βέ, ê  ], where i <Z j , then (A'; ei9 , βy> is α P04attice
with center B' = {et V 6βy: 6 e B}. If et = /0 ^ ^ / r_x = e, is α
ϋλαw 6αsβ of A', ί/̂ βw β0, , e^lf /0, , fr^u ej+1, , en_i. is a chain
base of A. If A has order n, then A' has order j — i + 1.

Proof. Let x= \fn

kz\bkek be a mon. rep. of an element xeA'.
Then

3 3

x = (e. v ajjβy = e, V V &Λ = V 0* V δ A ' K

5 ' is clearly a subalgebra of the center of A'. Therefore by 2.2, Br

is the center of the P0-lattice (A';ei9 •••, eΛ >. The remaining parts
of the theorem hold because if i ^ k ^ jf then ek is in the sublattice
generated by J3' U {/<,, , Λ_i}.

LEMMA 2.6. Lβέ A be a bounded distributive lattice with center
B, and x, y, ze A.

( i ) If x—* z and y —* z exist, then (x V y) —* z = (x ~+z)(y —»z).
(ii) If z—*x and z—+y exist, then z—+xy = (z—+x)(z~*y).
(iii) If x~+y exists, beB and ceB, then bx —+ (cVy) =
cV(x-|/).
(iv) If x=> z and y => z exist, then (x\/ y) => z = (x=> z)(y => 2).
( v ) If z=>x and z=>y exist, then z=>xy = (z=> x)(z ==> y).
(vi) If x=>y exists, beB and ceB, then bx=>(c\/y) =
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Proof. The proof is straightforward.

LEMMA 2.7. If a2 ̂  <̂  am and bι ^ ^ bm^ are elements
of a distributive lattice, then yτ=ίaί+1b3 = ambι λf=f (a3- Vbj).

Proof. This is easily proved by induction.

THEOREM 2.8. Let (A; e0, •••, e%_L) be a PQ-lattice with center B.
Then the following are equivalent:

( i ) et => 0 exists for all i.
(ii) —iet exists for all i.
(iii) A is pseudo-complemented.
(iv) A is a Stone lattice.
( v ) Each xeA has a mon. rep. x — V<Mi suc^ that

bx ^ c1 for every mon. rep. x = V i c i e i

Proof, (i) implies (ii): Let xet = 0 and suppose x — \/ό b5e5 is a
mon. rep. of x. Then δ ^ = 0 for j ^ i, while if j > i, then b5et = 0,
so 6 ^ β^^O. Hence a; ̂  ei:=> 0. Therefore, -π^ exists and equals

(ii) implies (iii): If x — \f t bxei is a mon. rep., then by 2.6(i)
and 2.6(iii), —ιx exists and equals AiΦi V -πβί). If follows from 2.7
that

( 2 ) -πίc = V & i ^ e ^ .

(iii) implies (iv): If α?, # e A, then by 2.1 and (2), -π(cπ/) =
-ixV—y. This implies that A is a Stone lattice [8]

(iv) implies (v): If x = ViC^ is any mon. rep., then cxx = 0,
so c1 <; —!«, hence a; ̂  —ι-i aj ̂  clβ Therefore x= Vi (ci ~1~π ^) ei K
we set bi — ct -π—ι », we get a mon. rep. in which 6X = —i—ι α?.

(v) implies (i): Let et = VJ M* be a mon. rep. of et having the
property stated in (v). Then bιeτ = O. lίbeB and bet — 0, then
0i ^ δ> so e< — Vi 56^-. By hypothesis, 66X ^ 6^ Therefore b ̂  bly

and so e£ ==> 0 = &Ί.

LEMMA 2.9. If A is a bounded distributive lattice, then Ad is a
Stone lattice if and only if A is pseudo-supplemented and l(x V y) —
Ix V \y for all x,yeA.

Proof. It is easily verified that the pseudo-complement of x in
Ad is ϊx in this case.

THEOREM 2.10. Let (A; e0, , e ^ ) be a P04attice. Then the
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following are equivalent:
( i ) lei exists for all i.
(ii) A is pseudosupplemented and \{x V y) = lx V \y for all

x,yeA.
(iii) Each xeA has a mon. rep. \fib^ such that b%_γ^c%-γ for

every mon. rep. x — V i c ^

Proof. This is derived from 2.8 by using 2.4 and 2.9.

THEOREM 2.11. Let (A; e0, , en_λ) be a pseudo-complemented
PQ4attίce. Then A has a chain base 0 = f0 ^ f <Ξ ^ fn-χ — 1
such that f is the smallest dense element of A. If 0 — g0 ^ tί
gr_1 — 1 is any chain base of A such that gx is dense, then gx — fx

and for any mon. rep. x — y^Zlb^j, we have —x — bt.

Proof. Let f0 = 0, f = V S {^e^eif and /, - e, V/i for i ^ 2.
By (2), -πΛ = V* -^"^ βi-i -i β, = 0 Also A = etV Vi>.^ -. ^ - L
Therefore /< -i —i et = ec, since -π —iβ, —ι ̂ _i ^ —ι —i βέ —\ e4 = 0 for i > i.
If a = V ί δ ^ is any element of A, then α? = V ί ί ^ " 1 " 1 ei)/i T h u s

/o, # ,/»-i is a chain base of A. Let #0, •••, flrr_i be a chain base
of A. such that g1 is dense. If x= V y δ ^ is a mon. rep., then
—iίc = bx by (2). So if x is dense, then a? ̂  ^ . Thus SΊ = f is the
smallest dense element of A.

3* P^lattices.

THEOREM 3.1. Let (A; e0, , e ^ ) δβ α P0-lattice with center B.
Then the following are equivalent:

( i ) e< —• βy exists / o r αW i, i .

(ii) A is a Heyting algebra.
(iii) A is an L algebra.

Proof, (i) implies (ii): If x — VA ei and 7/ = V M are mon.
reps., then by 2.7, ?/ = ASCί (̂ i V e^). Therefore by 2.6, x —> j/ exists
and equals A*,i (δ< V c, V (e< —> e3)).

(ii) implies (iii): Let x = V i M o ί/ = ViCtet be mon. reps. Then
%~-*y = Ai Φiβi —• 2/) ̂  AtibiV Cj). Therefore, (a? —> y) V ^ -•») ^
Λ ^ & i V ^ V Λi(δiVc < )= Λ u ( δ < V δ J Vc<Vc /) = l since δ < v δ i = l
for i ;> j , and ^ V c3- = 1 for i < i .

(iii) implies (i): This is obvious.

DEFINITION 3.2. A P r lattice (A;eOf •--,en_1) is a P0-lattice to-
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gether with a chain base such that ei+ι —• ei = et. It follows that
βt —• βy = βj for i > i and e, —+ e3- = 1 for i ^ j , so that (i) of 3.1
holds.

THEOREM 3.3. If (A; eQ, •• ,en_1> is a P04attice and A is a
Heyting algebra, then there exists a chain base 0 = f0 ^ ^ /Λ_i = 1
ŝ c/z, ί&αί <A;/0, •••,/„_!> is α Pt4attice.

Proof. This is obvious for n = 1, 2. Suppose w > 2 and the
statement holds for n — l. By 2.11, we may assume eγ is dense.
Let A! = K 1]. By 2.5, <A'; eίf , e ^ ) is a P0-lattice. If x, y e A',
then x-+yeA'. Therefore by the induction hypothesis, there exists
a sequence e1 = /L <̂  ••• ̂ / % _ 1 = 1 such that (A';fu •••,/»_!> is a
Pi-lattice. If we set /0 = 0, then by 2.5, (A;fOf •••,/*_!> is a Pi-
lattice.

T H E O R E M 3.4. Let (A; e0, -•-,en_ί} be a Prlattice. Then for

some m ^ 1, 0 = e0 < ex < < βw_i = em = = 1. A fcαs order
m. jPor eαcA i, ei+ι is the smallest dense element of [eif 1]. Thus
e0, •••, em_! is the unique strictly increasing chain such that
(A; e0, , em_j> is a Prlattice. If x — V S b^ is a mon. rep., then
β \ / J\ §/γ , s o I "* P f\ ""-C 0 <s^ ιyj "1 7"/* Ύ* \ i n 1 Π 0 0 Q (Ί ill Q 0 /K*ί?/Γi

αmZ 2/ = V?=ί^βi ^ s α mo%. rep., then x—+y = yV y"=ibiCi9 where
b0 = hU K oQ = 1.

Proof. If m is the first integer such that em = em_lf then em_L =
em—>ew_i = 1. Since ei+ι is dense in [eif 1] it follows from 2.5 and
2.11 that ei+1 is the smallest dense element of [eif 1]. Using 3.3, it
follows that A has order m.

If # = V?=i M* is a mon. rep., then xV et = \/t=\+ι(βiV bk)ek.
Applying 2.11 to [eif 1], we find (x V et) —> e, = e, V 6<+i. Since (x V et) —•
^ =r a; —• βi? it follows by 2.6 that (x —> e j —* et = ê  V 6ί+i.

To prove the last statement, we observe that

5=1 5=0

i-l n-l

= V cJej V V β/ = V V c< for 1 ^ i ^ % — 1 .

5 = 1 5 = *

Therefore,

%—1 n—l __ n—l __

x—>y=z/{ Q).e% -^ y) — λ(btV tyVy) = yV h(bt\/ ct)
i—ί ί=i ί—l

7 1 — 1

= yV V bfr ,
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where the last equality is easily proved by induction.

DEFINITION 3.5. A Stone lattice (A; eQ, •• ,e%_1> of order n is
an L-algebra A in which there exists a chain 0 = e0 < ex < <
en_i = 1 such that ei+1 is the smallest dense element of [eif 1]. If
Bi is the center of [eu 1], let ht: Bt-^Bi+ι be the Boolean homomor-
phism defined by ht(x) = x V et+1, with Bo = B. These definitions are
in [11].

THEOREM 3.6. (A; e0, , en^) is a P^lattice of order n, if and
only if {A) e0, , en_^ is a Stone lattice of order n such that hi is
onto Bi+ί for each i ^ 0.

Proof. If (A; e0, •••, en^) is a Pi-lattice of order n, then it is
a Stone lattice of order n by 3.4, and ht is onto by 2.5. Conversely,
suppose (A; eQ, , en_ϊ) is a Stone lattice of order n and ht is onto
Bi+1 for each i. Then J5̂  = {b V β/. 6 e B} by 2.5. It was proved in
[11, 3.4], that if xeA, then x — h$=*χi> where x^B^ Therefore
(A; e0, , ew_!> is a P r latt ice.

THEOREM 3.7. If A is a Hey ting algebra with center B, 0 = eQ ^
• •• ^ β»_i = 1, ei+1 is the smallest dense element of [eif 1], and if
whenever i < j , the center of [et, e, ] is {et V bed: b e B], then {A) e0, ,
eTO_i) is a P^lattice.

Proof. The point of this theorem is that the condition that A
is an L-algebra is replaced by the condition that A is a Hey ting
algebra such that the center of [eif eQ\ is {et Vbef. be B), for all
i < j - We omit details of proof since this theorem is not used in
what follows.

4* P24attices.

DEFINITION 4.1. & = V?=iMi is called the highest monotone
representation (hi. mono, rep.) of x if for every mon. rep. V?=ί ciei
of x, the relation bt >̂ c, holds for all i. The lowest monotonic repre-
sentation (lo. mon. rep.) is defined in a similar manner.

THEOREM 4.2. Let (A;e0, •• ,e%_1> be a P0-lattice. Then the
following are equivalent:

( i ) ei=>ej exists for all i, j .
(ii) βi-^βj and let exist for all i, j .
(iii) every xeA has a hi. mon. rep.
(iv) every xeA has a lo. mon. rep.
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(v) A is a B-algebra.
(vi) A is a P-algebra.

The hi. mon. rep. of x is \f i{ei=> x)eί9 and the lo. mon. rep. of x

is Vί (# => βi-iK .

Proof. The equivalence of (i), (v), and (vi) is proved exactly as
in the proof of 3.1. By [7], A is a P-algebra if and only if A is a
pseudo-supplemented L-algebra in which l(xV y) = lx V ly for all
x, y. Therefore, by 3.1 and 2.10, (ii) is equivalent to (vi).

To prove (iii) implies (i), let V/M/ be the hi. mon. rep. of et.
Then bi+1ei+1 <> et. Let b e B, bei+1 ^ et. Thus ex V V et V beί+ι is
a mon. rep. of et. Therefore bi+1 ^ 6, which proves bi+1 = ei+ί =» e<e

Hence if i > j , et => e5 = Afci (e* ̂  βfc+i)> and for i ^ y, βt ==> e5 = 1.
To prove (vi) implies (iii), let & = Vi &A be any mon. rep. Then

βi ==> x ^ β< => 6^^ ^ 6̂ . Also e^β, => x) ̂  α?. Therefore,

x^\f i et(et =^x)^ Vi Mi = x -

Thus Vΐ^fe1^^) is the hi. mon. rep. of x.
The equivalence of (iv) and (vi) is a consequence of the equi-

valence of (iii) and (vi), since the dual of a P-algebra is a P-algebra.
The formula for the lo. mon. rep. is obtained by duality, for if
x — V'<M< is a mon. rep., then x — Λ* (&* Vβ*_i).

DEFINITION 4.3. A P2-lattice is a P rlattice (A; e0, •••, β^) such
that !e4 exists for all i.

Using 2.2, it is easy to construct a PΓlattice which is not a
P2-lattice.

THEOREM 4.4. // <A; e0, , en^) is a P0-lattice of order n and
A is a B-algebra, then there exists a unique chain fQ, •••,/»_!
that (A;f0, •••,/„_!> is α P2-lattice.

Proof. This follows from 3.3, 3.4, and 4.2.

THEOREM 4.5. Let (A;e0, •••, en_x> δe α P2-lattice. Then
( i ) Every xeA has a unique mon. rep. V iAί^K swc/&

D ^ ! ^ ) = !ίc. T%is representation is also the hi. mon. rep. of x.
(ii) Every xeA has a unique disj. rep. ViCϊ(^)βi such that

(iii) Di(x) — et => x, C^x) = D^x) — D<+I(α;) αwώ /or i < n — 1,
Ct(x) = (x => e%){e, => x) - ! ( ^ ) .

(iv) A ( * V ») = A(^) V Dt(y), Dt(xy) = Dt(x)Dt(y)
( v ) x=>y = VUCi(x)Di(y), where D0(y) = 1 and C0(a?) = 1 -
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Proof. ( i ) Let x = V i M i be a mon. rep. such that 6w_t = \x.
If i > i , then e, =>e,- = !(e<—• e,-) = !βy. Therefore,

βi => a? = V (β< => δiβ. ) = V (β< => &i)(«< => βi)

since Vi=l M^i = la <̂  bt. We set A(#) = et => x for 0 <£ ΐ g w — 1.
By 4.2, the hi. mon. rep. of x is V* A0Φ*> and i?u_i(α;) = 1=*# = !a?.

(ii) Follows from (i), with Ct(x) = A(») - A+i(»)
(iii) For 0 <; i < w - 1,

eτ) - A (A(«) V

= A (A(^) V !e,) = A+i(») V let .
i

Therefore (x => et)(et => x) = Ct(x) V D^xy.e,. Since A W ^ Ϊ ^ βt(βt
ίc) ^ x, we have D^α;)!^ ^ Ix = Dn^{x). Hence Dt(x)let = !^!βέ

Also C^lx = C^C^x) = 0. Therefore,

C,(α;) = (a? => e j f o => a?) - ! ( ^ ^ ) .

(iv) follows immediately from Dt(x) = ei=>x.
(v) By 3.4, x-+y = yV VΓo1 Ct(x)Dt(y)- Therefore,

Vx=*y = \yV V CH&DHy) - V C^D

since VΓo] CtWDA) ^ D

THEOREM 4.6. The following are equivalent:
( i ) {A; eQf , βft_x> is α >P2-lattice of order n.
(ii) <A; e0, •••, βw_i) is α Stone lattice of order n, the homo-

morphisms hi of 3.5 are onto, and the kernel of hi is a principal
ideal for each i.

(iii) (A] eQ9 •••, ew_i> is α Stone lattice of order n and Ad is a
Stone lattice.

Proof. The equivalence of (i) and (ii) follows from 3.6 and 2.9,
using the fact that the kernel of ht is a principal ideal if and only
if lei+ί exists. The equivalence of (ii) and (iii) was proved in [11].

The following is the dual of the definition given in [5].

DEFINITION 4.7. A Post algebra is a P2-algebra (A; eQt •••, eΛ_i>
such that len-2 = 0; that is, β%_2 is dense in Ad. Note that A has
order n> unless A = {0}.
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THEOREM 4.8. If (A;e0, , en_,) is a F'.-lattice then the follow-
ing are equivalent:

( i ) A is a Post algebra.
(ii) every element xeA has a unique mon. rep.
(iii) et => ̂ _x = 0 for all i > 0.

Proof. This was proved in [13].

LEMMA 4.9. If (A3 ; ej0, , e, (nj._i>> is a Pr-lattice for j e J, where
r = 0, 1, or 2, A = Πyej Ay, w = max {%: j 1 e J} < °o, emeZ e^ is defined
to be e3'lnj-D for k > njf then (A; eQ, •• ,β Λ _i> i s α Pr-lattice9 where
βi = <eu:jeJ).

Proof. This is obvious.

LEMMA 4.10. 7/ (A;eQ, •••, ew_t) ΐs α P0-lattice, B is a distribu-
tive lattice and f: A—>B is a lattice homomorphism onto, then
(B;f(e0), , /(ew_!)> is α P0-lattice. If (A; eQ, , en^) is a Prlattice
and f:A—+B is a Heyting homomorphism onto, then (B;f(eQ), •••,
/(β»-i)> is a Pi-lattice.

Proof. This is easy to verify.

THEOREM 4.11. Let A be a finite distributive lattice then the
following are equivalent:

( i ) A is a P^-lattice.
(ii) A is a P-algebra.
(iii) A is a direct product of chains.
(iv) A has a chain base e0, , en_x such that (A; e0, , βw_i> is

a P2-lattice.

Proof, (i) implies (ii): Since A is finite, A is a pseudo-supple-
mented Heyting algebra. By 4.2, A is a P-algebra.

(ii) implies (iii) was proved in [7].
(iii) implies (iv): If A is a finite chain 0 = α0 < < α»_i = 1,

then <A; a0, , αw_i> is a P2-lattice. Therefore (iv) follows by 4.9.
(iv) implies (i) is obvious.
A finite chain with n elements has exactly one chain base with

n terms. If <A; eQ, •• ,βw_1> and (B;f0, •••,/«-!> are P0-lattices of
orders n and m respectively, where n < m, then A x B has more
than one chain base. In addition to the chain base described in 4.9,
there is also the chain base (e0, / 0), , (e0, /«_»), (el9 fm-n+ι)f (e2, fm-n+2),
•••, (β*-i, /m-0 These remarks lead to the next theorem.
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THEOREM 4.12. A distributive lattice A is a Post algebra of
order n if and only if A has a unique n-term chain base.

Proof. Let A be a Post algebra of order n, and let e0, •••, en_1

be an n-term. chain base. A is a subdirect power of an n element
chain C. If fd = A —• C is the jth projection, then by 4.10, f3(e0),
'"ffo(^n-i) is a chain base of C. This determines //(e<) uniquely for
all ί, j . Therefore e0, , en^ is unique.

Conversely, suppose A has a unique w-term chain base e0, , ew-i
We prove A is a Post algebra of order n by induction. This is
obvious for n = 1,2. Suppose n > 2 and the statement holds for
n — 1. By 2.5, [ex, 1] has a unique chain base with n — 1 terms.
Therefore, [β^ 1] is a Post algebra of order n — 1. This implies e i+1=>
e» = 0 in [elf 1] for i ^ 1. This implies e<+1 => βt = 0 in A since the
center of [elf 1] is {b V ex: 6 e B], where 5 is the center of A. By 4.8,
we need only show e1 => 0 = 0. If not, there exists b e B with be, = 0,
6 ^ 0 . Let ^ = {0, 6, 6, 1}, and let A, be the sublattice of A gener-
ated by 2?! U {eQf •• , e Λ . J . By 2.2, Ax has center J5i and so every
chain base of A1 is a chain base of A. Thus Ax is a finite lattice
with a unique w-term chain base. By 4.11, Ax is a direct product of
finite chains. If all the chains have the same cardinal, then Aγ is a
Post algebra with unique w-term chain base e0, •••, eΛ_lf and by 4.8,
we have ey ==> 0 = 0, which contradicts 6^ = 0, b Φ 0. If two of the
chains have different cardinal, then Aι has more than one %-term chain
base. This contradiction proves e1 => 0 = 0.

THEOREM 4.13. // (A; eQ9 •• , en^) is a Prlattice with center B,
then there exists a P24attice (A'; e0, , en_^) with center Br such that
B is a Boolean subalgebra of Bf and A is the sublattice of A! generated
by δ U f e , •••, ^_J.

Proof. By 3.1, A is an I/-algebra. By [9], we may assume A
is a Heyting subalgebra of a direct product of chains Cjf j eJ and
the projections /,-: A—>Cs are onto. Then by 4.10, <Q; fj(e0), , fj(en-i))
is a P r latt ice. Therefore, C3- has at most n elements and (C3 ;f3 (e0),
• , Λ(β»-i)> is a P2-lattice. Let A' = JlJeJ Cs. By 4.9, <A; e0, , ew-!>
is a P2-lattice. Since A is a sublattice of A' containing 0, 1, the center
of A is a subalgebra of the center of A!.

THEOREM 4.14. Let (A;e0, •• ,^_ 1> be a Pz-lattice of order n
with center B. Then A is order isomorphic with a direct product
of Post algebras of maximum order n.

Proof. Let uk = lek — lek-u 1 ^ k ^ n — 1. Then u3 uk - 0 for
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j Φ k, and ut V V un_x = 1. Let Pk = [0, M J . Clearly the center
of Pk is B Π P*. Let eA< = βΛ, 0 ^ i <£ ά. If & = VJi? 6 ^ is a mon.
rep. of any xe Pk, then

n—1 &—1 Λ — 1 &

α; — £Wfc = V hewn = V M t ^ * V V & A = V (biUk)eH .
i = l ί = l » = fc i = l

Therefore <Pfc; efc0, , ekk) is a P0-lattice. If bePkΠ Bf beki <Ξ ek{i_1)9

0 < i ^ k, then δê  ^ β^i Therefore b <£ β, =» ̂ _i = Iβ^x. This
implies 6 = 0, since b ^ uk. Thus by 4.8, P& is a Post algebra of
order k + 1, or else Pfc = {0}. Define /: A — ΠKί P^ by /(») = (»%»
• , xun-^). / i s onto since if ^ e P i , then/fo V Vs»-i) = fe, , «»-i).
If x ^y then /(a;) ^ /(^/), and f{x) ^ /(?/) implies

n— 1 it—1

Therefore / is an order isomorphism. Finally, P n - 1 has order w since
w-i ^ 0.

Theorem 4.14 may be used to apply known results on Post
algebras to P2-lattices. For example, since every Post algebra is
isomorphic with the set of all continuous functions on a Boolean space
to a finite discrete chain, it follows that every P2-lattice is iso-
morphic with the set of all such functions which are <̂  some fixed
continuous function. In other words, a P2-lattice is a principal ideal in
a Post algebra. It also follows from 4.14 that a P2-lattice is complete
if and only if its center is complete, and that the normal completion
of a P2-lattice A is a P2-lattice whose center is the normal completion
of the center of A. Also every P2-algebra is isomorphic with its
dual. This isomorphism is given explicitly in the following theorem.

THEOREM 4.15. Let (A; e0, •• ,βn_1> be a P2-lattice. Let fi =

VEi"* ek\ek+i-l9 0 <J i < n — 1 and /Λ_x = 0. Then A is isomorphic

with Ad under the normal involution

β(χ) = V Wdfi-i = A(Wd v/,)

Proof. We have /„ ̂  V»=l (Iet - !gt-J = 1. For 0 < i < » - 1,
I ft = 0, so that by 4.5(i), Dk(f{) = lek+i^ for 1 ^ k £n - 1 - i, and
Dk(ft) = 0 for k ^ TO - i.

If 1 ^ ΐ ^ » - 2,

n—\

= V Λ J ^ M V V

i=i i=i fc=i
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But Vjz* (lej+i^ - lej+k_2) = 0 if k > i, and by 2.7, if k £ i,

n-i

V (!βi+<-i - !β i+fc_2) = I β ^ ! A (!^ +ι-2 V !
ii i

Therefore,
Now x ^ y implies β(x) ̂  β(y) and

Λ—1 ί i—1

α)) = V fi-x V AWACΛ) = V iδ(/*)I>«(«) = V

This implies that β: A —> Ad is an isomorphism. The proof that β is
a normal involution—that is, that xβ(x) ̂  y V /?(?/) for all a?, 2/ e A—
is omitted since this fact will not be used here [10].

5* Axioms and P2-functions* P2-algebras (A; e0, •••, en_i> of
order <£ n may be regarded as algebras (A; V, Λ, Co, •••, CΛ_i, e09

'",en^} with two binary operations, n binary operations, and n
distinguished constants. This class of algebras can be characterized
by the following set of equational axioms, in which x <Ξ y is used as
an abbreviation for x A y = x.

HI. Identities characterizing (A; V, Λ> as a distributive lattice
[8, pp.5, 35].

H2. ( a ) eQ ̂  x
(b) e< ̂  e, f or 0 <i ΐ <; j ^ w - 1
(c ) α ̂  en_!

H3. ( a ) d(x) A C3{x) = e0 for i Φ j
(b) C0(x) V Q(x) V V C^a?) - β ^

H4. ( a ) Ct{x AV) = (C%(x) A VtZl Ck(y)) V (Ct(y) A VJz} C,(x))
(b) Cn^(x Vy) = Cn^(x) V CU(y)

H5. ( a ) 0,(6 )̂ = β0 for i ^ ΐ and ί < n — 1
(b) α . ^ - β o

H6. x - (Cί(α) Λ βi) V V (C^^a;) Λ β^J.
Note that in every P2-lattice H4 holds by 4.5(iv) and H5 holds

by 4.5(ii). Conversely, if A satisfies the axioms then one proves
CU(1) = 1, C0(0) = 0, CQ(x) - -x and C^,^) - Ix. Then using H4
and H5, it can be proved that xet = e^ implies x — e^. This shows
that <A; β0, •••, e^} is a P2-lattice.

The class of Post algebras of order n (together with the trivial
lattice {0}) can be characterized by adding the axiom Cn^x{en^ = 0
(see also [6]).

We may also characterize P2-lattices equationally as the class of
all algebras (A; V, Λ, =>, e0, •••, βw_i> with 3 binary operations and
n constants which satisfy the following axioms.
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Kl. Identities characterizing (A; V, Λ, =», e0, β»-i> as a P-algebra
(see [7]).

K2. e, ^ e, for i ^ i
K 3 . 6^+1(^4 = * βj ) ^ e^ f o r j <C i <C n — 1

K4. x = V£}(e<Λ(e<=>αO).
Indeed, if we set A(#) = βt =>x for 0 <Ξ i <: n — 1 and let (̂ (a?) =

AC*0 — A+i(») for ί<n, then Hl-3, H5(b), and H6 are obvious. By
properties of P-algebras, Dt(x V y) = A0*0 V AO/) a n d Di{%Ay) =
Dt(x) A AG/) This proves H4. H5(a) is equivalent to ^=>βy = e<+i=>e,-
for j Φ i9 i < n — 1. This is obvious for ί < j , and follows from
K3 for i > i .

P2-lattices may also be characterized equationally as algebras
(A; V, Λ, —•, !, e0, •• , en^), since »=>2/ = !(»—•?/), x-*y = y V(x=^y)
and Ix = l=>x.

A P2-function of order n in m variables is a function built from
the identity functions Ij(xu , xm) = ^ , 1 ^ i ^ m, and the oper-
ations in any of the fundamental sets of operations described above.
A normal form for such functions is given in the next theorem.

THEOREM 5.1. If h is a P2-function of order n in m variables,
then

Kxl9 , x m ) = Q<y<n_Heh, , eim)Ch(xJ Cim(xm) .

Proof. The nm terms Ch{x^ Cim(xm) are pairwise disjoint and
have join 1, by axiom H3. By Hβ, the statement holds when h is
one of the identity functions. If the statement holds for hx and h29

then it holds for ht V h2 and h, A h2. If it holds for h, then it holds
for D%{h) by 4.5(iv). From this it follows that the statement holds
for Cj(h).

The normal form in 5.1 was proved for Post algebras in [5], and
gives a truth table approach to Post functions. However, in a
P2-lattice, h(eilf *"9eim) is not necessarily in {e0, •••, eΛ_J, as is the
case for Post algebras.

6. Applications* P2-lattices are of interest in computer science.
They can be applied to the theory of machines with mΓstable devices,
2 ^ mt ^ n, and to the analysis of machines with 2-stable devices
Qi (flip-flops) whose outputs are discretized as signals in transition
0 = e0 < ex < < e n - 1 = 1. The case n — 3 is of special interest
and is studied in [2] and [3]. P2-lattices provide the complete
multiple-valued logics for these applications.

P2-lattices which admit operations of ring addition and multipli-
cation are of interest in information processing. It is known that
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if R is a ring with unit element which satisfies the identities xp = x
and px — 0, where p is a prime (so-called p-rings [12]), then lattice
operations can be defined as polynomials in such a way that R becomes
a Post algebra of order p. Conversely in any Post algebra of order
p, ring operations can be defined in terms of the Post operations so
that we obtain a p-ring. Therefore, direct products of finitely many
p-rings are P2-lattices. Such direct products can be characterized
equationally. Indeed one can show that a ring R with unit element
is a direct product of rings Rl9 •••, Rt, where Rt is a paring and
Pi Φ Pi f ° r ί Φ 3 9 if and only if R satisfies the following set of
identities:

( 1 ) χm = x, where m = 1 + l.c.m. {pι — 1, , pt — 1).
(2 ) px ptx = 0.
( 3 ) (Π&i

7+ Prime ideals*

DEFINITION 7.1. Let &*(A) be the set of prime ideals of A. Let
(A;e0, •••, ew_!> be a P0-lattice with center B. If Qe^(B) and
1 ^ ά ̂  % — 1, let Pk(Q) = {xe A: x has a mon. rep. V* &A such that
6*eQ}. It was proved in [13, Th. 1.5] that either Pk(Q)e^(A) or
Pk(Q) = A (the latter possibility was not mentioned). If Pk(Q) Φ A,
then Pk(Q) f]B = Q since if beQ then 6 = V* be, e P,(ζ>) and prime
ideals in B are maximal ideals. If Pe^(A), then P is said to be
of type k if k is the smallest integer such that ek £ P. Since β ^ =
βi V V β,_x e Pfc(Q), Pk(Q) is of type ^ k.

LEMMA 7.2. If P is a prime ideal of type k in A and Q — P Π B,
then

P = Pfc(Q) = {x: for every mon. rep. V* 6<β< o/ x, && e Q} .

Proof. If xeA has a mon. rep. V«^ e« wi th bkeQ then # :g

βΛ_! V bke P. lί xe P and Vi^*ei ^ s a n Y πion. rep . of x, then δ ^ e P

and ek $ P, so t h a t bk e Q.

THEOREM 7.3. T%β prime ideals of a PQ-lattice (A; eQ, •••, e%_!>

Ziβ m disjoint maximal chains with at most n — 1 members.

Proof. By 7.1, each prime ideal of A is of the form Pk(Q). If
P*(Qi) S PM), then Qx - P f c ( α ) Π ΰ S PAQ2) f)B = Q2f so that Q, = Q2.
It is obvious that PΛ(Q) S Pyfc+i(Q). This proves the theorem.

LEMMA 7.4. If (A; eQ, •• ,eΛ_1> is α P0-lattice with center B,
and Qe<^(B), then Pk(Q) = {x: for some b e Q, x <Ξ ek^ Vb}. Also
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PuΛQ) = Pk(Q) if and only if ek e Pk(Q).

Proof. If xePk(Q), there exists a mon. rep. VίM* of x such
that bk e Q. Also x ^ ek^ V bk. If α? <: e ^ V 6 and 6 6 Q then a? 6 Pk{Q)
since e ^ V b = V;=ί ^ V V*«ί δ ^ Suppose e* e Pk(Q). If α e Pfc+1(Q),
then a? g efc v 6 for some b e Q, hence x e Pk(Q). Thus Pfc+1(<3) = Pk(Q).
Conversely if Ph+ι(Q) = Pk(Q), then ekePk(Q) since ekePk+1(Q)-

T H E O R E M 7.5. Leέ <A; e0, •••, e%_!> 6e α P0-lattice with center

B9 and let Ik be the ideal {b e B: bek ^ ek^} in B, 1 ^ k S n — 1.
ΓΛβ^ £/ιe following are equivalent'.

( i ) Every chain in &(A) has fewer than n — 1 elements.
( i i ) F o r e v e r 2/ ζ > e ^ ( J 5 ) , ί A e r e e x i s t s b e Q a n d a n i n t e g e r k ^ l

such that ek S βk-i V b.
(iii) /x V V /._! = B.
(iv) A has a chain base with fewer than n elements.

Proof, (i) implies (ii): If Q e ,^(B), then either Pn^{Q) = A o r
Pk(Q) = -PjM-i(Q) for some & < % - 1. Hence by 7.4, e fceP,(Q) for
some k, 1 <: k ^ n — 1, and therefore there exists δ e Q such that
ek ^ eΛ_! V δ

(ii) implies (iii): If I, V V In-i Φ B, there exists Q e ^(B)
such that Q 2 Ii V V JΛ-i. There exists 6 e Q and k such that
ê  ^ eΛ_i V.&. But then 6Gl f c £ Q, which is impossible.

(iii) implies (iv): There exist elements bk e Ik such that 1 = ^V
• V bn_x. By replacing the bk by smaller elements, we may assume

the bk are pair wise disjoint. Let f0 — 0 and

V v0

Then /„ ̂  / n + 1 and /M_2 = 1, since 6X V V δM_2 = 6.-1 and δM_x ̂  eB_2.

Now Λ_x VΛ V"=*+ι δy = β*-i V V/« δ/ Therefore,

e» = / f c - ι V Λ V δ , ,

and so /0, •• ,/Λ_2 is a chain base of A.
(iv) implies (i) by 7.3.

THEOREM 7.6. Let A be a P04attice. Then A is of order n if
and only if the maximum number of elements in a chain in έ^{A)
in n — 1.

Proof. This follows from 7.3 and the equivalence of 7.5(i) and
7.5(iv).
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DEFINITION 7.7. Let ^{A) = Φ, and let ^k+ί(A) be the set of
minimal elements of

THEOREM 7.8. Let (A; e0, , en^) be a Prlattice with center B.
Then for 0 <^ i <: n - 2,

Proof. By 7.4, P^Q) Φ A for all Qe^(B). Hence
{Pi(Q):Qeέ?(B)}. If 1 ̂  ί ^ w - 2, then ^eP^Q) if a_nd only if
ei ^ e ĵ. V b for some b eQ. This in turn is equivalent to b ̂  ^—^i-i
which is equivalent to 6 <; e<_i, or 1 ^ e^ V δ. By 7.4, this is equiva-
lent to Pi(Q) = A. Also, PάQ) = Pί+1(Q) if and only if e^P^Q).
Therefore ^(A) - {P,(Q): Pέ(Q) ^ A}, and e^PM for all P,(Q)e

Since β, e Pί+i(Q) for all Q e ̂ (B), the proof is complete.

LEMMA 7.9. Let A be a bounded distributive lattice. Suppose
is a union of disjoint maximal chains and there exists an

element eeft (&(Ά) - &[(A)) - \J &{(A). Let A, = [e, 1]. Then
= {PΠ A,: P e &i+ί(A)} for each i ^ 1.

Proof. If Pe^(A) - ^(A), let <p(P) = Pf] Ax. Then φ(P)e
If Qe &>{Aύf let ψ(Q) = {x e A: x ̂  an element of Q}. Then

Ψ(Q) 6 &{A) - &{(A) and fφ{P) = P. Thus ^: ̂ ( A ) - &(£)-»&(A^
is an order isomorphism.

LEMMA 7.10. Under the hypotheses of 7.9, let B and Bx be the
centers of A and Aί respectively. Then Bt = {6 V e:be B}. If xe A,
then there exists b e B such that x = b(eV x).

Proof. Let {Z :̂ ieS} be the set of maximal chains in
The intersection and union of any nonempty subset of Dt is in Dt.
Let Pi and Qi be respectively the smallest and largest member of
Dt. Let V = {i: Pi Φ QJ. For i e V, let i2, = fl {Pe A: β e P}. i?,
is the immediate successor of Pi in D,. We divide the proof of the
lemma into several parts.

(a) If xePi, there exists y such that xy = 0 and yiQt.
Indeed for each j such that x$Pί9 choose y^ePj — Qt. Then

every prime ideal in A contains a member of {x} U {yf x $ Pj}. There-
fore, the filter generated by this set is not proper and so there exists
a finite meet y of the yά such that xy — 0. Clearly yίQi.

(b) If x£ Qu there exists y e Pt such that x\/y — 1.
For each j such that x e Q3 choose ys e Pi — Q3. The ideal

generated by {x} V {y3-: x e Qo) is not proper. Therefore, a finite join
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y of the yό satisfies the requirements.
( c ) If x 0 Qi there exists y <^ x such that y$Qt and y e Pά

whenever xeQj.
By (b) there exists z G P* such that x V z = 1. By (a) there exists

y g Qi such that yz — 0. If & e Qy, then z £ Qy, hence 2 g P y and so
y e Pj. If P is any prime ideal containing a? then PeD^ for some j ,
and so x e Q3. This implies y e Pά £ P. Thus y ^ x.

( d ) If a? g P o there exists ?/ g Q* such that e?/ <; a?.
For each i such that x e Pίf choose y5 e P y — Qt. If P is a prime

ideal containing x but not e, then P = P, for some j and so #/ 6 P.
This implies that a? belongs to the filter generated by {e} V {y,: x e Py}.
The desired ?/ will be the meet of a finite number of y$*

( e ) If xe Rif there exists 2/ g Q* such that xy <, e.
For each y such that a? g J2, choose 2/* e P5 - Qt. If P is a prime

ideal containing e but not x, then P a Bό for some i and since x g i?y,
l/y G P y £ P. This implies that e belongs to the filter generated by
{x} V {ys\ x£R3). The desired y is the meet of a finite number of ys.

( f ) If x e ^ ! then for all i, either x e Rt or a; g (?*.
Let 2/ be the complement of x in Alβ If x G QZ then 3/ g Qt since

a; V 2/ = 1. Therefore y $ Rif hence »< e i2f since xy — eeRi.
( g ) If for all ί,xePi or x^Qif then O G P .
By (a), for each i such that a? e P«, there exists 3/< g Q< such that

a?2/€ = 0. No prime ideal contains x and {yi:xePι}. There exists a
finite join 7/ of the yt such that a? V 2/ = 1 and clearly &i/ — 0.

( h ) If O G A, there exists yeB such that a? = y(eVx).
Let T = y : x e Py}. If Γ = S then a? - 0 and 2/ = 0. If T = φ

then x ^ e and 2/ = 1 will do. Suppose T Φ S, T Φ φ. By (d), for
each ie S — T, there exists yt g Q€ such that eyt ^ a;. By (a), for
each j e T there exists zό £ Qό such that xzό = 0. No prime ideal
contains {yt: ie S — Γ} U {«y: i G Γ}. Therefore, there exist y, z such
that yVz = l9 ey <; a?, and #z = 0. This implies x = xy = xyV ey ~
x(y Ve). If i G T, then ey <: a?G Py, βg P y so that yeP3 . If ieS- T.
then « G Pi since a? g P, and #2 = 0. Thus yz e Pi for all ieS, and so
2/s = 0. Hence yeB.

( i ) If x e B19 there exists yeB such that # = y V e.
Let IF - {i G F: x e Rs). If TF = V, then a; = e" and » = 0. If

W = φ then by (f), x = 1 and 1/ = 1. Suppose W Φ V, W Φ φ. By
(c), for each i G S — W there exists yt^x such that #» g Qi and 2/i e P5

for all i e W. By (e), for each je W, there exists «ygQy such that
xz5 ^ β. No prime ideal contains {yt: ieS — ΫF} V {«y: je W). There-
fore, there exist y, z such that 1 = y V z, xz <^ e, y ^ x and y e P3 for
all j e W. If i e V — W then a? g i?* and e e Rif hence z e R{ and so
y £ Ri. If ίeS- V, then y e Pt or 2/ g Q, since Pt = Qt. Therefore
by (g), yeB. Finally yVe^x = xyVxz^yVef and so a; = |/Ve.
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(h) and (i) yield the lemma since it is obvious that {b V e: b e B} £ B,.

THEOREM 7.11. Let A be a bounded distributive lattice. Suppose
is a union of disjoint maximal chains with maximum number

of elements equal to n — 1, and for each i, 0 ̂  i ^ n — 2, there exists
an element et e Γϊ ̂ +i(A) — U i ^ U ̂ (^-) If w e set en-ι = 1> then
(A; e0, •••, βΛ_i) is α P^lattice.

Proof. Clearly 0 = e0 < eι < < βu_2 < 1. If n = 2, then A is
-a Boolean algebra by Nachbin's theorem [8, p. 76], and the theorem
holds. Assume n > 2 and the theorem holds for w — 1. Let A1 =
[eu 1]. By 7.9, Aγ satisfies the hypothesis for n — 1. Therefore
(A,; el9 , #„_!> is a P^lattice. Let x be any member of A. By 7.10,
xcVeL = V?=2l(ei VδiK, where b% e B. Again by 7.10, there exists
b e B such that x = b(x V βi). Therefore a; = be, V VS 1 &δiβ< Clearly
•ei+1 —+eί = ei in A, for i ^ 1. It remains to show βi—> 0 = 0. Suppose
ye, = 0 and ?/ ̂  0. There exists a maximal filter F containing y.
But A - F e ^ ( A ) , and so β^ F. Thus Oei*7, a contradiction.

THEOREM 7.12. Lβί 4 δe α bounded distributive lattice. Then
t h e r e e x i s t s a sequence e0, •• , β Λ _ 1 s^cA, ί / ^ α ί < A ; e0, •• , β w _ 1 > i s α
Pi-lattice of order n if and only if

( i ) ^(A) is a union of disjoint maximal chains with maximum
number of elements equal to n — 1, and

(ii) Π ̂  n(A) - U

Proo/. This follows from 7.6, 7.8, and 7.11.

THEOREM 7.13. Let A be a bounded distributive lattice. Then
there exists a sequence eQ, •• ,^_ 1 such that (A; e0, •• ,β%_1) is a
P24attice of order n if and only if conditions (i) and (ii) of Theorem
7.12 hold as well as

(iii) There exists an element ceA such that for all Peέ^(A),
ceP if and only if P is a maximal ideal.

Proof. By the equivalence of (i) and (iii) in Theorem 4.6, this is
a consequence of [11, 4.9].

A characterization of Post algebras A by properties of ^(A) is
known [4]. However, we know no such characterization of P0-lattices.
We give an example of a P-algebra A such that ^(A) consists of
disjoint maximal chains with at most 2 elements but A is not a
P0-lattice. Let C = {0, β, 1} be a 3 element chain and let A be the
set of all functions / on an infinite set I to C such that {C: f(i) = e)
is finite. Since A is a P-subalgebra of a Post algebra of order 3,
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each chain of prime ideals of A has length at most 2, [7, Th. 7.1]. If
O = / o < Λ < ••• <Λ-! = 1 and Sk = {i:fk(i) = e}, and if / = VKδ,/,,
where 6, are in the center of A, then {i:/(i) = e} E & (J U Sn-i.
Therefore, A does not have a chain base.
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ON THE IRRATIONALITY OF CERTAIN SERIES

P. ERDOS AND E. G. STRAUS

A criterion is established for the rationality of series of
the form Σ bj(alf , an) where an, bn are integers, an ^ 2
and lim δn/(αn-:A) = 0. This criterion is applied to prove
irrationality and rational independence of certain special
series of the above type.

1* Introduction* In an earlier paper [2] we proved the fol-
lowing result:

THEOREM 1.1. If {an} is a monotonic sequence of positive integers
with an *> nιιin for all large n, then the series

(1.2) Σ φ{n) and
. _ :1 ata2 an

are irrational.

We conjectured that the series (1.2) are irrational under the
single assumption that {an} is monotonic and we observed that some
such condition is needed in view of the possible choices an — ψ{n) + 1
or an = σ(ri) + 1. These particular choices do not satisfy the hypothe-
sis lim inf an+1/an > 0 but we do not know whether that hypothesis
which is weaker than that of the monotonicity of an would suffice.

In this note we obtain various improvements and generalizations
of Theorem 1.1, in particular by relaxing the growth conditions on
the an and using more precise results in the distribution of primes.

In § 2 we obtain some general conditions for the rationality of
series of the form Σ bj(au , an) which are modifications of
[2, Lemma 2.29]. In § 3 we use a result of A. Selberg [3] on the
regularity of primes in intervals to obtain improvements and generali-
zations of Theorem 1.1.

2* Criteria for rationality*

THEOREM 2.1. Let {bn} be a sequence of integers and {an} a
sequence of positive integers with an > 1 for all large n and

(2.2) Iim-1M_ = o .

Then the series
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^ 6.(2.3)
an

is rational if and only if there exists a positive integer B and a
sequence of integers {cn} so that for all large n we have

(2.4) Bbn = cnan - cn+1 , | cn+1 \ < aJ2 .

Proof. Assume that (2.4) holds beyond N. Then

Baγ aN_λ Σ = integer + Σ Gn<ln "" °n+ι

M * a^_ a ft ft •" a$ a^

= integer + cN = integer .

Thus condition (2.4) is sufficient for the rationality of the series (2.3),
To prove the necessity of (2.4) assume that the series (2.3) equals-

A/B and that N is so large that an ^ 2 and | bj{an_ιa7) \ < 1/(41?)
for all n^N. Then

A - B Y K
N~' »=* a, an

(2.5) = integer + ̂ + £
aN n=N+i aN an

If we call the last sum RN we get

\ R N \ ^

(2.6) / 1 Y 1 = 1

Thus, if we choose cN to be the integer nearest to BbN/aN and
write BbN = eNaN — cN+1 then (2.5) yields that —cN+1/aN + RN is an
integer of absolute value less than 1 and hence 0, so that

(2.7) ^ ± L = RN =

or

(2.8) ^ ^

From (2.8) it follows that cN+1 is the integer nearest to BbN+ί/aN+1

and if we wr i te BbN+1 = cN+1aN+1 — cN+2 we get

(9 Q{\ BbN+2 _ r>

aN+2
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Proceeding in this manner we get the desired sequence {cn}.

REMARK. Since (2.2) implies Bn —> 0 it follows that for rational
values of the series (2.3) we get cn+1/an —> 0. Thus either an —> °° or
cn — 0 and hence bn = 0 for all large n.

COROLLARY 2.10. Let {an}, {bn} satisfy the hypotheses of Theorem
2.1 and in addition the conditions that for all large n we have
bn > 0, an+1 ^ an, lim (bn+1 — bn)fan <̂  0 and lim inf aJbn — 0. Then the
series (2.3) is irrational.

Proof. According to Theorem 2.1 the rationality of (2.3) implies
the existence of a positive integer B and a sequence of integers {cn}
so that

Bbn = cnan - an+1

for all large n where cΛ + 1/αn—»0. Thus

bn+1 = cn+1an+1 — c n + a > (cw + 1 — ε) ^ c^+i — g

&̂  cnan — c Λ + 1 c%α% ~ cn

for all ε > 0 and sufficiently large n. Thus c w + 1 > cn would lead to

(2.11) bn+ί > ( l + ±=-ϊ)bn >bn + ( l - e)(an - * * ±

\ c Λ / \ cn

This contradicts our hypothesis for sufficiently large n. Thus we get
0 < cn+1 ^ cn for all large n and hence 6Jαw is bounded contrary to
the hypothesis that lim inf ajbn = 0.

In fact, if we omit the hypothesis lim inf ajbn = 0 then we get
rational values for the series (2.3) only when Bbn = C(an — 1) with
positive integers B, C for all large n.

3* Some special sequences*

THEOREM 3.1. Let pn be the nth prime and let {an} be a monotonic
sequence of positive integers satisfying lim pjai = θ and lim inf ajpn =
0. Then the series

(3.2) Σ ——

is irrational.

Proof. Since the series (3.2) satisfies the hypotheses of Theorem
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2.1 it follows that there is a sequence {cn} and an integers B so that
for all large n we have

(3.3) Bpn = cnan - cn+1 .

For large n an equality cn = cn+1 would imply cn \ B and an > pn.
Since {cj is unbounded there must exist an index m^ n so that
cm ^ cn < cm+1. But this implies by an argument analogous to (2.11)
that

(3.4) pm+1 >pm + aJ(2B) > (l + -^

which is impossible for large m. Thus we may assume that cn Φ cn+1

for all large n. Now consider an interval N ^ n ^ 2N. If cn+ί > cn

then as in (3.4) we get

Pn+ι > Pn + aJ(2B) > pn + V~~p~n

which therefore happens for fewer than (p2N — pN)/l/ PN < Nlβ+ε

values in the interval (N, 2N). If cn+ι < cn then we get

- cn+1 > cn(an -

so that

(3.5) an

Since case (3.5) holds for more than N/2 values of n in (N, 2N)
we get a2N > N/2 and thus for all large n we have an > nβ, cn <
2>»/β» + 1 < l / ^ / 4 . Substituting these values in (3.5) we get

(3.6) an+1 >an + τ/¥" when cw+1 < cn, n large

so that a2N > iV3/2/2, contradicting the hypothesis that lim inf α j p w = 0.

THEOREM 3.7. Let {an} be a monotonic sequence of positive in-
tegers with an > nlβ+δ for some positive d > 0 and all large n. Then
the numbers 1, x9 yy z are rationally independent. Here

^=i a1 an

 n=ι a1 an

and

dn
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where {dn} is any sequence of integers satisfying \dn\ < nιμ~δ for all

large n and infinitely many dn Φ 0.

Proof. Assume that there exist integers A, B, C not all 0 so that
setting bn = Aφ(n) + Bσ(n) + Cdn we get that S = Σ»=iδ»/(αi> •'•><*»)
is an integer.

From Theorem 2.1 it follows directly that z is irrational and thus
not both A and B can be zero. We consider first the case A + B Φ 0
so that without loss of generality we may assume A + B = D > 0.
Since S satisfies the hypotheses of Theorem 2.1 there exist integers
{cn} so that

K = cnan — cn+1 for all large n .

Since | bn \ < ^1+δ/2 for all large n we get

I cn I < wιl-a)>2 for all large % .

Let pn be the nth prime and set

cι w — aPn, on = ^p%> ^ = = ^p%> ^w = r : βpn+ι y

then

δ: - A(pn - 1) + β ( ^ w + 1) + CdPw = Z?,, + d'n

where

d; = Cd^ - A + B with I C I < n{1-δ)l2 for all large n .

Now

O ^^ CSh C

so that from

K+ι __ Dpn+1 + d'n+ί _ pn+1 1 + d'n+1/(Dpn+1)

K Dpn + d'n pn l + d'J(Dpn)

Pn

we get

(3.8)
Cn/(CbnCn)
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Here the last inequality follows from the fact that

(bn

cn+ι)/an

Aφ(n + 1) + Bσ(n

I Aφ(n) + Bσ(n) |

From (3.8) we get that <£+1 > c'n implies

(3.9) pn+ί > pn + Jk- - pi'*-"4 > pn + JLy,

for all large w.
We now use the following result of A. Selberg [3, Theorem 4].

THEOREM 3.10. Let Φ(x) be positive and increasing and Φ(x)/x
decreasing for x > 0, further suppose

Φ(x)/x —> 0 and lim inf log Φ(x)βog x > 19/77 for x —> co .

2%ew /or almost all x > 0,

π(x + Φ(x)) —
logx

We now apply this theorem with the choice Φ(x) = x1/2+δ to in-
equality (3.9) and consider the primes N ^ pm < pm+1 < < pn < 2N
in an interval (N, 2N) with N large. According to Theorem 3.10
the union of the set of intervals (pif pi+1) where pif pi+ί satisfy (3.9)
and m ^ i < n, form a set of total length < eN where ε > 0 is
arbitrarily small. Also the number of indices i for which (3.9) holds
is o(VN). Thus by (3.8) and (3.9) we have

< 1 + 2ε < 22£ .

From the monotonicity of an it now follows that for any ε > 0 we
have

(3.11) I cn I < nε for all large n.

Substituting this inequality in (3.9) we get that c'n+1 > cn would
imply

(3.12) pn+1 >pn + P?~ pw+w >pn + -LpjΓ

which is impossible for large n when ε < 5/12. Thus K} becomes
nonincreasing for large n and hence constant, c'n = c, for large n.
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This implies ap > p/(c + 1) for large primes p and by the monotonicity
of an we get

n

dp

2p >h
where p is the largest prime ^ n.

Now consider the successive equations

bp = cap — cp+1

Vp + l = = Gp + l&P + l Cp+2

Thus

Aφ(p + 1) + Bσ(p + 1) +

Dp + 0{pιj2~δ) = ca

for all large primes p. This leads to

= cp+ιap+1

(3.13)

and hence
sequence

• ,.. Bσjp 1)
D p + 1 D p + 1

0-1/2

to the conclusion that the only limit points of the

A φ(p + 1
D p + l

B σ(p + 1)
D p + l

p — prime

are rational numbers with denominator c. To see that this is not
the case, consider first the case B Φ 0. Then by Dirichlet's theorem
about primes in arithmetic progressions we see that σ(p + ϊ)/(p + 1)
is everywhere dense in (1, oo). Thus we can choose p so that the
distance of Bσ(p + Ϊ)/D(p + 1) to the nearest fraction with denominator
c is greater that l/(3c) while at the same time σ(p + l)/(p + 1) is so
large that | Aφ(p + ΐ)/D(p + 1) | < l/(3c), contradicting (3.13). If B = 0
we use the fact that φ(p + l)/(p + 1) is dense in (0, 1) to get the
same contradiction.

Finally we must consider the case A + B — 0. Here we can go
through the same argument as before except that we consider the
subsequence b2P = Aφ(2p) + Bσ(2p) + Cd2P = 2Bp + (SB + Cd2P) = 2Bp +
O(pll2~δ). As before we get

b2P = ca2P — c2P+1 for all large primes p

which leads to the wrong conclusion that

σ(2p _ φ(2p
p = primed

2p + 1 2p + 1

has rational numbers with denominator c as its only limit points.
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MEASURABLE UNIFORM SPACES

ZDENEK FROLIK

A uniform space is called ^"measurable if the pointwise
limit of any sequence of uniformly continuous functions (real
valued) is uniformly continuous. A uniform space is called
measurable if the pointwise limit of any sequence of uniformly
continuous mappings into any metric space is uniformly con-
tinuous.

It is shown that measurable spaces are just metric-fine
spaces with the property that the cozero sets form a σ-algebra,
or just hereditarily metric-fine spaces.

Metric-fine spaces seem to form a very useful class of spaces;
they were introduced by Hager [5], and studied recently by Rice [7]
and the author [2], [3]. Separable measurable spaces are studied in
Hager [6].

The notation and terminology of Cech [1] is used throughout; for
very special terms see Frolik [2], The main result of the author's
[3] is assumed, and [4] may help to understand the motivation.

If X is a uniform space we denote by coz X, zX or BaX accord-
ingly the cozero sets in X (i.e., the sets coz/ = {x \fx Φ 0} where / is
a uniformly continuous function), or the zero sets in X (i.e., the
complements of the cozero sets), or the smallest σ-algebra which
contains coz X (equivalently: zX). Since any uniform cover is realized
by a mapping into a metric space, the completely coz-additive uniform
covers form a basis for the uniformity. Completely coz-additive
means that the union of each subfamily is a cozero set.

If X is a uniform space then eX is the set X endowed with the
uniformity having the countable uniform covers of X for a basis of
uniform covers; eX is a reflection of X in the class of separable
uniform spaces (i.e., in spaces Y with eY = Y).

We denote by a the usual coreflection into fine uniform spaces.
Recall that aX is the set X endowed with the finest uniformity which
is topologically equivalent to the uniformity of X. The first theorem
is a version of a simple classical result on measurable functions. The
equivalence of Conditions 1-5 appears in Hager [6]. This theorem
is repeatedly used in the sequel, and therefore an economical proof
is furnished.

THEOREM 1. Each of the following conditions is necessary and
sufficient for a uniform space X to be ^0-measurable.

1. eX is ^Q-measurable.

93
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2. coz X = zX — BaX, and every countable partition ranging in
BaX is a uniform cover.

3. Each countable partition ranging in BaX is uniform.
4. The countable partitions ranging in BaX form a basis for

uniform covers of eX.
5. A function f:X-+R is uniformly continuous if (and only

if) the preimages of open sets are the Baire sets in X.

Proof. It follows immediately from the definition that Condition
1 is necessary and sufficient. Condition 5 implies that X is y$o-measur-
able by the classical result that measurable functions are closed under
the operation of taking pointwise limits of sequences ("only if" in
Condition 5 is always satisfied). We shall check that each of the
Conditions 1-4 implies the subsequent one. Two implications are almost
self-evident; namely 2 implies 3, and for 3 implies 4 we must just
recall that eX always has a basis consisting of countable covers ranging
in coz X(BaX).

Condition 4 implies Condition 5, because if /is Baire measurable,
and if ^ is any countable open cover of R, then f~ι\^f\ is refined
by a countable partition ranging in BaX.

It remains to show that Condition 1 implies Condition 2. Assume
1. If G is a cozero set, and if / ^ 0 is a uniformly continuous function
with G = coz/, then the characteristic ( = indicator) function g of G
is a pointwise limit of the uniformly continuous functions

fn = min(l, m /) ,

and hence g is uniformly continuous by 1. Hence coz X = zX, and
hence coz X is a σ-algebra, and hence coz X = BaX. Now let {Bn} be
a partition ranging in BaX. Let fn be the n multiple of the char-
acteristic function of Bn. The limit g of uniformly continuous functions
Σ {Λ I w ̂  k} realizes {J5J in the sense that {Bn} = g'ι[U\ for some
uniform cover U of R. This concludes the proof.

THEOREM 2. For each uniform space X let M#0X be the under-
lying set of X endowed with the uniformity having for a basis of
uniform covers the covers of the following form:

(*) {Bn Π Ua I n e N, a e A}

where {Ua} is a uniform cover of X, and {Bn} is a partition of X
ranging in BaX.

Then:
1. eM#0X has for a basis of uniform covers the countable parti-

tions ranging in BaX.
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2. Mχ0X is the meet of X and M#oeX.
3. MχQX is a coreflection of X in the category of ^-measurable

spaces.

Proof. 1. The partitions {Bn} are uniform because the cover (*)
refines {Bn}. If {Vk} is a countable uniform cover of M#0X, take a
cover of the form (*) which refines {Vk}; we may and shall assume
that the union of any subfamily of {Ua} belongs to cozX. Put

= Bnn\J{Ua\Bnf)Uac:Vk}.

Clearly {Ckn} is a countable cover which ranges in BaX and refines
{Vk}. Now take any partition which refines {Cnk}. This concludes the
proof of 1.

2. The assertion 2 follows from 1.
3. Every M#oX is y$0-measurable by Theorem 1 because obviously

BaM^X = coz M^X = BaX .

Let / be a uniformly continuous mapping of an ̂ -measurable space Y
into X. We must show that the mapping /: Y—> M#QX is uniformly
continuous. Taking in account the description of M*0X, it is enough
to show that the preimage under / of any partition {Bn} ranging in
BaX is a uniform cover of Y, and this follows from Theorem 1
because /: Γ—>X is self-evidently "Baire measurable".

THEOREM 3. The sumsf quotients and subspaces of ^-measur-
able spaces are #0~measurable.

Proof. This follows immediately from Theorem 1.

REMARK. Theorem 3 implies by a purely categorical argument
that ^measurable spaces form a coreflective category, and also the
coreflectivity of ^-measurable spaces (established in Theorem 2) implies
that the sums and the quotients of ^o-measurable spaces are ̂ 0 -
measurable, again by a purely categorial argument.

For separable uniform spaces the next theorem is Hager [6, 6.5].

THEOREM 4. Each of the following two conditions is necessary
and sufficient for a uniform space X to be #0-measurable:

(1) Every uniformly continuous function on X factorizes through
M*0R.

(2) Every uniformly continuous mapping of X into a separable
metrizable space S factorizes through M#QS.
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Proof. Since M#o is a functor Condition (2) is necessary, and
clearly (2) implies (1). Condition (1) implies immediately that the
pointwise limit of uniformly continuous functions is uniformly con-
tinuous.

For the next result we need to recall further definitions. A
uniform space X is called metric-fine if for every uniformly continuous
mapping / of X into a metric space M the mapping /: X —> aM (see
introduction) is uniformly continuous. A uniform space is called
(separable metric)-fine if the condition is fulfilled for f's into separable
ikf's. For properties of metric-fine and (separable metric)-fine spaces
we refer to Frolίk [3]; Hager [5] is a good reference, but it is not
enough for our purpose. We need the following description of the
coreflections mNoX and mX of a uniform space X in (separable metric)-
fine or metric-fine spaces respectively (see Frolίk [3, Theorems 1 and 3]:

The covers of the form

{UaΠBn\aeA,neN}

form a basis for nbχ0X, and the covers

{U:nBn\neN,ae An}

form a basis for the uniform covers of mX, where {Ua \ a e A},
{Ua I a e An] are uniform covers of X, and {Bn} is a cover of X by
elements of coz X; in addition we may assume that all covers are
completely coz X-additive.

We also need to know that

emX = em^0X = meX = m#oeX .

A uniform space X is called inversion-closed if the set U(X) of
all uniformly continuous functions is inversion-closed, and this means,
that if fe U{X) and fx Φ 0 for all xeX, then 1// is uniformly con-
tinuous.

If X is (separable metric)-fine then X is inversion-closed; this is
obvious.

LEMMA 1. Let Y be an inversion-closed subspace of a uniform
space X. For each zero set Z c X — Y there exists a zero set Z'' z>Y
such that Zf Π Z — φ. Hence, if Y is a cozero set in X, then Y is
a zero set.

Proof. Take a nonnegative function / in U(X) such that Z =
{x I fx = 0}, and let g be the inversion of the restriction of / to Y.
Take a uniformly continuous pseudometric d on Y such that / is
uniformly continuous on (X, d), and g is uniformly continuous on the
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subspace Y of (X, d). The function g extends to a uniformly con-
tinuous function gf on the closure Z' of X in <X, d); Zf is a zero set
in <X, d), hence in X. We shall check that Z' n Z = φ; iί zeZ'0 Z,
then fz = 0, and a sequence {?/„} in Y converges to z; in (X, d)9 since
fz = 0 necessarily fyn —> 0; hence the value of the extended g should
be oo g iί, and this contradiction proves the lemma.

REMARK. In the proof of Lemma 1 we used the following simple
but useful proposition:

If 7 c X, M is metric, and g: Y~+M is uniformly continuous,
then there is a uniformly continuous pseudometric d on X (X!) such
that g is uniformly continuous on <Y, d). (Proof. For each n, let
%» be a uniform cover of X such that the trace of un on F refines
the inverse image under g of the 1/w-cover of M. Arrange it so that
un+1 star-refines un for each n, and let d be the pseudometric asso-
ciated with the sequence {un}.) The existence of the d in the proof
of Lemma 1 now follows. We note that the proposition implies that
if YaX and g: Y —» B is uniformly continuous, then g has a continuous
extension over X: Choose d as above, extend g over the d-closure of
Y by uniform continuity, then over all a X by the Tietze-Urysohn
Theorem. (If g is bounded, there is a uniformly continuous extension
by Katetov's well known theorem.)

THEOREM 5. The following properties of a uniform space X are
equivalent:

1. X is ^0-measurable.
2. X is hereditarily (separable metric)-fine.
3. X is (separable metric)~fine, and each subspace is inversion-

closed.
4. X is (separable metric)-fine, and each cozero subspace of X

is inversion-closed.

Proof. Since ^-measurable is hereditary and implies (separable
metric)-fine, Condition 1 implies Condition 2. Next (separable metric)-
fine implies inversion-closed, and hence Condition 2 implies Condition 3.
Self-evidently Condition 3 implies Condition 4. It remains to show
that Condition 4 implies Condition 1. Assume 4. By Lemma 1 we get
coz X = zX, hence coz X = BaX. As is noted above, since X is
(separable metric)-fine, this implies that X is %0-measursible.

REMARK. For separable spaces, the equivalence of 1 and 2 in
Theorem 5 is in Hager [5, 4.2]. We are in a good position to derive several
results which are not needed in the sequel, but may help the reader
to get better understanding of the spaces used. Again for separable
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spaces, Propositions 1, 2, 3 and the corollaries appear in Hager [5].

PROPOSITION 1. The following properties of a subs pace Y of a
{separable metric)-fine space X are equivalent:

1. Y is inversion-closed.
2. Y is (separable metric)-fine.
3. If GZDY is a cozero set, then YaZ<z.G for some zero set Z.

Proof. By Lemma 1 Condition 1 implies Condition 3, and obviously
Condition 2 implies Condition 1. The remaining implication is obtained
as follows: If {Un} is a countable cover of Y by cozero sets in Y,
then we can take cozero sets Gn in X such that Gn Π Y = Unf and apply
Lemma 1 to Y, the complement Z of U {Gn}> and to X. Let Gf be
the complement of Z'. Clearly all Gn together with G' form a count-
able cover of X, which consists of cozero sets in X, hence form a
uniform cover of X. The {Un} is just the trace of the cover on Y.

COROLLARY. // YaX, then m#0Y is a subspace of m^QX if and
only if Condition 3 of Proposition 1 holds.

The following Proposition 2 is a corollary to Corollary.

PROPOSITION 2. Let Y be a dense subspace of a uniform space
X. Then m#QY is a subspace of m^0X if and only if Y is Gδ-dense
in X (i.e., X — Y contains no nonvoid Gδ-set, or equivalently, no non-
void zero set).

Finally:

PROPOSITION 3. Let K be a compactification of a topological
space X (completely regular). The following properties are equivalent:

1. K is the Samuel compactification of some metric-fine uni-
formity on X.

2. K is the Samuel compactification of some inversion-closed
uniformity on X.

3. If G is a cozero set in K, XaGaK, then Kis a Cech-Stone
compactification of G.

Proof. Since every metric-fine uniformity is inversion-closed,
Condition 1 implies Condition 2. Assume Condition 2, and let g be a
bounded continuous function on Gz> X, G being a cozero set in K.
Pick up a bounded nonnegative continuous function / on K such that
G = coz /. The function /• g on G extends to a continuous function h
on K; indeed, put hx = 0 for x in K — G. Thus the restriction of g
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to X is the ration of two uniformly continuous functions, namely

gx = hx/fx ,

hence is uniformly continuous, and hence extends to K.

Assume Condition 3, and let us consider the (separable metric)-fine
coreflection of the relativization of the uniformity of K to X. We
must show that every uniformly continuous bounded function / extends
to K, and in view of Condition 3, it is enough to extend / to a cozero
set G z> X. Take a countable base {Un) for R and extend each Un to
& cozero set Gn in R; let G be the union of all Gn. Clearly / is
uniformly continuous with respect to the relativization of the fine
uniformity of G to X, and hence / extends to a continuous function
on G. This completes the proof.

COROLLARY. The Samuel eompactification of a uniform space X
enjoys the properties in Proposition 3 if and only ifmXis proximally
equivalent to X.

For more results on rings of uniformly continuous functions we
refer to Hager [5].

Now we proceed to measurable spaces which seem to be quite
interesting. The first result is a characterization of measurable spaces
which will be used to describe the coreflection into measurable spaces,
and which connects immediately the theory of measurable spaces with
the theory of metric-fine spaces.

THEOREM 6. A uniform space X is measurable if and only if for
•any sequence {{Ua \ a e An}} of uniform covers of X, and for any
partition {Bn} of X ranging in BaX the cover

<*) {Bnf)U?\neN,aeAn}

is uniform.

Proof. First assume that X is measurable, and let (*) be given.
We shall realize (*) by a uniformly continuous mapping g into a metric
space Y.

Since X is ^-measurable, for each n the cover

Tn = {BknUa
n\keN,aeAn}

is uniform, and hence there exists a uniformly continuous mapping
/ of X into a metric space <M, d), which realizes all 71- We may
,and shall assume that d ̂  1, and the preimage of the 1/%-cover of
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<Λf, d) under / refines Tk for k ^ n. In particular, the preimage of
the 1-cover of M, d refines {Bk}. Hence Ck = f[Bk] form a uniformly
discrete partition of <M, d). Now let Y be the set N x M endowed
with a metric D defined as follows:

D((n, y), <m, z}) = 1 if n Φ m ,

= min (1, n.d(y, z)) if n = m .

If we put d% = min (1, w.ώ), then ώ% is a metric for Λf uniformly
equivalent to d, and

Λ = {y > <n, y)}: <M, dTO> > (Y, D)

is metric preserving (hence uniform embedding).
Define a sequence {hn} of uniformly continuous mappings of M

into Y, and a mapping h:M—>Y (which will not be uniformly con-
tinuous in general) as follows:

gy = (n, y) for y in Cn ,

QnV = (k, y) for y in Ck with k <: n ,

= <w, 2/) for 2/ in Cfe with k^n .

The mappings gn:M—>Y are uniformly continuous, because

#„ = Jk on I?* with k < n

9n = J« on U {Bk I fc ̂  ^} .

For each y in M the sequence {#„#} is eventually constant and converges
to gy, namely if yeCk then gny = #2/ for n^ k.

Now let h^gof, hn = gnof. The mappings Λw are uniformly
continuous, and hence h is uniformly continuous because {hn} converges
point wise to h and X is measurable.

It is easy to check that the preimage of the 1-cover^ of Y under
h refines our given cover (*). Indeed,

h-'ln xM]= /-ι[CJ - Bn ,

and if U is the open sphere of radius 1 centered at a point (n, y),
then Uan x M and V = Jΰ^U] is the open sphere of radius 1 in
(M, dn) centered at y, and hence V is the sphere of radius 1/n in
(M, d) centered at y, and hence/"^F] is contained in some Ua Thus

is contained in Z7*, and since Uan x M,

h

This concludes the proof.
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Now assume the condition, and let {fn} be a sequence of uniformly
continuous mappings of X into a metric space M, which pointwise
converges to a mapping f: X—+ M. We must show that /: X-^Mis
uniformly continuous. For each positive number r, and for each n
consider the set

Br

n = {x I d(fkx, fx) ^ r f or k, h ^ n) .

Thus d(fx, fix) <£ r for a? e Br

n1 l^>n. Clearly the union of the
sequence {Br

n} is X for each r, and each Br

n belongs to BaX. Now
given any positive number ε choose a uniform cover {U? \ a e An} such
that the diameter of /*[£/?] is less than 1/3 ε for each α in An. Finally
put

Bn = Br

n — Br

n^

with r = l/3ε. Clearly the diameter of each f[Bn Π Ϊ7*] is at most ε.
By our assumption {j?n Π £7?} is a uniform cover, and hence / is
uniformly continuous. This concludes the proof.

THEOREM 7. The sums, subspaces and quotients of measurable
spaces are measurable.

Proof. By a routine argument from Theorem 6.

THEOREM 8. The following conditions on a uniform space X are
equivalent:

1. X is measurable.
2. X is #Q~measurable and metric-fine.
3. X is hereditarily {separable-metricYfine and metric-fine.
4. X is hereditarily metric-fine (i.e., each subspace of X is

metric-fine).

Proof. If we compare the characterization of metric-fine spaces
recalled above and Theorem 6 we see that Conditions 1 and 2 are
equivalent. Conditions 2 and 3 are equivalent by Theorem 5. Finally,
obviously Condition 4 implies Condition 3, and is implied by Condition
1 because measurable spaces are hereditary.

It follows from Theorem 7 that measurable spaces are cor effective.
Now we shall describe a coreflection measurable spaces and get as a
byproduct that measurable spaces are coreflective.

THEOREM 8. For every uniform space X let MX be the set X
endowed with the uniformity having for a basis of uniform covers
the covers of the form described in Theorem 6. Then:

1. eMX has for a basis of uniform covers the countable parti-
tions ranging in BaX, and hence eMX is ^0~measurable, and BaX =
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BaMX.
2. eMX = eM*0X = MeX = M^eX.
3. MX is a coreflection of X in measurable spaces.

Proof. Let {Wk} be a countable cover of MX, and let

be a defining cover which refines {Wk}. We may and shall assume
that {Ua I a e An) are completely coz-additive (such covers form a basis
for every uniform space). Put

It is easily seen that {Ckn} is a countable cover which ranges in
BaX, and {C }̂ refines {Wk}. Thus the countable partitions ranging
in i?αXform a basis for uniform covers of eMX, hence BaX=o,oz MX—
BaMX, hence eMX is ^-measurable. This proves 1.

It follows from 1 and Theorem 2 that eMX = eM#QX, again by
Theorem 2 we have eM#0X — M#QeM. If X is separable then clearly
MX is separable (we may take all {Z7*} in the basis consisting of
countable uniform covers, and then the defining covers are countable),
and hence M^eX = MeX. This concludes the proof of 2.

Every space MX is measurable, because it follows from the defini-
tion of MX and from 1 that MMX = MX, and by Theorem 6 X is
measurable if and only if MX = X. It remains to show that if
/: Z—+X is uniformly continuous and if Z is measurable then /: Z—>
MX are measurable. This follows from Theorem 6, and the definition
of MX. This concludes the proof.

The next result says that the functor M is metrically determined.

THEOREM 9. MX is projectively generated by mappings f: MX—+
MP where f are uniformly continuous mappings of X into metric
spaces P. A uniform space X is measurable if and only if for
each uniformly continuous mapping f of X into a metric space P
the mapping f:X~>MP is uniformly continuous.

Proof. The second assertion follows immediately from the first
one. The first assertion follows from Theorem 8, because any sequence
of uniform covers, and a sequence of Baire sets may be realized in
a metric space by a uniformly continuous mapping. To be sure we
formulate the fact about the realization of Baire sets in a lemma.

LEMMA 2. Let {Bn} be a sequence of Baire sets in a uniform
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space X. Then there exists a uniformly continuous mapping f into
a separable metric space S, and a sequence {Cn} of Baire sets in S
such that f~ι[Cn] = Bn for each n.

Proof. Take a countable collection {Ua \ a e A} of cozero sets in
X such that all Bn belong to the smallest σ-algebra containing all Ua.
We may and shall assume that A = N. Take uniformly continuous
functions fn such that

Un = coz/; ,

and 0 ^ fn <* 1/2*. Then fn are uniformly continuous, and

f:X >RN

has the required properties, where / is the reduced product of {/«},
i.e., fx = {fnx}. This concludes the proof.

The next result describes a nice basis for MX.

THEOREM 10. The space MX has for a basis of uniform covers
the collection of all σ-uniformly discrete (in X) partitions of bounded
class in BaX.

COROLLARY. A space X is measurable if and only if each σ-
uniformly discrete partition of bounded class in BaX is a uniform
cover of X.

We must explain the notion "of bounded class in BaX". We know
that BaX is the smallest σ-algebra which contains coz X (or equiva-
lently, zX). It follows that

BaX =\

where ^ = cozX, ^ = zX, and by induction &a {0ϊ> resp.) is
obtained from U { ^ | β < a}(\J {^ \ β < a}) by taking all countable
intersections (countable unions) or countable unions (countable inter-
sections) according to as a is odd or even.

DEFINITION. A family {Xa} is of bounded class in BaX if {Xa}
ranges in some &a (J &a\ the smallest a is called the class of {Xa}.

Proof of Theorem 10. Let {X; | n e N, a e A} be a (/-discrete par-
tition of bounded class, say a, in BaX. Put Bn = U {XI \ aeAn}.
The sets Bn are of class at most a + 1 because {Xt \ a e An} are uni-
formly discrete. The sets Xl are cozero sets in J5Λ, and they form
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a uniform cover of the subspace Bn of X. By Theorem 6, {X%} is a
uniform cover of MX.

It remains to show that these covers form a basis. By A. H.
Stone Theorem every uniform cover ^ of every uniform space X has
a uniformly σ-discrete refinement IT = \J {Vk}; T is not necessarily
uniform, but it is a uniform cover of MX by Theorem 6 (in fact it
is a uniform cover of mX, which is the coreflection in metric-fine
spaces); indeed put Cn = [J { Tn}> Bn = Cn - \J {Ck \ k < n}. Now if
{Ua ίΊ Bn) is a typical defining cover of MX, we may replace each cover
{Ua \aeA) by a uniformly (in X) σ-discrete cover {Vk\keN}f and
put Bnk = Bnf] V*. Then | J {Bnk Π [ Tk

n]} is a uniformly (in X) σ-
discrete cover of a bounded class which refines {UZΓlBn}. We need
a partition; well order {(n, k)} according to ωQ, and take the differences
as above. This concludes the proof.

In conclusion we show that for mappings of metric-fine (and hence
of measurable) spaces uniform continuity depends on two data only:
Cozero sets and "σ-discreteness". I do not know whether this property
characterizes metric-fine spaces. Recall (we shall not use it) that just
metric-fine proximally fine spaces are completely determined by cozero
sets, see Frolίk [3, Theorem 4]. First let us stress that the only
distinction between metric-fine spaces and measurable ones is in cozero
sets.

THEOREM 11. A uniform space X is measurable if and only if
coz X — BaXy and X is metric-fine.

Proof. This follows immediately from Theorems 1 and 7.

THEOREM 12. Assume that X is metric-fine. A mapping f of
X into a uniform space Y is uniformly continuous if (and obviously,
only if) it enjoys the following properties:

A. The preimages of cozero sets are cozero sets.
B. The preimages of uniformly σ-discrete families are uniformly

σ-discrete.

Proof. Assume that X is metric-fine, and that/: X—• Ysatisfies
Conditions A and B. To prove that /: X—> Y is uniformly continuous
it is enough to show that

h = gof:X >Z

is uniformly continuous for every uniformly continuous mapping g of
Y into a metrizable space Z. If ^ is any uniform cover of Z, then
by the A. H. Stone Theorem we can take a uniformly <7-discrete open
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refinement °Γ = \J { T^} (not necessarily uniform), and the preimage
of T* under h is, in view of Conditions A and B, uniform by Theorem
2 in Frolίk [3], which was recalled just after Theorem 5.

REMARK. M. Rice [7] proved independently that a space X is
hereditarily metric-fine if and only if the condition in Theorem 6 is
satisfied.
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CHARACTERS FULLY RAMIFIED OVER A
NORMAL SUBGROUP

STEPHEN M. GAGOLA, J R .

Let H be a group and N a normal subgroup. Assume
that χ is an irreducible (complex) character of H9 and that
the restriction of χ to N is a multiple of some irreducible
character of N, say θ. Then χ^ = eθ, and e is called the
ramification index. It is easy to see that it always satisfies
e2 ^ \H:N\, and when equality holds, χ is said to be fully
ramified over N. It is this "fully ramified case" which will
be studied here in some detail. As an application of some
of the methods of this paper, we prove the following solv-
ability theorem in the last section. If H has an irreducible
character fully ramified over a normal subgroup N and if
p4 is the highest power of p dividing \H:N\ for all primes
corresponding to nonabelian Sylow p-subgroups of H/N, then
HjN is solvable.

1, Fully ramified triples* Groups of type Lr* To simplify
notation, say that (H, N, χ) is a fully ramified triple if χ is an
irreducible character of H, N is normal in H, and χ is fully ramified
over N. It has been conjectured in [13] that H/N is solvable in
this case, and some partial results in this direction appear in [12].
We extend this work in Theorem 4.5 below. It is also possible to
show that no known simple group can occur as a homomorphic image
of H/N, but we will only need to consider a few cases in this paper
(see Lemmas 4.1 and 4.3).

Since we are primarily concerned with the factor group H/N,
rather than with H itself, the following theorem (due ultimately to
I. Schur and A. H. Clifford) is extremely useful.

THEOREM 1.1. Let H be a group, N a normal subgroup, and
χ an irreducible character of H. Let θ be an irreducible constituent
of Xx, and assume χN — eθ (i.e. θ is invariant). Then, there exists
a group £Γ*, with an irreducible character χ*, and a normal subgroup
N* having a faithful irreducible character θ*, such that

χ** = eθ*

iV* is central in H*

and H/N ^ H*/N* .

Moreover, the isomorphism is "natural" in the sense that if K is
any normal subgroup of H containing N, and K*/N* corresponds

107
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to K/N, then:

and X%* — Wtl(ψ* +

• + ψ t)
... + ψ*),

where ψlf , ^(resp. ψ*t , -ψf) are ίfee distinct conjugates of some
irreducible constituent of χx(resp. χ£*) /w particular, (ίζ if, χ) is a
fully ramified triple if and only if (H*, K*, χ*) is a /ttiί̂ / ramified
triple.

Many other properties hold than those listed above, but they
will not be needed. A proof may be found in [9].

If (H, N, χ) is a fully ramified triple in which N is a central
subgroup, then it is easy to see that N must be the center, since
IH: N\ = χ(l)2 ^ |H: Z(H)\^\H:N\. Groups with this property have
been referred to in the literature as groups of central type, and in
view of Theorem 1.1, there is no essential difference between fully
ramified triples and groups of central type.

Lemma 2.3 (a) gives a way of constructing new fully ramified
triples from old ones. Unfortunately, these new triples need not
correspond to groups of central type, even when the original triple
does. Because of this, we state our results for triples, rather than
groups of central type.

Define a group G to be of type f.r. if G is isomorphic to H/N,
for some fully ramified triple (H9 N, χ). Groups of type f.r. have
been characterized in [12] as those groups G having a factor set a,
over the multiplicative group of complex numbers, such that the
corresponding twisted group algebra C[G]a is simple (or equivalently,
has center = C). We shall have no occasion to use this character-
ization here.

The next theorem may be used to construct examples of fully
ramified triples. It will not be needed in any of the later sections,
but it does restrict the kinds of properties that hold in groups of
type f.r. In particular, if & is any property of groups which is
inherited by subgroups, then the existence of any solvable group
not satisfying & implies the existence of a (solvable) group of type
f.r. not satisfying ^ .

In the following, π(K) denotes the set of prime divisors of the
order of K.

THEOREM 1.2. Let G be any solvable group. Then there is a
fully ramified triple (H, Z, χ) with G isomorphic to a subgroup of
H/Z. Furthermore, such a triple may be chosen with π(H) = π(Z) =
π(G), 1 faithful, Z"= Z(H) and \Z\ square-free.
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Proof. Choose M <\G with \G: M\ = p, a prime. By induction,
there is a fully ramified triple (K, Z(K), ζ) with ζ faithful, M iso-
morphic to a subgroup of K/Z(K), π(K) = π(Z(K)) = π(M), and \Z{K)\
squarefree. If p J( \K\, replace (K, Z(K), ζ) by (K x C, Z(K) x C, ζ φ λ),
where C is a cyclic group of order p, and λ is a faithful linear
character of C. We may therefore assume τc(K) = π(Z(K)) = ττ(G).
Let

W={(zlf .-.,zP)eZ(K)x .

Then W S ^ ( ^ x ί x x -ίQ, and we may form the quotient

E Γ = (Kx . . . x

Let η = ζ >$< >£ ζ e Irr (K x - x K), and note that W = ker 57, so
we may view ηelτr(U). It is easy to check that Z(U) — (Z(K) x
. . . x Z(K))IW, and η{l)2 - |U: Z(U)\. Also Z(Ϊ7) ~ Z(K), so its order
is square-free and π(U) = 7r(G).

Let <δ> be a cyclic group of order p. Fix an element zeZ(K)
of order p, and construct an automorphism a of U x (b) as follows:

((xlt x2, , «p) TΓ, 60 - ί U ((̂ a?,,, a?i, a?2, , xP-d W, b*) ,

for xl9 , xp 6 if and 0 <̂  i < p. It is easy to check that a is well
defined, and is an automorphism of order p. Using this automorphism,
construct the usual semi-direct product H = (U x <6»X1 (a). Notice
Z(H) - Z(U).

Extend ^6lrr(C7x <δ» so that ker η = <δ>. Now <δ> is not
normalized by α, so yj is not an invariant character. It follows that
χ = ηH is irreducible, and ker χ — Core#«6» = 1.

Now:

χ(iγ = (p9(i))« = ^(1)1 = p»|l7: Z(EOI = l-ff: ^(H)l »

so (H, Z(H), χ) is a fully ramified triple. By construction, π(G) —
π(H) = π(Z(H)), and \Z{H)\ is square-free.

It remains only to check that G is isomorphic to a subgroup
of H/Z(H). From the construction of H, the group H/Z(H) is iso-
morphic to the direct product of a cyclic group of order p (generated
by the image of 6 in H/Z(H)) with the wreath product (K/Z(K)) I (a).
As M is isomorphic to a subgroup of K/Z(K), it follows MZ (a) is
isomorphic to a subgroup of (K/Z(K)) 2 <α>. Finally, G^MZ (G/M) s
Af 2 <α>, and this completes the proof. (Elementary properties of the
wreath product which were used may be found in [8]. See especially
pp. 98-99).
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2 Restriction to normal subgroups* Let (if, Z, χ) be a fully
ramified triple, and K a normal subgroup of H containing Z. More
can be said about the irreducible constituents of χκ than is already
contained in Clifford's theorem. The explicit statement is Lemma 2.3
below.

We begin first with a lemma describing what happens when K
is not assumed to be normal. If a and β are characters of the same
group, write a <̂  /9(or β ;> a) if β — a is zero or a character.

LEMMA 2.1. Let (H, Z, χ) be a fully ramified triple and let L
be a subgroup of H containing Z. Write

for positive integers au •••, at and distinct irreducible characters ζ19

•••, ζt of L. Let Θ denote the unique irreducible constituent of χz

so that χz = eθ and e2 = \H: Z\. Let b, = \L: Z\at/e fori = l,- , t.
Then:

(a) eθL = \L:Z\χL.
(b) ΘL = Σ i = 1 b£f In particular, e\\L: Z\at for i = 1, , t.
(c) ζiZ = bβ and ζf = α,χ for i = 1, , t.

(d) ΣUαJ=|J5Γ:L | α τ M i Σ U i δ ϊ = | i : ^ | .
(e) Suppose t = 1. ϊ%ew (L, ϋΓ, d) is α /uίZί/ ramified triple,

and χL = α^d, lί Miβ ζf = α :χ, wit t αj = |£Γ: L | . Suppose additionally
that L <\ H. Then {H, L, χ) is a fully ramified triple.

Proof. Since eχ = ΘH, the character χ vanishes off of Z. But
(eθL)z = e\L: Z\θ == \L: Z\χz. Thus (a) holds. Conclusion (b) is
immediate from (a) and the definition of the coefficients b%. Now
ζiz ^ Xz = eθ. By Frobenius reciprocity, ζiZ = bβ. Similarly, ζf <Ξ
ΘH = eχ, and ζf - α,χ.

Now (χL)H = \H: L\χ as both sides vanish on H — Z, while on
Z they equal \H:L\eθ. Also {ΘL)Z = \L: Z\θ holds, again because
0 is invariant. We conclude,

and

proving (d).
When ί = 1, then (b), (c) and (d) imply conclusion (e).
A slight variation of the next lemma appears in [12], but is



CHARACTERS FULLY RAMIFIED OVER A NORMAL SUBGROUP 111

given here for completeness.

LEMMA 2.2. Let (H, Z, χ) be a fully ramified triple, and let L
be a Hall π-subgroup of H for some set π of primes. Thus, LZjZ
is a Hall π-subgroup of H/Z. Write χz = eθ where θ e Irr (Z), e2 =
\H: Z\. Then χLZ is a multiple of some unique irreducible character,
say ζ, of LZ, and (LZ, Z, ζ) is a fully ramified triple. If Z —
Z(H), then (L, L Π Z, ζL) is also a fully ramified triple.

Proof. Let χLZ — Σ<=i &iC< as in Lemma 2.1, with LZ in place
of L. Write e = eπe*, where e\ = \LZ: Z\ and el = \H: LZ\. By
Lemma 2.1 (6), exex,\\LZ: Z\ax. Therefore eκ,\al9 and in particular,
eπ, <; αx. Now use the first equation from Lemma 2.1 (d):

Σα]= \H\LZ\ - el ^ a\ .

Thus ί = 1 and the character ζ = d is the only irreducible constituent
of XLZ- Lemma 2.1(e) shows that {LZ, Z, ζ) is a fully ramified triple.

Finally, if Z is central, then LZ = L x Zx where Zx is an abelian
π' group. Thus ζL is irreducible and ζ(l)2 = \LZ: Z\ = \L:LΓiZ\.
Also (ζL)znz = C(1)̂ LΠZ so (L, 1/ Π ̂ , ζL) is a fully ramified triple, and
the proof is complete.

If p is a prime and G is a group, let Sylp(G) denote the set of
Sylow ^-subgroups of G. Also, for any integer n, let nv denote the
p-part of n.

LEMMA 2.3. Let (H, Z, X) be a fully ramified triple with Z =
Z(H) and let K be a normal subgroup of H containing Z. Let R
be a subgroup of H containing Z with R/ZeSγlp(H/Z), and let ζ
be the unique irreducible constituent of χR guaranteed by Lemma
2.2. Write

XK = a(τx + + τt)

where the r* and σά are the distinct conjugates of an irreducible con-
stituent of χκ and ζmκ respectively. As in Clifford's theorem, choose
the unique ψ1 e Irr {^Hi?χ() and ψx 6 Irr G^B(0Ί)) with

and

ψι = C, (ti

Then:
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(a) a2t = IH: K\ and b2s = \R: R f] K\. Moreover, ( ^ f a ) , K, ψ,)
and (0^(0^), R f) K, ψλ) are both fully ramified triples.

(b) b = dp, s = ίp, r^ljp = σ^l) and under suitable ordering,

(c) jff contains a subgroup T containing K which satisfies \ H:
T\ = s, TΓ\R = tΛfa) and TR = H.

(d) If H/K is a simple group, then Core^ (^5(0Ί)) is either R
or Rf]K.

Proof, (a) By Lemma 2.1 (d), \H:K\ = aΠ. Now,

aH =\H:K\ = \H: ^ ( r x ) | | ^ ( r θ : J5Γ| - ί | ^ ( τ θ : K\

so α2 = \^H(zfr K\. Also (ψ^)* = ατx and this means that
K, ψi) is a fully ramified triple. The rest of (a) now follows by
applying the above to the fully ramified triple (R, Z, ζ).

(b) By Lemma 2.1 (b), there are integers u and v so that θmκ =
u{σ1 + + σ8), while Θκ — v(τ1 + + τt). Hence, there are non-
negative integers alf •••, at so that

: Σ<

Now, ( τ ^ π , ̂  χβn, - (χR)Rf]K = (\H: RnζRf]K = \H: R\*b(σx + • +
σ8). (The second equality follows from Lemma 2.2 and Lemma 2.1
(e).) Hence, there are nonnegative integers bu ••-,&* so t h a t

(^I)RΠK = Σ hσi

Comparing degrees: \K: R Π ίΓlσ^l) = (Σa^τ^ΐ) and

r,(l) -

The second equation implies ^ ( l J I r ^ l ) and thus, τ^ty/σ^ΐ) divides
\K:RΠK\ by the first equation. But σL(l) is a power of p and
|JSΓ: Rf) K\ is prime to p. It now follows that τ^l)? = ̂ (1).

From (a) we have a2t = | JET: JBΓ| and b2s = |i2: Z | . As |JB: Z | is
the order of a Sylow p-subgroup of HjK, we get a% = 62s. We
have already derived that χ^n^ = \H: R\1/2b(σι + ••• + σ.)- Since
%x = tt(Γi + + τt)> we have by comparing degrees:

Equating p parts:

bsσ^ΐ) = aptpT^p .

But ^(1)^ = (J^l), so aptp = bs. We already had a% = b2s, so αp =
b and ίp = β.
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The group ^ ( 0 \ ) stabilizes σι and acts on the set of irreducible
constituents of σf = Σa^τ^ As R Π K is contained in ^H{^%) for all
i, it follows that all orbits of ^ ( O Ί ) on {τlf " ,τ t} have p-power
size. Clearly at = % if τ f and τ,- lie in the same orbit, and we may
write 0"? = Σ - α s,(Σπe^)> where the outer sum extends over all
orbits, and a^ is the common value of α̂  for any τt e έ?.

Comparing degrees, | K: K Π R \ σ^l) = (ΣΛ a^ \ έ? 1)^(1). Now ^(1) =
τx{l)P and | JRΓ: iΓ Γi i?| is prime to p, so Σac | ^ | E£ O(modp). Thus,
there exists an orbit & with α ^ | ^ | Ξ£ 0(mod p). But this means
&> = {r, } for some y, and α, =£ 0 (so that τό ^ σf). Choose notation
so that Tj = rx. Hence ^ is invariant under ^R(p^), and thus

From (a), M^fa), K, ψ,) is a fully ramified triple, so a\ is the order
of a Sylow p-subgroup of ^H{τ^/K. Now |^(0" i ) : R Π K\ = ¥ = a2

p^
I P ^ f o ) Π i£)i£: i£| = | ^ ( r , ) Π JB: JB Π K\. But we had

so equality holds, and this completes the proof of (b). In fact the
last argument shows slightly more, namely

(c) Let N = NH(R Π K). As (R Π ίΓ)/Ze Sylp (if/Z), the Frattini
argument yields NK — H. Now N acts on the irreducible constituents
of ^ n i r . Hence N permutes the set {σl9 •••, σs}. Now i2 £ N and
-B acts transitively on this set, so N acts transitively. Clearly,
R Π K is in the kernel of this action. Moreover, (AT Π K)/(R Γ) i£) is
a normal subgroup of iV/(u! Π K) having order prime to p. The set
of characters therefore breaks up into k distinct N Π i£-orbits, each
containing I elements where l\ \NΠ K: R Π K\ so (p, I) = 1. But s =
kl is a power of #>, so I — 1 and k = s. This means iVΠ i ί is con-
tained in the kernel of the action. Hence S = -̂̂ SC î) contains N Π
K and has index s in AT. Thus, Γ = SK has index s in H, and ΓJ? =
H is clear. Finally T n . R ^ S n i 2 = ^ f o ) .

(d) In the notation of (c), N/(N f] K) ~ H/K and so N/(Nf)K)
is simple. We may assume s > 1, in which case N acts transitively
on {σl9 σs} with kernel N Γ\ K. Core^ (^(tfO) is contained in the
kernel, so Core^ p ^ ( σ θ ) S; R Π (N Π K) = R 0 K.

The following consequence of Lemma 2.3 generalizes a theorem
appearing in [11].

COROLLARY 2.4. Let (H, Z, χ) be a fully ramified triple. If Z S
K <\ H and χ is induced from a character on K, then H/K is solvable.
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In particular, if K is solvable, then so is H.

Proof. Continuing with the above notation, let χκ = a(τ1 + .. +
τt). Then t = \H: ̂ ( Ό l = \H:K\ = a2tf so a = 1. By the previous
lemma, H/K possesses a subgroup of index tp for every prime divisor
of t. The solvability of H/K now follows by Philip HalPs theorem
(see p. 662 of [8]).

A special case of the next result appears as Theorem 5 of [12].
It is extremely useful in showing that many simple groups do not
occur as homomorphic images of groups of type f.r.

THEOREM 2.5. Suppose (H, Z, χ) is a fully ramified triple, ZS
K <| H and G = H/K. Let P be a Sylow p-subgroup of G and assume
P is cyclic. Then P has a p-complement M in G. If G is simple,
we also have:

(a) The prime p is unique, i.e., all other Sylow q-subgroups for
q Φ p are non-cyclic.

(b) P is a self-centralizing T.I. set in G.
(c) G acts doubly transitively on the cosets of M.

Proof. By Theorem 1.1, and the remarks following that theorem,
we may assume Z — Z(G), so that Lemma 2.3 becomes applicable.
Let R/ZeSγ\p(H/Z), and let ζ, σlf — -,σ8, and τu •• , r ί be as in
Lemma 2.3. Now ̂ ( ^ Ί ) has a character which is fully ramified over
R Π K, and the factor group ^R{a^/R Π K is cyclic. Thus, all irre-
ducible constituents of σi%j^(σχ)f including the fully ramified one, are
extensions of σx. (See p. 54 of [3].) This can only happen if ^B(σ^ —
R Π K, so s = \R/(R Π K)\ = \P\. (This could also be seen by apply-
ing Theorem 1.1 to the group ^R{σ,).) By Lemma 2.3 (c), H/K = G
has a subgroup M of index s, and this is clearly a ^-complement in
G. Suppose now G is simple. If a Sylow g-subgroup, say Q, of G
is cyclic for some other prime q, then Q acts faithfully on the \P\
cosets of M, so that \Q\ < \P\. Interchanging the roles of P and
Q yields \Q\ > \P\, and this contradication establishes (a).

To prove that P is a self-centralizing T.L set in G, it suffices to
show CaiΩ^P)) = P. Let C = C^Ω^P)). As P Π M = 1 and PM = G,
we have C = P(C i l l ) , so that C Π M is a p-complement in C.
Now NC(P) acts on P and centralizes Ω^P), and hence centralizes
P by Fitting's lemma (see p. 178 of [6]). But then by Burnside's
transfer theorem (see p. 419 of [8], also p. 252 of [6]), C has a
normal p-complement, which must be C Π M. Now G — CM and C Π M
is normal in C, so the normal closure of C Π M is contained in M.
Hence, C Γ) M £ (C Γ) M)G = 1, as G is simple. Thus C = P, proving
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(b).
If \P\ = p, then G must be doubly transitive on the cosets of

M by a theorem of Burnside's (see p. 609 of [8]). If \P\> P, then
P is a jB-group (p. 65 of [15]) and it suffices to show that G is pri-
mitive on the cosets of M. Suppose G is not primitive, so there
exists a subgroup L with M < L < G. But then 1 < Pf] L and
P Π L is normalized by P. Since G = PL, it follows that the normal
closure of P Π 1/ is contained in Z,, contradicting the simplicity of G.
(This last assertion can also be proved by considering the Brauer
tree of the principal p-block of G. It can be proved that the principal
character can be connected only to a nonexceptional character, and
the double transitivity follows.)

3. Special elements* Let (H, Z, χ) be a fully ramified triple,
and let K be a normal subgroup of H containing Z. Also, let ξ
denote an irreducible constituent of χκ. Information about the group
H/K was obtained in the previous section by considering the possible
indices for the inertia group of 6. In this section, we obtain infor-
mation about the group K/Z by considering elements of K at which
ξ does not vanish (for all possible ξ). Under the right conditions,
K/Z will have a proper normal subgroup. The main application of
the methods of this section are contained in Corollary 3.6.

The following concept first appears in [5], and a slight variation
of it appears in [9].

DEFINITION. Let N<]G, and let irelτγ(N) be invariant under
G. For every x, yeG with [x, y] = x~xy~xxy e N, define the complex
number {{x, y} as follows. Extend | to f on <JV, y). Now x nor-
malizes the group (N, y), and fixes ψ, so φ* is another extension of
ψ. It follows that ψx = Xψ, where λ is a linear character of <JV, y)
with N in its kernel. Moreover, λ is uniquely determined, i.e., is
independent of the choice of the extension ψ. Define ({x, y)) to be X(y).

The definition above of course depends on ψ. Properties of the
map ({,)) may be found in [9]. In particular, ((x, y} is multiplicative
in x and y whenever it is defined, and ((x, y} = ((y, x}'1 if ({#, y} is
defined.

We are now ready to define special elements.

DEFINITION. Let N<]G and ψeΙrτ(N), with ψ invariant in G.
Let {(,)) be defined as above. Say that g£ G is special if {{x, g} = 1,
for all x satisfying xNeCG/N(gN).

If g is special, then so is every conjugate of g, and every element
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the of the coset gN. We may therefore speak of the special classes
of G/N. The following theorem and its proof appear in [5].

THEOREM 3.1. Let N<\G and ψ e Irr (N) be G-ίnvariant. Define
special conjugacy classes of G/N as indicated above. Then, the
number of distinct irreducible constituents of ψG is the same as the
number of special classes of G/N.

Because of Theorem 1.1, the case that N^Z(G)f and ψ is a
faithful linear character of N, deserves to be singled out. In this
case, the computation of {(x, y}, for x, y eG with [x, y] e N, becomes
easier to carry out: Let ψ be an extension of ψ to (N, y). This
is an abelian group, so ψ is linear. Moreover, ψx = Xψ for λ e Irr «ΛΓ,
y)) with AΓgkerλ. All characters appearing in this equation are
linear, and so we may solve for λ: λ = ψ"1^.

Evaluating at y yields:

(x, y)) = X(y) = ψ

T h u s ({x, y} = ψ([x, y]), f o r a l l x , yeG w i t h [x, y] e N. A s f i s
faithful, we may identify <(,)} with [,], defined for all pairs of ele-
ments satisfying [x, y] e N. In particular, it is easy to see that x e
G is special if and only if CG(x) — CG(xN mod N).

The following easy consequence of Theorem 3.1 will be useful
later:

COROLLARY 3.2. Let (Hy Z, χ) be a fully ramified triple. Then
H\Z contains no self-centralizing cyclic subgroups, unless H = Z.

Proof. As usual, we may assume Z = Z(H), and then we may
identify <(,)) with [,]. If θ is the unique constituent of χz, then χ is
the unique constituent of ΘH. By Theorem 3.1, there is only one special
class of H/Z, and this must be the class of the identity element.
Suppose (gZ) is a self-centralizing subgroup of H/Z. Then [x, g] e
Z implies xe {Z, g), and since this last group is abelian, [x, g] = 1.
But then g is special, and since Γ is the only special class of H/Z>
it follows that geZ. Hence,

H = CH{g) a <Λ Z) = Z , so H = Z .

LEMMA 3.3. Let ψelττ(N), where N<]G and f is faithful.
Assume iVg Z(G), so that ψ is invariant in G, and special elements
of G are defined. Let χ be a constituent of ψG. If g is not special,
then χ(g) = 0.
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Proof. For g not special, there exists x e G with [x, g]e N and

\x, g] Φ 1. Since χ is a class function:

x(g) = χ{χ~xgχ) = χ{gg'ιχ~ιgχ) = χ(g[g, x]) = x(gW([g, x]),

where the last equality follows from the fact that [g, x] is represented
as a scalar matrix, with scalar ψ([g, x]), in any representation affording
χ. But φ([g, x]) Φ 1, as ψ is faithful, so χ(g) = 0.

When N £ Z(G) and ^ is a faithful character of N, the following
gives a stronger relation between constituents of ψG and the special
classes of G/N than is already implied in Theorem 3.1.

THEOREM 3.4. Let N £ Z(G) and ψeIrτ(N)f with ψ faithful,
and let χu •••, χm δβ the distinct irreducible constituents of ψG. Let
9u "', Qm, be any m elements of G. Then, the matrix {χ%{g3)) is non-
singular if and only if gu , gm represent the m distinct special
classes of GIN.

Proof. (Only if) If (χ ι(^J )) is nonsingular, then certainly for
every j , the jth column is nonzero. By the previous lemma, this
means that gd is special. Let — denote the natural map from G to G/N.
We need to check that gl9 — ,gm lie in distinct conjugacy classes.
Suppose gt is conjugate to g3 . Then x~ιgtx = ngj9 for some x e G and
n e N. Then, for every k:

Xk(9t) = Xhix^QiV) = Xk(ngd) = Ψ(n)χk{gj) ,

so that the ί-th and i-th columns of the matrix differ by the scalar
multiple ψ(n). This can only happen if i = j , and we are done with
this half of the theorem.

(If) Suppose gu , gm represent the m distinct special conjugacy
classes of G/N. Again let - denote the map G —> G/N. Then,

geG

= (V\G\) Σ τ
g special

m

= (i/|G|)Σ Σ
v=i g~gu

= (1/1 G|) Σ |G: Cd(gy)\ • \N\ • xάMg:1)

The third equality follows from Lemma 3.3, and the last follows
from the fact that χι(g)χj(g~1) is constant on cosets of N. We there-
fore have:

m

δti = (jN\/\G\) Σ ZiO/JIG: C-g{g,)\Ug^) .
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Writing this last identity in matrix form:

I = (I N\l\ GDfofo)) diag (| G: C~G

where / is the m x m identity matrix. Hence, (&(#;)) is nonsingular,
and we are done.

THEOREM 3.5. Let {H, Z{H), χ) be a fully ramified triple with
χ faithful. Let Z = Z(H) § K <] H and let R be a subgroup of H
containing Z with R/Z eSylp(H/Z). Finally, let θ be unique consti-
tuent of χz, and gl9 •••, g8 be representatives of the distinct special
classes of (R f] K)jZ, computed with respect to θ. Then:

(a) The s\Z\ elements, zgif for zeZ and l ^ i ^ s , are all
special in K, and lie in distinct conjugacy classes of K.

(b) If ge R f] K is a special element of K, then g is special in
RΓ\K. In particular, g is R Γ\ K-conjugate to a unique element of
the form zgt.

(c) If g, he R f) K and g is special in R Π K, then g ~κh implies
9 h

REMARK. The above implies that there is a natural correspondence
between conjugacy classes of special elements in R Π K and conjugacy
classes of special elements of K which meet R Π K. The correspon-
dence is given by £? H* £^K, where Sf is a conjugacy class of R Π
K consisting of special elements, and £fκ is the unique class of K
containing £f. The inverse is given by ^£ \-+ ^ f)(Rf)K), where

is a class of special elements of K which meets R Π K.

Proof of Theorem 3.5. Following the notation of Lemma 2.3,
let σlf •• , σ s and τu ---9τt be the distinct irreducible constituents
°f XROK and χκ respectively. We know there are s constituents
of XBΠK because there are s special classes in (R ΓΊ K)/Z. Let
Z[Tu •", τA denote the additive subgroup of the character ring of
K generated by τlf •• , τ ί , and similarly define Z[σlf •• ,σ β ] . Let
r denote the restriction map from Z[τu •• , r ί ] to Z[σu , σs].
Since χRf]K = {XR)RΪMC, it is clear that r maps Z[τlf , τt] into Z[σlf , σ j .
Reducing coefficients mod P, we have the following commutative
diagram:

r
I

-, σβ]

~ ,τt] >Z,[σlt •••, ffj

Now R acts on {τu •• ,τt}, and because Rf\K<\R, R acts on
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fa, # ,0" } The group R Π K is contained in the kernel of both
actions, so the p-group R/(R Γ) K) acts on both sets. This action may
be extended in the natural way to each of the four additive groups
above, so that each such group is an R/(R Π K)-moάxύe. The second
row of groups may be viewed as ZP[R/(R Π K)]-modules. All maps in
the above diagram are R/(R Π i£>homomorphisms. Since R/(R Π K) is
a p-group acting transitively on {σlf , σ8}, the module ZP[σh , σ8]
contains a unique maximal submodule M — {11^^^ e Zp and Σli — 0}.

As in the (b) part of Lemma 2.3, write

= Σ My -

As Γj(l)p = 0i(l), it follows that Σb5 Ξ£ Omodp. Hence

where bj denotes the residue class of bj mod p. Since r is a Zj,[i2/(i2 Π
ίΓ)]-map, it follows that r is surjective.

Now define the t x s matrix B = (bi3) as follows:

r{τ%) = (rjan* - Σ δtΛ

Let 5 = (&ί:, ) be the matrix 5 with all entries reduced mod p. Then
B is the matrix of r using the natural bases. Thus B, and hence
B itself, has rank s. Now

where fa^ )) is nonsingular by Theorem 3.4, and 5 has rank s. Thus,
{Ti{gQ)) has rank s, so that its columns are linearly independent. This
means that gu •••, gs represent distinct special classes in K/Z.

We now have to check that there is no K-ίusion among the
elements zgt. Suppose zgi~κz'gj- The above implies that i = j .
Now choose τk so that τk(gt) Φ 0. Then

θ(z)τk(gt) = Γ ^ Λ ) = τk(z'gt) = θ(z')τk(gί) ,

and so θ(z) = θ(z'). But θ is faithful because χ is, and so 2 = z'.
This proves (a).

Now suppose g e R Γ) K and # is special in K. We have just
shown that glf , g8 represent distinct (special) conjugacy classes
in K/Z. We may therefore find {x2, , $.} S {&, •••fir,} such that
g = xifxif , cc8 represent distinct con jugacy classes in JBΓ/Z, so that
the t x s matrix fafe)) has rank s, by Theorem 3.4. Now (̂ (α?/)) =
B(ffi(Xj)), and this equation implies that the s x s matrix (σ^x,)) is
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non-singular. By Theorem 3.4 again, xλ = g is special in R Π K.
Hence g is conjugate in R Π K to some element of the form zgt.
Uniqueness of this element is clear, as these elements are not fused
in K even. This proves (b).

Suppose now g, h e R Π K, g is special in R Π K and g ~κ h. By (a)
above, g is special in K and hence so is h. However, he R Π K, so
by (b) above, h is special in R Π K. From (b) again, g and h are
conjugate in R Π K to elements of the form zgt and zrgό respectively,
for some z, z'e Z and 1 ^ i, j ^ s. Hence zgt ~κz'gj, and from (a)
we get z = z\ i = j . Thus, # and Λ, are fused in R Π K, completing
the proof of (c).

As an application of the above non-fusion theorem, we have:

COROLLARY 3.6. Let (H, Z, χ) be a fully ramified triple. Let
K = OP(H)Z, and assume that a Sylow p-subgroup of K/Z is abelian.
Then (if, K, χ) is a fully ramified triple, and for ψ the unique
constituent of χκ, the triple (K, Z, ψ) is fully ramified.

Proof. By applying Theorem 1.1, we may assume Z = Z(H) and
that χ is faithful. Let R/Ze SylP (H/Z), and let τl9 •• , r t and σu

• , σs be as in Lemma 2.3. Then t = s as | H: K\ is a power of p.
If t = 1, this means that (H, Kf χ) is a fully ramified triple, and
hence so is (K, Z, τ3), and we are done.

Suppose then t = s > 1. Let JV = NK(R ΓΊ iί), and let—denote
the natural map K-+K/Z. Thus N = NT,(R Π if). Since s > 1, there
is an element g e R f] K which is special in R Π K and # g ^ . If x e
N, then gxeRΓ\K, and clearly g~κg

x. By Theorem 3.5 (c), #* is
conjugate in R f] K to g. But i? Π K is abelian, so <?x = g, and this
shows:

However, this implies OP(H)Z = OP(K)Z < K, (see p. 253 of [6]).
Thus, the case s > 1 leads to a contradiction, and the corollary is
proved.

4* A solvability theorem* The final theorem of this section is
a solvability theorem for certain groups of type f.r. In order to
prove that theorem, it is first necessary to show that certain groups
do not occur as homomorphic images of groups of type f.r.

LEMMA 4.1. Let G be a simple subgroup of A9 (the alternating
group on 9 letters). Then G is not a homomorphic image of a group
of type f.r.
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Proof. Suppose G is such a homomorphic image. Now | G | divides
9 8 7 6.5 4 3 = 26.34.5 7.

Suppose 5 I \G\. By Theorem 2.5 with p = 5, we get G ̂  Aδ, and
so G = Aδ. This contradicts Theorem 2.5 (a), and so 5 | | G | . By
Burnside's paqb theorem (see p. 131 of [6]), π(G) = {2, 3, 7}. Hence,
7 I |G|, and using Theorem 2.5 with p = 7, we get G ^ A7. Thus \G\
divides 7 6 4 3 = 23 32 7, as 5 | | G | .

Using Theorem 2.5 (a) again, a Sylow 3-subgroup of G cannot be
cyclic. We therefore have |G| = 2J'-32-7, for some j . By Burnside's
transfer theorem, P < NG(P) ^ NAγ(P), where Pis a Sylow 7-subgroup
of G. This last group has order 21, so | NG(P) = 21. By Sylow's
theorem, 2J" 3 = 1 mod 7, and this is the final contradiction.

The next fact which is needed is a purely number theoretic
statement, due to G. D. Birkhoff and H. S. Vandiver, which first
appeared about the turn of the century.

LEMMA 4.2. Let a and n be integers both greater than one.
Then, except for the following two cases, there exists a prime divisor
p of (an — 1), satisfying p \ (αm — 1) for all m with 1 g m < n:

(I) n = 2 and a is a Mersenne number, i.e. a + 1 is a power of 2.
(II) n = 6 and a = 2.

A proof of the above lemma for n ^ 3 may be found in [1],
where, in fact, a more general version is given. Of course, the case
n = 2 is a triviality.

The above lemma is extremely useful, when used in conjunction
with Theorem 2.5, in eliminating known simple groups from occuring
as factor groups of groups of type f .r. However, in this section, we
shall only need the following:

LEMMA 4.3. Let PSL (2, pn) <; X <; PΓL (2, pn), where pis a prime,
and p% Ξ> 4. Then X is not the homomorphic image of any group
of type f.r.

Proof. We first note that PSL (2, p%) can have no subgroup of
index qa Φ 1, where qa is a prime power less than pn. This is true
because PSL (2, pn) contains a proper subgroup of index m < pn, only
in the case pn = 9 and m = 6 (see p. 214 of [8]). This proves the
statement, as 6 is not a prime power.

Suppose X is a homomorphic image of H/Z, where (H, Z, χ) is
a fully ramified triple. Let K be the kernel of this homomorphism,
and S the inverse image of PSL (2, pn). Then, Z S K S S £ H, where
K and S are normal in Hf H/K ~ X and S/K s PSL (2, pn). Clearly,
\H: S\ divides 2n, as |PΓL (2, p ): PSL (2, pn)\ = n(2, p - 1).
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Suppose there exists a prime q satisfying the following conditions:
( i ) g | |PSL(2,p )|
(ii) qΦp
(iii) q is odd
(iv) 1 + pn is not a power of q
(v) q\n.

Then q divides exactly one of (pn + 1) or (pn — 1), as q is odd, and
a Sylow g-subgroup of S/K is cyclic of order < p% by (iv). By (v),
a Sylow ^-subgroup of S/K is also one for H/K, implying that H/K
has a g-complement, by Theorem 2.5. But then S/iΓ also has a
g-complement, contradicting the first paragraph.

We now prove, under the hypothesis pn ^ 4, a prime # can always
be chosen satisfying (i)-(v) above.

Suppose q is an odd prime dividing pn — 1, but not dividing pm — 1
for any m < n (iί n = 1, this last condition is vacuously true). Clearly,
q satisfies (i)-(iv) above. Now q divides pq~ι — 1, forcing n ^ q — 1,
so that q also satisfies (v). In particular, we are done if n — 1,
unless p — 1 is a power of 2. If % > 1, then Lemma 4.2 is applicable
(with p in place of α), and any prime satisfying the conclusion of
that lemma also satisfies (i)-(v) above. This brings us to one of the
following cases:

(a) n = 1 and p — 1 is a power of 2
(b) n — 2 and p + 1 is a power of 2
(c) w = 6 and p = 2.
We consider these cases in turn.

Case (a). Since p% ^ 4, it follows that p + 1 is even, and is not
a power of 2. Any odd prime divisor of p + 1 satisfies (i)-(v) above,
and we are done in this case.

Case (b). Since p2 + 1 is twice an odd number, in this case, let
q be an odd prime divisor of p2 + 1. Again, it is readily checked
that q satisfies (i)-(v) above.

Case (c). Here |PSL (2, pn)\ = 65-64-63, and the prime q = 5
satisfies the five conditions above.

Let (H, Z, χ) be a fully ramified triple, and assume that H/Z
has an abelian Sylow p-subgroup for some prime p. We saw in the
previous section (Corollary 3.6) that (Hf OP(H)Z, χ) is also a fully
ramified triple. This suggests the following definition:

DEFINITION. Let Q be a p-group of type f.r. Say that Q is
reductive if, for every fully famified triple (H, Z, χ) with Q isomorphic
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to a Sylow p-subgroup of H/Z, the triple (H, OP(H)Z, χ) is fully
ramified.

By the remarks preceeding the definition, an abelian p-group of
type f.r. is reductive. In the following lemma, we extend slightly
the class of reductive ^-groups of type f.r. The author is unaware
of an example of p-group of type f.r. which fails to have this pro-
perty. We use the classification of groups with dihedral Sylow 2-
subgroups in the case p = 2 of the following.

LEMMA 4.4. Let Q be a p-group of order p* and of type f.r.
Then Q is reductive.

Proof. Suppose Q is a p-group of order p4 which is of type f.r.,
but which is not reductive. Then, there exists a fully ramified triple
(H, Z, χ) with a Sylow p-subgroup of H/Z isomorphic to Q, such that
the triple (H, OP(H)Z, χ) is not fully ramified. By Theorem 1.1, we
may assume Z= Z(H). Let K = OP(H)Z and let R/Ze SγlP(H/Z).
Now K < H as (Hf K, χ) is not a fully ramified triple. By Corollary
3.6, (R Π K)/Z is a non-abelian p-group, and so has order ^ p3. This
forces \(RΠK)/Z\ = p3 and \H:K\= p. Let C/Z = ((R n K)/Z)' = Z
((.#(1 K)/Z). Using Lemma 2.3 and Theorem 3.1, there are p special
classes of (R Π K)/Z. Suppose that some element, say g, of C — Z
is special. As gZ is central in (R Π K)/Z, we get [g, Rf]K]^ Z.
But g is special, and this means [gy R Π K) = 1, so g e Z(R Γ\K). It
is clear that 1, g, g2, •••, gv~x represent the p distinct special classes
in (JR Π K)/Z. Let x e R Π K — C. Then x is not special. However,
C^κ)ίz{xZ) = (xZ, C/Z) S CRς]K(x)/Z S C^κ)lz(xZ). This contradicts
the fact that x is not special, and proves that the only special element
of (R Π K)/Z which lies in C/Z is the identity.

Consider now the case that p is odd. Let N = NK(R Π K) so that
N = N/Z = Njt(R Π K). As p is odd, (i2 n K)/Z is a regular p-group,
being of class 2. It follows from the Hall-Wielandt theorem (see p.
447 of [8]), that N controls p-transfer, i.e., OP(K) Π N = OP(N). As
(^(IΓ/Z) = £/Z, we will obtain a contradiction by proving that OP(N) < N.

Let V denote the transfer homomorphism from N/Z into (R Π
The map V is computed by

- Π (tgt~ι)C , for g 6 Λ Π
teT

where T is a right transversal for ϋ? Π K in ^ . (We used the fact
that R Π K <\ N.) Now let g be any special element of RΓ\ K with
£ g Z. Thus βr g C, from above. For any t e N, tgt~ι is R Π ̂ -conjugate
to flr, by the last part of Theorem 3.5. Thus, tgt~ιC = ̂ C for all t e
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T, and V(gZ) = (#C)|Γ1 = g^'-R^C. As \N: R Γ) K\ is_ prime to p, we
have geN keτV. This yields the contradiction 0p(N) < N, and we
are done if p is odd.

Suppose now p = 2. Then (iϋ Π i£)/i? is non-abelian of order 8,
and a nonidentity special elemet, say gZ, of (R Π K)/Z does not lie
in C/Z.

Consider first the case that (R Π K)/Z is the quaternion group.
Again, if N = NK(R Π K), the element gZ can only be conjugate to
g~ιZ_ in N/Z. This implies N/Cχ(E7γK) is a 2-group. Clearly,
Nκ(S)/Cκ(S) is a 2-group for all S < RITE, as S is cyclic. Thus, K
has a normal 2-complement by Frobenius' theorem (see p. 253 of [6]).
This contradicts O\K)Z = K, forcing (R f] K)/Z to be the dihedral
group of order 8.

From the classification of groups with dihedral Sylow 2-subgroups,
and the fact that O2(K/Z) = K/Z, it follows that K/Z has a factor
group isomorphic to F, where PSL (2, pn) ^ Y <: PΓL (2, p%) for some
odd prime power pn Φ 3, or Y = A7. From this, it follows that iΓ/Z
has exactly one chief factor isomorphic to the simple group S, where
S = PSL (2, pΛ), o r S = A7. Therefore, H/Z has a chief factor iso-
morphic to S. Let ^ £ F g U^ H, with F and ?7 normal in H, and
[7/ F s S. Define C by the equation: C/V= CHlv( U/ V). Then C < J5Γ,
and C (Ί Z7 = F. Replacing 17 and F by UC and C respectively, and
continuing this process, if necessary, we may assume C = F The
factor group if/F is isomorphic to a group X, which satisfies: S <I
X ^ Aut (S). Since Aut (PSL (2, pw)) - PΓL (2, p*), Lemma 4.3 forces
S = A7. Now, Aut (A7) ^ S7, the symmetric group on 7 letters, so
that H/Z has a factor group which is either A7 or S7. Both of these
groups contain a cyclic Sylow 5-subgroup of order 5, but neither
group contains a subgroup of index 5. This contradiction to Theorem
2.5 completes the proof of the lemma.

We are now ready to give an application of the above. In [12],
G is shown to be solvable if G is of type f.r., and pB)f\G\ for any
prime p dividing \G\.

THEOREM 4.5. Let G be a group of type f.r. Assume that G
has an abelian Sylow p-subgroup for every prime p satisfying 2>6||G|.
Then G is solvable.

Proof. Let (H, Z, χ) be a fully ramified triple with G ~ H/Z.
We proceed by induction on \H/Z\9 the assertion being trivial if H =
Z. Suppose that H/Z is not perfect. Then OP(H)Z < H for some
prime p. The hypothesis of the theorem, together with the previous
lemma, imply that a Sylow p-subgroup of H/Z is reductive of type f.r.
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Therefore, H/OP(H)Z and OP(H)Z/Z are of type f.r., and we are
done by induction.

Suppose then H/Z is perfect, and let K/Z be a maximal normal
subgroup. Then H/K is a non-abelian simple group, and hence has
even order by [4]. Also, a Sylow 2-subgroup S of H/K has order
^ 4, as otherwise H/K would have a normal 2-complement.

Suppose S has order 4. Then H/K ~ PSL (2, q)9 where q is an
odd prime power. But these simple groups are eliminated as possible
homomorphic images of H/Z by Lemma 4.3. If \S\ = 8, then apply
Lemma 2.3 for the prime 2. Here d2s = 8, and so s — 2 or 8. By
the (c) part of that lemma, H/K has a subgroup of index s, which
implies s = 8. However, this possibility is ruled out by Lemma 4.1.
Thus, |S | ̂ 1 6 .

If S is non-abelian, then the hypotheses of the theorem imply
that I S> I = 16, and S is isomorphic to a Sylow 2-subgroup of G. By
Lemma 2.2, S is of type f.r. However, the only non-abelian groups
of order 16 that occur as Sylow 2-subgroups of simple groups are
dihedral and semi-dihedral. These types have cyclic self-centralizing
subgroups, and by Corollary 3.2, S can have no such subgroup.
Therefore, S must be abelian and \S\ ^ 16. By Walter's Theorem
[14], H/K ~ PSL (2, I S\). This contradicts Lemma 4.3, and establishes
the theorem.

It is possible to show that no known simple group can be a factor
group of a group of type f.r. This strongly suggests that a group
of type f.r. cannot be perfect. It would be desirable to have a proof
of this fact, since it would represent a major step in proving that
groups of type f.r. are solvable.

I wish to express my appreciation to Professor I. M. Isaacs for
his invaluable advice during the preparation of this paper. In par-
ticular, he pointed out the short proof of Lemma 4.3. I originally
had a much longer character theoretic proof that did not use the
number theoretic result of Lemma 4.2. Finally, I would like to thank
the referee for carefully reading the first draft, and for making a
number of good suggestions for this revised version.
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OPERATOR VALUED ROOTS OF ABELIAN
ANALYTIC FUNCTIONS

FRANK GILFEATHER

In this paper, all spaces are separable Hubert spaces and
all operators are bounded linear transformations. Questions
involving the structure of an operator for which an analytic
function of it is normal or which satisfies a polynomial with
certain operator coefBcients have been considered and studied
separately. Using von Neumann's reduction theory, a unified
approach to these and similar questions can be given. This
method yields generalizations of the cases which has been
previously investigated, including structure results for n-
normal operators. Through reduction theory of von Neumann
algebras, the study of structural questions for a particular
orerator is reduced to the properties of the often simpler,
reduced operators. In all of the applications presented in
this paper, the reduced operators will simply involve algebraic
operators.

In § 1, we introduce and study analytic functions f (z), defined
on a complex domain & and taking values in a commutative von
Neumann algebra Szf. Such a function will be called an abelian
analytic function; and where there is any question, we shall specify
the algebra Jzf. Using the direct integral decomposition of S/ into
factors, we obtain the decomposition of ψ into a normal family of
scalar valued analytic functions on & indexed by a real variable.
The main results in this section will be to show that the zeros of
the scalar valued analytic functions can be chosen to be Borel func-
tions of the real variable. We shall restrict our attention to a class
of abelian analytic functions, called locally nonzero, so that each
scalar valued analytic function in the corresponding normal family
has no subdomain on which it is identically zero.

An operator T in the commutant Szff of Sf is called a root of
an abelian analytic function ψ, if σ(T), the spectrum of T, is con-
tained in & and φ(T) = 0 where ψ(T) is to be defined in the usual
J3* algebraic manner or in an equivalent way using the direct integral
decomposition of Ssf into factors. Section 2 develops the struc-
ture for roots of locally nonzero abelian analytic functions. The
main result, Theorem 2.1, states that the root of an abelian analytic
function is "piecewise" a spectral operator of finite type. The
structure theorem shows that roots of abelian analytic functions have
hyperinvariant subspaces or are scalar multiples of the identity.

The remaining two sections of this paper are essentially appli-
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cations of the structure theorem for roots of abelian analytic func-
tions to several classes of operators and the further use of reduction
theory in their study. In § 3, our investigation leads to theorems
concerning solutions of

where / is an analytic function on a domain containing o{A) and N
is a normal operator. The use of reduction theory in the study of
(*) was introduced by the author in [9], and solutions of (*) have
been previously studied by many authors with various restrictions
on /, A, or N. The most complete investigation of the solutions of
(*) has been done by C. Apostol in the setting of the theory of
generalized spectral operators, however, his results are of a quite
different nature from those given here [1]. If we set ψ(z) = f(z) — N,
then Ϋ becomes an analytic abelian function and a solution A of (*)
is just a root of ψ. Hence, we may apply our methods and results;
and in doing so, we are able to obtain two structure theorems for
A. If there is no subdomain of on which / is identically zero, then
/ will be called locally nonzero. We show that whenever A is a
solution of (*) where / ' is locally nonzero and, of course, where
σ(A) is contained in sgr, then it follows that A is the direct sum of
two operators; the first, A19 which is algebraic and the second, A2,
which is "piecewise" similar to a normal operator. In the latter
situation, the summand A2 and the corresponding normal operator
have the same spectrum. Under certain conditions, we may conclude
that the solution A of (*) is "piecewise" similar to a normal solution
No of (*) and that A and iVo have the same spectrum. We also
give a decomposition of certain operators satisfying (*) into direct
summands each of which satisfy certain operator valued polynomials.
Thus, we are able to generalize results obtained previously by
C. Apostol, H. Radjavi, and P. Rosenthal and others [1, 10-13, 15,
16, 18].

The structure of operators satisfying certain operator valued
polynomials is studied in § 4. An important class of such operators
are the ^-normal operators (n x n matrices of commuting normal
operators). An ^-normal operator A satisfies a normal valued poly-
nomial of degree n by virtue of the Hamilton-Cay ley Theorem; and
moreover, the coefficients of the polynomial are in the center of the
von Neumann algebra generated by A. N. Dunford has studied these
operators primarily from the viewpoint of when they were spectral
operators [6]. Since operators in a type In von Neumann algebra
are also ^-normal, they naturally occur in the study of operator
algebras. Also the structure and existence of hyperinvariant sub-
spaces for certain ^-normal operators have been investigated by
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various authors [3-5, 12, 13, 15]. We may then apply the theorems
in §1 to ^-normal operators showing that they are "piecewise"
similar to spectral operators and obtaining conditions for similarity
which are compatible to those given in [6]. Whenever an operator
A satisfies a monic polynomial of degree less or equal to two with
coefficients in the center of the von Neumann algebra generated by
A, we can use reduction theory to obtain a complete structure
theorem for it. This result will generalize results in [3, 16] and is
closely connected to the work of A. Brown on binormal operators
(2-normal) [2, 11].

Finally in § 4, we give some sufficient conditions for a root of
an abelian analytic function to be a spectral operator and, more
specifically, a scalar type (similar to a normal operator) operator.
For the ^-normal case, our results complement those given by
N. Dunford [6]. Also, we give some examples based on an example
introduced by J. Stampfli of a 2-normal operator whose square is
normal yet it is not similar to a normal square root of its square
[18].

The essential component of von Neumann reduction theory is the
concept of the direct integral decomposition of an algebra. For the
details of the direct integral decomposition of a von Neumann algebra,
we refer to [17]; however, we shall introduce some basic notations
and results here. Let μ be the completion of a finite positive regular
measure defined on the Borel sets of a separable metric space Λ, and
let en, 1 <L n <Ξ: oo be a collection of disjoint Borel sets of A with union
A. Let Ht £ H2 g £ Hw be a sequence of Hubert spaces, with
Hn having dimension n and H^ being separable. By

H - ( 0 H(X)μ(dX)
J A

we shall denote the space of weakly /^-measurable functions from A

into JSk such that f(X) e Hn, if λ € eΛ, and ί ||/(λ) ||2 μ(dX) < oo. The

space if is a Hubert space, and we shall denote the element feH

determined by the vector valued function f(X) as I φ/(λ)«((Zλ) .

An operator A on H is said to be decomposable if there exists
a /^-measurable operator valued function A(X) so that
A(X)f(X) for feH. The operator A is denoted by

4 = [ 0 A(λ)μ(ώλ) .
A

Furthermore, every von Neumann algebra J^f on a separable space
is spatially isomorphic to an algebra of decomposable operators on a
direct integral of Hubert spaces, such that the von Neumann algebra
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( generated by {A(X)}, where A G J ^ is a factor μ-a.e. Finally,

we use the fact that if A = \ φ A(X)dμ(X) generates J ^ then A(X)
}Λ

generates the von Neumann algebra J^f(X) μ-a.e. Whenever in our
use of this decomposition, there is no confusion over the space Λ,
we shall suppress it.

If A is an operator, we shall denote by R(A), R(A)', and Z(A),
respectively, the von Neumann algebra generated by A, the commu-
tant of R{A) and the center of R{A). N. Suzuki has introduced the
notion of a primary operator. One calls an operator A primary, in
case R(A) is a factor; i.e., Z(A) is just the scalar multiples of the
identity. Let A be defined on a separable Hubert space and let
H = I φ H(X)μ(dX) be the direct integral decomposition of H related
to R(A) for which the algebra R(A)(X) is a factor μ-a.e., then this
decomposition is unique in the sense of [17; I. 6], Thus, the operator

A is decomposed as A = 1 φ A(X)μ(dX), where A(X) is primarily
JΛ

μ-a.e., and we shall refer to this particular decomposition as the
primary decomposition of A. We shall call a projection central for
T if it is in Z(T). Finally, we shall let R(z; A) denote (zl - A)'1.

1* Abelian analytic functions* In this section, we shall develop
the notion of an abelian analytic function and investigate its proper-
ties. Let Szf be an abelian von Neumann algebra and ψ(z), an Jzf
valued analytic function on a domain s& in the complex plane, then ψ
is called an abelian analytic function with domain 3f. For the usual
facts about J5* valued analytic functions, we refer to [7; III, 14].

Given an abelian von Neumann algebra J ^ we may decompose
it into a direct integral of factors. That is, H is unitary equivalent

to a direct integral of Hubert spaces 1 φ H(X)μ(dX), and this induces

a spatial isomorphism between s/ and the diagonal operators on

I φ H(X)μ(dX). Thus, H= ί ®H(X)μ(dX); and for A e sf, there is a

unique g e L^Λ, μ), so that A = \ φ g(X)I(X)μ(dX), where J(λ) is the

identity operator on H(X) [17; I, 2.6].

Let ψ be an abelian analytic function and Sf the corresponding

von Neumann algebra with \ φ H(X)μ(dX) the decomposition of H

given above. Since ψ(z) belongs to J ^ for each z, we have

(1.1) *(*)

where {fz, X) corresponds via the isomorphism mentioned above to
ψ(z). We first give the relationship between the analyticity of ψ(z)
and that of ψ(z, λ).
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PROPOSITION 1.1. If ψ(z) is an abelian analytic function with
domain £&, then ψ(z, λ), given by (1.1), is analytic on & for almost
all X and \\ ψ(z, λ) j ^ is uniformly bounded on compact subsets of £&.
Conversely, let ψ(z, X) be a family' of functions defined on Si x A,
where £& is a complex domain. If ψ(z, X) is analytic in z for almost
all X on the domain £$ and if ψ(z, λ) e LJ^A, μ) with \\ψ(z, )IL
uniformly bounded on compact subsets of £&, then ψ(z), given by (1.1),
is an abelian analytic function with domain ϋ^.

Proof. We assume that ψ is an abelian analytic function on
£& and that zQ e 3f. The series ψ(z) — Σ N*((z ~ zo)

n/nϊ) converges
with Nn given by Cauchy's formula is in J ^ and z is in some neigh-
borhood So of z0. If JVn = \ φ gn(X)I(X)μ(dX)f then for z fixed in

J Λ

So, ψ(z)(X) = Σ«0»M((s - zo)
n/nl)I(X) for almost all λ. Hence, by

the convergence properties of power series, we may conclude that
ψ(z, X) is analytic in a neighborhood of z0 and hence on £&μ a.e.

Conversely, we assume that ψ(z, X) belongs to L^A, μ) and
|| f{z, •) I loo is bounded for z in compact subsets of ^ . For z0 in 3ί, let
ψ(z, X) = Σn^n(^)((« — zo)*/nl) be the power series expansion in a
neighborhood SQ of z0. Since the functions {gn} are given by Cauchy's
formula and ψ(z, •) is measurable, we conclude that {gn} are meas-
urable. We are done if we can show that gn e Ljyί, μ). That,
however, also follows from Cauchy's formula and using the hypothesis
that \\ψ{z, •)!!«, are uniformly bounded on compact subsets of «£̂ .

REMARK. If it is the case that φ(z, X) is independent of λ, then
the proposition is trivial. For example, if ψ(z) = f{z)I, then ψ(z)(X) =
f(z)I(X) almost everywhere. In order to save the repetitiousness of
deleting a set of measure zero from every argument, whenever ψ(z)
is an abelian analytic function on a domain £%r, we will always assume
that ψ(z, X) is analytic on a domain containing &.

The main result in this section will show that the zeros of
ψ(z, X) can be chosen in a μ measurable way. Such a result consti-
tutes a generalization of the key lemmas in the study of ^-normal
operators by N. Dunford [6; XV, 10] and is also related to the
Theorem 1 in [5].

For this problem to be well defined, we must make a restriction
so that ψ(z, X) is not identically zero on some subdomain of ϋ?*. We
shall call an abelian analytic function ψ locally nonzero if for every
convergent sequence {zn} in & with zn~+z0 in &f then Γ\n Λ"(Ψ(z*)) =
{0} (yV(A) denotes the nullspace of the operator A). For scalar
valued functions, this is the usual definition of locally nonzero. To
see this, we just let H be one dimensional, then ψ(z) is just a scalar
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valued function and Λ^(ψ(zn)) Φ {0} means that f(zn) = 0. The
following lemmas establish the relationship between ψ(z) and ψ(z, X)
with respect to this property.

LEMMA 1.2. An abelian analytic function ψ is locally nonzero
if and only if ψ(-, X) is locally nonzero for almost all X.

Proof. First assume that ψ is not locally nonzero. That is,
there exists a nonzero xe H and a sequence {zn} in gf converging to
z0 in &, so that ψ(zn)x = 0. If E1 = {λ e A \ x(X) Φ 0} and E2 =
U* ίλ I TK2**, λ)a?(λ) ^ 0}, then E = E\E2 is a set of positive measure
on which ψ( , X) is not locally nonzero.

Conversely, if ψ( , X) is not locally nonzero for λ in a set E of
positive measure, then we can show that ψ(z) is not locally nonzero.
For this, we let ψ(z, X) be zero on the subdomain 2fx if λ 6 E. Since
the domain of analyticity of ψ(z, X) contains 3f, each ϋ% contains
one of the subdomains of £&\ and thus, there is a subset F of E
with positive measure so that ΠλeF ^ΊZD ̂ fOf a subdomain of 3f.
Therefore, ψ{z, X) = 0 for Xe F and ze £%r0. Let z% —*z0 in &0 and
x e H so that {λ | a (λ) ^ 0} = F, then x e f ) ^{ΨίzJ). This completes
the proof of this lemma.

Let a locally nonzero abelian analytic function ψ be decomposed
as in (1.1). The following theorem shows that the zeros of the
functions ψ( , λ) restricted to a compact subset of & can be made
measurable.

THEOREM 1.3. Let ψ(z, λ) be given by (1.1) with domain 2$ x Λ.
If D is a bounded subdomain of Si with D c ϋ^, then there exist
disjoint Borel sets Eu i = 0, 1, with the measure of Λ\Uί̂ o Et zero
and for λ e Ejf the analytic function ψ(-f λ) has exactly j zeros counted
to their multiplicities in D. Moreover, there exist Borel functions
WS=i so that if Xe E3 , then r,(λ) 1 ̂  i ^ j are those zeros.

Proof. Since the number of zeros of an analytic function inside
a desk is given by an integral formula, it is easy to see that if %(λ)
denotes the number of zeros counted to multiplicity of ψ(z, X) con-
tained in Dy then Sk = {λ | n(X) ̂  k} is Borel subset of A. Hence, if
we may set Ek = Sk\Sk+1, then Ek is a Borel set; and it follows
that Λ\\J?=Q Ei has measure zero. We shall fix n and define rt on
En; and this will be clearly sufficient to complete the proof.

Henceforth, we are assuming that En — Λ, 1 <; n < oo, and, the
mapping ψ on D x A is a Borel measurable map from the product
space into the complex numbers. The projection of {(z, X) | ψ(z, X) = 0}
onto A is A (a.e.) and by the Principle of Measurable Choice one
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finds a Borel function rx: A—+D so that (rL(λ), λ) is in the null space
of ψ, that is, ^(n(λ), λ) = 0 for all XeΛ [17; I, 4.7], Consider now
the function ψ(z, X)(z — r^λ))"1 = Φ(z, X). By judiciously applying
Schwartz's lemma on the modulus of a complex valued function one
can show that φ(z, X) is uniformly bounded in λ on compact subsets
in &. Thus by Proposition 1.1 we conclude that φ is again an abelian
analytic function. Moreover, it is clear that ^( , λ) has n — 1 zeros
in D counted to their multiplicity almost everywhere. The propo-
sition now follows with repeated application of the above argument.

The motivation for introducing abelian analytic functions is to
study the structure of certain of their operator roots; and in doing
so, unify several previous investigations. Whenever ψ(z) is a poly-
nomial with commuting normal coefficients and T is an operator
commuting with those coefficients, then ψ(T) has an obvious definition.
The definition of ψ(T) we shall now give will be compa table with this
usual definition when ψ is a polynomial.

Let ψ be an abelian analytic function on a domain £gr with values

in the von Neumann algebra Stf. If H = 1 φ H(X)μ(dX) is the direct
JΛ

integral decomposition of H corresponding to the decomposition of
Jzf into factors; and if Γ G J / ' , then T is a decomposable operator.
That is, T is represented as T = [ φ T(X)μ(dX) where T(X) is an

operator on Hλ. Now let Te Stf' and σ(T) c &. Since σ(T(X)) c σ(T),
almost everywhere, the operator ψ(T(X), X) is well defined by the
usual functional calculus [7, 11].

To complete the definition of ψ(T), let Γ be an admissible curve

for f{T) in &. Thus ^(!Γ(λ)f λ) = (2πi)~1 [ R(z; T(X))ψ(z, X)dz and

ψ(T(X), X) is clearly a measurable operator function. If we can show
that it is essentially bounded, then we may define ψ(T) to be the
decomposable operator given by ψ(T)(X) = ψ(T(X), X). Now let zn be
a dense set on Γ. Since almost everywhere || R(zn; T(X)) \\ ̂
|| R(zn; T) ||, we may eliminate a set E of measure zero and have on
the complement of E, \\R(z; Γ(λ))|| ^ \\R(z; T)\\ for all zeΓ. By
Proposition 1.1, \\ψ(z, X) IU ̂  M < °o for all z on Γ and thus
\\f{z, X)R(z; T(X)) || <̂  M on the complement of a set of measure zero

and for all zeΓ. Hence if k = (2πi)~1\ \dz\, we have that

|| f (Γ(λ), λ) || ^ Mk, for almost all X and therefore ψ(T) is a bounded
operator on i ϊ i f it is the decomposable operator defined by ψ(T)(X) =
f(T(X), λ). It is clear that ψ(T)ejzfr since +(Γ(λ),λ)ej/'(λ)' for
each λ. We conclude our remarks on the definition of ψ(T) be noting
that we have actually shown that ψ(T) satisfies the conditions of a
Fubini type theorem. Alternately ψ(T) may be defined by usual J9*
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algebraic techniques as

(1.2) ψ(T) = (2ττi)-1 \rΨ(z)R(z; T)dz ,

where ψ(z) is a Szf valued analytic function defined on a domain
containing σ(T) and with Tejzf' and the integral converging in the
norm. We may conclude that

z, X)R(z; T{X))dzμ(dX)
(1.3) ] i ]Γ

^ ^ f(z, X)R(z; T(X))μ(dλ)dz ,

that is, ψ(T)(X) = ψ(T(X), X) almost everywhere.
In the two applications of this theory, we wish to pursue we

note that ψ(T) coincides with previously understood definitions. If
ψ(z) is the polynomial ψ(z) = Nnz

n + + Ntz + JV0, with coefficients
Nt in an abelian von Neumann algebra, then by (1.3) we see that
ψ(T) is just NnT

n + + N,T + NQ. On the other hand, if ψ(z) is
a scalar valued analytic function, then by (1.3) we have established
that ψ(T) is the usual operator determined by the standard functional
calculus [7; VII]. Moreover, in this latter case, the fact that the
definition above for ψ(T) and the usual one given by contour inte-
gration are the same as a special case of Theorem 1 in [11].

2* Roots of abelian analytic functions* We shall call T a root
of the abelian analytic function ψ if ψ(T) = 0 where ψ(T) was
defined in § 1. If f has domain of analyticity <& and takes
values in the von Neumann algebra Jzf, then, by the definition of
ψ(T), we are assuming that Γ e j / 1 and that ( J ( T ) C J ^ In this
section, we give a structure theorem for all roots of an abelian
analytic function and several applications.

We shall state and prove the main theorem after which we shall
restate it using the language of spectral operators.

THEOREM 2.1. Let ψ be a locally nonzero abelian analytic func-
tion on & taking values in the von Neumann algebra Szf and let T
be a root of ψ. There exists a normal operator S in J^fr and a
sequence of mutually orthogonal projections {Pn} in Szf with I = ΣPn

so that TPn is similar to (S + Ln)Pn, where Ln is a nilpotent operator
SLn = LnS and both Ln and the operator which induces the similarity
are in

Proof. In assuming that T is a root of ψ(z) we have that
Te Ssf. We shall give the structure of T by first decomposing T



OPERATOR VALUED ROOTS OF ABELIAN ANALYTIC FUNCTIONS 135

into a direct integral of operators via the direct integral of decom-
position of J ^ and then determining the structure of each reduced
operator in the decomposition of T.

Let H = 1 φ H(X)μ(dX) be the decomposition of H corresponding
J Λ

to the primary decomposition of Ĵ C Since Te J^", we may decompose

T as T = \ φ T(X)μ(dX). Furthermore, by (1.3) if ψ(T) = 0, then
j Λ

almost everywhere ψ(T(X), X) = 0, where ψ(z, X) is an analytic
function in a neighborhood of σ(T(X)). By Lemma 1.2, the analytic
function ψ(z, X) is locally nonzero in 3&. In fact, by Theorem 1.3,
there are disjoint Borel sets 2£<, i = 0, 1, •••, where i \ U S ^ i has
measure zero, and Borel functions r^λ), % = 1, •••, so that if XeEk

then r^λ), , rk(X) are the zeros of ψ(z, X) in σ(T) counted to their
multiplicities. Since {£7J determine mutually orthogonal projections
in J^f we may assume without loss of generality that for almost all
λ in Λ, ψ(zy X) has k roots in σ(T) counted their multiplicities and
since f(A(X), X) = 0 a.e., that μ(E0) = 0.

It follows from the measurability of {^(λ)};^, that the distinct
roots of ψ(z, X) as well as their multiplicities can be chosen measurably.
Thus we let ^(λ), •••, ̂ (λ) be the distinct roots of ψ(z, X) in σ(T)
for λ in the Borel set Fn = {λ | ψ(z, X) has n distinct roots in σ(T)}
and let the multiplicity of z^X) be &*(λ). Define §(X) — min^ | ̂ (̂λ) —
^•(λ)l> which is also a Borel function. For each i, we determine the
algebraic projections

(2.1) EAX) = (27a)-1 ( R(z; T(X))dz ,
M

where Γt is the circle centered at z^X) of radius <5(λ)/2. Since T(X)
is an algebraic operator with σ(T(X)) c {̂ i(λ)}i=1 we have

(2.2) T(\)/Et(\)H(X) =

where JV λ̂) is nilpotent of order k^X). Setting

(2.3)

then jβ(λ) is invertible on H(X), R(X)Ei(X)R(X)~1 = P«(λ) are mutually
orthogonal self-adjoint projections with I(X) = Σ ? P ( ) f F
and

(2.4) U W ^ f i ί λ ) - 1 - Σ «*WP,(λ) + L(λ) ,

where L(λ)fc = 0 and P,(λ)L(λ) = L(λ)P,(λ) for each i. The form (2.4)
is what we desired as our structure theorem. The only drawback to
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integrating the expression (2.4) over Fn and then taking direct sums
is the boundedness of the projections 2?έ(λ) (the boundedness of R(X)
and iϋ(λ)-1 only depend on n and the boundedness of the E^X)).

It is not the case that the projections 2£«(λ) are in general
bounded independent of λ and thus the structure theorem is given
in terms of "piecewise" similarity. Let

GM = {\eFn\ || J0,(λ) || ^ m, i = 1, 2, . . , n} ,

and #TO(λ) the characteristic function of the Borel set Gm. Let Qm

be the corresponding projections in given by

= \

and set Hm = QmH and Tm = Γ/iZ"m. Then i?(λ), β(λ)-1 and L(λ) are
uniformly bounded for λ e <?m and hence we may define

= ί
and

where the summation under the integral in S is taken over the number
of distinct roots of ψ(z, λ) in σ(Γ), for example, n for λ in i*V
Considering all the special conditions on the operators, we have

=[S+ RmNmR^]I

or if we set Lm = RmNmR~\ then

Qm = (S+ Lm)Qm .

Finally, it is clear that S e j / ' is a normal operator, Lm

and SLm = LmS.

REMARK. Recently, decomposable operators on a direct integral
of Hubert spaces have been investigated by E. A. Azoίf [2] He has
shown that in general, the spectrum of a decomposable operator is
measurable. The results in § 1 and this section imply this result for
roots of abelian analytic functions, so that Azoίf's work is related to
certain results in these sections.

The following proposition will give a connection between the
spectrum of T and that of the corresponding normal operator S.
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This will be useful in the next section where we discuss special abelian
analytic functions.

PROPOSITION 2.2. If T and S are as in Theorem 2.1, then the
spectrum of S intersects every connected component of σ(T).

Proof. Let ^ be a subdomain of &r containing a connected
component of σ(T) and let Γ = d£2fx be an admissible curve which
also is contained in &r. Let E = (2πi)~1[ R(z; T)dz, then Eejtf"

&nά E = (2πi)-1 [ φ[ R(z;T(X))dzμ(d\)=[ ®E(X)μ(dX) [11]. Clearly

if 1 R(z; T(X))d(z) = 0 almost everywhere, then E = 0. Thus there
JΓ

is a Borel set ί7 so that E(X) Φ 0 for λ e F and μ(F) ^ 0. Hence,
the set G = {XeF\σ(T(X)) Γ\ &[=£ φ} and consequently for some i
the set Gt = {X e F \ r^X) Π S&^Φ Φ) has positive measure. Therefore,
σ(S) Π 3PX contains the essential range of zt restricted to G>

REMARK 1. The operator S in the theorem is also a root of
ψ(z) as well as each of the operators S + Lm. Later we shall see
that in special cases where the nilpotent part does not appear, we
will then have all roots "piecewise" similar to normal roots.

REMARK 2. The proof of the theorem can be used to construct
the normal as well as the nonnormal roots of ψ(z). Thus we establish
the fact that certain abelian analytic functions have roots. This
is related to work in [4] and [12].

As we stated before the theorem, we may put this result in the
context of the theory of spectral operators on a Hubert space H.
Our result in this setting then reads: Let T be a root of a locally
nonzero abelian analytic function. There exists mutually orthogonal
projections Pn in R{T)' so that I = Σ P% and T/PnH is a spectral
operator of finite type.

Before giving an application of this result, we wish to remark
on the roots of abelian polynomial functions vis-a-vis abelian analytic
functions. If / is a locally nonzero complex valued analytic function
defined on a domain containing σ(T), then f(T) = 0 implies p(T) = 0
for some complex valued polynomial. An analogous result holds for
the operator valued analytic functions.

PROPOSITION 2.3. If T is the root of an abelian analytic func-
tion with values in J ^ then T is the direct sum of roots of monic
polynomials with coefficients in
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Proof. This follows from the structure theorem if we let pN(z, λ) =
Πί=i (2 ~ ^i(λ)), on the set where N is the number of roots of ψ(z, λ)
in σ(T) counted to their multiplicities and the Borel functions r^λ)
are the functions given in Theorem 1.3. Thus by equation (2.1)
it follows that pN(TN) = 0 where TN is defined in the obvious way.

We might point out the importance that a root T of ψ{z) belong to
J ^ ' aside from the fact that the proof of Theorem 2.1 would other-
wise fail. In case T is not in Sf' essentially nothing can be deter-
mined, at least along the lines of our results. Let H be a Hubert
space with orthonormal basis {en}, n — 0, ± 1 , ±2, •••. If U is the
bilateral shift of H with respect to this basis and V is the unilateral
shift on KJ, n = 0, 1, 2, , and 0 on {en}, 0 = - 1 , -2, , then V
satisfies the abelian polynomial z2 — Uz = ψ(z).

As a corollary to our main theorem, we shall show that roots of
abelian analytic functions have hyperin variant subspaces or are multi-
ples of the identity operator. We shall call a closed subspace M in
H hyper invariant for an unbounded operator A, if M Π £&{A) = M
(&(A) is the domain of A and will be taken to be dense), and ifcf is
invariant under every bounded operator B which commuted with A
in the following sense: B~ι&(A) (Ί &{A) is dense and AB = BA on

Let A be an unbounded operator with dense domain and T be a
bounded operator. We say T is quasisimilar to A, if there exist
bounded one-to-one operators X and Y, with dense ranges, so that
XH<z&(A)9 AX^XT, and TY = YA on 3f{A). The following
lemma extends to the unbounded case a useful tool for proving the
existence of hyperinvariant subspaces.

LEMMA 2.4. Let T be quasisimilar to an unbounded operator
A. If A has nontrivial hyperinvariant subspaces, then T has non-
trivial hyperinvariant subspaces.

Proof. The proof is similar to the usual proof for the bounded
case [13; Theorem 2.1].

Combining this lemma and Theorem 2.1, we have the following
result, the proof of which is straightforward and it omitted.

THEOREM 2.5. Let T be a root of an abelian analytic function.
If T is not a multiple of the identity, then T has nontrivial
hyperinvariant subspaces.

3. Solutions to f(T) normal* In this section we develop the
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structure of the operator roots T of the equation

(3.1)

where f(z) is a complex valued analytic function on a domain &~D
and N is a normal operator. Certain results are known as was
mentioned in the introduction; in particular, (3.1) has been studied
with various restrictions on /. If we set ψ(z) = f(z) — N, then ψ is
a locally nonzero abelian analytic function on a domain £& if and
only if / ' is locally nonzero on 3p (/' is locally nonzero is also ex-
pressed as / is locally nonconstant). Thus we may apply the results
of the previous sections to solutions of equation (3.1) whenever / is
locally nonconstant. The von Neumann algebra generated by {f(z) \ z e
&} is abelian and in fact, just R(N), the von Neumann algebra
generated by N and /. Hence, if T has spectrum in Sf and f(T) = N,
then T commutes with N, so by the Fuglede theorem T e R(N)' and
hence T satisfies the condition in the hypothesis of Theorem 2.1.
Moreover, matters are even made simpler in this section if when we
apply our results we let J ^ = Z(T) as then we are utilizing the
primary decomposition for T. Thus in this section, unless otherwise
stated, J^= Z(T) where T is a solution of (3.1).

To aid in our characterization, we shall use the notion of semi-
similarity, which is motivated by the use of a related concept by A.
Feldzamen for spectral operators [9]. We call A and B semi-similar
if there exists a sequence of mutually orthogonal self-adjoint projec-
tions {PJ commuting with A and B so that I = ΣJPi and for each
i, there exists an invertible operator St on PtH, so that S^ASt =
B I PiH. That is, there is a "complete" family of reducing subspaces
for A and JS, so that A is similar to B on each of these subspaces.
Let A and B be semi-similar as above. By considering first the
operator X = Σ< \\S< IΓ&P, on H and then Γ = Σt H S Γ M Γ ^ Γ 1 ^ we
have that AX = AB and YA = BY, where Xand Yare quasiaίfinities
[14] Thus this notion of semi-similarity implies the notion of quasi-
similarity which is used by various authors to describe certain opera-
tors.

THEOREM 3.1. Let f be a locally nonconstant analytic function
on a domain & and let N be a normal operator. If T is an operator
with o(T) c & and f{T) = N, then there is a central projection P
of T so that

τ= τo®τ19

where TQ = T\PH and Tx= T \ (I - P)H, To is semi-similar to a
normal operator No, σ(N0) = <r(T0) and No is a normal solution to
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/(•) = N\ PH. Finally, TΊ is an algebraic operator with /(7\) = 0.

Proof. Let H ~ \ φ H(X)μ(dX) be the decomposition of H so
U

that Γ = φ T(X)μ(dX) is the primary decomposition of T. Since

NeZ(T), N= [ φ g(X)I(X)μ(dX)9 where geL^μ), and moreover

/(T(λ)) = g(\)I(X) almost everywhere [11].
Let XeE0H and only if /(z) — #(λ) has only zeros of multiplicity

one in σ(T). If we let g0 be the characteristic function of the set Eo,

P = 0 go(X)I(X)μ(dX), then To = T/P is easily seen to be semi-similar
J Λ

to a normal operator No = JV/P using Theorem 2.1.
On the complement of Eo, the function /(#) — g(X) has as least

one multiple root. Since / ' is locally nonzero there are only a finite
number of distinct zeros of / ' in σ(T). Let zu * 9zk be the zeros
of / ' in σ(T). Now a multiple root of f(z) — g(X) must be one of
the numbers zίf , zk. Let Ft be the measurable set of λ in Λ for
which f(z) — g(X) has the multiple root zt. Then Et = Ft — \JJ<ΪFJ

are disjoint measurable sets so that Λ = U o ^ i If \ , λ2 € 2?y(.? > 0),
then / ( z) — ̂ (λj and /(^) — #(λ2) both have the root zt and therefore,
g is constant on each Eό{j > 0). If g(X) = «i on ^ ( i > 0), then T(X)
satisfies the equation f(z) — α* for λ in Et and it follows that T(X)
satisfies a complex polynomial Pi(z) for λ 6 ^ ( i > 1). Thus if Pλ —
/ - P o and Tx = T | P ^ , ί>(2\) = 0 f or p = ^ pk.

From Theorem 2.1 it is clear that σ(N0)aσ(T0), in fact, 2
belongs to the essential range of 22(λ) given in (2.4) for some i if
and only if z is in σ(N) and such a z is in σ(T). Conversely, we
shall show that σ(N0) z> σ(T0). Let N/P0H= Nlf then we are considering
/(Γo) ^'iVΊ and TQ is semi-similar to JV0. Let zoeσ(TQ) and ε > 0 be
given. Denote by SQ a ball of radius r less than ε, centered at z0

with So c ^ , and with f(z) — /(^0) ^ 0 on So except for z = z0. Let
f(z0) = zlf then by the spectral mapping theorem zx e σ{N^) and by the
local mapping theorem, there exists a neighborhood Si of zx and S2 of
£0 contained in SQ, so that /(S2) — Sx.

Let J&( ) be the spectral measure for Λ ,̂ then E(Sλ) is not zero
since z^σ(N^. Also E{S^^Z{T^ so we denote T01 to be T/EiSJH
and similarly JW01 and i\Γn. Thus, /(To l) = Nn and iVd is the normal
operator semi-similar to TQ1 given by Theorem 2.1. Since σ(Nn) c Sί9

by the spectral mapping and local mapping theorems we have that
S2 must contain a component of σ(T01). By Proposition 2.2 there is
a z2 in α(iVoi) c σ(N0) so that | z2 — ^01 < s Since ε was arbitrary,
we may conclude that σ(T0)c:σ(N0) and the proof is complete.

Whenever / ' has no zeros on σ{T) then a theorem of C. Apostol



OPERATOR VALUED ROOTS OF ABELIAN ANALYTIC FUNCTIONS 141

has shown that T is similar to a normal solution of (3.1) [1]. A
generalization of that result will be given in Proposition 4.5. If,
however, / ' has zeros but (/'^(O) ΓΊ σP(T) is empty, then the operator
T1 does not occur need to in the above theorem and we have the
following corollary.

COROLLARY 3.2. Let f be a locally nonzero analytic function
on a domain & and let N be a normal operator. If T is an
operator with σ(T)d &f, f(T) = N and σp(T) Π (fT'Φ) = Φt then there
exists a normal operator No with cr(N0) — o{T), f(N0) = N and T is
semi-similar to No.

Prior to C. ApostoΓs work, it was shown by J. Stampίli that
whenever An is normal and A is invertible, then A is similar to a
normal operator [18] It easily follows from Stampfli's result that
whenever 0 g σP{A), then A is semi-similar to an nth. root of N. This
result is also an application of the above corollary where, of course,
f(z) = *n

REMARK. That σ(T0) = σ(N0) in Theorem 3.1 also follows the
result of C. Apostol, C. Foias, and I. Colojoara when we have first
shown that To and No are quasisimilar. For the first author proves
that solutions of (3.1) are generalized scalar operators and the later
authors have shown that quasisimilarity between decomposable opera-
tors preserves the spectrum. Since decomposable operators possess
hyperinvariant subspaces, it follows from C. ApostoΓs results that
solutions to (3.1) have hyperinvariant subspaces. However, this fact
is also immediate by applying Theorem 2.5 to solutions of (3.1).

The following theorem and corollary generalize existing theorems
and are obtained by placing some condition on f(z). We shall only
briefly indicate their proofs.

THEOREM 3.3. Let T satisfy (3.1) and let {zjf=1 be the zeros of
f'(z) in σ(T) with multiplicities {wjt-i. Assume that for each i
there exists a neighborhood Nt of zt so that there are at most m
elements in Nt Π σ(T) Π f'1^) for each z in σ(N). Then there exists
an orthogonal projection P in R(T)' so that

1 — *0 W 1 l 9

where Tλ = T/PH is algebraic and satisfies p(z) = Πϊ=i 0? — Zi)ni and
To is similar to an operator SQ which satisfies a monic abelian
polynomial of degree at most m.

Proof. The proof is similar to the proof of Theorem 3.1 in that
2\ is the same operator in each case. Here because of the restriction
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on the spectrum we divide σ(T0(X)) into at most k distinct pieces so
that each contains at most m points of σ(T0(X)) and each is of multi-
plicity one. From such a decomposition the theorem will follow.

COROLLARY 3.4. Let Tn be normal where σ(T) lies in m sectors
of the plane, each of width at most 2π/n, then T is similar to the
direct sum of a nilpotent operator To and an operator T19 which
satisfies a polynomial of degree m with coefficients in the center of
the von Neumann algebra generated by 7\.

4* Operators satisfying an abelian polynomial* In this section,
we give several results in the study of opetators which satisfy

(4.1) p(A) = 0 ,

where p(z) is a monic polynomial with coefficients which are commuting
normal operators and A commutes with the coefficients. In view of
Proposition 2.3, this problem subsumes the study of roots of abelian
analytic functions. First, we shall discuss in some detail the results
obtained whenever the polynomial is of degree two, and give results
related to Corollary 3.2. As mentioned in the introduction, N. Dunford
has studied ^-normal operators from the viwpoint of when they were
spectral operators. We relate our work to those results and to later
works of T. Hoover [13] and H. Radjavi and P. Rosenthal [15,16].
For example, several authors have shown that whenever A is ^-normal,
then A is a scalar multiple of the identity operator or A has non-
trivial hyperinvariant subspaces. These results also follow from
Theorem 2.5.

Recently, H. Radjavi and P. Rosenthal have given a character-
ization of operators satisfying certain polynomials of degree 2.
Specifically, they have studied solutions to z* + az = N, where N is
a normal operator [16]. The following theorem generalizes their results
and a similar result of H. Behncke [3].

THEOREM 4.1. Let T be a root of p(z) where the degree of p is
less than or equal to 2 and the coefficients of p(z) are in Z(T). Then
there exists a central projection P of T, so that

T = Γo © 2\

where To = T/PH and Tx = T/(I - P)H, To is normal, Tx is unitarily
equivalent to an operator of the form

B C

0 D
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on K φ K, where B, C, D are commuting normal operators on K.
Moreover, o{B) 1J o{D) — 0"(TΊ) and C is positive definite.

The proof of Theorem 4.1 will follow from a direct integral
reduction of T and the next lemma. Recall that an operator is called
primary if the von Neumann algebra it generates is a factor. The
following lemma has a direct elementary proof. However, it does
follow from A. Brown's nonelementary work [4] and we cite that
as a proof.

LEMMA 4.2. Let A be a primary operator on H (dim H > 2).
If A2 + bA + c = 0 for complex numbers b and e, then A is unitarily
equivalent to

~Ίl βll

_0 al\ '

on K@K, where {7, a} = σ(A) = {l/2(-δ ± (b2 - 4c)1/2)} and β = (p2-
I a ~ 712)1/2, where p=\\A- al\\.

Proof of Theorem 4.1. Let T = To 0 7\ be the unique central
decomposition of T by projection P so that TQ is normal and 2\ is
completely nonnormal. If T satisfies T + TN, + JV2 = 0, then 2? +
T,LX + L2 = 0 where L, = 7^/(7 - P)JBΓ and L, e Z{Tt) (i = 1, 2). We
decompose Hx = (I — P)H by the primary decomposition of TΊ. Thus

Hi = ( Θ H(X)μ(dX) and

= ( © 2\(λ)/£((ίλ) ,

where Γi(λ) is a primary operator defined on Hλ. Moreover, there
exist bounded Borel functions fx and f2 on A so that for i = 1, 2,

Therefore, we may conclude that

- 0

almost everywhere. From our proposition, Tk(X) is unitarily equivalent
to

on iζjφjK'; where J ; is the identity operator on Kx, where g, h, and
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k are measurable, h(X) > 0 and the projection P(λ) onto the sub-
pace KλQ0 is measurable. We let Q(X) = I(X) - P(λ) and then
P(λ)7\(λ)P(λ) = g(X)P(X), PίλJΓiίλJQίλ) - 0, P W T ^ Q W = λ(λ)P(λ)
and ©(λJΓxίλJQίλ) = k(X)Q(X) and the result follows.

REMARK 1. That Nlf N2eZ(A) is not essential to Theorem 4.1.
The same conclusion holds if A is any root of a locally nonzero abelian
polynomial of degree less or equal to 2. We need only decompose A
as in Theorem 2.1 and thus have g(X)A(X)2 + h(X)A(X) + k(X)I(X) = 0
almost everywhere. By Theorem 4.1, there exists a projection Q(X)
measurable with respect to λ, so that A(X)Q(X) — rx{^x)Q{X)f

P(X)A(X)P(X) = ra(λ)Q(λ) where P(λ) = J(λ) - Q(λ) and Q(λ)A(λ)P(λ) =
c(λ)Q(λ) where c(λ) is a positive operator on H(X). The more general
result now follows.

REMARK 2. A. Brown called 2-normal operators binormal and
H. Gonsher called them J2 operators [4, 12]. Hence, Theorem 4.1
implies that: A is a binormal operator if and only if A is a zero
of a locally nonzero abelian polynomial of degree less than or equal
to 2. For a discussion of the unitary invariant of these operators
we refer the reader to [2].

We can obtain various known theorems as special cases of the
preceeding theorems. For example, we can generalize Theorem 3 in
[16] with the following corollary.

COROLLARY 4.3. Let Tn = N, where N is normal and let σ(T)
lie in two sectors of the plane each with width less than 2πn~1. Then
there are mutually orthogonal central projections Po, Plf and P2 of
T with I = Po + P,+ P2 and

T= To © Tί 0 T2

where To — T/P0H is nilpotent of order n, T\= T\PJί is normal
and T2 = T/P2H is unitarily equivalent to

B

P

where B, C, and D are commuting normal operators with C positive
definite.

Proof. Let Po be the central projection so that T/PQH is normal
and T/(I — P0)H is completely nonnormal. If we apply Corollary 3.6
to T/(I - P0)H we can obtain Px and P2 so that T/P.H is algebraic
and in fact Ύn\PJI = 0 and T/P2H satisfies a monic polynomial of
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degree 2 with coefficients in Z(T/P2H). Using Theorem 4.1 we now
conclude the complete structure of T.

In Theorem 2.1 we see that if the root functions are different
almost everywhere, then the operator zero is semi-similar to a normal
zero. We use this observation in the following result concerning
solutions of an abelian polynomial of degree 2 which will be useful.
It differs from the preceding results in that it utilizes semi-similarity.

PROPOSITION 4.4. Let T satisfy an abelian polynomial of degree
2. Then there exists unique central decomposition of T into

so that TQ is unitarily equivalent to the commuting sum of a normal
operator and a nilpotent operator of index 2. The operator To has
no reducing subspace on which it is similar to a normal operator
and Tx is semi-similar to a normal operator.

Proof. We let the root functions be {r^λ)}^ and set M =
{X I r^X) = r2(λ)}. If g is the characteristic function of M, then

P = φg(X)I(X)μ(dX) is a central projections for T. We let TQ be
U

the completely nonnormal part of T/P and the proposition follows from
the fact that on the complement of M, r^X) Φ r2(λ) almost every-
where.

In the case of operators satisfying an abelian analytic function,
we always have by Theorem 2.1 that they are piecewise similar to
spectral operators. The question naturally arises as to when are they
spectral. This has been studied by both N. Dunford and C. Apostol
for the special cases they considered respectively [1, 6]. The following
sufficient condition follows easily from the proof of Theorem 2.1.

PROPOSITION 4.5. Let T be a root of a locally nonzero analytic
abelian function ψ which has root functions {r^X)}?^ in σ(T) satisfying
HiΦά I ^iW — rj(λ>) I ̂  δ > 0 almost everywhere. Then T is similar
to a normal root of ψ.

Proof. The root functions are given by Theorem 1.3 and under
the assumption Π<*/ I rt(X) — r^X) | > 0 almost everywhere we have
no multiple roots. Furthermore, the projections given by equation
(2.1) are just Et(\) = p,(3Π(λ)) where j φ ) = ILv*(z ~ ^(λ))(n(λ) -

M)""1 a n ( i a r e essentially bounded under the hypothesis on {^(λ)}.
In fact, a necessary and sufficient condition can be given in case
(ri(λ>) — rj(y)) Ψ 0 almost everywhere.
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PROPOSITION 4.6. If T is a solution of an abelian analytic
function with Π ^ i ( r*(λ) ~ ^(^)) Φ 0 almost everywhere, then T is
a scalar type operator if and only if ILw0 (^\0(

λ) ~ rz(λ))~11! T(X) —
r t(λ) || is essentially bounded for 1 tί iQ ^ n.

REMARK. The theorem of J. Stampfli for Tn normal and T
invertible as well as S. FogueΓs theorem and C. ApostoΓs theorem
for p(T) normal and p'{z) Φ 0 on σ(T) and f(T) normal and f(z) Φ 0
on σ(T) respectively, follow from these propositions.

Unfortunately, these conditions are not sufficient as we shall see
below. In the case of an operator T satisfying a second degree monic
polynomial with coefficients in Z(T), we can given necessary and
sufficient for that T be similar to a normal solution of the polynomial.

THEOREM 4.7. Let T satisfy a monic second degree polynomial

with coefficients in Z(T). IfT=\ ® T(X)μ(dX) is the primary
JΛ

decomposition of T, {^(λ)}^ are the root functions of the polynomial
and p(X) = (| T(X) — r^X) ||, then T is a spectral type operator of
nilpotent index 2 if and only if {p(X) \ rλ(X) — r2(λ) I"1: rx(λ) Φ r2(λ)}
is essentially bounded.

Proof. This follows from Propositions 4.4 and 4.6.

We shall give an example which yields some of the results in
N. Dunford's work. Let H = L2(0, 1) 0 L2(0, 1) and Mf denote the
multiplication operator on L2(0, 1) for / € L°°(0, 1). If

= VMf Mg

lMh Mk

where / , g, h, k e L°°(0, 1), then clearly A satisfies a second degree
monic polynomial z2 — Ntz + N2 where the coefficients

[Mf+k 0
f+k

Mf+

and

Thus, if we take the direct integral decomposition determined by
Lebesgue measure on [0, 1] and H(X) = C2, then JVi, N2 are obviously

diagonal operators and A decomposes with A(X) = w J *j\A . Then

as in Proposition 4.4, there is a Borel set M so that if g is the
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characteristic function on M, then A is decomposed by 1 φ g(X)I(X)μd(X)

U
into At 0 A2 so that A1 is a spectral operator of order 2 and A2 is
semi-similar to a normal operator. By Theorem 4.7, A is a spectral
operator iff {|| A(X) — r^λ) || | rx(λ) I"1: Xe Λ — M) is essentially bounded.
This later condition is equivalent (following the notation in [4]) to

( ( / ( λ ) ) - k(X)Y + gjXf + h(XY . χ e Λ _ M

d(xγ

being essentially bounded where δ(X) = ((/(λ) - k(X))2 + Ag(X)h(X))112.
Note that δ(X) = 0 on M which parallels the treatment in [4, 6; XI].

Finally, we given an example first introduced by J. Stampfli
[17] to show that sequare roots of normal operators need not be
spectral. Let

Mt M,

o n £ f = L2(0, 1) 0 L2(0, 1) where / 6 L°°(0, 1). Then A} is normal for
each /, however Af is a spectral operator (in fact scalar type operator)
if and only if | t^fζt) | is essentially bounded. Hence, the example of
J. Stampfli follows. The operator

'Mt I

0 M _

is the square root of a normal operator which is not a spectral
operator.

We close by remarking on several areas of further research
involving these methods and theorems. The theorems in §§ 1 and 2
can be modified in case ψ(z) takes values in certain commutative
algebras of spectral operators; however, the nilpotent operators become
quasinilpotent and are not necessarily of finite type. Most of the
theorems can be obviously modified if the normal operators are replaced
by commuting scalar type operators whenever similarity or semi-
similarity is involved. Some results in this direction have been obtained
and further work is in progress.
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BEST APPROXIMATION BY A SATURATION

CLASS OF POLYNOMIAL OPERATORS

D. S. GOEL, A. S. B. HOLLAND,

C. NASIM, AND B. N. SAHNEY

The problem of determining a saturation class has been
considered by Zamanski, Sunouchi and Watari and others.
Zamanski has considered the Cesaro means of order 1 and
Sunouchi and Watari have studied the Riesz means of type
n The object of the present paper is to extend these results
by considering Nδrlund means which include the above-men-
tioned results as particular cases.

1* Let {pn} be a sequence of positive constants such that

P» = Po + •- + Pn > °° as n > oo .

A given series ΣΓ=o dn with the sequence of partial sums {Sn} is said
to summable (N, pn) to d, provided that

(1.1)
= ψ- Σ Pn~kSk > d , as n > oo ,

and Nn are called the Norlund operators.
Let

(1.2) —α0 + Σ iβk cos kx + bk sin kx) = Σ Ak(x)
2 k=l k=0

be the Fourier series associated with a continuous periodic function
f(x), with period 2ττ.

We define

(1.3) Nn(x) = Nn(f; x)^j^± Pn-kAk(x)

and the norm

\\f(x) - NMW = max I/(a?) - 2SΓ.(a?)| .

If there exists positive nonincreasing function φ(n) and a class of
functions K, with the following properties:

(I) \\f(x) - JV,(aj)|| = o(φ(n)) ==> /(«) is constant,
(II) \\f(x) - #.(*) | | = O(φ(n)) _ /(α?) e if

149
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and
(III) f(x)e * — || f(x) - NMW = <KΦ(n)),

then the Norlund operators are saturated with the order φ(n) and
the class K.

In this paper we prove that the above method of summations is
saturated with the order pJPn and that the class K consists of all
continuous functions / such that feLip 1, where / is the con jugate
function of / . By definition

f(x) = -±- [[f(x + t) - f(x - ί)] cot l ί dt ,
2π Jo 2

if the integral converges absolutely for all x and if

[*\ fix + t) - f(x - t)\ cotί-
Jo 2

is an integrable function.
The problem of determining a saturation class by considering (C,

1) means of the Fourier series of fix) has been considered by Zamanski
[6]. Sunouchi and Watari [4] have considered the problem by taking
(iϋ, λ, k) means of the Fourier series. Some of these results were
later extended by Sunouchi [3] and others [2, 5].

2* We shall prove the following theorem*

THEOREM. Let {pn} be a sequence of positive constants satisfying
the following conditions,

(2.1) ^n~k > 1 as n > oo for a fixed k ^n ,
Pn

and

(2.2) Σ | P - * - P - * - i | = O(p.) where [p_t = 0] .
k=0

Then the operators Nn are saturated with order pJPn and the class
of all continuous functions f for which feLip 1.

The following lemmas are required for the proof of the theorem.

LEMMA 2.1. / /

then f is a constant.
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Proof. From (1.3) we obtain

— I .#»(&) cos rx dx = — \ Σ ^ fe(^) cos r# cte

= A Σ -£*=*- Γ Ak(x) cos rα; dx
π £& pn ) - π *v

Thus,

ar — —^^-a r — — I f(x) cos rx dx — — I Nn(x) cos rx dx
Pn TC J-π ΊZ J-π

1 f *= — I cos rx [fix) — Nn(x)]dx ,

hence
P If 7 1 Γ v Ί

»r - —τrLar ^ ll/(») ~ -AΓ»(a?) 11 — 1 l'dx = o| - ^ I.

Consequently

(2.3) (
and since pr > 0 for all r, we have (pn + + pn-r+i)/pn ̂  1 for
r ^ 1.

Thus from (2.3) it follows that ar = 0, for each r ^ 1. Similarly
we can show that br = 0 for each r >̂ 1. Hence f(x) — l/2α0, a constant.

LEMMA 2.2. / /

and condition (2.1) is satisfied, then f(x) e Lip 1.

Proof. It can be shown without much difficulty that if

then

Taking the limit as ^ > oo, and using condition (2.1), we obtain
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(2.4)

The left hand side of the above equation represents the (C, 1) mean
of the series

Σ - fcAk(x) .

Since — kAh(x) = B'k(x), where Σ?=i -B*(#) Ξ ΣΓ=i Φk cos lex — ak sin kx)
is the conjugate series of (1.2), then (2.4) is equivalent to

\\σ'N(f)\\<M

which implies that fix) e Lip 1, [1].
Ψπ(f) represents the (C, 1) mean of the conjugate series.)

LEMMA 2.3. Assume fe Lip 1. // the sequence {pn} satisfies
condition (2.2), then

Proof. Since, by definition

Sn(f, *) = - \'[?(χ, t) - f(χ - t)]
π Jo

cos — — cos \ n + —

where Sn(f, x) denotes the partial sums of the conjugate series asso-
ciated with f{x), we have

N.Φ.(f, x)) = jr Σ Pn-kSk(f, x)

- -I- Σ

- ft* -t)] cot i * d t

cos Γfc + -|]ί

Since the function f(x) e Lip 1, — / + (l/2)α0 is identical to /, therefore

(2.5) f{χ) - N.(f, *) = •£- (*[/(* + *) - Kx ~ t)]K.{t)dt ,
2π Jo

where
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, sin —t k
. - * COS [fc + l ] t .

Now by partial summation

Kn(t) = 1—— Σ (pn_k - pn_k_J sin (k + l)t

nsm—t

= —\— + 0(1)1 Σ (Pn-k ~ Pn-k-i) sin (k H-
Pn it ) k=0

2 n Γ~

by hypothesis. Since f(x) is certainly bounded, the right hand side
of (2.5) becomes

\dt(2.6) - L . ("[/(a? + t) - /(a? - ί ) ώ { Σ (P-* - P.-»-i) sin (fc + l)t\
πPn JO t2 U=o i

Let us write

Fn(t) = 4~ Γ Λ I Σ (P.-* " P-*-i) sin (A + l)u\du .
Pn it U2 ^=o )

Since f(u) e Lip 1, it is an indefinite integral of a bounded function,
say f(u). Further, since f(x + t) - f(x - ί) = 0(ί), as ί -> 0, while
for fixed n, FJJb) = O(log (l/t)), we can integrate (2.6) by parts to obtain

- [[fix + t) + ?'(x - t)]Fn(t)dt
7Γ Jo

noting that the integrated term vanishes at both limits. The absolute
value of this above expression is now,

(2.1) 0{jj2^(t)|diJ + θ [ | r ] s i n c e ?' i s bounded .

Now

J(fc+D*

However,
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sin v _ fθ(log l/(k + l)t) if (k + l)ί < 1

v2 V~ \θ(l/(k + Iff) if

Hence

f * I Fn(t) I dt = θ { 4 - (T Σ I P-» - P-*-i I (ft + 1) log (1/(A + 1)0
Jo (. Pn JoL(*+iχi/t

+ Σ \P%-k — Pn-k-

Further,

S i/(fe+i) ri / I \

log (l/(& + l)ί)dί = \ log (— )du = constant
o Jo \n '

and

\ — —dt < M (constant) ,

therefore

from (2.2).
Thus (2.7) and hence (2.6) is O[pJPn] .

Consequently from (2.5), we have that

which proves the lemma.

The proof of the theorem now follows from Lemmas 2.1, 2.2, and
2.3.

The authors wish to thank Dr. B. Kuttner of the University of
Birmingham, for his very helpful suggestions.
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PUISEUX SERIES FOR RESONANCES AT AN
EMBEDDED EIGENVALUE

JAMES S. HOWLAND

Let H{κ) = T + κB*A be a self-adjoint perturbation of
the self-adjoint operator T, and suppose that T has an eigen-
value Λo of finite multiplicity m embedded in its continuous
spectrum. If the operator

Q(z) = A(T - zy'B*

is bounded and can be continued meromorphically across the
axis at λQ, the asymptotic spectral concentration of the family
H{κ) at λ0 is determined by the poles of

(1) κA(H(κ) - zT'B* = ! - [ ! + KQiz)]-1 .

These "resonances" can be expanded in a series of fractional
powers of tc, and therefore have a unitarily invariant signi-
ficance for the family H(κ). An example shows that nonanalyt-
ic series may indeed occur; however, if a resonance is an
actual eigenvalue of H{κ) for all sufficiently small real K, its
series is analytic. Because the resonances cannot lie on the
first sheet when K is real, these series must have a special
form. In the generic case, they yield, as the lowest order
approximation to the imaginary parts of the resonances, the
famous Fermi's Golden Rule. The case when 2Q is embedded
at a branch point of (1) is studied by means of a simple ex-
ample.

To outline briefly, Puiseux expansions are obtained in §1, and
their special form is noted (c.f. [15, Theorem 4.2]). In §2, a study
of these series for perturbations which remove the degeneracy at λ0

leads to Fermi's Golden Rule. The discussion of spectral concentra-
tion in §3 relies heavily on the arguments of [3], particularly on a
grouping of the resonances into "clusters" which act asymptoticly as
a single simple pole. The examples appear in §4. The appendix
contains a technical result which simplifies not only Theorem 3.1 but
also [3, Theorem 2.1] (c.f. [3, p. 156; Note (1)]). The results proved
here were announced in [4].

Simon [14> 15] has recently discussed a similar problem for N-
body Hamiltonians with dilatation analytic interactions. It is of
particular interest that the Balslev-Combes technique which he em-
ploys reduces the problem to that of an isolated eigenvalue of a
non-self-ad joint operator. This gives an interesting insight into the
occurrence of Puiseux series, and suggests that, in the general case,
resonance series can be viewed as perturbation series for an isolated
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eigenvalue of a suitable non-self-adjoint operator. Simon considers
eigenvalues of arbitrary finite multiplicity, and not, as erroneously
remarked in [4], only simple multiplicity.

Eigenvalues embedded at "thresholds" are not considered by
Simon. Mathematically, a threshold may be variously described as
(i) a branch point of an appropriate function, (ii) a point where the
absolutely continuous part of T changes multiplicity, or (sometimes)
(iii) an end point of the spectrum of T. The unperturbed eigenvalue
in the second example of §4 is a threshold in all three senses. A
slightly revised Golden Rule is shown to apply to this case.

Let us conclude this introduction with an observation about the
invariant significance of "resonances". It is tempting, at first glance,
to call a point Λ a resonance of the self-adjoint operator H if the
continuation of some matrix element {{H — ζ)"1/, /) across the spec-
trum of H has a pole at Λ. However, this definition is worthless;
for if H is the multiplication

Hf(x) = Xf(x) - oo < x < oo

(which is essentially the general case in which continuation is possible),
then given any point Λ in the lower half-plane, there is a rational
function f(x) for which the continuation of

{{H - ζ)-1/, /) = j (a - ζ Π f(x) \>dx

has a pole at Λ. The "resonances" considered by various authors
are always something more than this—poles of an S-matrix [11], of
an integral operator [13], or (as here) of an operator-valued function.
Accordingly, the definition of "resonance" is referred to some struc-
ture in addition to the operator H—such as outgoing subspaces, the
representation of H as a differential operator, or a decomposition
H= T+ AB*.

While something of this sort is necessary in general, in the case
of an analytic perturbation H(tc) of an embedded eigenvalue, a uni-
tarily invariant significance can be attached to a Puiseux series Λ(/c)
of "resonances" in the weak sense which we have scorned above.
There is of course additional structure here, too: the analyticity of
the families H(fc) and Λ(/c).

To be precise, suppose that H(ιc) is an analytic family [6, Chapter
VII] of closed operators, self-adjoint for real tc, with essential spec-
trum independent of /c. Let λ0 be an eigenvalue of H(0) and assume
that for some vector /

κ) - cr/, f)
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has a continuation F(ζ, tc) to a meromorphic function of (ζ, tc) for
I tc I < δ and | ζ - λ01 < δ. Assume further that

Λ{tc) = X0 + βiίnlP + β^.O

is a pole of F(ζ, tc) for each tc. Since for small tc9 the term βtcnlp

dominates those which follow it, Λ{tc) will be in the upper half-plane
for tc in certain sectors of the complex plane, and will therefore be
an eigenvalue of H(/c), because of the assumed in variance of the
essential spectrum. Thus the same analytic family Λ(/c) represents a
"resonance" for some values of the perturbation parameter, and an
actual eigenvalue of H(tc) for others. Put differently, the resonances
are continuations in tc of eigenvalues of H(/c), and have, therefore, a
unitarily invariant significance for the family H(/c).

1* Puiseux series* The following assumptions will be made
throughout this article. For proofs of the various assertions, see [2,
7, and 10].

Let £έf and 3ίff be separable Hubert spaces. Let T be a self-
adjoint operator on έ%f with resolvent G(z) = (T — z)~ι> and let A
and B be closed, densely defined operators from J%f to Sίf' such
that &r(T) c &r(A) Π 3f{β) and

(1.1) (Ax, By) = (Bx, Ay) for every x, y e 2f(A) n

Suppose that for every zep(T), the operator AG(z)B*, which is
defined on <&(B*)f has a bounded extension Q(z) to 3ίff, and that
/ + Q(z) is invertible for some zep(T). Then, for sufficiently small
real /c, there is a self-adjoint extension H(/c) of T + Λ:JB*A the resolv-
ent of which is

(1.2) R(z, K) = G(2) - fc[BG(z)]* [I + /cQ^J

whenever z e |θ(Γ) and 7 + ιcQ(z) has a bounded inverse. In particular,

H(0) = T and B(z, 0) = G(z). We shall write B(A;) - (XdEκ(X). If

) denotes the smallest reducing subspace of T which contains
)f then ^€ = ^€(A*) Π ̂ ( .B*) reduces both if(/r) and Γ and

£Γ(Λ:) = Γ o n ^ T 1 . Only the parts of H(/c) and T in ̂ € are of in-
terest in perturbation theory.

Let Ω be a neighborhood of a point λ0 of the real axis, and Ω± =
{zeβ: ±Im£ > 0}. Assume that Q(z) has a continuation Q±{z) from
£?* to i2, which is analytic on Ω except for a simple pole at λ0 with
residue of finite rank m. The part of T in ^ is then absolutely
continuous in Ω Π R, except for an eigenvalue λ0 of finite multiplicity
equal to m. Since Q+(z) and Q~(z) do not in general agree on Ω,



160 JAMES S. HOWLAND

the eigenvalue λ0 is in general embedded in the absolutely continuous
spectrum of T.

If we now write

Q*(2) = Qi(z) + (λ0 - z)-'F

where F has finite rank and Qΐ(z) is analytic at λ0, then I + κQΐ(z)
can be inverted by a Neumann series for | z — λ01 < δt and \κ\ < δz

if δ± and δ2 are sufficiently small. Hence, AR(z, tc)B* also has a
bounded extension Q^z, £) for Im z Φ 0, which has completely mero-
morphic (meromorphic with finite rank principal parts at all poles
[2]) continuations Qϊ(z, fc) from Ω± to | z — λ01 < δλ satisfying

The poles of Qf(zf tc) need not be real, but for real tc do not lie in
Ω±m, they are the resonances of this perturbation problem.

THEOREM 1.1. There is an analytic function Δ(zy K) on a polydisc
{(z, /c): I z — λ01 < δlf I K \ < δ2} such that

(a) For \ιc\<δ2, Δ{z, tc) has exactly m zeros z^fc), , zm(/c)
(repeated according to multiplicity) in \ z — λ01 < δίf which are pre-
cisely the poles of Qt{z, fc) in | z — λ01 < δ1Λ For tc = 0, zά{0) = λ0

(j = 1, . . . , m).
(b) J/ for some real ic, Zj(ιc) is real, then Zj(fc) is an eigenvalue

of H(fc) of multiplicity equal to the multiplicity m^fc) of Zj(κ) as a
zero of A(z, K).

This result was proved in [2, §5], except for analyticity of
A(z, K) which is clear from the construction of A(z, tc) (see equation
(2.2) below). However, we have omitted the hypothesis of [2] that
Q(z) is compact. This can be done; for in [2] compactness was used
only for two things: (a) to prove that / + fcQ±(z) has a completely
meromorphic inverse, and (b) to prove, by references to [10], that
H(κ) is self-adjoint for real K. However, we have argued above that
(a) holds here, while (b) holds for K sufficiently small [10, p. 59].

Note that [2] F = APQ[BP0\*.
We shall now show that the resonances can be grouped into

cycles, so that each of the p elements of a cycle is one of the values
of a series expansion in powers of tcllp. Such series are known as
Puiseux series [9, p. 130]. For their application to perturbation
theory, see [6; Chapters II and VII].

T H E O R E M 1.2. The resonances z^tc), •••, zm{tc) may be labeled so
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that each Zj(tc) has a Puίseux series expansion in tc. If

(1.4) zfa) = λ0 + a&ic1** + a#?W* + . . . (j = 1, . . ., p)

is a given Puiseux cycle of resonances, where a) is a primitive pih
root of unity, then either the series has the form

(1.5) z3{tc) = λ 0 + aptc + + a2nPtc
2n + a2nP+ίω

3°tc2n+llp + - •

where λ0, aP, , ot{2n_1)p are real and lma2nP < 0, or p = 1
£/&e coefficients <xn are real.

Moreover, the multiplicity m^tc) is independent of tc for tc Φ 0
and sufficiently small, and is the same for each element Zj(fc) of a
given Puiseux cycle.

In particular, if z^tc) belongs to a Puiseux cycle with p ^ 2,
then Zj(fc) is not real for all sufficiently small real tc Φ 0. Thus any
actual embedded eigenvalues of H(/c) are analytic.

COROLLARY 1.3. For real tc Φ 0 sufficiently small, the multi-
plicity of point eigenvalues in the interval (λ0 — δu λ0 + δι) is in-
dependent of K. If for some j , Zj(tc) is real for all sufficiently small
tc, then Zj(fc) is analytic in K.

Proof of Theorem 1.2. Since Δ{z, 0) = (λ0 — z)m, the Weierstrass
Preparation Theorem [1, p. 188] yields that

Δ(z, K) = [{z - X0)
m + gm^(fc)(z - λ o ) - 1 + - + go(κ:)]F(z, tc)

where gQ, , gm^ and F are analytic, ^(λo, 0) Φ 0 and go(O) - =
^m_i(0) = 0. Thus z1(tc)J •••, ̂ m(/c) are the zeros of a polynomial in z
with coefficients analytic in tc, namely A(z, ιc)/F(z, tc). Hence, (c.f. [6,
pp. 63-66]) ^(/u), * ,zm(ιc) are algebroidal functions having at most
an algebraic singularity at tc = 0, and must therefore have Puiseux
series expansions. The statement about multiplicities is part of this
theory.

Since H(tc) is self-adjoint for real tc, R(z, tc), and hence Qt(z, tc),
is analytic for Imz > 0, so that in the cycle (1.4), one has Imz5{tc) ^
0 for real tc, and each j = 1, •••, p. Therefore, the first term of
(1.4) with a nonreal coefficient must have negative imaginary part
for all real tc and j ~ 1, •••,#. But this can only happen for an
even integer power tc2n where, moreover, Im a2nP < 0. If all coefficients
an(O3% are real, then because of the factor ωjn, we can only have
p = 1 or 2. However, if p = 2 and a%ωjntcnl2 is the first nonzero term
with n odd, then changing tc into — tc introduces a factor i, so that
by proper choice of j , the imaginary part of this term can be made
positive. Since this cannot occur, we must have p = 1.
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REMARK. With perhaps a mild additional hypothesis, stationary
scattering theory [8] shows that, for real K, the absolutely continuous
parts of H(fc) and T in (λ0 - δ2, λ0 + δ2) are unitarily equivalent.

2* Fermi's golden rule. In the simple case in which the per-
turbation B*A removes the degeneracy at λ0, calculation of the reso-
nances up to terms of order tc2 leads to the venerable Golden Rule
for the line widths Γj(fc). In order to discuss this, we must recall
the construction of A(z, K) [2, §5].

It was proved in [2, p. 329; Theorem 3.1] that the residue of
Q+(z) at λ0 is — AP0[J?P0]*, where Po is the orthogonal projection
onto k e r ( Γ — λ0). Hence the operator

(2.1) Qt{z) = Q+(z) - (λ0 - z)-ιAP0[BP0]* ,

which corresponds to the continuous part of T near λ0, is analytic
on Ω. According to [2, p. 335; Theorem 5.1]

J(z, K) = (λ0 - z)m det [I+[I+ κQ:(z)]-1κ(X0 - z)'ιAP0[BP0]*] .

Using the formula det (I + ST) = det (I + TS) [6, p. 162; Problem
4.17] gives

(2.2) A(z9 K) = (λ0 - zY det {/ + [BP0]*[I + ιcQU*Tικ(\ - *

Now, A and B are one-one on ^ ( P o ) and <^?([£P0]*) = ^(Po) [2,
p. 331]. We may therefore write (2.2) as a determinant on ^ ( P o ) ,
and then the factor (λ0 — z)m may be taken inside the m x m deter-
minant to yield

(2.3) J{Z>K)

= det {(λ0 - z)Im + tc[BP0YAPQ - κ2[BP0]*Q:(z)AP0

uniformly in z, where Im is the identity on ^ ( P o ) and [I + tcQtiz)]'1

has been expanded in a Neumann series.
The operator Vo = [BPQ]*AP0 m a p s ^ ( P 0 ) into itself, and is es-

sentially the compression of the perturbation B*A to ^ ( P o ) . Using
(1.1), we find that for x.y

(Vox, y) = ([BP0]*APQx, y) = (APox, BPoy) = (BPQx, APoy)

= ([APo]*BPox,y) = (Vo*x,y)

which means that Vo is self-adjoint on ^?(P 0 ). Therefore, with re-
spect to a suitable orthonormal basis φu •••, φm of ^ ( P o ) , VQ has a
diagonal matrix
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\

The perturbation B*A is said to remove the degeneracy at λ0

iff the eigenvalues Xlf •••, λm to Fo are all distinct. If X(z) denotes
the matrix with entries

* « / ( * ) = -(Qt(z)Aφi9 Bφd)

t h e n w r i t i n g (2.3) w i t h r e s p e c t t o t h e b a s i s φl9 •••, ώm y i e l d s finally

(2.4) A(z, ic) = det {(λ0 - z)Im + icD + fc2X(z) + O(/c3)}

uniformly in z on a neighborhood of λ0.

THEOREM 2.1. // J3*.A removes the degeneracy at λ0,
is analytic (j = 1, , m)

<2.5) £,(£) = λ0 + Λ λ,- + ίc2X3Ί(XQ) 4- O(/c3) .

Taking the imaginary part of (2.5) for real /c, we obtain formally

Γs(κ) - -Im^(/c) - -tc2lm(Qt(X0)Aφjf Bφ3) + O(/r3)

- -ιc2Im(Rc(X0 +

- (2ΐ)-1/c2([,Bc(λ0 - ίO) - RC(XO

.and hence finally

{2.6) Γά{ιc) = πfc\δc(T - X0)Vφh Vφj) + O(^)

where V = B*A = A*£, J2β(2) - JS(J2;) - (λ0 - zY'P,, and

δc(Γ - λ) - (2πi)-1[Rc(X - iO) - RC(X + iθ)] .

Formula (2.6) is Fermi's Golden Rule.

Proof of Theorem 2.1. We already know that zό(κ) — λ0 + O(/c),
and hence X{zά{tz)) = X(λ0) + O(Λ:). If we define

ζy(Λ:) - Λ : - 1 ^ , . ^ ) - λ0) .

Then the equation for ζό(κ) is, by (2.4),

(2.7) det {-~fcζά{κ)Im + κD + tc*X(X0) + O(/ί3)} - 0 .

Expanding and dividing by κm gives

<2.8) (λ, - ζ,.(κ)) . . (λm - ζ,.(κ)) + O(/c) = 0 .
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Since the polynomial (λx — ζ) (λTO — ζ) obtained for tc = 0 has dis-
tinct simple zeros, equation (2.8) has m analytic solutions, one asymp-
totic to each root as tc —•> 0. Thus we may take

£•(*) = λ, + βόtc + O(/c2) (j == 1,

Setting i = 1 and substituting into (2.7), we find that

det {/cJ + tc2X(X0) + O(/c3)} = 0

, m) .

where

(λ2 - \) -

- λi)

Expanding (2.7) gives

so that, in fact,

(λ m - λ = 0

, = Xn(\) .

3* Spectral concentration^ The following theorem extends the
main result of [3] to embedded eigenvalues.

THEOREM 3.1. Assume that there exists a subspace & of &
such that B& c &(A*), A& c ^(.B*), and which is dense

in &(A) and Sf(B) in the respective graph norms. For j = 1, , m
and tc real, choose dj(fc) such that δj(fc) = o(l) and Im Zj(κ) — o(δj(fc))
as fc —> 0. Let

S(ιc) = U {ί: Re zj(κ) - δd(κ) < t < Re zό{ιc) + δs(ιc)} .
5 = 1

If H(fc) = [ XdEκ(X), then

Po = st - lim \ dEκ(X) .
κ-*0 JS(K)

As shown in the appendix, the additional hypothesis insures
that, for real Λ:, the poles of Qϊ{z, tc) are the complex conjugates of
those of Qτ{z, tc). Thus we did not need to take into account the
poles of Qτ(z, &) when defining S(tc), as was done for the corre-
sponding set Jn in [3, Theorem 2.1]. In order that 3f exists, it is
sufficient that either A or B be bounded, or that A and B be com-
muting self-ad joint operators.
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Theorem 3.1 has a proof very similar to that of [3, Theorem 2.1],
but cannot be deduced directly from that result because the operator
Q?(z, fc), which corresponds to Qt{zy n) of [3], tends to zero as Λ:—>0,
and cannot, therefore, satisfy Hypothesis III (b) of [3]. To avoid
repeating the lengthy arguments of [3], we shall simply carry the
argument along to a point at which the arguments become essentially
identical. A considerable study of [3] is therefore necessary to un-
derstanding the remainder of this section.

In order to surmount the difficulties posed by nonsimple poles,
or poles close together, we shall show that for real tc, the resonances
ZM, " '9 zm(κ) may be grouped into what we shall call clusters in
such a way that, as /c —> 0, the resonances of a single cluster act
together as a single, simple pole of Qt(z, fc), at least insofar as their
asymptotic effect on the spectral measure of H(fc) is concerned.

The result of our considerations is a rather detailed description
of the singular part of Qt{z, fc).

In the first two lemmas, fc may be complex.

LEMMA 3.2. Let Zj(κ){j = 1, -••, N) be the distinct poles of
Qΐ(z, Λ:). Then Qΐ(z, fc) has the partial fraction expansion

(3.1) Qt{z, K Σ T ^ T Γ + + . L . + L(z, K) ,
i=i (Z - Zj(/c)) (Z - Zd(K))m>

where L(z, fc) is analytic in z and /c. If z3(/c) has a Puiseux series
expansion in powers of κ1Jp, then B{

k

j)(tc)(k = 1, •••, mό) also has an
expansion in powers of /cllP, and has at most an algebraic pole at
K = 0.

The proof is a simple adaptation of the argument on pp. 69-70
of [6]. Certain additional facts obtained there do not hold here,
since Qt(z, fc) is not a resolvent. Analyticity of L(z, tc) is proved in
the proof of the next lemma.

It follows immediately that for small K Φ 0, B{

κ

j)(fc) either vanishes
identically or is never zero. Hence, for small /c Φ 0, the order mά

of the jth pole z3(fc) of Qΐ(z, ic) is independent of tz.
If the terms of the singular part of Qt(z, fc) in (3.1) are combined,

we obtain

^ 4 L<<z> *)Δ(z, tc)

where P{zy tc) is a polynomial in z with coefficients having at most
an algebraic singularity at K = 0, and A(z, fc) is the analytic function
of z and fc defined in § 1.
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LEMMA 3.3. (a) As tc — 0, Qt(z9 tc) -— Q+(z) uniformly on 0 <
ε ^ I z - λ01 ̂  δ2 /or ever?/ ε > 0.

(b) P(z, tc), Λ(z, tc), and L(z, tc) are all analytic in z and tc.
Moreover,

(3.2) lim P(z, tc) = (z- Xj^APάBPo]* .
κ-*Q

Proof. From (1.3) and (2.1) one obtains

(3.3) I - tcQt(z, tc) = [I + ιc(\ - zyxΓ(z9 κ)AP0[BPQY\-ιΓ{z, it)

where

is analytic in z and K, for tc and z — λ0 small. Expanding the right
side, canceling / on both sides and dividing by tc yields the result.
Analyticity of L(z, tc) and the coefficients of P{z, tc), as well as (3.2)
follow from the formulas between equations (2.7) and (2.8) of [3],
where the discrete parameter n must be replaced by tc.

Assume now that tc is real, and write

z,.(ιc) = Xj(tc) - iΓj(tc) (j = 1, . , N)

where Xj(tc) is real and Γ3(tc) ^ 0. We shall now describe the group-
ing of the z3'(tc)9s into clusters. To begin with, we specify that if
Γj(tc) = 0, then z3(tc) is to form a cluster by itself. Otherwise, Γj(tc) >
0 for small tc Φ 0, and we shall assume now for convenience that

Γj(tc)>0 (i = l, . . - , # ) .

Then Γj{ιc) has a Puiseux series, so that

(3.4) Γj(tc) = aόtc^ +

where α5- > 0 and p(j) is an integer (i = 1, , m). (If tc is complex
in (3.4), Γj{tc) is defined, but no longer the imaginary part of —Zj(tc).)
For tc Φ 0, choose ^-(Λ;) > 0 such that

δs(ιc) = oiic'M-1) (i = l, . . . , m )

while

as tc—> 0, and consider the intervals

J3(tc) = (λ,(/r) - Sy(jc), λy(is:) + δy(Λ)) .

If tc is small, the number of component intervals of
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(3.5) Jλ(κ) U U JJL*)

is independent of tc, and each component is the union of the intervals
Jό{tc) corresponding to a certain set of resonances. For the distance
between Xj(tc) and Xk(κ) is of the order of some integral power of /c,
and is therefore either much greater or much less than the length
of Jj(tc). These sets are the clusters; they are independent of fc. We
shall denote the components of (3.5) by

(cό(fc) - p5{tc\ c3(fc) + pj(fc)) (j - 1, , N)

where N is the number of clusters. We shall refer to Cj(/c) and p3(fc)
as the center and radius of the i th cluster.

It is easily seen that if {zι{fc)f , zVl(fc)} is the first cluster, then

(3.6) Xfa) - Cι(κ) - o(^(O) (j = 1, , p1) .

For if Xj(fc) and λ/c(Λ;) belong to the first cluster, the distance between
them is much less than either Sj(fc) or δk(tc)y neither of which can
exceed pχ(fc). Similarly

(3.7) pt(κ) = o(| Cl(ιc) - c2(tc) I) (ί = 1, 2)

because cx{tc) -~ c2(tc), being determined by the X^tcYs, is of integral
power order, while pj(tc), being determined by the δ3(fcγs is not.

Similar statements hold for other clusters. The interpretation
of (3.6) is that the resonances of a cluster are asymptotically very
close to the center of the corresponding interval (cn — pn, cn + pn),
while (3.7) says that distinct components of (3.5) are asymptotically
very small compared to their distance apart.

LEMMA 3.4. For Im z > 0, and \ z — λ01 <; δ2

\\P(z,tc)\\^C\Δ(zffc)\(lmzΓ

where C is independent of tc.

Proof. For each /c, the coefficients of P(z, tc) are of finite rank,
since they are residues of functions with singular parts of finite rank,
and are also analytic in /c. The lemma therefore follows by a proof
similar to that of equation (2.8) of [3].

The procedures of [3] could now be applied to yield an asymptotic
expansion for the singular part P(z, fc)/Δ(z, fc) of Qtiz, tc). However,
we shall be content to remark that for any sequence tcn —• 0, the
quantities P(z, tcn), Δ(z, tcn), etc. have precisely the properties of Pn(z),
Δn(z) etc. which are used in the proof of [3, Theorem 2.1] from
equation (2.10) of [3] onward. The remainder of the proof of Theorem
3.1 follows [3] with essentially no change.
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4* Examples* We shall now consider some simple examples
which illustrate certain phenomena.

EXAMPLE 1. We shall first give an example in which a nonana-
lytic Puiseux series occurs. Let έ%f = L2(—oof + c o ) 0 ^ 2 , and let
elf e2 be the usual orthonormal basis of &2. Define

ττ(u(t)\ It 0\ίu(t)\ ltu{t)\

where u e L2(— oo, + oo), ζ e 02 and c is a fixed real number. Ho = T
has absolutely continuous spectrum of simple multiplicity, except for
an embedded eigenvalue c of multiplicity m = 2. Let fι(t), fz{t) be
an orthonormal pair of functions in L2(—oof +oo), and define an
operator Y from €2 into L2(—oof +co) by

f2/a(ί) .

The operator F* from L2(—oof +oo) back into j£2 is then

Y*u =

We shall consider the perturbed operator

H(/c) =

where

° Y

Y* XJ

and X1 > 0. The perturbation V is self-adjoint of rank 4, and its
range has the orthonormal basis {flf f2, elf e2}. If we choose the fac-
torization

V= VP= PV

where P is the orthogonal projection onto the range of V, then the
matrix of

Q(z) - V(H0 - zY'P

with respect to the orthonormal basis flf f2, elf e2 of the range of V is

/ 0

\F{z)

where
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and /2 is the 2 x 2 identity matrix.
If we now assume that F(z) has a meromorphic continuation from

the upper half-plane across the axis in a neighborhood of c, then
the equation

(c - z)2 det (I + /cQ(z)) = 0

for the resonances reduces to

tc*D(z) - £2TO)(c + κ\ - z) + (c + /cλx - s)2 = 0

where T(V) and D(z) are the trace and determinant of F(z). Solving
for (c + tc\ — z) - 1 by the quadratic formula yields

z — c + λiΛ: + κ2g(z)

where

For simplicity, let us now take c = 0. Then, if the function

H{z) - T\z) ~ W{z)

has a simple zero at 3 = 0, the function g(z) has a Puiseux series
expansion

g{z) = aQ + α^172 + α22; +

where αL Φ 0. It then follows easily from

z •= \λtί + tc2(a0 + α^ 1 / 2 + a2z + •)

that

z = \/c + aQ/c2 + a^Xl12^12 + O(Λ:3)

which means that z(fc) has a nonanalytic Puiseux series in /c. We
shall therefore have obtained the desired example, if we can find

and f2(t) such that H(z) has a simple zero at 2 = 0.
To this end, let

and

Λ(ί) = (2 - 2ε)-1/2 sgn ί 0 < ε < | ί | < 1

= 0 otherwise .
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Then ft and f2 are an orthonormal pair, and since they are real,

F12(z) = F21(z) .

The values of Fn(0) and i'Yi(O) may be computed from

Fn(z) = -(z + 2i)(z + i)~2 Im z > 0

while due to the fact that f2(t) vanishes near the origin, the integrals
for F12(0) and ^(O), as well as those obtained for F[2(0) and F'22{ϋ)
by differentiation under the integral sign are absolutely convergent.
In fact, one has

F22(0) = (2 - 2s)-1 -ϋί = 0
Jβ<|ί |<l t

and

wv A — 1

Similarly,

+ 1 t

and

FUO) - 0 .

Hence, one computes that

H(0) = (Fn(0) - FJ0)Y + 4f?,(0)

ί2 + l t

and

JΪ'(0) = 2tFu(0) - ^ .^(^ ' . (O) - FUO)) + 8

= -4i(3 + ε-1) Φ 0 .

It therefore remains to choose ε such that H(0) = 0; that is, such
that

But since Φ(e) is decreasing on 0 < ε < 1, Φ(0 + ) = +00, and Φ(l —) =
0, there is a unique ε in the interval 0 < ε < 1 satisfying this equation.

Finally, note that the Puiseux series appears here as a degenerate
case, since in the usual case when H(z) does not vanish at the origin,
g(z) and hence z(/c), have two distinct analytic branches.
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EXAMPLE 2. An example will now be given of an eigenvalue of
multiplicity one embedded at an end point of the continuous spectrum,
and perturbed by an operator of rank two, which gives rise to a
resonance or an eigenvalue which cannot be represented as a Puiseux
series. The endpoint appears as a branch point of Q+{z). Branch
points of continued quantities occur in Simon's articles [14, 15] as
"thresholds" for certain processes (that is, the minimum energies at
which the processes can occur). His theory excludes eigenvalues
embedded at thresholds—with good reason, as this example shows.
Most of the thresholds in [14, 15] are embedded in a continuous
spectrum, rather than at an end point. An example of this along
the present lines would be easily constructed. The example is similar
to Example 8.3 of [5, p. 581]. The operator HQ = T on L2(0, co)0
0 defined by

H0[u(t), ξ] = [tn(t), 0]

has absolutely continuous spectrum [0, <>o) and an eigenvalue at λ0 = 0
with eigenvector

Φo = [0, 1] .

Let H(ιc) = Ho + KV where

V[u(jk), ξ] = [ξf(t)> (u, f) + \ξ] -

We assume that λx > 0 and

Γ|/(ί)|«<Zί = l .
Jo

The perturbation V has rank 2, so the resonances are to be sought
as poles of an analytic continuation of the inverse of the matrix
W(z, tc) of the restriction of I + ιcV(H0 - z)'1 to the range &(V) of
V. Computing W(z, K) with respect to the orthonormal basis φ0, f
of &(V), one obtains [5; eq. (8.9), p. 581]

where

F(z) = [Ίf(t)\\t-zΓdt.
Jo

If we assume that F(z) has a continuation F+(z) from the upper half-
plane across the positive real axis, then the resonances satisfy the
equation

(4.1) z = ιcXx - fc2F+(z) .
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(See [5, p. 581], the third equation from the bottom of the page—in
which there is an error of sign.)

Now choose

(4.2) A
π 1 + t2

so that

TΠ/ v 2% — (2/π)lo2z - z

where 0 < arg 2 < 2π. The solution of (4.1) then has the asymptotic
expansion

(4.3) z(ιc) = /cX, + (2/π)/c2 log (/cXj - 2ίfc2 + O(/cs)

which is not of Puiseux type. For tc < 0, z(/c) lies in the region 0 <
arg z < 2π, and is therefore a negative eigenvalue X(fc) of H{tc), with
the expansion

X(fc) = fcX, + (2/π)fc2 log (-tcXj + O(κ3)tc < 0 .

For /c > 0, the continuation F+(z) of F(z) leads to the solution z+(/c)
with a r g 2 + ( £ ) ^ 0 , while if F+(z) is replaced in (4.1) by the con-
tinuation F_(z) of F(z) from the lower half-plane, one obtains the
solution z_(fc) with arg z_{κ) ^ 2π. These numbers are complex con-
jugates. If ic is complex, the first situation essentially prevails, in
the sense that the non-self-adjoint operator H(/c) has an eigenvalue
at z(fc) for all sufficiently small K in any given sector | arg K — π \ ^
π - δ, δ > 0.

If instead of (4.2), one chooses

(4.4) | / ( t ) | 2 = —cos(ττα/2). ^
π N ' Ί + ίa

where — 1 < a < 1, then one obtains, for a Φ 0,

rpM _ cot (ττa:/2) - esc (πa/2)zae-iπa - g
{ ) ~ 1 + z2

where 0 < arg z < 2π. The solution of (4.2) then has the expansion

(4.5) z(fc) = fcX, - /c2 cot (ττα:/2) + ιc2+ae~iπaXΐ esc (ττα/2) + O(fc$) .

This has the same general behavior: for /c > 0, there is an eigenvalue
X(fc) with expansion

λ(ic) = ιc\ - Λ:2 cot (πa/2) + (-Λ:)2+αλf esc (πrα/2) + O(/c3)

while for K > 0, there is a resonance. A notable feature, however,
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is that one may obtain a Puiseux series by taking, for example, a —
±1/2, in which case W(z, /c) has only an algebraic singularity at z =
0. In fact there are only two sheets, and it is interesting to note
that for ft < 0, these is a pole on the second sheet directly below the
eigenvalue λ(/r).

Let us see what becomes of Fermi's Golden Rule in this case.
One has

(§C(HQ - X)VφQ, VφQ) = \f(X)\*.

(See [5, eq. (8.7)]. Note that, in the notation of [5], the Vγ term
contributes nothing.) Hence, Fermi's Rule gives

Γ(κ) ~ πtc2\ /(λ 0) |2 .

Applied to the case λ0 = 0 with f(t) given by (4.4), this gives the
following results: (a) for a = 0

Γ(κ) s 2/c2

which agrees with (4.3); (b) for a > 0

Γ(κ) s 0

which agrees with (4.5), to order /c2, but is not informative; (c) for
a < 0, Γ(fc) is infinite, which is not surprising because according to
(4.5), Γ(κ) is not O(tc2). The Gold from which the Rule is made is
apparently mixed with Brass.

If, however, λ0 is replaced in the Rule by λ0 + /cXlf the resulting
formula

(4.6) Γ(fc) ^ πtc\δc(H0 - λ0 - /cXjVφo, Vφ0)

is an unalloyed success; for one then obtains

Γ(fc) ^ πtc2\ f(/c\) |2 = 2Xΐfc2+a cos (πa/2)

which agrees with (4.5).

APPENDIX. Let T be self-adjoint and suppose that for some
pair of vectors /, g the function

has meromorphic continuations r±(z) across some interval of the real
axis. That the poles of rΛz) need not be the complex conjugates of
the poles of r+(z) may be seen by taking Tu(t) = tu(t) on L2(— oo, +oo)
and choosing f(t) = (t + i)~ι and g(t) = (ί — i)"1. Then r+(z) has a
pole at z = — i, while r_(z) vanishes identically.
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Similarly, the poles of Qt(z) and Qτ(z) are not always conjugate.
For A = ( , / ) / and B = ( , g)g are bounded and self-ad joint, and
AB = J5A = 0 because / and g are orthogonal. Hence, H = T +
£*A = T, and

Qi(«) - QCO - (G(z)f, </)(•, </)(/ - r(z)( , /)</

so that Qί(») has a pole at s = — i while Qr(^) vanishes identically.
We shall give sufficient conditions that Qt(z) and Qτ(z) have

conjugate poles. Let T, A, and B satisfy the hypotheses of § 1, and
assume that Qf(z) defined by

I - Qf{z) = [I + Q*(z)]-1

is meromorphic, and has finite rank principal parts at all its poles.
This is true, for example, if tz is small in § 1, or if Q±(z) is compact.
Formula (1.2) (with K — 1) then defines the resolvent R(z) of an ex-
tension if of T + B*A, and Q£z) is the extension of AR(z)B*. (It
is not clear whether or not H is self-adjoint in this generality, but
this is not at issue.) By taking ad joints, [7, eq. (2.2)] one also finds
that BG{z)A* has the compact extension

Q(z) = [Q(zψ

which has the continuations

(1) Q*(«) = [Q*(«)]*

defined on Ω. Similarly, BR(z)A* leads to Qλ(z) and Qί(z)

THEOREM. In addition to the hypotheses above, suppose that
there exists a subspace & of &r(A) Π &(B) such that B&<z.&(A*)>
A& c «£gr(i?*), and 2$ is dense in &(A) and 3ϊ(B) respectively, in
the graph norms. If Q+(z) is analytic at z0, then Qt(z) is analytic
at z0 iff Qt(z) is analytic at z0.

Proof. Let PA and PB be the orthogonal projections onto the
closures of the ranges of A and B. Then I — PB projects onto ker
J3*, so that

PAQ(Z) = Q(Z) and Q(z)[I - PB] = 0

for Im z > 0, and hence by continuation

(2) PΛQ
+(z) = Q+(z)

and

( 3 ) Q+(z)PB = Q+(z) .
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Observe next that by (1.1),

B*Ax = A*Bx xe^r .

Hence, for x, g e ^ , and Im z > 0, one has

(QMBx, Ay) - (BR(z)A*Bx, Ay)

= {BR{z)B*Ax, Ay) - {AR{z)B*Ax, By)

= (Qx(z)Ax9 By)

where (1.1) was used in the equality next to last. Using that £& is
dense in the graphs, and passing to a continuation shows that ana-
lyticity of PAQΐ(z)PB at zQ is equivalent to analyticity of PBQt(z)PA

at z0.

If we now assume that Q+(z) and Qt{z) are analytic at z0, then
since (1), together with (2) and (3), implies that

Qΐ(z) = Q+(z) - [Q+(z)Y + Q+(z)Qt(z)Q+(z)

= Q+(z) - [Q+(z)Y + Q+(z)PBQt(z)PAQ
+(z)

it follows that Qΐ(z) is also analytic at z0. The other implication is
proved similarly.

It is evident from the proof that if the ranges of A and B are
dense, the assumption that Q+(z) is analytic at z0 may be dropped.
However, the example above shows that it cannot be dropped in
general.

COROLLARY. // all poles of Q+(z) are real, then the nonreal
poles of Qΐ(z) and Qτ(z) are complex conjugates.

This follows from (1).

PROPOSITION. Either of the following conditions suffices for the
existence of £&.

(a) Either A or B is bounded.
(b) A and B are commuting self-adjoint operators.

Proof. If A is bounded, it follows from (1.1) that
. Hence, one may take £& = 3ί(B). Similarly if B is bounded.

Sufficiency of (b) follows easily from [12, p. 358].
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LINEAR GCD EQUATIONS

DAVID JACOBSON

Let R be a GCD domain. Let A be an m X n matrix
and B an m X 1 matrix with entries in R. Let c Φ 0, d € R.
We consider the linear GCD equation GCD(AX + B, c) = d.
Let S denote its set of solutions. We prove necessary and
sufficient conditions that S be nonempty. An element t in
R is called a solution modulus if X + tRn £ S whenever
XeS. We show that if cjd is a product of prime elements
of R, then the ideal of solution moduli is a principal ideal
of R and its generator t0 is determined. When R/t0R is a
finite ring, we derive an explicit formula for the number of
distinct solutions (mod t0) of GCD (AX + B, c) — d.

1. Introduction. Let R be a GCD domain. As usual GCD
(alf , am) will denote a greatest common divisor of the finite sequence
of elements au , αm of R.

Let A be an m x n matrix with entries ai3- in R and let B be an
m x 1 matrix with entries 6* in J? for i = 1, , m; j = 1, , n.
Let c ̂  0, cί be elements of ϋ?. In this paper we consider the "linear
GCZ) equation"

GCD(a^Xj, + + αlw&w + 6^ ,

amίxt + + amnxn + bm, c) = d .

Letting X denote the column of unknows xlf •••,#* in (1.1), we shall

find it convenient to abbreviate the equation (1.1) in matr ix notation

by

(1.2) GCD(AX + B,c) = d.

Of course we allow a slight ambiguity in viewing (1.1) as an equation,
since the GCD is unique only up to a unit.

Let Rn denote the set of n x 1 matrices with entries in R. We
let S ΞΞ S(A, B, c, d) denote the set of all solutions of (1.1), that is

S = { l e Rn\ GCD(AX + B,c) = d) .

If S is nonempty, we say that (1.1) or (1.2) is solvable. Note that
X satisfies GCD(AX + B, d) = d if and only if X is a solution of the
linear congruence system AX + B = 0(mod d).

We show in Proposition 1 that if (1.1) is solvable, then d \ c, AX +
B ΞΞ 0(mod d) has a solution and GCD(A, d) = GCD(A, B, c). Here
GCD(A, d) - GCD(an, . . . , aίn, , amU . . f α_, d) and GC£>(A, B, c) =
GCD(A,bu •••, δm, c). Conversely we show in Proposition 3 that if
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the above conditions hold and e = c/d is atomic, that is e is a product
of prime elements of R, then (1.1) is solvable. (Also see Proposition 4).

Let the solution set S of (1.1) be nonempty. We say that t in
R is a solution modulus of (1.1) if given X in S and X = X'(modί),
then Xf is in S. We let M = M(A, B, c, d) denote the set of all
solution moduli of (1.1). We show in Theorem 2 that M is an ideal
of R and if e = c/d is atomic, then M is actually a principal ideal
generated by d/g(p, ••• pk), where g = GCD(A, d) and {pu •••, pk}
is a maximal set of nonassociated prime divisors of e such that for
each pi9 the system AX + B = 0(mod dp*) is solvable. This generator
^MPi •••#*) denoted by ί0 is called the minimum modulus of (1.1).

In § 4 we assume that R/t0R is a finite ring and we derive an
explicit formula for the number of distinct equivalence classes of
i?"(mod ί0) comprising S. We denote this number by NtoΞ=Nto(A, B, c> d).
Let A! = A/g and d' = d/g. Let L = {X + d'i2% | A'X = 0(mod d')}
and L, = {X + d'Rn \ A'X = 0(mod d'p,)} for i = 1, . , k. In Theorem
3 we show that

(1.8) NtQ = I L I Π (I Λ/AJ21 - i i2/ftΛ l%- ( r ί + S i ))

where r< is rank A'(mod p,) and »< is the dimension of the R/PiR
vector space LjLt.

The formula (1.3) is applied in some important cases. For example
in Corollary 6 we determine JVto when R is a principal ideal domain.

This paper is an extension and generalization to GCD domains,
of the results obtained over the ring of integers Z in [2].

2. Solvability of GCD (AX + B, c) = d.

PROPOSITION 1. If GCD (AX + B, c) = d is solvable, then the
following conditions hold.
( 2 . 1 ) ( i ) d \ c ,

(ii) AX + B ΞΞ 0(mod d) is solvable,
(iii) GCD(A, d) = GCD(At B, c).

Proof. Let Xsatisfy GCD(AX + B, c) = d. Then clearly (i) d\c
and (ii) AX + B = 0(mod d). Let AX + B = dll where U is an
m x 1 m a t r i x wi th entries ut for ί — 1, , m. Then GCD(dU, c) =
GCD(duu , ώι m , c) = d. Let flr = GCZ?C4 d) and λ = GCD(Af B, c).
Then B = 0(mod g) as AX — dU = B and g\c as rf | c, which shows
t h a t g I h. Also dZJ = 0(mod h), so t h a t Λ | GCD(dU, c), t h a t is h\d.
Thus Λ I ̂ , which proves (iii).

PROPOSITION 2. Let e in R have the following property
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( I ) GCD(AX + B, e) = 1 is solvable whenever GCD(A, B, e) = 1.
Suppose that c = de, AX + B = 0(mod cZ) is solvable and GCD(A, d) =
GCD(A, B, c). Then GCD(AX + B, c) = d is solvable.

Proof. There exist X' in Rn and Fin i2m such that AX' Λ-B
Let g = GCD(A, d) and let A' denote the matrix with entries ad/g
and B' the matrix with entries bjg for i = 1, , m; i = 1, •••,%.
Then A'X' + £ ' = d' F where ά! = d/flr. We claim that GCD(A', F, e) = 1.
For let h be any divisor of GCD(A', V, e). Then J3' = 0(mod h) and
Λ I GCD(A', B\ c') where c' = d'e. However, GCD{A\ B', cr) - 1 as
g = GCD{A, B, c). Hence fc is a unit, that is GCD(A', F, β) = 1. So
by property (I), there is a Y in i?" such that GCD(AΎ + F, e) = 1.
Thus GCD(A(ώ;Γ) + dV, de) = d and if we set X = X' + d'Y, then
GCD(AX + B, c) = d, establishing the proposition.

We show in Proposition 3 that if e is atomic, then e satisfies
property (I).

We require the following useful lemmas.

LEMMA 1. Let e = p1 pk be a product of nonassociated prime
elements plf - fpk in R. If GCD(A, B, e) = 1, then GCD(AX +
B, e) — 1 is solvable.

Proof. Let GCD(A, B, e) = 1. We use induction on k. Let
Jc = l. If GCJ9CB, A) = 1, then X = 0 satisfies GCZ>(AX + #, pj - 1.
Suppose that JB = O^odPi). Then GCD{Ay px) = 1. Hence there is
a i such that GCD(aljf , αmi, ^) = 1. Let Xj in JS% have a 1 in
the yth position and o's elsewhere. Then GCD(AXj + B, pj =
GCD(AX\ pθ = 1. Thus GCD(AX + 5, P l ) = 1 is solvable. Now let
k > 1 and let e' = ̂  pk_ιm By the induction assumption there is
X' in Rn such that GCD(AX' + B, e') = 1. Let 5 ' = AX' + B. We
-claim that GCD(Ae', B', pk) - 1. If GCD{A, pk) = 1, then GCD(Ae',
B\ pk) = 1. Suppose that A = 0(modpk). If Br = Oίmod^^), then
B = 0(mod pk), contradicting the hypothesis that GCD{A, B, e) = 1.
Hence GCD(B\ pk) = 1, establishing the claim. So there exists a F
in Rn such that GCZ)((Aβ')Γ + B', pk) = 1. Let X = X' + e'F. Then
X = X'(mod e') yields that AX + B = B\mod ef). Thus GCD(AX +
5, β') - 1 since GCD(B', e') = 1. Also

GCD(AX + β, pfc) = GCD((Ae')Y + 5', p t) - 1 ,

so that GCD(AX + 5, e'p*) = 1, completing the proof.

LEMMA 2. Suppose that e is an atomic element of R.
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Let {pl9 , pk) be a maximal set of nonassociated

( * ) prime divisors of e such that for each pif the system

AX + B ΞΞ 0(mod dpt) is solvable .

Then X is a solution of GCD(AX +B,c)=:dif and only if GCD(AX +
B, de0) = d, where c — de and e0 = pι ' pk.

Proof. Since e is atomic, it is clear that we may select a set
feu m"tPk} a s defined in (*). If this set is empty, we let e0 = 1.
Suppose that X satisfies GCD(AX + B, c) = d. Then there is U in
Rm such that AX + B = dΐl and GCD(U, e) = 1. Since e0 \ e,
GCD(U,eo) = l and thus GCD(dU, deQ) = d, that is, GCD(AX +
JS, dβ0) - d.

Conversely let X satisfy GCD(AX + 5, de0) = d. Then AX +
B = dU and GCD(U, e0) = 1. Suppose there is a prime p | e and
ί7 = 0(mod p). Then AX + B = 0(mod dp) and the maximal property
of the set {pu •••, p j shows that p is an associate of some pi9 So
C7 Ξ 0(mod pJ, contradicting that GC2?( ί7, β0) = 1. Hence GCD( U,p) = l
for all primes p \ e and thus GCD(U, e) = 1 , that is GCD(AX+ J5, c) = d.

PROPOSITION 3. Suppose that c — de, AX + BΞΞ 0(mod d) is solvable
and GCD(A, d) = GCD{A, B, c). If e is atomic, then GCD(AX +
Bf c) = d is solvable.

Proof. Let e be atomic. By Proposition 2 it suffices to show
that e satisfies property (I). Thus let GCD(A0, BQ, e) = 1 where Ao

is an m x n matrix and Bo is an m x 1 matrix. By Lemma 2,
GCD(A0X + Bo, e) = 1 is solvable if and only if GCD(A0X + J50, β0) = 1
is solvable where eQ — p1 pk is a product of nonassociated prime
divisors of e. However by Lemma 1, GCD(A0X + BQ, e0) = 1 is solva-
ble since GCD(A0, Bo, e0) = 1. Thus (I) holds and GCD(AX + B, c) = d
is solvable.

THEOREM 1. Let R be a GCD domain. Consider the following
condition

(II) GCD(a1x + bu , amx + bm, c) = 1 is solvable if

GCD{al7 . . . , am, blf , δm, c) = 1

( i ) //.# satisfies (II), ί/̂ ê  GCD(AX+ 5, c) = 1 is solvable when-
ever GCD{A, B, c) = 1.

( i i ) If R is a Bezout domain such that GCD(ax + δ, c) = 1 is
solvable whenever GCD(a, 6, c) = 1, £&ew 1? satisfies (II).

Proo/. ( i ) Let i? satisfy (II). Let GCD(A, B, c) = 1 where A



LINEAR GCD EQUATIONS 181

is an m x n matrix. We prove that GCD(AX + B, c) = 1 is solvable
by induction of n. For n = 1, solvability is granted by the suppo-
sition (II). Let n > 1 and let A' denote the m x (n — 1) matrix with
entries α<f/+1 for i = 1, , m; i = 1, , % — 1- If c' = GCD(an, ,
α l w, c), then GCD(A', B, c') = 1. Hence by the induction assumption,
there exist x2f , xn in i2 such that GCD(a12x2 + + Λlna?Λ +
*i, , «mî 2 + + amnxn + δm, c') = 1. If δ< = α i2£2 + + ainxn + δ£

for i = 1, , m, then GCD(an, , αml, 6J, , δ'm, c) = 1. Thus by
(II), there exists â  in R such that GCD(αn#i + δ[, , αmLxL + δ», c) = 1.
So if X in Rn has entries α^ x2, , a?w, then GCD(AX + B, c) = 1,
completing the proof of (i).

(ii) Let R be a Bezout domain, that is a domain in which every
finitely generated ideal is principal. Suppose that R has the property
that GCD(ax + δ, c) = 1 is solvable if GCD(a, δ, c) = 1. Let

GCΉK . - . , α m , bl9 •••, δm, c) = l .

Let A and I? denote the m x 1 matrices with entries αx, •• , α s and
δi, , δm respectively. Then by [3, Theorem 3.5], there exists an in-
vertible m x m matrix P such that PA has entries a, o, , o. Also
it is clear that GCD(PA, PB, c) = 1. Let P £ have entries δ, &5, , 6».
Thus by hypothesis, GCD(ax + δ, c') = 1 is solvable where c' =
GCD(b2, , δ'm, c). Hence GCD(Ax + 5, c) = 1 is solvable, that is R
satisfies (II).

As an immediate consequence of the preceding propositions and
Theorem 1, we state

PROPOSITION 4. Let R be a UFD or a Bezout domain such that
GCD(ax + δ, c) = 1 is solvable if GCD(a, δ, e) = 1. Then GCD(AX +
B, c) — d is solvable if and only if d\c, AX + B = 0(mod d) is solvable
and GCD(A, d) = GCD(A, B, c).

We remark that we do not know whether there exists a GCD
domain in which (II) is not valid. Any Bezout domain satisfying (II)
is an elementary divisor domain [3, Theorem 5.2].

We conclude this section with the following result.

PROPOSITION 5. Let R be a Bezout domain. Suppose that (0)
GCD(ax + δ, e) — 1 is solvable whenever GCD(at b) = 1 and a \ c. Then
GCD(ax + δ, c) = 1 is solvable whenever GCD{a, δ, c) = 1.

Proof. Let GCD(a,b,c) = 1 . If a' = GCD(a, c), then GCD{a', δ) - 1
and α ' | c. By the assumption (0), there is x' in iϋ such that
GCD{a'x' + δ, c) = 1. If % = α V + δ, then α ' | (w - δ) and since R is
a Bezout domain, there is an x in i2 such that α# + δ = tc(modc).
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Thus GCD(ax + 6, c) = 1 since GCD(u, c) = 1.
Let a I c and let v: R/cR —> R/aR be the epimorphism given by

v(r + ci?) = r + aR for all r in R. Let G(resp. G') denote the group
of units of R/cR(resip. R/aR). If ι>':G-+G' is the induced homo-
morphism, then note that (0) is equivalent to the condition that
v\G) = &. (See [5].)

3* The minimum modulus. Let the solution set S of
GCD(AX + B, c) = d be nonempty. Then

M= {teR\X+tRn Q S ίor all Xe S}

is the set of solution moduli of GCD(AX + B, c) = d.
Note that c e M for if Xe S and X = X'(mod c), then AX + 5 =

AX' + J5(mod c), so that d - GCD(AX' + 5, c).
It is obvious that M = Rf that is S = Rn if and only if d =

GCD{A, d) = GCD(A, B, c) and GCD(A/d(X) + B/d, cfd) = 1 for all X
in Rn.

THEOREM 2. Let R be a GCD domain. Let GCD(AX + B, c) = d
be solvable. Let e = c/d = Π*=i e* -^ e i ^ = ei ''' βt-iβi+i " ' ek for

(1) M is an ideal of R,
(2) M 2 Πί=i ^ίί where Mi is the ideal of solution moduli for

GCD(AX + B, det) = d.
(3) If each et satisfies property (I) of Proposition 2, then

M — Πi=i Mi and M is a principal ideal if each M% is principal.
(4) If e is atomic, then M is a principal ideal generated by

d/d(Pi ' — Pk) where g = GCD(A, d) and {pi9 , pk) is defined in (*)
of Lemma 2.

Proof.
(1) As S is nonempty, the set M is well-defined and o, c belong

to M. Let tu t2 be in M and let r e R. Let Xe S and let Ye Rn. Then
X + tλYe S and hence (X+ txY) + ί a (- Γ) € S, that is X+ (ίx - ί2)Fe S
which shows that t, - t2e M. Also X + tx{r Y) e S, that is X +
(t^YeS. So t{reM and thus ikf is an ideal of R.

(2) As d I c we let c = de. Let S, denote the solution set of
GCD(AX + 5, de,) = d where β - Π*=i β*. Then clearly S = Π t i ^ .
Let teΓltiΛf.. Let XeS and let Γei2%. Then X+tYeΠUiS(

since l e f l L S i . So X + ^ F G S , that is teM, which proves that

(3) Assume that each eέ satisfies property (I). We prove that
MS M, for i = 1, ...,&. As flr = GCD(A, d) = GCD(A, B, c), let
A' - A/g, B' = B/g, and d' = d/g. Let i be fixed and let X, e S*.
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Then A'X, + B' = d'U where GCD(U, et) = 1. We claim that
GCDfaA', U, et) = 1. For let h be a divisor of GCDie.A!, U, gt). Then
A' = O(mod^) since GCD(Λ, *,) = 1. Thus h \ GCD(A', B\ d'e), that
is ft|l. So by assumption there exists X' in Rn such that

Let X = X, + d'e.X'. Then for i = 1, , fc,

GCD(A'X + j?', d'e,)

= d' GCD((M')X' + J7, β, ) = d' .

Hence Xe Π;=i S, , that is Xe S. Now let ί e M and let Fe lί\ Then
X+tYeSand so X + tYeSt. However, X + tY= Xt + ίΓ(modd'ej
and thus Xt + tYeSi9 that is teMi9 which proves that MSMt.
So by (2), Λf = Π*«i-M< Moreover, if each Mt is a principal ideal,
say ikίi = ttR, then Πϊ=i ^ i s a principal ideal generated by the
LCM(tlf ••-,«*).

(4) Let ί be any element of M. We show that d/g | ί where
g = GCD(A, d). First note that S is the solution set of GCD(A'X +
B\ d'e) = df where A' = A/ar, B' = B/g, and d; = d/flr. Let Xe S and
let A'X + B' - d'tf. Then GCD(A'(X + ί Γ) + B\ d'e) = dr for all Y
in i2\ So GCD((A't)Y+ d'U, d'e) = d' and thus (A'ί)Γ= 0(mod d')
for all Fin JB*. Hence A't = 0(mod ώ') and since GCD{A', d') = 1, it
follows that d' 11.

Now suppose that e is atomic. By Lemma 2, S is also the so-
lution set of GCD(A'X + B'f d'e0) = d' where e0 = ^ pk and
{Pi, *",Pk} is defined in (*). Thus M is also the ideal of solution
moduli of GCD(A'X +B', d'eQ) = d'. Let M denote the ideal of
s o l u t i o n m o d u l i of GCD(A'X + B', d'pt) = d' ίoτ i = 1, ••-, k. T h e n
Lemma 1 shows that (3) can be applied to yield that M = flJU Λf/.
We prove that each Λf/ is a principal ideal generated by d'pt. Clearly
d'Pi e Λf/ for i = 1, •••,&. Let i be fixed and let ί be any element in
Λf/. Then as shown earlier, d' | ί say t = d't'. By (*) there exists X
in # w such that A'X + B' = 0(mod d'pt). Thus GCD(A', pt) = 1 since
GCZ)(A', B\ d'e) = 1. So there is a j for which GCD(AΈjf pt) = 1
where jKy is the % x l matrix with 1 in the jth position and o's
elsewhere.

Now assume that GCD(t', p<) = 1. Let X' = X + ί^ . Then
GCD(A'(X'~X), d'^) - d' GCD(t'AΈh p<) = d' since GCD(t'AΈh pt) = l.
So GCD(A'X' - A'X, d'p,) = d' and thus GCD(A'X' + JB', d'p,) = d!
as B Ξ -A'X(mod d'P<). Hence GCΏ{A\Xf + ί(-#y)) + J5', d'p<) = d'
since ί e ilί/. That is GCD(A'X + B\ d'pt) = d' and thus d'Vi I d',
which contradicts that p, is a nonunit. So the assumption that
GCD(t', p^ = 1 is untenable, that is pt\t'. Thus d'pt \ t proving that
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Ml = d'PiR. However M = Π;=i Ml, so that M is a principal ideal
generated by the LCM(d'pL, --,d'pk), that is M is generated by

d'Pi Pt

The generator d'pt pk of ikf is called the minimum modulus
of GCD(AX + B, de) = d.

4* The number of solutions with respect to a modulus* Let
GCD(AX + B, c) = d be solvable where e = c/d is atomic. If t in R
is a solution modulus of GCD(AX + B, c) = ώ, then S consists of
equivalence classes of Rn(moάt). If ϋJ/ίiϋ is also a finite ring, we let
Nt ΞΞΞ i\rt(A, B, c, d) denote the number of distinct equivalence classes
of iϋw(mod t) comprising S.

For R/tR finite, let 1t| = | ϋϋ/ίϋ!1 denote the number of elements
in R/tR. Note that if t0 \ t, then each equivalence class of iϋ"(mod ί0)
consists of \t/t0 Γ = (\t I/I t0 \)n classes of Rn(modt). Thus if ί is a
solution modulus and t0 denotes the mininum modulus of GCD(AX +
B, c) = d, then Nt = \ t/t0 \n Nto. In Theorem 3, we explicitly deter-
mine NtQ.

The following lemma is also of independent interest.

LEMMA 3. Let R be a GCD domain and suppose that R/dR is
a finite ring. Let plf , pk be nonassociated elements such that R/PiR
is a finite field for i — 1, •••,&. Let A be an m x n matrix and let
r, denote the rank of A(modpJ for i = 1, •••, k. Let ^f={Xe
Rn\AX= 0(mod d)} and L = {X + dRn \ Xe £?}. Let e0 = Π t i Pi
and let £f'={XeRn\AX= 0(mod de,)} and U = {X+ dejt* \Xe £f).
Let ^ft = {XeRn\AX= 0(mod dp,)} and L, = {X + dRn\Xe £?t} for
i = 1, , k. LetH={X+ e0R

n \ Xe Sf'} and Ht = {X + p,Rn \ Xe
for i — 1, , k. Then

( 1 ) \L'\ = \L\\H\

and

L/Li is an R/PiR vector space of dimension s{ and

I H I I RIRf-w* for i = 1, ..., k .

si — oif and only if for each X in ^f there exists Xf

in Sf, such that X' == X(mod d) .

( 4 ) // GCD{d, px) = 1, then s, = o .

I L I = 1 if and only if n = rank A(mod p) for each
( 5 ) .

prime p d .
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Proof.
( 1 ) In the obvious way, L, U, and H are 22-modules. Let

σ: U —* H denote the 2?-homomorphism defined by σ(X + de0R
n) —

X + e0R
n for all X in £f\ Then clearly Ker σ = {e0Y + de0R

n \ Ye <£?}
so that L ~ Ker σ under the ^-isomorphism τ: L —> Ker σ defined by
τ(Y + dJB") = β0Γ + deo22* for all Y in j ^ . Thus \U\ = \L\\H\
since Im σ = H. We now show that H is isomorphic to φ ; = 1 iί*, the
direct sum of the 22-modules Ht. Let 7: JHΓ—*φLi 2?* denote the
22-homomorphism defined by 7(X + eo22Λ) = (-XΓ + 2>i22*, , X + pkR

n)
for all X in &». If X + eo22* e Ker 7, then J5Γ = 0(mod p,) for
i = 1, , ft, that is X Ξ 0(mod e0), which shows that 7 is 1 — 1. To
show that Im 7 - φ ^ Hi9 let X, e ^ for i = 1, . . . , fe. Since i?/di?
is finite, it is easy to verify that d is atomic. Thus let d = dQ Πf=i P?*
where m* ^ 0 and GCD(d0, pt) = 1. By the Chinese remainder theorem
there exists X in iϋ*' such that X = 0(mod d0) and X = X,(mod pf ί+1)
for i = 1, •--,&. However, AX* = 0(mod pf<+1) for ΐ = 1, , &, so
that AX Ξ 0 mod (d0 Π?=i PΓί+1). that is AX = 0(mod deΌ). Thus X +
eoi?

w G i ί and 7(X + e0R
n) = (X, + p ^ " , - - , Xk + pλ-Bπ). Hence 7 is

an isomorphism and \H\ — ΠίU I Ht\.

( 2 ) Let Lί = {X + dp,Rn \Xe£?x) for i = 1, -, ft. Let i be
fixed. Let v: Lί —> L^ denote the i?-homomorphism defined by

dp,Rn) = X + di2% for all X in j ^ . Then clearly Ker v =
dp.jB I AY = O(mod^)} and it follows that

I K e r v I =

where r< = rank A(mod ^ ) . Thus | LJ | = | pi \n~ri | L̂  | since Imv = L .̂
However by (1), | L\ \ = | L | | iί* |. Also since L, is an .R-submodule
of L, the quotient module L/Lt is defined and \L\ = [LJIL/LJ.
Thus we obtain that | iί, | | L/L£ 1 = 1^ \n~r\ We now show that L/Lt

is an iZ/̂ iJK vector space. Let <X> = X + di2% for X in I2\ Then
L/L, = {<X> + Lt I Xe £?}. For r in 22, let r = r + p,i2 in JB/^i?.
We define r«X> + L,) - <rX> + Lt for all r in 22 and X in Sf.
We claim that this is a well-defined R/PiR multiplication on L/Lt.
For let r = r' and <X> + Lt = <X'> + L o where r, r ' e 22 and
X, X ' e ^ 7 . Then r - r' = o(mod^) and <X> - <X'> e L o that is
<X- X'>eL,. Thus there exists Y in ^ such that < X - X;> =
<Γ>. We must show that <rX> + Lt = (r'X') + L,, that is
<rX - r'X'> 6 Lt. We write rX - r'X' = (r - r')X + r'(X - X').
However, X - X' = F(mod d) and thus r(X - X;') = rΓ(modd). So
rX - r'X' = (r - r')X + rF(mod d) and (r - r')X + r Γ e J2^. Hence
<VX — r'X') G I/έ, which establishes the claim. It follows immediately
that LI Li is an RjptR vector space since HLt is an 22-module.

Let Si denote the dimension of the R/p^R vector space
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Then IL/LJ = IpJ * and as | H, \ \ L/L, \ = \pt \n~r\ we obtain that
I Ht I I Vi \H = I Pi \n~ri. Thus o ^ 8i ^ n - r< and | H< | = | p, | - ( r < + *\
which completes the proof of (2).

( 3 ) As I L I = I Lt I I pt \8\ it is immediate that sf = 0 if and only
if L = Lif that is if and only if for each X in £f there exists Xf

in J 2 ^ such that X' = X(mod d).
( 4 ) Suppose that GCD(d, p%) = 1. Let I e ^ . By the Chinese

remainder theorem there exists X' in i?71 such that Xf = X(mod d)
and X' ΞΞ 0(mod^) Thus AX' = O(modcfe), so that 8t = o by (3).

( 5 ) Let p be a prime dividing d and let d = dγp. Then L =
{X + cί^J?711 l e .5^}. However as shown in the proof of (2), | L | =
\p\n-r»\L0\ where r0 = rank A(mod p) and I/o = {X + cU2* | I e £?}.
Thus if I L I = 1, then n = rank A(mod p) for any prime p\d. The
converse is trivial.

THEOREM 3. Let R be a GCD domain. Let GCD(AX + B, c) = d
be solvable and suppose that e = c/d is atomic. Let A! = A/g and
df = d/g where g = GCD(A, d). Let t0 = dr Π*=i Pi denote the minimum
modulus of GCD(AX + B, c) = d where {pu , pk] is defined in (*)
of Lemma 2. Suppose that R/t0R is a finite ring. Let L =
{X + d'Rn I A'X = 0(mod d')) and Lt = {X + ώ'i2" | A'X = 0(mod
for i = 1, •••, k. Then

where rt denotes rank A'(mod p j αwd ŝ  denotes the dimension of the
vector space L\LX.

Proof. Let S denote the solution set of GCD(AX + B, c) = d.
As g = GCD(A, B, c), let B' - B/g. Then by Lemma 2, S is also the
solution set of GCD(A'X + B, d'e0) = d' where e0 = Π t i 2>* L e t ^
denote the set of X in 72" such that A'X + £ ' = 0(mod d'). Let ^?
denote the set of X in i2Λ such that A'X + B' = 0(mod d'pt) for
i = 1, . . , Jfc. It is clear that S - ^ \ U t i ^f. Let To = {X +
t,Rn\XeS}. Then \T0\ is what we have denoted by NtQ. Also let
T = {X + ίoi2" I X e ^ } and T, - {X + ίoΛΛ | X G ̂ ?} for i = 1, , k.
Hence TQ = Γ\U?=i Tt and by the method of inclusion and exclusion

(4.2) iVl0 = I To I = Σ ( - 1 ) I / I | 2 T / I

where the summation is over all subsets / of

Ik = {1, ...,fc} and Γ7 = n Γ * .
< = 1

Now let &1 = Γϊiei^i and dj = ώ' Π<e/ί>i for each subset / of
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Ik. Then it is easy to see that S^ is the set of X in Rn such that
A'X + Bf = 0(mod d\) and Tx = {X + tQRn | l e Sft. Let Tί = {X +
cZifi* I X e ^ } and let /' = Ik\I. Then | Γ7 | = \ T[ \ ΐ[ieΓ \ pt | , since
X + d\Rn consists of | tQ/dΊ Γ = ILez I pt \n distinct classes of iϋ^mod ί0).

Let ^ denote the set of X in Rn such that A'X = 0(mod dj)
Let LJ = {X + dΊRn \ l e ^ } . As £ζ is nonempty for i = 1, , fc,
an argument involving the Chinese remainder theorem shows that
each £/*! is nonempty. Hence it follows that | T[ \ = | L'71. Let L =
{ X + d ' i 2 % | X G ^ } and Lt - {X + d'Rn \ I e ^ i ( } for i = 1, ••-,&.
Then (1) and (2) of Lemma 3 yield that | L\ \ = \L\ΐliBi\Pi\n'lri+βi)

where rt = rank A'(mod p%) and st — dimension of the R/ptR vector
space LjLi.

Hence by (4.2),

NtQ - I L I Σ (-1) I J 1 Π I P* |- ( r < +" } Π IA Γ

where the summation is over all subsets I of Ik and Γ = / fc\I. Thus
we may write

^ | Ί Π l 2 i r Σ ( ) Π l

where the summation is over all subsets I of Ik. However,

k

* = 1
Π (l - I Pi \~{rί+Sί)) = Σ (~i) 1 J I Π I Pi \~{rί+Sί)

which yields the formula (4.1) for NtQ. This completes the proof of
the theorem.

We remark that if pp is the highest power of pt dividing d',
then Si is also the dimension of the R/PiR vector space K\]Ki where
Kl = {X + vTiRn I A'X = 0(mod pT*)} and

Ki = {X + p?*R* I A ' X = 0(mod pTi+1)} .

Also note t h a t r< ^ 1 for i — 1, •••,&.
In Corollaries 1 and 2, the notation is the same as in Theorem 3.

COROLLARY 1. Let GCD(AX + B, c) = d be solvable and suppose
that e = c/d is atomic. Let R/tQR be finite where t0 — dfJ[i=ιP% is
the minimum modulus of GCD(AX + B, c) = d.

( i ) // GCD(d', e) = 1, then

(4.3) 2SΓt0 = | L | Π ( | p < r - | p < r " ) .
i = l

( i i ) If \L\ = 1, then



188 DAVID JACOBSON

(4.4) NH = U(\Pi\n-\pir
ri),

ί = l

where rt = n if p t \ df.
( i i i ) // nf = r a n k A ' ( m o d p t ) for i = 1, •••,&, wAere %' denotes

the smaller of m and n, then

(4.5) M 0 = | L | Π ( | p < | - | p < | - " ' ) .
i = l

(iv) iVto = 1 if and only if (a) \ L \ = 1 and there exists no prime
p I e such that AX + B = 0(mod dp) is solvable, or (b) n = 1 cmd
I p I = 2 /or any prime p \ e such that AX + B == 0(mod c£p) is solvable.

Proof.
( i ) If GCD{d\ Pi) = 1, then (4) of Lemma 3 shows that sf = o

in (4.1). Hence if GCD(d', e) = 1, then s€ = o for ϊ = 1, , fc, which
yields (4.3).

( i i ) Suppose that | L \ = 1. If ^ | d', then n ~ rx by (5) of
Lemma 3 and thus sf = o since st S n — rt. However if GCD(d', px) — 1,
then st = o, so that (4.4) is immediate from (4.1).

In particular if d = 1, then Nto is given by (4.4). If A' is in-
vertible (mod d')f then (4.4) also applies.

(iii) If n = 9%, then «< = o. If m = r4, then the criterion in (3)
shows that st = o. Thus (4.5) follows from (4.1).

(iv) Suppose that NtQ = 1. Then by (4.1), \L\ = 1 and thus
Si — o for i = 1, •••,&. If Pi is a prime dividing e such that
AX + 2? = 0(mod d p j is solvable, then | pi \n — \pt \n~n — 1, so that
n = r< = 1 and | p t | = 2. Thus either (a) or (b) holds. Conversely
if (a) holds, then NtQ = 1. If w = 1, then clearly | L\ = 1 and hence
(b) implies that iVίo = 1.

COROLLARY 2. Lei GCD(AX + B, c) = d be solvable and let
e — c/d. Suppose that R/cR is a finite ring. Then

(4.6) π

Proof. Since ϋycί! is finite, e is atomic. Thus ί0 = d 'ΠίUPi i s

the minimum modulus of GCD(AX + B, c) = d. Also jβ/ίoi2 is finite
since to\c, so that iSΓίo is given by (4.1). However Nc — \c/to\

nNtQ,
which yields the result (4.6).

COROLLARY 3. Suppose that R/cR is a finite ring. Then

GCD{a1x1 + + anxn + 6, c) = d is solvable if and only if d\c and

GCD(a19 , an, d) = GCD(alf , aU9 6, c). Lβί αj = aj/gfor j = 1, , w
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where g — GCD(aίf •••, αn, d). Let {pl9 •••, pk) be a maximal set of

nonassociated prime divisors of e — c/d such that GCD(a[, , a'n, p%) = 1

for £ = 1 k Thenfor £ = 1, , k. Then

(4.7) |Π

Proof. Suppose t h a t c — de and g — GCD(alf , an, 6, c). Since

RjcR is finite, d is atomic and JK/pϋ! is a finite field for any prime

p \ d. Hence as g | δ, a s tandard a r g u m e n t shows t h a t α ^ + +

anxn + ! ) = o(mod d) is solvable and has \g\ \ d | n - 1 distinct solutions

(mod d). Thus GCD(a1xί + + αw#% + b9 c) = d is solvable since e

is atomic. Let df — d/g and V — δ/#. Since GCD(a[, , α*, d'ί?<) — 1

and Rld'pjϊi is finite, αία^ + + αJιαjΛ + V = 0(mod d'Pi) is solvable

for i = 1, , fc. I t follows t h a t ί0 — d' Π t i V% is the minimum modulus

of GCD(a1x1 + . . . + anxn + 6, c) = (Z. Let A ' denote the lxn matr ix

(a[, , αi) Then rank A'(mod p^) = 1 for i = 1, , A;. Also

αjccj. + + < x % = o(mod d') has | ώ' I"1"1 distinct solutions (mod d').

Thus by (iii) of Corollary 1,

<0 i r ή ( i Λ i i p < r ) ,

which yields (4.7).

COROLLARY 4. Suppose that R/cR is a finite ring where c — de.
Let g = GCD(aίf , α w , d) cmd αj — α j ^ /o^* £ = 1, , m. 2%ew

GCD(aίx + blf , αmα? + 6m, c) = d is solvable if and only if

( 1 ) GCD{ai,d)\bifor i = 1, . . . , m ,

( 2 ) αίί>3 Ξ αj δ^mod d) /or 1 <£ ΐ < i ^ m,

( 3 ) g = GCD(alf - ,am,blf ~,bm,c).

Let {pu " -, pk} be a maximal set of nonassociated prime divisors of

e such that for each ph, GCD(au dph) | bt for i = 1, •••, m and

h) for 1 5=Ξ i < j ^ m.

Π ( 1 — I 2>* I"1) -
Λ l

Proof. Let A and 5 denote the m x 1 matrices with entries
0i, , m̂ and 6L, , bm respectively. Since R/dR is finite, the reader
may easily verify that the system Ax + B = 0(mod d) is solvable if
and only if (1) and (2) hold. Thus as e is atomic, GCD(Ax + B, c) = d
is solvable if and only if (1), (2), and (3) hold. Let GCD(Ax + B, c) = d
be solvable and let d' = d/g. Then it follows that t0 - d'HUiPh is
the minimum modulus of GCD(Ax + B, c) — d. Let Af denote the
i x l matrix with entries a[, , α'm. Then rank A'(mod^) = 1 for
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i = 1, , k. Also the system A'x = 0(mod d') has only the solution

x = o{moάdr). Thus by (iii) of Corollary 1, NtQ = Π L i (I ph I - 1).

Hence Nc - | f l r e | Π U ( l - \ph\~%

COROLLARY 5. Lβ£ c ~ de where e is atomic. Let g = GCD(alf

• , an, d) and df = d/g. Suppose that R/d'R is a finite ring. Then
GCD{a]xι + bu , anxn + bn, c) = d is solvable if and only if
GCD{ajy d) I bj for j = 1, -, n and g = GCD(au -, αΛ, 6X, , bu, c).
Suppose that i2/(Πi=i Pi)R is finite where {plf •• , p j is α maximal
set of nonassociated prime divisors of e such that for each pi9

GCD(ajf dp^ I bj for j = 1, , n. Then t0 — dr Πi=iPi ^s the minimum
modulus of GCD(a]xι + bu - , anxn + 6n, c) = d. Let d5 = GCD{ah d)
and dj = dj/g for j = 1, , n. Then

where t% denotes the number of j in {1, , %} /or which

Proof. Suppose that dj | 65- for j = 1, ' , n. Let αj = α ^ and
b'j = bj/g for j = 1, , n. Let A and A' denote the n x n diagonal
matrices with entries au « , α Λ and a[, « , α i respectively. Let 5
and .B' denote the % x l matrices with entries bl9 •••,&» and 6!, •••,&«
respectively. Then the system A'X + J3' = 0(mod d') is solvable since
GCD(a'j9 d

r) I 6; for j = 1, . -, w and JB/d'i2 is finite. Thus the system
AX+ B~ 0(mod d) is solvable. Hence if g = GCD(alf , αw, 6t, •••,&«, c),
then GCD(AX + 5, c) = <Z is solvable.

Assume that GCD(AX + B} c) = d is solvable. It follows that
£o = d' ΠLi Pt is the minimum modulus of GCD(AX + B, c) = d. Let
L = {X + d ' i ^ I A'X = 0(mod d')}. Let

^ = {χe Rn I A'X = 0(mod d'pt)}

and L, - {X + d'Rn | I e ^ } for i = 1, ., fc. Then by (4.1),

where ri = rank A'(mod p t) and s£ is the dimension of the
vector space L/L,. Clearly | L | = Π*=i I d'i I since dj = GCD(a], df)
for i = l, . . . , n. Let L\ = {X + dfp,Rn \ X e &§ and Ht = {X +
p,Rn I I e ^ } for i = 1, , fc. Then (1) and (2) of Lemma 3 show
that 1141 - \L\ \Hi\ where | Ht \ = | pt |—(r«+ <> for i = 1, -. ffc.
However, GCD{a'jy d'pt) = dj GCD(aj/djf pt) and thus
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n / n

M I = I L I Π GCD —°~, Pi

191

for i = 1, . - , k. Hence | p< \--^i+n) = J J J = I | GCD(a,/dJ9 pt) | and thus
l ^ l - ^ + i) — 1^1*-**, since £< is the number of j in {1, •••, w} for
which GCD(a3 /dί9 pτ) = 1. So ί, = r, + s* for i = 1, •••,&, which
yields (4.8).

Note t h a t if J?/ci2 is finite, then

π Π (i - I Pi ΓO

COROLLARY 6. Lβί R be a principal ideal domain. Let A be
an m x n matrix of rank r and let au * ,ar be the invariant
factors of A. Let B be an m x 1 matrix and let (A: B) have rank
rr and invariant factors βl9 , βr,m Then GCD(AX + B, c) = d is
solvable if and only if (1) d \ c, (2) GCD(al9 d) = GCD(βly c), (3)
GCD{ah d) = GCD(βif d) for j = 1, - ,r and βr, = o(mod d) if
r' = r + 1.

Let {pu , pk) be a maximal set of nonassociated prime divisors
of e = c/(2 such that each pt satisfies (3') GCD(ajf dp%) = GCD(βJt dpt)
for j = 1, , r ami /Sw Ξ o(mod d^) i/ r' = r + 1. Let dά = GCD(ajf d)
for j — 1, , r a^d d' = d/dx. T%β^ t0 = d' Π «=i Pi is ίfee minimum
modulus of GCD(AX + B, c) = d. Suppose that R/tQR is finite. Then

(4.9)
k

i-ί

where d'ά = d^dx and tt denotes the largest j in {1,
GCD(a3/djy Pi) - 1.

•, r} for which

Proof. Since R is a principal ideal domain, it is well-known that
there exist invertible matrices P and Q such that PAQ — Ao where
Ao is an m x n matrix in "diagonal form", with nonzero entries

a a and aά
aά, if j < j ' . The elements al9 , ar are called

the invariant factors of A and aά = Dj/Dj^ where D3 denotes the
GCD of the determinants of all the j x j submatrices of A. Clearly
GCD{A, d) = GCD(au -.., ar9 d), that is GCD{A, d) - GCD(a1} d) since
a, I ocά for j = 1, , r. Similarly GCD(A, B, c) = GCD(βu c). How-
ever, it is also well-known that the system AX + B = 0 (mod d) is
solvable if and only if condition (3) holds (see [4]). Thus GCD(AX +
B,c) = d is solvable if and only if (1), (2), and (3) hold.

Let GCD(AX + B, c) = d be solvable and let c = de. Then
ί0 = ώ' Πt=i Pi is the minimum modulus of GCD(AX + B, c) — d.
Suppose that R/t0R is finite. Let S denote the set of X in Rn such
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that GCD(AX + B, c) = d. Let PB = BQ and let S' denote the set
of Y in Rn such that GCD(A0Y + Bo, c) = d. Then clearly J e S if
and only if Y = Q^Xe S'. Thus (?CD(AX + B,c) = d and GCZ)(A0Γ +
i?0, c) = d! have the same ideal of solution moduli. Let To = {X +
ίo2ϊ* I X e S} and To' = {^ + URn \ Ye S'}. Then the mapping /: 2 W Γo'
is a bijection, where /(X + £O22*) = Q~'X + tjt* for all X in S. Hence
I To I = I Γo'l> that is JV<0 = | ΪY |- Let j?o have entries b°lf , 6°w and
let c0 = GCD(b°r+1, •••, δ°m, c) Then S ; is the set of solutions of the
linear GCD equation

(4 10) GCDia.y, + &!,-••, tfr:?/r + δ°r, o ?/r+1 + o ,

•••, o yn + o, c0) = d .

Thus ί0 = d' Π ί=ιPi is also the minimum modulus of (4.10) and hence
by (4.8) of Corollary 5,

where dj = djjdι and ^ is the largest j in {1, « , r } for which

GCΌ(a5\dh pt) = 1 since a, /dj \ a^\dr if i < j ' .
If i?/ci? is finite, then

κ = i c I—- π i dyβ i π a - 1 P* r*o.

Finally we remark that the formula for iSΓίo in (4.1) applies to
the class & of GCD domains R which contain at least one element
p such that R/pR is a finite field. Some immediate examples are the
integers Z, the localizations Z(p) at primes p in Z and F[X] where
F is a finite field.

However, an example of such a ring R in £%f which is not a PID
is the subring R of Q[X] consisting of all polynomials whose constant
term is in Z. Indeed R is a Bezout domain which cannot be expressed
as an ascending union of PID's [1]. Clearly if p is a prime in Z, then
R/pR is isomorphic to the finite field Z/pZ.

We are also indebted to Professor W. Heinzer for the following
construction of a ring R in &f which is a UFD but not a PID. Let
F be a finite field. Let Ybe an element of the formal power series
ring FffX]] such that X and Y are algebraically independent over
F. Let Vdenote the rank one discrete valuation ring ^[[X]] Π F(X, Y)
and let R = F[X, Y][l/X] Π V. Then R/XR is isomorphic to F and
22 is a C/FD.
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A NOTE ON COMPACT SEMIRINGS WHICH ARE
MULTIPLICATIVE SEMILATTICES

P. H. KARVELLAS

The topic of this note is the structure of a topological
semiring in which a semilattice (commutative, idempotent
and associative) multiplication, with identity and connected
upper sets, has been postulated. Assuming the topology to
be compact, additions compatible with the multiplication can
be characterized for certain canonical subsets of the semiring.
In particular instances the characterization of addition can
be extended to the entire semiring itself.

Certain subintervals, arising naturally from the analysis when
the underlying space is the interval [0, 1], are generalized to con-
tinuum subsemirings of an arbitrary semiring possessing a semilattice
multiplication with identity. The addition in the minimal additive
ideal can be specified precisely and each additive subgroup is a single
element. If the minimal additive ideal and the set of additive
idempotents coincide, a complete description of the semiring addition
is possible in terms of homomorphisms of the multiplicative semigroup.
The same procedure can be employed when the space is an interval
on the real line.

A topological semiring (S, + , •) is a Hausdorff space S on which
are defined topological semigroups (S, +) and (S, •)> for addition and
multiplication, such that x(y + z) = xy + xz and (x + y)z — xz + yz
for all xf y, and z in S. This structure will be investigated under
the restrictions that (S, •) is a topological semilattice, with identity
1 and multiplicative zero element 0, the set S is compact and upper
sets M(x) = {y: xy = x} are connected for each x in S. Such a semi-
ring will be called a semilattice semiring or SL-semiring. Multiplica-
tion is therefore commutative and idempotent in a semilattice semiring
and an induced partial order, with closed graph, results from defining
x <Ξ y if x = xy.

Unless specifically altered, both (S, +, •) and S shall refer to
semilattice semirings in the analysis which follows.

Particular examples of £L-semirings appear in [5], where S is
the real number interval [0, 1]. The characterization of such interval
£Z/-semirings is given in Example 1 and employs two continuous
functions satisfying certain required conditions on subsets of [0, 1].
A more general space and analysis will, of course, be subject to
rather more exaggerated ambiguities.

Ideals will be semigroup ideals in the sense of [1] and kernels
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(minimal ideals) with be written as K[ + ] and K[*]. In the compact
case kernels are nonvoid and closed [7], as are the idempotent sets
E[+] = {x: x = x + x) and E[-] — {x: x = x2}. The union of all addi-
tive subgroups will be written as H[ + ] and for t in E[ + ] the maxi-
mal additive subgroup with identity element t is H[ + ](t). For a
positive integer w and element sc, wx denotes the w-fold sum of #.
Equivalently nx is the product of two elements of the semiring.
The element (1 + 1) will be written as p.

For an element x let L{x) = {y:xy = y} and M{x) = {y:xy = a?}.
If x ^ y, that is if # = xy, then define C(#, #) = {z: x <* 2 ^ ?/} =
ikf(#) Π L(y) — y ikί(#). In any SL-semiring, M(x) is connected, im-
plying the connectivity of C(x, y) for x ^ y. It is trivial to verify
that C(x, y) is a subsemiring if and only if xeE[ + ]. Lastly, from
S = £?[•], cc + 7/ = (x + τ/)2 = x + p(xy) + 1/ for all x, y e S.

2. Connected subsemirings of a semilattίce semiring* In Ex-
ample 1 is given the characterization, obtained in [5], of all SL-
semirings on the interval [0, 1]. The resulting subintervals [0, e],
[e> f\> [A V\> a n d [p, 1] have obvious generalizations to an arbitrary
SL-semiring defined on a general topological space.

EXAMPLE 1. Let S = [0, 1] with multiplication xy = min (x, y).
Any compatible semiring addition, with x + y = y in ϋΓ[ + ], can be
characterized as follows. Pick arbitrary elements ef f9 and p in [0, 1],
where 0 ^ e ^ / ^ p ^ 1. Let F: [0, p] -> [β, 1] and G: [0, p] -> [/, 1]
be continuous functions such that

(1) F is the identity on [e, p]
(2) F decreases on [0, e] and G decreases on [0, / ] ;
(3 ) for x G [0, p], pG(x) = max (/, pF(x)).

The addition on S is defined by

x + y = P x, y ^ P

= xF(y) y <Zx, y < p

= yG(x) x <y, x < p .

The subintervals [0, e], [e, / ] , [/, p], and [p, 1] are connected subsemi-
rings with the additions below.

x + y — m a x ( # , y ) x , y e [0, e] s + k = k ke [e, f], seS

x + y = xy x , y e [/, p] x + y = p x,ye[p,ϊ\.

The additive kernel K [ + ] is the subinterval [e, / ] , while E[ + ] = [0, p].
In any SL-semiring (S, •) is commutative and the kernel if[ ]

must reduce to a singleton, denoted hereafter by 0 [4]. It is easy
to verify that 2x = Ax for each x in S and from [3] both E[ + ] and
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H[ + ] are multiplicative ideals, requiring Oe!?[ + ]. Because (S, •)
has an identity, J57[-f-] is closed under addition [3], and both E[+]
and H[ + ] are connected [8]. Alternatively p = l + l = p2 = p + p
and px = x + x for each x in S. The map x—>px is continuous and
M(0) — S is connected. Hence i?[ + ] — pS is connected. As will be
proven subsequently, E[ + ] = H[ + ]. Noting that S = M(0) and is
connected, we have the result below.

THEOREM 1. Let (S, +, •) be a semilattice semiring.
(1) K[ ] = {0} S i?[ + ] α^ώ S is a connected set.
(2) i?[ + ] = {& + #:$eS} αwd is an additive subsemigroup.
(3) i?[ + ] and H[ + ] are connected multiplicative ideals.

The next result characterizes the operations in the minimal ad-
ditive ideal K[ + ].

THEOREM 2. Let (S, +, •) be a semilattice semiring. Then:
(1) K[ + ] is a subsemiring of S contained in E[ + ],
(2 ) There exist elements e and f in S such that K[ + ] = C(e, f)

and f = 1 + k + 1 for each element k e ϋΓ[ + ].
(3) K[ + ] = (S + e) + (e + S), wΐίλ, eαc/̂  element z in K[ + ]

uniquely of the form zγ + z2, where z1e S + e and z2e e + S. More-
over, for elements xlf x2 in S + e and y19 y2 in e + S, the kernel
operations are given by

(β + S) n (S + β) = {e} .

Proof. Because S2 Π K[ + ] is nonvoid, the additive kernel is a
subsemiring using a result from [6]. From S = 2£[ ] and Theorem 1
of [7] each additive subgroup is totally disconnected. However,
if[ + ] is the union of the connected maximal subgroups H[ + ](t) —
t + S+t for t in K[ + ] Π E[ + ] [8]: hence # [ + ](£) = {ί} for each
teK[ + ]ΠEl + ] and thus K[ + ] S E[ + ]. The compact, commutative
subsemigroup (£"[ + ], •) has a multiplicative kernel which is a single
point. Let {e} denote this kernel. Then / = 1 + e + 1 is in K[ + ]
and, for each element k in ϋΓ[ + J, e ^ k while

f k = k + e + k e k + S + k = H[ + ](k) = {k}

proving that 1 + K[ + ] + 1 = {/} and K[ + ] S C(β, / ) . For any ele-
ment x G C(e, / ) , ^ x / = x ( l + e + l) = x + e + xe C(e, f) Π
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and hence K[ + ] = C(e, / ) . The characterization of addition in K[ + ]
follows directly from Theorem 1.3.10 of [4] and the triviality of
maximal additive subgroups in JBΓ[ + ]. For xlf x2 in S + e and y19 yz

in e + S we have that xx = x1 + β, 2/1 = e + i/i and H[ + ](e) = e +
S + e = {β}, implying therefore that (e + S) Π (S + e) S ff[ + ](e) and
that

(e + i/x)a?2 + (&! + e)# 2 + 2/12/2

= xγx2 + e
= &1&2 + 2/l2/2

The subsets of interest are the following: E[+] = pS, K[ + ] =
C(e, / ) , ΛΓ(p) = {x: px = p], L(e) = eS and 1 + S + 1. Both #[ + ] and
K[ + ] have been shown to be connected subsemirings from the preced-
ing arguments. As proven in Theorem 4, the requirement that M(x)
be connected for each x in S results in p = p + 1 and implies trivi-
ality of addition in M(p). If the restriction on upper sets is removed,
partial results can still be obtained.

THEOREM 3. Let (Γ, +, •) be a compact semiring, with i?[ + ] =
{q}, such that (T, •) is a semilattice with identity 1. Then:

( 1 ) 1 + x = x Λ- 1 and q = l + l = xJrQ + x for all x in T.

( 2 ) (T, +) is commutative.

(3 ) T + T is the additive kernel.

Proof. Since T = E[-]> 1 + 1 = (1 + I)2 - (1 + 1) + (1 + 1) 6 E[ + ]
and thus q — 1 + 1. Moreover, K[-] £ E[ + ] = {#}. Hence q — qx
for each # in T. It is easily shown that 1 + x — (1 + xf — 1 + Sx =
g + 1 + a? for each element a? of T. Analogously x + l = x + l + q.
As a result one obtains the equations

(x + 1)-(1 + x) = x(l + x) + (1 + x) = q + l + x = l + x

= (x + l) + (x + ΐ)x = x + lJrq = x + l .

Moreover, x + q + x = x + qx + x = x(2q) = q. In a similar manner
it can be proven that x + y — (x + y) (y + x) — y + x for all x and
y in T. Addition in T is therefore commutative.

Lastly, because (T, +) is a compact semigroup with a single
idempotent element, K[ + ] = iJ[ + ](g) = Γ + g + T [8]. Thus, for a;
and y in Γ, a? + y = (a; + ί/)2 = a? + ί(a?2/) + y = x + q + yeK[+].
Therefore T + Γ g Γ + g + T= K[ + ], implying that K[ + ] = T + Γ.

THEOREM 4. Le£ (S, +, •) be a semilattice semiring, p — 1 + l
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(1) (M(p), +, •) is a subsemiring with trivial addition.
(2) L(e) = eS is a distributive topological lattice.

Proof. From M(p) = {x: px = p} it is clear that M(p) is a con-
tinuum subsemiring with a single additive idempotent. Theorem 3
applies and it is now only necessary to note that the additive kernel
of the subsemiring M(p) is the connected additive group M(p) + p +
M(p). However, M(p) £ E[ ] and from [7] this group must also be
totally disconnected. Consequently M(p) + M(p) — {p} and p = 1 +

Recall that K[ + ] = C(e, f) where {e} is the multiplicative kernel
of the subsemiring ϋΓf + l The subcontinuum eS = L(e) is a subsemi-
ring with identity e and e=e+x=x+e for each a? = ex in eS.
Thus for elements x and 7/ of eS we obtain

(α? + y)x = xe + xy = x(e + y) = %e = x

(x + y)y = xy + ey = (x + e)y = ey = y .

Therefore, x + y e M(x) Π Jlί(2/) and for any t e M{x) lΊ M(y) it follows
that t(x Λ- y) — tx Λ- ty — x Λ- y. That is, # + y is the least upper
bound of x and y in the partial order defined by the semilattice
multiplication and consequently (eS, +, •) is a lattice. Since multipli-
cation distributes over addition, both lattice distributive laws hold.

COROLLARY 5. Let (S, +, •) be a semilattice semiring. If
E[ + ] = {0} then S+ S= {0}.

THEOREM 6. Let (S, +, •) be a semilattice semiring and let f
denote the maximal element of the additive kernel, while p = 1 + 1.
Then:

(1) These are equivalent statements.
(a) (£'[ + ], +) is commutative.
(b) x + p = p + x for all x in E[ + ].
(c) x + p — p + x for all x in S.

(2) If (E[ + ]9 +) is commutative, then (E[ + ]f +, •) is a top-
ological lattice if and only if f — p.

Proof. Recall that E[ + ] is a connected subsemiring. For any
x in S we have that x + p = (x + pf = (p + l)a? + p and (p + l)x e
E[ + ]. Thus ifa; + p = p4-x for x in £/[ + ], the same result holds
in S, and vice versa.

Clearly, (a) —-* (b). Assume that elements of S commute with p
under addition. For x, y e E[ + ], x = x + # = pa?, a?2/ = pa?2/, y = y +
y = py and thus the equations below are obtained.
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X + y = (x + yf - x + Xy + y =

= x + (a? + 2>)# = (x + y) + xy

y + x = (y + χ)2 = y + xy + x = xy + (y + x)

= (y + x) + α# .

It follows that

(a + 2/) (y + a?) = # 0 + aθ + 2/(1/ + x) = xy + (x + y) + %y
= (x + y)y + (x + 2/)a? = a?i/ + (y + x) + a?j/

which implies that (E[ + ], + ) is commutative.
Assume now that addition in E[ + ] is commutative. Because

distinct idempotents in K[ + ] do not commute in the compact case
[4], we obtain K[ + ] = {/}. If / = p then, from Theorem 4, E[ + ]
is a distributive topological lattice. Conversely, if E[ + ] is a lattice
then, since one distributive law holds, E[ + ] is a distributive lattice.
Therefore, because a = a(a + 6) = a + (α&) for all α and 6 in the
lattice E[+], we obtain

P = V + P/ - P2 + Pf - P(P + /) = P/ = /

The following example illustrates the general idempotent semi-
lattice semiring with commutative addition which can be constructed
on an interval.

EXAMPLE 2. Let S = [2, p] be an interval of real numbers with
min multiplication. Fix an element finS and denote the subintervals
fo /] by A and [/, p] by B respectively. If {/} is the additive kernel
of an idempotent and commutative addition semiring on [z, p], then
B = p + B and x + y — min (x, y) in B, while x + y = max (x, y) in
A. The map /: S—»JB defined by /(#) = 1 + x is continuous and is
the identity on B. Moreover, / reverses order on A (xy — x in A
implies f(x) f(y) = f(y) in i?). Any such addition on S is therefore
given by the characterization

x + y = O;JP(I/) 2/ ^ &

= 2/JP(SC) a? < 2/

where F:S—+B is continuous, the identity on i? and order-reversing
on A.

The existence of the three elements p{ = 1 + 1), e and /, where
K[ + ] = C(e, / ) , has allowed the characterization of addition in M(p),
K[ + ] and L(e). The next result completes the description of con-
nected subsemirings which are analogues of the subintervals appearing
in Example 1.
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THEOREM 7. Let (S, +, •) be a semilattice semiring, p = 1 + 1
and iΓ[ + ] = C(e, f) for elements e <> f in E[ + ]. Then:

(1) H[ + ] = E[ + ] and each additive subgroup is a single point.
(2) 1 + S + 1 = 1 + E[ + ] + 1 £ M(f) D E[ + ] with addition

given by x + y = xy = y + x.
(3) For α e 1 + S + 1, # e ikf(p), x + y = x = y-\-x.
(4) M(/) + X[ + ] + M(f) = {/}.
(5) e + 1^ e + s αweϊ 1 + e ^ s + e /or all s in S.
(6) S+ p + iSS-&[+].
(7) T%e boundary B of E[ + ] is connected.

Proof. For £GJEΓ[ + ] the maximal additive subgroup H[ + ](t) is
a subsemiring since ί = t2 [2], Moreover, H[ + ](t) ̂  M(t) since for
each x e H[+](t), tx e E[ + ] Π fi"[+J(ί) = {t}. Consequently x + x =
px = t and therefore x = x Λ- t — (1 + p)ίc — ί for each a; in £Γ[ + ](ί).
Hence H[ + ] S E[ + ] and each additive subgroup is a single element.

Clearly 1 + E[ + ] £ 1 + S and, because 1 + x = (1 + xf = 1 + p#
for each element a;, the reverse inclusion also holds. Similarly S +
1 = 2?[ + ] + 1 and for each element x of S we have that

1 + x + 1 = (1 + x + l)2 = (1 + x + 1) + 3x + (1 + x + 1)

= p(l + x) + p(a? + 1)

In addition it follows that f = f + x + f = f(l + x + 1), implying that
1 + S + 1 S M(f) Π E[ + ]. For any two elements x and y of 1 +
S + 1, p# = P# + 1 and p?/ = 1 + py and hence

x + y = (x + yf = sc

= p(χy) + y = p(χy) = xy

and in a similar manner y + x = xy. Moreover, for xel + S + 1
and 2/ e ikf(p) we obtain

a? + y = 053/ + 2/ = (« + 1)?/ = xy = a?.

For elements 4 e ί [ + ] , and m, neM(f), we have that

Consequently M(f) + K[ + ] + M(f) = {/}.

For any element s e S it follows that (e + s) ^ (e + 1) since

(e + l)(e + s ) ~ β + es + β + s = β + s

and similarly (s + e) ^ (1 + e). In addition, for elements x and 2/ of
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S, px + 1 = x + 1, 1 + y = 1 + py and therefore x + p + y = p(a? +
1 + 2/)€#[+], implying S + p + S S # [+] .

Lastly, consider the set T = S\E[ + ], which is connected since
for each ί in Γ the interval G(t, 1) £ Γ. Consequently pT is also
connected and pΓ £ E[ + ]. For x in T let i2(ίc) = {y:px = py}. Then
i2(^)Π^[+] = {px}, xeR(x) and it is easily verified that R(x) is a
compact subsemiring of S. Moreover, C(px, y) £ i?(#) for each 7/ in
i?(#), implying that R{x) is connected. Suppose now that px is con-
tained in the interior of E[ + \. There then exists an open set U,
containing px, and contained in E[ + ]. However, U Π R(x) = {px} is
an open and closed subset of the connected set R(x). Consequently
pT is contained in the boundary B of E[ + ]. It is now only necess-
ary to note that if r e B, then for any open set W containing r
there exists an open set V, containing r, such that pVQ W. Thus,
since VΠ T is nonempty, r is a limit point of the connected set pT
and B is connected.

Identification of the various connected subsemirings of a general
semilattice semiring with the subintervals obtained in Example 1 yields
the correspondences: L(e) with [0, e]; M(p) with [p, 1]; and, 1 + S + 1
with [/, p]. The addition in the additive kernel K [ + ] of a general
SL-semiring is that of a rectangular band [1], while the existence
of a cutpoint in the Example 1 case produces either a left- or right-
trivial addition [4].

The construction of "characterizing functions", as given in Ex-
ample 1, is apparently futile for a general semilattice semiring.
However, as demonstrated below, the situation K[ + ] = E[ + ] is
amenable to this approach.

3* Semilattice semirings with K[ + ]=£/[ + ]• In the case of
SL-semiring with K[ + ] — E[ + ] it is possible to obtain a complete
characterization of the addition in terms of semilattice homomor-
phisms on the multiplicative semigroup. The following lemma estab-
lishes some preliminary results.

LEMMA 8. Let S be a semilattίee semiring with K[ + ] = E[ + ],
Then:

(1) S+SSJ0[ + J.
( 2 ) For x,yeS, {x + y] = x + S + y , 0 + ^ ^ 0 + l ^ a + l

and # + 0 ^ 1 + 0 ^ 1 + # .
( 3 ) For keK[ + ], k + M(f) = {k + 1}, {/} = M(f) + k + M(f).

F G
( 4) The maps x > (1 + x) and x > (x + 1) are semiring

homomorphisms with F(x + y) = F(y) and G(x + y) = G(x). Addi-
tion in S is given by
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x + y = G(x). JP(I/) .

(5) For x,yeS, M(x + 0) n M(0 + x) = M(px) and M(f) =
ΛΓ(1 + x)f] M(y + 1) = M(x + 1) n Λf(l + v).

Proo/. Noting that p = / and that # [ + ]( = K[ + ]) is both an
additive and multiplicative ideal, we have the result

x + y = (x + 2/)2 = x + p(a?2() + 2/ e ^ΓI + ]

for each a; and y in S. Recall that H[ + ](px) = x + S + x = {px}
and therefore, using both distributive laws, we obtain

(x + 1). (x + 0 + 1) = (x + x) + 0 + (x + 1) = x + 1

Analogously l-f-# = l + 0 + £. Using (2>(a?2/)} = xy + S + xy the
following equations hold.

= (χ+fχ + xy) + (χf + f+ yf) + (Xy + fy +

= /a? + /(a?y) + /y

= a? + p(ί»2/) + y = x + y «

Therefore, for any x and y in S, it follows that

x + S + y = f(x + S + y) = (x + S) + (S + y)

= (x + 1 + S) + (S + 1 + y)

For each a? in S, 0 + a? = a?(0 + 1) ^ 0 + 1- Similarly we have
that (aj + l ) . (O + l) = O + a? + O + l = O + l ^ a ? + l . For k in K[ + ]
and m in M(f)( = ikί(p)), A; + m = 2)(Λ + m) = k + 1. Analogously
M(f) + & = {1 + fc}, thereby establishing (3) as a special case of
Theorem 7 (4).

Consider the maps F, G: S->K[ + ] defined by F(x) = 1 + a?, G(a?) =
a? + 1. Both are semiring homomorphisms and addition in S is given
by

x + y = x + l + xy + y = (x + ΐ)-(l + y) = G(x) F(y).

Lastly, cc + 0, 0 + x ^ pa?. And, if t e M(x + 0) Π M(0 + x), then
ίa? + 0 = x + 0, 0 + x = 0 + tx9 implying the result

t(px) = tx + 0 + tx = x + 0 + xex + S+x = {px} .

Similarly, M(l + x) n M(y + 1) = Λf(a? + 1) Π ΛΓ(1 + ») -
The next example describes a general semilattice semiring under
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the restriction that the additive kernel K[ + ] is the set E[+] of
additive idempotents.

EXAMPLE 3. Let (S, •) be a compact topological semilattice, with
identity element 1 and connected upper sets. Let p be any fixed
element of S. If F and G are continuous semilattice homomorphisms
from S into pS such that

(a) (FoF)(x) = F(x), (G o G)(x) = G(x) for all x in S;
(b) F(x)G(x) = px for all x in S;
(c) (FoG)(x) = (G o F)(x) = p for all α in S:

(where "o" denotes composition) and an addition is defined on S by

x + y = G(x)F(y)

for all x and y in S, then (S, +, •) is a semilattice semiring with
additive kernel K[ + ] = E[ + ] = pS.

THEOREM 9. Let (S, •) be a compact topological semilattice, with
identity element 1 and connected upper sets.

(a) For any fixed element p of S, and homomorphisms F and
G into pS defining an addition ( + ) as in Example 3, (S, +, •) is
a semilattice semiring with K [ + ] = E[ + ] = pS.

(b) Conversely, i/ ( + ) is £/&e addition of a semilattice semiring
on the set S, with K[ + ] = E[ + ] and addition compatible with the
given semilattice multiplication, then the maps F, G: S—*E[ + ] defined
by F(x) = 1 + x, G(x) = x + 1 satisfy the properties of Example 3
when p is taken to be the element (1 + 1) of S.

Proof. The verification of part (a) is trivial, albeit tedious. If,
on the other hand, (S, +, •) is a semilattice semiring with E[ + ] =
iΓ[ + ], and the maps F and G are as defined, then both are con-
tinuous multiplicative homomorphisms, as proven in Lemma 8. Clearly
F(F(x)) = 1 + F(x) = p + χ = l + χ=: F{x) and G(G(x)) - G(x) for
all x in S. Analogously F(x) G(x) = (1 + x) (a? + 1) — x + 1 + x =
pec. Moreover, (F © G)(#) = 1 + (?(#) = l + a? + l = p. Lastly, as
shown in Lemma 8, addition satisfies the definition given in Example 3.

The final two results, presented without proof, describe a SL-
semiring in which E[ + ] = K[ + ] and S\JE?[ + ] £ M(l + 0) U Λf(0 + 1).
Note that the latter condition is not sufficient to describe the char-
acterization on the interval given in Example 1.

LEMMA 10. Let S be a semilattice semiring with E[+] = JBΓ[ + ].
Then these are equivalent statements for an element x of S.

(1) l + a ; = / [ x + l = / ] :
(2) xeΛf(0 + 1) [xeAf(l + 0)]:
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( 3 ) px = X + 1 [px = 1 + χ\.

THEOREM 11. Let (S, +, •) be a semίlattice semiring, with
E[ + ] = K[ + ], in which S\E[ + ] S M(l + 0) U Λf(O + 1). Then addi-
tion in S is given by:

x + y = py χ,ye M(l + 0)

— px x, y G Λf(O + 1)

= / xeM(l + 0),ye M(0 + 1)

= p(xy) x 6 M(0 + 1), y e M(l + 0)

= G(x) y xe E[ + ], yeM(l + 0)

= F(y) xeM(l + 0),y

= G(x) xeE[+],yeM(0

where F,G:S-+E[ + ] are defined by F(x) = 1 + x, G(x) = x + 1.

The author would like to express his appreciation to Professor
Michael Friedberg for his suggestions and criticism.
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STIELTJES DIFFERENTIAL-BOUNDARY
OPERATORS, II

A L L A N M. KRALL

The differential boundary system

Ly = (y + H[Cy(0) + Dy(l)] + H,Ψ)' + Py ,

Ay (0) + By(l) + V dK(t)y(t) = 0 ,
Jo

= 0 ,

and its adjoint system are written as Stieltjes integral equa-
tion systems with end point boundary conditions. Fundamental
matrices are exhibited and, from these, a spectral analysis
and a Green's matrix are produced. These are used to achieve
spectral resolutions in both self-adjoint and nonself-adjoint
situations.

1* Introduction* This article is a continuation of [2] and [6]
which showed the density of the domain of L in £fn

p[0f 1], 1 <: p < oo,
when the boundary functionals satisfied certain conditions, and which
derived the dual operator in £fn

q[0, 1], 1/p + 1/q = 1, in those circum-
stances. Rather than repeat those results, we prefer to refer the
reader to the articles mentioned. For our purposes here it is suf-
ficient to state that y is an n dimensional vector in J*fn

p[0, 1]; A and
B are m x n matrices, m ̂  2n, such that rank (A: B) — m; C and

D are (2n — m) x n matrices such that L n is nonsingular; K is

an m x n matrix valued function of bounded variation such that the
measure it generates satisfies dK(0) = A, dK(l) = B; Kx is an r x n
matrix valued function of bounded variation which is not absolutely
continuous, satisfying dKλ(0) = 0, dK^l) = 0; H and JHi are, respec-
tively, n x (2n — m) and n x s matrix valued functions of bounded
variation, Hx not absolutely continuous; P is a continuous n x n
matrix; and, finally, Ψ is an s dimensional constant vector.

Because we wish to exhibit the contributions of K, Kl9 H, H^ at
0 and 1 separately, integrals involving their resulting measures will
not include contributions at 0 or 1. At all other points, however, we
do assume that these functions are regular as defined by Hildebrandt
[4]. This results in considerable simplification throughout. Of course,
all integrals are Lebesgue or Lebesgue-Stieltjes integrals.

It is convenient to note that the adjoint system has the form

L*z = -(z + K*[λz{0) +

207
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Cz(0) + Dz(ΐ) + [dH*(t)z(t) = 0 ,
Jo

[dHf(t)z(t) = 0 ,
Jo

where φ is an r dimensional constant vector, and A, B, C, D satisfy

(A B\(-Ά* -C*\ I-A* -C*\IA B'
C D B* 7> B* D* \C D

— T
— * 2<w.

2. Integral equation representation* Let us make the follow-
ing definitions. Let

f i = y ,

ξ2 = Ay(0) + \tdK(x)y(x) ,
Jo

ξ, = Cyφ) + Dy(ϊ) ,

Then the equation Ly = 0, together with the boundary conditions is
equivalent to the system

/fi\

fa («) =

Us/

(0)

where Q(t)

IA

0

c
0

l o

=
- 7

0

0

0

0

0 0 0\

o o o
-hi 0 0

0 7 0

0 0 0

i

>-Q 0-7/0 -Hx

K 0 0 0 0

d 0 0

0 0

0 0

0 0

0 0

0

0

o /

(x) (x),

(0) +

/O 0

B I

D 0

0 0

\0 0

0

0

i-f
0

0

0

0

0

0

/

o\
0

0

0

0/

£

(1) = 0 .

If M(t) represents the Stieltjes measure in the integral equation,
then Hildebrandt's AM±(t) has zero entries along the diagonal. Hence
I ± AM± is always nonsingular.

The adjoint system L*z = 0, together with the boundary condi-
tions is
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/vλ
%

ft

\vJ

(t) =

(V1)
ft

v%
ft

1

(0) -Yd
Jo

II A*

0 0

0 0

0 0

\0 0

c*
-D

I

0

0

0
* 0

0

0

0

0\

0

0

I

oj

/ft\
ft
ft
ft

\ft/

(O) +

(0
I

0

0

-Q*

0

-H*

0

-H*

0

I -B*

0

0

0

K*
0

0

0

0

0
0

0

0

0

Kt
0

0

0

0

0\

0

0

0

0/

(X)

1 Ύ) \

ft
ft
ftw

-C* 0 0\

ΰ * 0 0

0 0

0 0

o iI

I

0

0

(1) = 0 .

These representations should be compared to those found in [5]
which they generalize under certain conditions.

In addition we note that the problem Ly = Xy has a similar
representation. The only change necessary is to replace Q(t) =

I P(x)dx by Q(t) — λί. The nonhomogeneous problem Ly = f has a
Jo
representation as a nonhomogeneous integral equation with an addi-
tional term

F(t) - Γ
JO

o
0

vo;

(x)dx

on the right side.

3. Fundamental matrices. We can express the homogeneous
integral problem generated by (L — Xl)y — 0 together with the bo-
undary conditions in a more compact way by the expressions

ξ{t) = 5(0)

Bξφ) + Sξ(l) = 0

likewise the adjoint system by

V(t) = VΦ) ~ [dM?(x)y(x) ,
JO

Sη(l) = 0 .

We shall assume in addition that Mλ(t) is regular:
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Mλ(t) = l/2[Mλ(t + ) + Mλ{t-)\ ,

M(0) = ΛΓ(0 + ) , ikf(l) = Af(l—) .

Hildebrandt [4] and Vejvoda and Tvrdy [8] have shown that under
these conditions the first integral equation has a solution given by
ξ(t) = Uλ(0, ί)f(0), where Ufa t) is the uniform limit of Picard-like
approximations beginning with I (hence Uλ is analytic in λ) satisfying

Ufat) = I

Uλ has the additional properties Uλ(t, t) = /, and Uλ(r, t) Ux(s, r) =
Ux(s, t). Uλ is therefore a fundamental matrix when Mλ is absolutely
continuous.

Similarly the adjoint equation has a solution given by r]{t) =
^•(0, t)V(Q)> where F *̂(s, ί) satisfies

Vλfa t)=I-

Vi (ί, ί) = I, Vi.(r, 0 % r) = Vx.(8, t).
Since ikΓΛ is regular, it is possible to show that Uλ and Vλ* are

related through the formula

Ufa t) = F2(ίf β) .

Hence ί7̂ (s, ί)"1 = Fj(s, ί). Regularity, however, is not inherited
from Mλ unless {A+Mλ)

2 = 0. This occurs only when Δ+KA+H = 0,
A+K,A+H = 0, A+KA+H, = 0, A+KίA

+H1 = 0, and will not be necessary.
The fundamental matrices ί7; and Vλ may be easily calculated

in the same way as was done in [5]. If Y(t) is a fundamental
matrix for Y' + PY = 0 satisfying Γ(0) = 7, and

J
dK{z) [

o Jo
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and ^£{}), ^t<>ι{t), ^ΊQ{t), ^£1$) are defined by the same formulae
as £f(t), ,Sfol(t), £flo(t), £fn(t) with only the limits of integration
with respect to x changed to from z to t, then

and

) , t ) =

je

<

rγ(ty

»Y{t)
2Γ(ί)

0

0

-1

e~xtY{t

0

e~xΎ(t

0

0

7

0

0

0

—
—

—

0

7

0

0

0

ext£tf
£?{t)

I

0

Y(t

— ̂

\t)

I

0

0

0

0

7

0

)

0

— eιt£

0

7

) o
0

0

7

0

(ί)

>

/

Γ(ί)^ί(ί)|

0

7

Vλ(0, t) =

By applying the boundary condition of Ux the following theorem
immediately follows.

THEOREM 3.1. If Y{t) is a fundamental matrix for Y' + PY =
0 satisfying F(0) = I, then the system

Ly = Xy ,

Ayφ) + By(l) + [dK(t)y(t) = 0 ,
Jo

is compatible if and only if the rank of

A

Be*Y(l)

-7 0

7 - 5 e a J T ( l )

0 -7)e ; Jr( l ) - 7

0 0

0 -J^o(l)

0

0 -

0 -

7

- =5̂ (1)

is iess ίAα% Sn + r + s. If m = n, the system is compatible if and
only if the determinant of the matrix above is zero.

We shall assume throughout the remainder of this article that
m = n in order to derive eigenfunction expansions under various
conditions.
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4* The Green's matrix* Whenever the homogeneous problem
is not comparable, the nonhomogeneous problem possesses a unique
solution generated by a Green's matrix, just as is the case for the
regular Sturm-Liouville problem. Hildebrandt [4] shows that the
solution to

ζ(t) = \*dMx(8)S(8)
Jo

is given by

ξ(t) = ϋi(0, t)J^(0) + Γ Uλ(s, t)djr(s)
Jo

whenever Δ±^' = 0. Since in our situation ^~(t) = F(t) + <?(0), where
F(t) is absolutely continuous, F\t) = /0(ί) = (/(*λ 0 Of, we find
that the solution can be expressed by

ξ{t) == ϋi(ίf 0)2/(0) + Γ
Jo

If f(1) is calculated and Eζ(0) + Sξ(l) is set equal to 0, ί(0) is de-
termined, and the solution takes the form

?χ(8, t)fo(s)ds ,

where the Green's function <& is given by

Sf,(s, ί) = 17(0, ί)[22 + SC7;(0, lW^ϋiίO, s)~\ s <t,

- - 17(0, t ) [ Λ + S D i ( 0 , l ) ] - ι S U λ ( 0 , l)Uλ(0, s)~\ 8 > t .

This is the same formula as that encountered in the regular Sturm-
Liouville problem. The Green's function ^ possesses the properties,
including the adjoint properties, usually attributed to Green's func-
tions.

We note in particular that λ is in the spectrum of the operator
L if and only if

det [R + SUλ(0, 1)1 = 0 .

Since [R + SUλ(0, 1)] is analytic in λ, this implies that either the
entire complex plane is in the point spectrum of L, or else the
spectrum of L consists only of isolated eigenvalues, accumulating
only at oo.

5* Self-adjoint Stieltjes differential-boundary expansions* It
was shown earlier in [6] that the operator T = iL is self-adjoint in
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^fn

2[0, 1] if and only if
1. P* - - P
2. m = n, r = s.
3. JBΓ= [BD* - AC*]H* a.e.
4. AA* = BB*
5. #[CC* - DD*] = 0 a.e.
6. Kγ — MHt, where M is a nonsingular r x r matrix.

This being the case, then the spectrum of T is contained in the real
axis. Every point with nonzero imaginary part lies in the resolvent.
This implies that det [R + Uλ(0, Ϊ)S] — 0 only at isolated real points
with oo their only limit. An application of the spectral resolution
theorem for self-adjoint operators on a Hubert space results in the
following.

THEOREM 5.1. // T is self-adjoint, then
1. The spectrum of T consists of a denumerable set of real

eigenvalues, accumulating only at oo.
2. Each eigenvalue corresponds to at most n eig en functions.

Eig en functions corresponding to different eigenvalues are orthogonal.
3. For each complex number λ, not an eigenvalue, {T — Xl)~ι

exists and can be represented by a unique linear integral operator

(T - λJΓTΌS) = [Gλ(s, t)f{s)ds .
Jo

4. The Green's function Gλ(s, t) satisfies
a. As a function of t, s Φ t,

(T- \I)Gλ(8,t) = 0 .

b. AGλ{8, 0) + BGλ(s, 1) + [dK(t)Gλ(s, t) = 0
Jo

a.e. in s.
c. \ dKι{t)Gλ{sJ t) = 0 a.e. in s.

Jo

d. Gλ(t, s) = G*(s, t) a.e. in s and t.
e. The eigenfunctions of T are complete in Jίfn

2[0, 1],
If those corresponding to the same eigenvalue have been made or-
thonormal {denote them by {yτ)7), then for all f in ^fn

2[0f 1]

/ = Σ (/, Vi)V*
1

Operators self-adjoint under a transformation are substantially
more complex and will be discussed in a subsequent paper. At this
point the existence of such a transformation except in trivial cases
is doubtful.
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6* Nonself-ad joint Stieltjes differential-boundary expansions*
Expansions for nonself-adjoint systems have been derived in certain
earlier circumstances. First, for the case where H = 0, 22i = 0,
Kλ = 0 or when H = 0, JEZi = 0, K = 0 (the adjoint of the former),
an expansion was derived in [2] using familiar techniques. Second,
when -Hi = 0, ^ = 0 (so r = 0, s = 0) and i ϊ and K are absolutely
continuous, an expansion was derived in [5].

In the present situation troubles arise. The bottom terms in
the matrix of Theorem 3.1 do not all asymptotically have nice
limits as Re(λ)—>oo, a necessary sort of condition previously. For
example, when

Km(t) = 0, 0 ^ t < jr ,
b

the system

Ly = (y + Kll6[y(0) - y(ί)] + KwΨ)'

2/(0) + 2/(1) + [dKmy = 0 ,
Jo

[d[Kilt + Ktlt]y = 0 ,
Jo

has eigenvalues which are zeros of the determinant of

1 - 1 0 0 0 "

0
eU/6 + e5.

0 _ ^ / 6 _ ^

0 0

Q

1

These are λ — (2Λ + ΐ)6πi; k = 0, ± 1 ,
the matrix has a singular limit.

However, the system

Ly = (y + K3lδψy

y(0) + y(l) = 0 ,

1 dKmy = 0 ,
Jo

has as its eigenvalue determining matrix

As Re λ —* — oo, however,
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" 1 1 0 0 0

-eλ 1 0 0 -eλ<2

l + eλ 0 - 1 0 -eλ'2

0 0 0 1 0

-2eλl2 0 0 1 - 1

The eigenvalues are easily seen to be λ = 2kπί, ^ = 0 , ± 1 , •••.
The limit of the matrix above as Re λ —> — oo is nonsingular. Frankly,
the author does not entirely understand what is going on.

It is possible to extend the results of [5] under some rather
severe restrictions. Let us assume that fli = 0 and Kt — 0 so that
a 3 dimensional vector representation (with ξ4 = 0 and ξδ = 0) is
possible. In addition assume that H is continuous (or by considering
the adjoint problem that K is continuous). One system has the form

= (y + H[Cy(0) + Dy(l)])' + Py

Ay(0) + By(l) + [dKy = 0 .
Jo

If y is replaced by y under the invertable transformation y = Yy
(Yf + PY'= 0), then we find the equations Ly = /, Ly~\y are
equivalent to

DY(l)y(l)]J = or -

The new equations are of the same form as the old, with the same
assumptions, with the absence in the second set of the term Py.
This results in an equivalent system in which the terms Y and F" 1

are missing, a considerable simplification in calculation. We shall
henceforth assume that P = 0.

The following lemma is the analog of Lemmas 6.4-6.8 of [5].

LEMMA 6.1. (a) limRe( )̂_0O <%?(t) = 0 a.e.
In particular limReα)-*oo <%?(ΐ) = 0.

(b) K m R e U ) _ ^ [ ^ ( l ) - ^ ( ί ) ] = 0 a.e.
(c) limBeU)^e-λtjr(t) = 0 a.e.

In particular lim^u)-^ e~λSΓ{l) = 0.
(d) limR e U )_ [SΓ(t) ^T(l) - £f(t)\ = 0 a.e.
(e) limR θ U )^ ^t(t) = 0 a.e.

In particular lim^u)-^ *^{X) = 0.

Proof. Let V£ stand for the total variation from a to β.
(a) If 0 < a < ί, then for an appropriate norm
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^vyil^iK
The first can be made less than half of any preassingned ε if a

is sufficiently close to 0. The second is less than ε/2 if Re (λ) is
sufficiently large.

(b) II i

t + δ

when ί <£ ί + 3 <; 1. The second term is less than Vt

t+δ\\ S(f ||. This
can be made less than any ε/2 by choosing δ small. The first is
bounded by e~λδVo\\ έ%f || which becomes small as Re(λ) —>oo.

(c) This is shown by the same technique as was used in (a).

(d)

^ I [
I J z+δ

The second term is bounded by Vϊ\\ 3ίT\\ sup, 7/+ί|| 3ίf \\. Since
£{f is continuous on [0, 1] this can be made uniformly small if δ is
sufficiently close to 0. The first term is then bounded by e~u Vf\\ J>t~ ||
Vl\\S$f\\ which has zero limit as Re(λ)—> oo.

(e) This is shown by the same technique as was used in (d).
It is now possible to determine the location of the eigenvalues

of L.

THEOREM 6.2.

minant of
The eigenvalues of L are the zeros of the deter-

A, =

W + C

- J 0

0 -Dex<Se?(l) - I

If A is nonsingular, they are bounded on the left in the complex
plane. If B is nonsingular, they are bounded on the right in the
complex plane. Hence when both A and B are nonsingular, the
eigenvalues of L be in a vertical strip.

Since det Δx is almost periodic in Im (λ), when A and B are
nonsingular, the number of zeros lying in a vertical strip | Re (λ) | <
h also satisfying ^ < Im (λ) < ά + 1 is bounded by some number
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independent of ^. For any δ > 0 there is a corresponding m(d) >
0 such that

I det Δλ I > m(d)

for λ lying in the strip | Re (λ) | < h and outside circles of radius d
with centers at the zeros of det Δλ.

Proof. An elementary calculation shows, when A is nonsingular,
that as Re (λ) —> — oo, det Δx = (det A + o(l)), which ultimately can-
not be zero. Similarly, using Lemma 6.1, when B is nonsingular, as
Re(λ)~> oo, det Δ1 = — e*(det I? + o(l)), which is also ultimately non-
zero. The final statements follow from [7, pp. 264-269].

We are now in a position to quote directly the results in §6 of
[5]. Please note that the phrases "uniformly in " appearing there
should be replaced by "for all x, ξ in (0, 1)". Actually a.e. will do
fine. Such is our present situation. Assuming A and B are non-
singular, we quote:

THEOREM 6.3. Let λ0 be in the resolvent set for L. Let {λjΓ be
the eigenvalues of L (which for convenience we assume to be simple).
Let {Yi}T and {Zt)T be the associated eig en functions and adjoint
eig en functions, assuming that \ ZfYidx = 1. Then the Green's func-

Jo
tion for L, GλQ(s, t) ~ ^n(sf t) satisfies

ψ- a.β.

The proof is by contour integration using the asymptotic esti-
mates established in this section as well as that in [5, §6], suitably
avoiding the zeros of det Δx as we know is possible.

By integrating GλQ(s, t) f(s) with respect to s before the contour
approaches oo and appealing to the Lebesgue dominated convergence
theorem, we find:

THEOREM 6.4. Let f in <£fn

p[0, 1] be in the domain of L, then

f(t) = ±Yi(t)\1Zt(s)f(s)ds.
i=i JO

COROLLARY 6.5. Iff in £fn

p[0, 1] is in the domain if L and g
in i5^[0, 1] is in the domain of Z,*, then (ParsevaΓs Equality)

\ΰ*(t)f(t)dt = Σ [g*(t)Y&)dt [Zf(s)f(s)ds .
Jo <=i Jo Jo

The problem of expansions in the general case remains open.
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ON THE INNER APERTURE AND INTERSECTIONS
OF CONVEX SETS

D. G. LARMAN

If Cu , Cn are n convex surfaces or sets in d-dimensional
Euclidean space Ed, then it is of some interest to study the invariance
properties of Π?=i (Q + «*) for all choices of vectors α, in E*. Such
considerations occur naturally in identifying an object irrespective of
the direction in which it approaches the observer.

For example, Melzak [2] and Lewis [1] have investigated the
conditions under which the intersection Πi=i (Ct + a%) of certain convex
surfaces always is a single point. These surfaces arise from the work
of Ratcliίf and Hartline [3] concerning varying light intensities upon
different visual elements of the eye.

In this article we study such intersections and in Theorem 1, we
show that the result of Melzak [1] has an associated Helly number in
E2 but not in E3. In Theorem 2 we give a necessary and sufficient
condition for Π?=iC< + at to be nonempty, whenever Cu •••, Cn are
convex sets, in terms of the outward normals. This condition is not
easy to apply in that it involves the outward normals to intersections
of d-membered subsets. So in Theorem 3 we give a sufficient condition
in terms of inner and outer apertures which is widely applicable.
Finally, in Theorem 4, we give a characterization of the sets which
can arise as inner apertures. I am indebted to Z. A. Melzak for
suggesting these problems to me.

To define the inner and outer aperture, let D be a convex subset
of Ed. If I = l(u, Ό),

I - [u + Xv, X ^ 0}

is a typical ray in Ed, u, v e Ed, v Φ O, define

0(λ, D) = dist. {u + Xv, Ed\D)

and

Θ(D) = sup Θ(X)

where

dist. {A, B} = inf \\a - 6||
αei
beB

when A, B are nonempty subsets of Ed. The inner aperture
of D is the union of those rays l(u, v) — u emanating from the origin

219
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o such that θ(l(u, v), D) = + ©o. So, if D contains o, <J^(D) is the
union of those rays I = l(o, u) in D such that λw can be made an
arbitrarily large distance from the boundary of D for λ sufficiently
large. The outer cone 0{D) of D is what is usually known as the
characteristic cone namely the set of all rays l(u, v) — u emanating
from o with l(u, v) contained in D. Both O(D) and J^{D) are convex
cones and 0{D) is closed whenever D is closed. In general, of course,
O(D) can be any convex cone in Ed but this is not the case for ^(Ό).
It will follow from Theorem 4 that <J^(D) is a Gδ-convex cone with
the property that whenever a ray I e cl. {J^(Ό)\\J^(Ό) then the smallest
exposed face F(l) of cl. {^(D)} containing I also is contained in
{cl.

THEOREM 1. Let Cf, « , C ί be n convex sets in Ed whose d-
dίmensional interiors are nonempty and do not contain a line. Let Clf

• , Cn be the convex surfaces bounding C*, , C* respectively. Then
Γ\]=ι (Cj + dj) is at most a single point for all choices al9 , an of
points in Ed if and only if there does not exist n parallel lines of
support llf " ,ln to C*, •••,£* respectively. In E2 this is true if
and only if some four membered subset Cflf , C*4 do not have parallel
lines of support. However, in EB and for every n^S there exist
convex sets Cf, , C*, whose relative interiors do not contain a line,
such that every n — 1 membered subset have parallel lines of support
but this is not so for C*9 , C£.

LEMMA 1. Let Al9 , An be spherically convex subsets (possibly
open, half-open or closed semicircles) of the unit circle S1 such that

Π (K U - K) * 0 , 1 ^ i * ^ w, x> = 1, , 4 .

Then

Γl (4i U -AX)Φ 0 .
* = 1

Proof. We parametrise S1 in terms of the angle θ made with
some fixed line through the origin and consider the semicircular
interval [0, π]. The intersection At U — At with [0, π] is either

(i) an interval (cu d^ not containing either 0 or π,
or (ii) [0, π],
or (iii) two intervals [0, αz >, < bu π], the first containing 0 and

the second containing π.
The classification yields a corresponding subdivision Iu J 2,1 3 of

{1, •-.,%}. Let
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[0, α(l> = Π [0, α<>
iel3

<K> π\ = Π <K A .
If <c, , c?4 > and <c, , d/>, i, j e ii both meet [0, α^) and

1 i ) <cif dty n <cif di> n [o, αiχ> - 0

then at least one of these intervals is contained in [0, ah). But then

(At U - A<) Π (Ay U - As) n (A<1 U - Ah) n (A,2 U - Ai2)

is contained in [0, ah} U — [0, αH> and consequently, by (1), is empty,
which is contradiction. So, if

I,1 = {i e I,: (clf d,} Π [0, ah} Φ 0}

we have, from Helly's theorem, that

( 2 ) [o, α<1> n n<c« d<y Φ 0 .

Similarly, if

€ Λ: <co d,> n <bh, π] Φ 0}

% π] n Π <c<f d*> * 0

If there exists i^el^H and i 4elA/i then

Π ^ , v U - A ί v = 0 ,

so either Jί = Jx or /ί = Jx and, using (2) and (3),

n A< u - A, Φ 0 .
4 = 1

REMARK. This is the best possible result for if A, = [0, ττ/2], A, =
[ττ/4, 3τr/4], 4 3 = [π/2, π], A, = [3ττ4, 5τr/4] then

f | i f > U - A<p Ψ 0, 1 ^ ix < % < it ^ 4

but

h At U - A, = 0 .
i=i

LEMMA 2. TΛere exist n closed spherically convex two dimensional
subsets Dl9 , Dn on S2, none of which contain antipodal points^
such that for every n — 1 membered subset Dh, , Di%_x there exists



222 D. G. LARMAN

a great circle of S2 which meets each Diu, but there does not exist a
great circle meeting each of Dlf , Dn.

Proof. In [4], Santalo constructs, for each n ^ 3, a family of
n compact convex two dimensional sets Fu , Fn in E2 so that each
n — 1 members of the family admit a common transversal but the
entire family does not have a common transversal. We mention that
such an example is the family of n circular discs whose centers have
polar coordinates p = 1 and θ — 2kπ/n, k = 1, , n and whose radii
are all equal to cos2 π/n or cos2 π/n + cos2 π/2n — 1 according as whether
n is even or odd.

Now, if we place the configuration Fu , Fn into a plane tangent
to S2, let Dl9 , Dn be the corresponding closed spherically convex
subsets of S2 obtained by the projection of Fu , F% into S2 from
the origin. Clearly D19 , Dn satisfy the requirements of the lemma.

Proof of Theorem 1. The proof of the first part is essentially
due to Melzak [1] but as he makes the restriction that d = n we
repeat the details.

If there exist n parallel lines of support ll9 , ln to C*9 , C£
respectively then by translating the line lό into the relative interior
of Cj if necessary, j = 1, , n we obtain n nondegenerate similarly
orientated chords [p3 , qj] of C* parallel to ls such that

Hence, if aό = pt - p3, j = 1, , n

PIC; + asz>{pl9 gj

and so contains at least two points.
On the other hand, if there exist vectors ajf j = 1, •••, w such

that Π*=i Q + α i contains at least two points say p, q then, by
considering two dimensional sections of Ch C3 has a line of support
lj parallel to [p, q] and hence ll9 , ln are parallel lines of support
to Cl9 , Cn respectively which completes the proof of the first part.

In E2 we may select a set At of unit tangent vectors u to C*
by ensuring that the outward normal lies on the left hand side of
u when viewed from the point of contact on C, in a clockwise direction.
Then At is a spherically convex subset of S1 which is either S1 or is
contained in semicircle according to whether or not Ct is bounded.
Now Cf9 •••, d do not have parallel lines of support if and only if

n Ui u - At) = 0 .
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This, by Lemma 1, is true if and only if there exists some four
membered subset of C*, , C* which do not possess parallel lines of
support which completes the proof of the second part of the theorem.

In E3 and for each n >̂ 2 consider the n closed spherically convex
subsets Dl9 , Dn of S2 afforded by Lemma 2. If <, > denotes scalar
product consider the set of closed half-spaces ^ such that H~~ e βέζ if

H~ — {x: <x, u) <̂  1} for some ue Di .

Let

Ct = ΠH- , i = l, ..,n.

Then Dt is the set of outward normals to C* and so as Dt is two
dimensional, Cf does not contain a line, i = 1, , n. Also for every
n — 1 membered subset C?., , C*n_1 of Cu , Cn the corresponding
set of outward normals Dh, , ΰ ^ all meet some great sphere S =
S(ilf •• ,ΐ»-i) Consequently, if ϊ is a line perpendicular to aff. S,
Ch> '' * 9 Cin-i e a c ^ Possess lines of support parallel to I.

On the other hand, if Clf , Cw possess parallel lines of support
then there would exist a great sphers S1 of S2 which meets each of
Dlf •••, Dn which, by Lemma 2, is not so. Hence Cl9 •••, Cn do not
possess parallel lines of support, which completes the proof of
Theorem 1.

We observe the following lemma which is easily established by
separating two disjoint convex sets by a hyperplane.

LEMMA 3. Two convex sets Cu C2 in Ed cannot he separated by
translation if and only if N(C^) Π ( — N(C2)) — o, where N(Ci) is the
convex cone of outward normals to Ci9 i = 1, 2.

Using Helly's theorem we readily verify the following lemma.

LEMMA 4. If Cu •••, Cn are convex sets in Ed, then Π?=i(^i +
«<) ̂  0 for att points au , an in Ed if and only if Π?ίί (Civ + at) Φ
0 for all points alf , an in Ed and for every d + 1 membered
subset {Ctχ±l of {C%)U.

Using Lemmas 3 and 4 we obtain

THEOREM 2. If Clf , Cn are convex sets in Ed then n?=i(C< +
«Ϊ) ^ 0 for all points aly an in Ed if and only if

d + l

{-N(Ch)}πN(\jcΛ= 0
\y=2 /
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for all d + 1 membered subcollections {Cy£ί} of

However, this condition is not completely satisfactory in that
N(\Jd

υ±\Ci) is a function of \JHlCiu rather than a combination of
functions of each C v We shall resolve this problem to a certain
extent in Theorem 3 by giving a widely applicable sufficient condition.

T H E O R E M 3. Let Cu •••, Cn be n convex sets in Ed. Then

( 4 ) ΓHCi + aJ* 0
ί = l

for all choices of au , an if there exists j such that

d+i

θ(ci. d) n Π ̂ (co Φ 0

for all d + 1 membered subcollections {Civ}tH of {CJ-U. Further, if

at least of cl. Clf , cl. Cn does not contain a line, each is unbounded

and Cu •••, CΛ cannot be separated by translation, i.e., (4) holds for

all au --, an then

Γl O(cl. Cs) Φ 0 .
5 = 1

Proof. Let I be a ray of O(cl. Cs) Π Π?=i ^(C7i) which, by Helly's
theorem, is nonempty. We may suppose, without loss of generality,
that oeC.f] n C r Then, if au , an are points of Ed,

I + ciiCiCi + at , i = 1, , w

If i = {λιι, λ ;> 0}, then, as ί c ^(Ct), i Φ j, there exists λέ such that
Xu + αy is in Ct9 λ ^ λt.

So, if λ* = max^i^ Xif

n

λ*% + aά e Π C* as required .
i=i

To prove the second part, let C? denote the closure of Ci9 i = 1,
• , w. We may assume that Cx and C* do not contain a line and
that for some n, ΓXl=l C* is unbounded, which is certainly true for
n = 2. As Π S 1 C* is convex closed and unbounded it follows that
0{f\i=lCf) is nonempty. Further, as Π & C * is contained in Cί,
Π?^!1 CT and O(Π?=i Cί) do not contain a line. Let I be a ray of
O(Πi=iι Cί), say I = {λw, λ ^ 0}. If O(Π?=i C?) is empty then, in par-
ticular, n?=iC? must be a compact convex set.

If λ ^ 0,

w—l

+ n c« c n σ,,
i
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and consequently,

(5) (λii + Tic) ncm = (xu + mftct) n (n cλ .

If no matter how large X is taken, (Xu + ΠT^l1 C%) Π Cm contains a
point z(λ) say then, by (5), z(X) is confined to a compact set ΠΓ=i Gi

and z(λ) - λw € flί^1 Cif X ^ 0. It follows that - ί is a ray of Oίf lS 1 C*)
which is a contradiction to C* not containing a line. So f\ΐLiC* is
an unbounded closed convex set and hence O(f\T=i Cf) is nonempty. So
repeating this process for m = 1, 2, , n we conclude that O(Π?=i C?)
is nonempty as required.

DEFINITION. We say that a collection Sίf of closed half-spaces
in Ed is closed if whenever {iZrJli! is a sequence of closed half-spaces
in 2F, where

Hj — {x: <x, M,> ^ α j , u{ a unit vector ,

and ut —> M, oίi ~> α as i —> oo then the closed half-space

Jϊ- = {x: <x, M> ^ a}

is in ^ We say that a collection ^ of closed half-spaces is Fσ

if it is the countable union of closed collections.
If £tf is a closed collection of closed half-spaces notice that the

set Uπ-eat- H, where H is the bounding hyperplane of H~, is a closed
set and consequently C\H-ZW int H~ is a relatively open subset of

THEOREM 4. A seί C m Ed is the inner aperture of some convex
subset of Ed if and only if

C = o U Π int. Ήr

where Sff is an Fσ-collection of closed half-spaces and oe H, the
bounding hyperplane of H~, for all H~ e

REMARK. SO, in particular, C has to be a (-^-convex cone with
apex the origin such that if x e {cl. C}\C then the smallest exposed
face F(x) of cl. C that contains x is also contained in {cl. C}\C. In
Ez the converse is also true.

Proof. We shall assume that the theorem is true in d — 1 dimen-
sions, the theorem being trivial for d = 1.

(i) Necessity. Let C be the inner aperture of some convex set
D in Ed where, since ^{D) = _>^(cl. 2>) we may suppose that D is
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closed. If D = Ed then C = Ed and, by convention,

C = Γl int. I T - #<*

where Sίf is the empty set of closed half-spaces.
Otherwise D Φ Ed and so possesses at least one hyperplane of

support M say with D contained in the closed half-space M~. We
may suppose, without loss of generality, that oe M. If D contains
a (maximal) linear subspace L of dimension at least one then LaM
and

D= F+ L

where F is a closed convex subset of L1. By the inductive assumption
the inner aperture ^(F) of F can be written

oΌΠ int. if*~

where Jg^* is a closed subset of the closed half-spaces in L 1 . Then

C = oΌΠ int . Ήr

where Sίf is the closed collection of closed half-spaces in Ed formed
by taking H~ in J T if

H- = L + H*-

where JHΓ*" e <^*.
If D does not contain a line then the set of rays in D is a closed

convex cone K which has a hyperplane of support say {xd = 0} with

κn{xd = 0} = o .

Let τrv denote the hyperplane xd = v, v ^ 0. Let i be a typical ray
of K,

av(l) = dist. {(tav),

and

= sup av(l) .

By considering two dimensional sections through I it is easily verified
that aχi) increases with v. Also

laC if and only if a{ΐ) = + oo .

So, if

C< = {I: I is a ray in K, a(l) > %} ,
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then

(6) C=ΠCt.
i

Now CiK, i = 1, 2, and

( 7 ) K = o U Π int. Ήr

where Sff is the collection of closed half-spaces, whose bounding
hyperplanes contain o, such that K\o c i n t . H~. If K = Kf) Sd~\
let ^ * denote the closed set of the closed half-spaces H~,

H- = {x: (x, u} ^ 0}

where

<-iι, k) £ - 2~3' , for all k e K .

Then 3(f = JJ~=i ^ * and so, using (6), (7) it is enough to show that

Ct = iΓnpint. H-

where Sίf\ is a closed collection of closed half-spaces of Ed whose
bounding hyperplanes goes through o.

Suppose now that I is a ray of K\Ct. Then

a(l) ^ i .

For j = 1, 2, , there exist points α1? α2, , with α, e πά Π bdy. D
such that

(8) \\a — {π f) l}\\ < ί

Let JSy denote a hyperplane of support to D at α̂  , with D c ίfj". As
we may suppose that KΦ o, fl, is not parallel to the hyperplane ττx.
So fly ΓΊ τιι is a line in 7rle If we consider the two plane σά through I
and dj then fly meets σβ in a line lj. As Zy supports ŷ Π A it follows,
using (8), that

( 9 ) |U π ^ " - " Z Π ^ I I ^ i

Consequently the (d — 2) affine space π1 f] H3 lies within a distance ί
of I Π 7Γ1# So we may suppose, by picking subsequences if necessary,
that π1 n Hj —>π1C\H0 as j —> oo and lά f] πγ tends to a point which,
with a view to later developments, we denote by l0 Π Ki. Let the line
through the points aά and 13 Π ̂ i be ϊ/, j" = 1, 2, . As (8), (9) hold,
If converges to a line l0 through lQ n ^x and parallel to I. Consequently
Hj —• fl0 as i ~> oo. So JD c ίZo" and
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(10) i l ^ n ί o - ^ n ϊ l l = β ^ i 9 ΐ f v ^ o f

β a constant. We claim that

H^ + {πj, - πj,o} = Ho~ say ,

contains K and HI supports K and passes through o. Certainly

(11) I a Ή

and so Hi passes through o. If there exists a ray ϊ* in K\Hί>~, then
Z* meets Ho which contradicts DczH^.

Now let <%t denote those closed half-spaces H~ such that the
bounding hyperplane H supports K and there exists a closed half-
space H*- containing H" such that H* supports D; H* is parallel to
H and a distance, in the hyperplane πl9 at most i from H.

By (11),

(12) C^Kf] flint. fί~ ,

where ^ is a closed set of closed half-spaces.
Conversely, if I is a ray of

K\{K n Π int. H-)
2?

then there exists H~ in ^gt such that laH. Then there exists a
closed half-space ί P ~ which contains D such that H* is parallel to
i ϊ and the distance between H and H* is at most i. Consequently

and so I ςt Ct. Hence

(13) C.c i fΠ Π int. H- .

Combining (12) and (3),

C^KnΠίnt.H-

which completes the proof of the necessity of the conditions.

(ii) Sufficiency. Suppose now that

C = o U Π int. H~

where Sίf is an ^-collection of closed half-spaces and o e H for all
R- e Sίf. So we may write Sίf = UΓ=i ̂ t where the Sίft form an
increasing sequence of closed collections.

Consider the closed convex cone
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Co = cl. C = Π H- .

If Co = Ed then C = Ed and C is its own inner aperture. Otherwise
Co possesses one hyperplane of support M through o with Co contained
in the closed half-space M~. If Mf]C0 contains a maximal linear
subspace L of dimension at least 1 then we may write Co = F + L
where F is a proper closed convex cone in L, Notice that LaHfor
each H~ e 3ίf and consequently we may write

Ή- = L + H*- for each H~ e SίT,

where H*~ is a closed half-space in L whose bounding hyperplane H*
passes through o. Consequently

C-oU{{Π int. #*-} + L) .

By the inductive assumption, there exists a closed convex set D* in
L such that

o U Q int. H*-

is the inner aperture of ί>* in L. Let

D = D* + L

and then C is the inner aperture of D.
Henceforth therefore we may suppose that Co is a proper closed

convex cone in Ed i.e., Co does not contain a line and we can also
suppose that the ray

is in Co and that the hyperplane π0 = {xd = 0} supports Co with 7Γ0 n Co =
o. Then, as for K in the proof of necessity,

Co = o U Π int. if-

where Sίf* is a closed set of closed half-spaces whose bounding hyper-
planes pass through o. We may suppose that

and let

Ci = o U Π int. H~ , £ = 0, 1, 2, .

We shall produce inductively a nested sequence of closed convex sets
{C*}i=o such that C< is the inner aperture of C* and indeed
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(14) c,*+ι = c? n n H*-, % ^ o

where, if H~ e Sffi then H*~ is that closed half-space containing Ήr
such that H* and i ϊ are parallel and at a distance i apart in the
hyperplane πλ.

We begin the induction by taking

Co* = {JC = (xl9 , xd), xd^0 and dist. (AT, CO Π πXd) ^ α#2} .

Clearly Co* is closed and it is convex since, from above, Co* ΓΊ π v is
convex, v ^ 0 and so Co* cannot possess a point of concavity. We
shall show that

(15) ^ ( C * ) - Co .

First notice that if u = (uu , ud) is a unit vector in Co then ud >
0. So, if I — {Xu: λ ^ 0} is the corresponding ray in Co

0λ = aλ%i(ΐ) ^ l / λ ^ 7 > 0 .

So, if m is a positive number

(16) θλ^ m

provided m2/ud ^ λ. It is an almost immediate consequence of (16)
that I c ^(C o *) and hence Co c ^ ( C o * ) .

Suppose next that the ray

V = {λr, λ ^ 0}

is not in Co. If vd g 0 then Xv $ C* for all λ > 0 and then certainly
V <£ ^(Q). If vd > 0 then V Π ̂  is a single point for each v ^ 0
and there exists rj > 0 such that

dist. (r, Co n πVd) > η .

So

(17) dist. (λi;, Coπλυd) > Xη .

But, if V c ^(C*) then, in particular, λi; e Co* for each X ^ 0. So

(18) dist. (λι>, CoTΓ,̂ ) ^ (λi;,)1/2, λ ^ 0 .

However, provided X > vd\rf it follows from (17) that (18) is false.
Consequently V (£ ^(C o *) which establishes (15).

Suppose inductively that for some m ^ 1 we have constructed m
closed convex sets Co*, , C£_i in Ed with C< being the inner aperture
of Cf, i = 0, , m — 1. Indeed,
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(19) Cf+ί = Cϊ Π Π H*- , i = 0, 1, . , m - 2 ,

where, if H~ e ^ + 1 then ϋP~ is that closed half-space containing H~
such that i ϊ* and if are parallel and at a distance i + 1 apart in
the plane πlm

For each H~ e £ί?m, let iϊ*~ be that closed half-space containing
Ήr such that H* and if are parallel and at a distance m apart in
the plane πx. Define

(20) C* - C*^ Π Π ίf*~

We claim that the inner aperture of C* is Cm i.e.,

(21) ^ ( C * ) - CM .

If 2 is a ray of Co not in Cm then I is in some hyperplane H where
Ήr e β^m. Consequently, by considering the corresponding closed half-
space if*", we deduce that a (I) <£ m, and so I qL ̂ (Ci). Hence

On the other hand, suppose that I e Cm. That the set

\JH* = Hm say

is a closed set and does not meet the ray l\o. As each hyperplane
H, with Ήr e 3ίfmy passes through o, it follows that

(22) dist. (I n πv, £Γm) > + oo as v > + oo .

Also I G ̂ (Cϊ^j.) and so

(23) dist. (I n πV9 Ed\Ct_x) > + oo as v > + oo .

Consequently using (20), (22), (23),

dist. (I n πv, Ed\Ct) • + oo as v > + oo .

Therefore, I c ^(C*) and so Cm c ^ ( C * ) which completes the verifica-
tion of (21).

The results (20), (21) verify (19) for m and we can now suppose
that the C* have been defined so that (20), (21) hold for m = 0, 1, 2,
• . Define

and we shall show that ^F(C*) = C.
Suppose that I is a ray of CQ not in ^(C*). Then there exists

m such that au(l) ^m,v^Q. So I is not in ^ ( C * + ι ) = Cm+1. Con-
sequently I is not in C. So
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On the other hand, suppose that I is a ray of Co which is not in
C. Then I is not in Cm for some m ^ 0. So

Hence ^(C*) c C and this finally establishes that

which completes the proof of Theorem 4.
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ON THE REGULARITY OF THE /^-INTEGRAL
AND ITS APPLICATION TO SUMMABLE

TRIGONOMETRIC SERIES

S. N. MϋKHOPADHYAY

The symmetric P2m-integral (and P2w+1-integral) as defined
by R. D. James in "Generalized nth primitives", Trans. Amer.
Math, Soc, 76 (1954), is useful to solve problems relating to
trigonometric series (see R. D. James: Summable trigonometric
series, Pacific J. Math., 6 (1956)). But the definition of the
integral is not valid, since Lemma 5.1 of the former paper
of James, which is the basis of the whole theory, is incom-
plete due to the fact that the difference of two functions
having property B2m-2 may not have this property. Therefore,
all the subsequent results of James also remain incomplete
and a complete systematic definition of the integral is needed.

In the present paper a definition of the P2m-integral (and
P2m+1-integral) is given and it is shown that all the results
of the later paper of James remain valid with this integral.

1* Definitions and Notations* Most of the definitions and

notations of [8] will be used with essential modifications. The gener-
alized symmetric derivative [8] (also called symmetric de La Vallee
Poussin derivative [18]) of even and odd orders and the generalized
unsymmetric derivative [8] (also called Peano derivative [13] or
unsymmetric de La Vallee Poussin derivative [11]) of a function/at
xQ will be denoted by Drf(xQ) and /<r)(cc0) respectively, where r denotes
the order of the respective derivatives. If D2kf(x0) exists, 0 <̂  k <£
m - 1, define Θ2m(f; x0, h) by

- J ^ M / ; *o, h) = ±{f(x0 + h)+ f(xQ - h) - g ^

The upper generalized symmetric derivate of / at x0 of order 2m is
defined as

D2mf(x0) = lim sup θzm(f; xQ, h) .
A->0

Replacing Ίimsup' by Ίiminf one gets the definition of D2mf(xQ).
The function / is said to satisfy the property <9im at xQ, written

a s / e ^ m ( £ 0 ) , if

lim sup hθ2m(f; x0, h) >̂ 0 ,

and fe£$m(x0) if — fe^ζm(x0). The function / is said to be smooth

233
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at xQ of order 2m if

limhθ2m(f;x0, h) = 0 .
h-*0

Clearly smoothness of order 2m implies smoothness of order 2m — 2

and if / is smooth at x0 of order 2m then fe<9ζm(x0) Π S^m(Xo)- For

symmetric derivatives of odd order, 02w+1(/; xQ, h), D2m+1f(x0), D2m+1f(x0),

£%m+i(x0), ̂ m+i(%o) are defined analogously.
If f(r)(x0) exists, 0 ^ r ^ n — 1, 7n(/; α?0, &) is defined as

-^7 M (/ ; as,, h) = /(<cβ + Λ) - Σ - ^ / U * . )

The upper generalized unsymmetric derivate of / at xQ of order n is
defined as

/<»>(«<>) = lim sup 7Λ(/; a?0, h)

with a similar definition for f{n)(x0). By restricting h suitably one can
define one-sided derivates which are denoted by fw(xo)9 etc. For
convenience, the first order derivates /(D(#O)>/U)(#O)> etc., will be denoted
simply by f(x0), f+(xQ), etc. The ordinary nth derivative of / at x0

will be denoted by f{n){xQ).

A function / is said to satisfy the property & in an interval J,
written / e ^ ? in /, if for every perfect set P c ί , there is a portion
of P in which / restricted to P is continuous (see [17]). A function
/ i s said to satisfy the property Jf in (α, 6), written / G ^ 7 ^ in (α, b),
if there exists a function F continuous in [α, b] such that i ^ ) = / in
(α, δ) for some n. The class of all Darboux functions will be denoted
by &. From the properties of Darboux functions it follows that if
D2kfe^f and if g is continuous then D2kf + ge &. This fact will
be used in the sequel. For the definition of ^-convex functions we
refer to [8, 1].

We now come to the definition of major and minor functions. Let
/ be defined in (α, 6) and let a = aι < a2 < < a2m = b. A function
Q is said to be a P2m-major function or simply a major function of /
over (a^ 1 ^ i :g 2m) if

( i ) Q is continuous in [α, 6],
(ii) D2m-2Q exists and D2k e & Π J^~ in (α, &), 0 ^ fc ^ m - 1,
(iii) Q(at) = 0, 1 ^ i ^ 2m,
(iv) D2mQ ^ / a.e. in (α, 6),
( v ) u 2 m Q > — oo, except on an enumerable set Ea(a, 6),
(vi) Q is smooth of order 2m on E.

The function q is a minor function of / if — q is a major function of
—/. The P2w+1-major functions and P2m+1-minor functions are defined
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similarly.
This definition of major and minor functions differs from that of

James [8] in allowing certain exceptional sets in (iv) and (v). But
this is standard and is also noted by James in his modified definition
of the P2m-integral [9]. Another difference is in condition (ii) where
we are assuming D2kQ e & Π ̂ ~ instead of James' [8] requirement
that Q has properties A2m and B2m_2. (The property & is weaker
than A2m by Lemma 3.2 of [8] and the property ^~ is stronger than
#2m-2 by Lemma 8.1 of [8] or by Theorem 2 of [13].) But this is
necessary since the difference of two functions in & Π J7~ is in
& Π ̂ Γ which is not true with the property B2m_2. We shall prove
in the sequel that this is a proper definition of major and minor func-
tions and the P2 w-integral defined by these major and minor functions
is capable of handling trigonometric series.

2* Preliminary lemmas,

LEMMA 2.1. If f is smooth of order 2m + 1, as well as of order
2m + 2, at x0 then f(2m)(x0) exists. If fin)(xQ) exists then f is smooth
of order n + 1. More generally, i//<ΐ+i)fo),/(ή+1)(ce0), fά+ί)(x0), fά+ι)(χo)
are all finite, then

lim sup hθn+2(f; x0, h) ^ 2L±A{f++1)(χ0) - /(-+1J(α0)}

lim inf hθn+2(f; x0, h) ^ 2L±1 {/++1)(a;0) - /i;+1,(a;0)} .
h0 2 "

Proof. The first part is clear. For the last part, since f{n)(x0)
exists, Drf(x0) exists, 0 ^ r <̂  n, and

(2-1) γ{7.+ 1(/; xQ, h) + 7n+1(/; α0, -h)} = θn+1(f; Xθf h)

4 { 7 % + l ( / ; x- h) - y»M ̂  ~h^ =
n

From (2.1)

lim hθn+1(f; x0, h) = 0 ,

and from (2.2)

n ~\~ 2
o { f i+i)
Δ

The other relation follows similarly.

~ fΓn+i)M) ^ lim inf hθn+2(f; χ09 h) .
h0
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LEMMA 2.2. If Or<w.-i>(α?o) and DnG(x0) exist and if Ge
then the function ωn+1(G; x0, h) defined by

(2.3) hn+1 ωn+ί(G; x0, h) = G(xQ + Λ) - Σ - ^ G ( r )(n + 1)! * =o r!

satisfies the relation

lim sup α>Λ+1(Cr; #0, λ) ^ 1™ inf ωn+1(G; x0, h) .
Λ-»0+ λ-»0-

Proof. Since

ωΛ + 1(G; a?o, h) - ωΛ + 1(G; α?0, - λ ) = — — Θ n + 2 { G ) x0, h) ,
n + 2

and since (? e <5<+2(x0), the proof is immediate.

LEMMA 2.3. // fin) exists in (α, b) and xoe(a, b) then

(2.4) (/ (.))+(O ^ /(ΐ+i)(*o), /ί+i)(a?o) ^ (/(.))+fe) , etc.

(2.5) (yy(α;0) ^ ΰ^+1/(α;0), D^f(x0) £ (fn))(x0) .

Proof. If n = 0 this is immediate. Suppose w ^ 1. Then / is
continuous in (a, b). Let xQe[a, β]cz(a, b). Then each fk) is C&-
continuous in [a, β], 0 <, k ^ n, by Lemma 11.1 of [8]. From the
definition of Cesaro derivative (see [4]) we have CnD

+f{n)(x0) = f^+1)(x0)f
where CnD

+f{n)(x0) is the right hand upper nth Cesaro derivate of fln)

at xQm Since C0D
+fin)(x0) is the first order derivate (/U))+0EO)> (2.4)

follows from Theorem 2.1 of [4]. Lastly, from (2.1), Dn+ιf(xQ) ^
/(»+i>(&o) and hence (2.5) follows from (2.4).

LEMMA 2.4. Let g be continuous in [α, b] and D2g Ξ> 0 in (α, 6),

except on an enumerable set E c (a, b) and let g e S^(x) for xe E. Then

g is convex in [α, b].

This is proved in [19, I, p. 328], which sharpens a result of de La

Vallee Poussin (see [16, Lemma 3]).

3* 2m-convex functions* In this section and in §4, the results
are stated in a more general form than is necessary for P2m-major
and P2m+1-major functions. Since every member in j?~ possesses
Darboux property [13], we have ^~ Π & c ϋ ^ Π ̂  and hence these
results are applicable in §§5 and 6.

THEOREM 3.1, 2m. Suppose that
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( i ) f is continuous in [α, 6],
(ii) D2m~2f exists and D2kfe & Π & in {a, δ), 0 ^ k ^ m - 1,
(iii) Dlmf^ 0 m (α, δ), except on an enumerable set Ec.{a, δ),
(iv) / G ί ς ( « ) /or α e # .

J[)2m~2/ is cowyecc m (α, 6) cmcZ iί is £/̂ £ continuous derivative

The above theorem is true for m = 1 by Lemma 2.4. So, we
assume that the theorem is true for m = m0 i.e., Theorem 3.1, 2m0

is true and we prove that Theorem 3.1, 2 (m0 + 1) is also true and
so the theorem will be proved to be true for all m by induction on
m. We require the following auxiliary lemmas:

LEMMA 3.1, 2m0. Suppose that
( i ) G is continuous in [a, 6],
(ii) D2m°G exists in (α, b) and is Jΐf-integrable in [<z, 6],
(iii) D2kG G & Π & in (a,b), 0 ^ k ^ m0 - 1.

Then Ψ — G is a polynomial of degree at most 2m0 — 1 in [α, 6], where

(2m0 — 2)

g(x) - \'D2m°G(t)dt
Ja

and G(2m°~υ exists and is continuous in (a, b).

Proof. As in [10, Theorem 18], one can construct a sequence of
continuous functions {At} which converges uniformly to g in [α, b] as
ί —> oo and for all £

(AOίaO > D2^G(x) , xe(a,b) .

For each i, define

1 oM Γ ( x - ί ) ' " 0 " ^ ^ ) * - xe[a,b].

Then {Ui} converges uniformly to Ψ in [α, 6] as i —* oo. Since At is
continuous, taking (2m0 — l)th derivative

(x) = A<(x) , xe(a,b).

So, by (2.5) we have

(3.1 {AMx) = (Uj*»°-»)(χ) ^ D^U.ix) , xe(a,b) .

Since by construction (Aj)(x) > D2m°G(x) for x e (α, ό),
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(3.2) D2^[Ut - G](x) > D^U^x) - (AJ(x) , xe(a,b).

Hence from (3.1) and (3.2)

t - G](x) > 0 , a?e(α, 6) .

Since D2kGe & Π & and DikUt is continuous in (α, δ) f or 0 ^ k g
m0 - 1, jD2*[Z7t - G] G ̂  Π & in (α, δ) for 0 ^ A; ̂  m0 - 1. Hence by
Theorem 3.1, 2m0, D2m°-2[£7; - G] is convex in (α, δ) and so Ut - G is
2m0-convex in (α, δ) and by the continuity, Ut — G is 2m0-convex in
[α, δ]. Since Ut — G converges uniformly to Ψ — G in [α, δ], Ψ — G
is 2m0-convex in [α, δ]. It can be similarly shown that Ψ — G is 2m0-
concave in [α, δ]. Hence Ψ — G is a polynomial of degree at most
2m0 — 1. Since Ψ{2mo-v exists and is continuous, G(2m°~υ also exists and
is continuous in (α, δ).

LEMMA 3.2, 2m0. Let G be continuous in [α, δ] and let D2m°G
exist in (α, δ) and be Jίf-integrable in [α, δ]. Let G(2m°~1) exist and
be continuous in (α, δ). // D2m°G attains a maximum at xoe(a, b)
then

lim sup ω2mo+1(G; x0, h) £ 0 ^ lim inf ω2mo+1(G; xQ, h) ,

where ω is the function defined in (2.3) with n = 2mQ.

Proof. Let

J(x) = Γ D2m»G(t)dt , xe[a,b].

Then by Lemma 3.1, 2m0 J - G(2m°~υ is constant. Since G(2m°~υ is
continuous in (α, δ), by mean value property, for any h, 0 < h < b — x0,
there is η, 0 < η < 1, such that

« W i ( G ; χOf h) = -A—{G{2m*-ι)(x0 + ηh) -

2 {D*m°G{t) - D2m°G(x0)}dt.
*0

Therefore, since D2m°G is maximum a t x0,

lim sup α)2 w o +i(G; x0, h) <L 0 .

The other part follows similarly.

LEMMA 3.3, 2m0. Suppose that
( i ) F is continuous in [α, δ],
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(ii) D2m°~2F exists and D2kFe &r Π & in (α, 6), 0 £ k £ m0 - 1,
(iii) D2m°F Ξ> 0 in (α, 6), except on an enumerable set Ec (a, b),

(iv) FeSΪmQ(x) for xeE.
Then

θ2mo(F; x,h)^0, for all x, h, a < x — h < x + h < b .

LEMMA 3.4, 2m0. Suppose that
( i ) G is continuous in [a, b],
(ii) D2m*G exists and D2kG e & Π & in (α, 6), 0 ^ fc ^ m0,
(iii) D2m°G attains a maximum at x0 e (a, b).

Then

D2mQ+2G(x0) ^ 0 .

The proof of Lemma 3.3, 2m0 is similar to that of Lemma 4.1, 2m0

of [8]. Lemma 3.4, 2m0 can be proved by using Lemma 3.3, 2m0 in
the same manner as in Lemma 4.2, 2m0 of [8].

LEMMA 3.5, 2m0. Suppose that
( i ) f is continuous in [a, b],
(ii) DZw*f exists and D2kfe & Π & in (a, 6), 0 ^ k ^ m0,
(iii) DZm°+2f^ 0 m (α, 6), except on an enumerable set Ea(a, b),
(iv) feSίmo+2(x) for xeE,
( v ) D2m°f is upper semicontinuous in (a, b) and ^f-integrable

in [α, 6].
Then D2m°f is convex in (a, b).

Proof. We first consider the special case when the inequality in
{iii) is strict inequality. Suppose that D2m°f is not convex in (α, b).
Then there is a subinterval [a, β] c (α, b) such that

ρ(x) = D2m°f(x) - —-— { (β - x)D2m°f(a) + (x - a)D2m«f(β)}
β — a

= D2m»f(x) - px - q

takes positive values somewhere in (α, β). Since p is upper semi-
continuous in [a, β] and p{a) = p(β) = 0, p attains maximum in (a, β).
So, if μ is sufficiently near to p then the function D2M°G, where

- q-Γ (2m0 + 1)! (2m,)!

also attains its maximum in (a, β), say, at xμ. Hence by Lemma
θ.4, 2m0
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D2m«+2G(xμ) = D2m°+2f(xμ) £ 0 .

Hence xμ e E. Now G satisfies the hypotheses of Lemma 3.1, 2m0 and

hence G{2m*~ι) exists and is continuous in (α, 6). Also since / e

for xeE, GeSΪmQ+2(xμ). Hence by Lemma 2.2

lim sup ω2 +1(G; xμ, h) ^ lim inf ω2 +ί(G; xμ, h)
h0+ λ > 0

where ω is the function as defined in (2.3) with n = 2mQf xQ = xμ. But
by Lemma 3.2, 2m0, since D2m°G is maximum at xμ,

lim sup ω2 +1(G; xμ, h) <: 0 ^ lim inf ω2 +ί(G; xμ, h)

and hence

lim inf ω2mQ+1(G; xμ, h) = 0

lim inf ω2mo+1(/; αĵ , h) = μ .

Thus for each μ sufficiently near to p there exists xμeE and for
different μ the points xμ are also different. This contradicts the fact
that E is enumerable.

To complete the proof, consider, for arbitrary ε > 0, the function
gε where

*.v~, , v~, • - ^ ^ + 2 ) ;

Then by the above special case, D2m°gε is convex in (a, b) and since ε
is arbitrary, D2m°f is convex in (α, δ), completing the proof.

Proof of Theorem 3.1, 2 (mo + l) . To prove the theorem we remark
that under the hypotheses, if D2m°f is continuous in an interval (a, β) c
(α, δ), then by Lemma 3.1, 2m0, f^^-^ exists and is continuous in (α, β)
and so by Lemma 7 of [18], D2m°f is the continuous ordinary deriva-
tive / ( 2 m o ) in (a, β). Hence applying the mean value property it can
be shown that D2(f{2mG)) ^ D2mo+2f and that /(2m°> e Jf(a?) if fe St^^x)
for points in (α, /S) and so by Lemma 2.4, / ( 2 w o ) is convex in (a, β).

Let U be the set of all points x in (α, δ) such that there is a
neighborhood of x in which D2m°f is continuous. Then U is open.
Let (α, β) be any component interval of U. Then Z)2w°/ is continuous
in (a, β) and so by the above remark D2m°f is convex in (α, β). Hence
lime-e+ D2m°f(x) and l i m ^ . D2m°f(x) exist and by the property &r9

D2m°f is continuous in [a, β] Π (a, δ). Let P = (α, δ) - Z7. Then P is
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closed in (α, δ). Since D2m°f is continuous in the closure (relative to
(α, δ)) of each component interval of U, P is perfect in (α, b). If
possible, suppose that P Φ 0. Then there is [c, d] c (α, b) such that
[c, d] Π Pis a nonvoid perfect set. Since D2lcfe& in (α, 6), there is
a portion of [c, d] Π P, say, i ί = [α0, δ0] Π P on which D2kf/H is con-
tinuous for each kf 0 ^ k ^ mQ. It can be shown, as in Theorem
4.1, 2(mo + l) of [8] that Z)2m°/ is upper semicontinuous in [α0, δ0].
Hence there is M such that D2m°f(x) ^ Λf for xe[a0, b0]. Since the
theorem is true for m = m0, the function i^(^) = Mx2/2 — D2m°~2f(x)
is convex in (α0, δ0). Choose au bu such that α0 < ax < δx < b0 and
PΠ (αlf δj Φ 0. Then by Lemma 3.16 of [19, I, p. 328], D2F exists
almost everywhere in (α0, b0) and is .S^-integrable in [alf δj. Since F
is continuous, ί)2^7 = M — D2m°/holds whenever D 2 F exists and hence
D2W0/ is ^-integrable in [au δj. So, by Lemma 3.5, 2m0, D2m°f is
convex in (alf δ^. Hence D2m°f is continuous in (alf bx). This contra-
dicts the fact that (alf bx) ^ P Φ 0. Hence P = 0 and so D?m°/ is
continuous in (α, δ). Hence by our earlier remark D2m°f is convex in
(a, δ). The rest follows from Lemma 3.1, 2m0 and Lemma 7 of [18].
This completes the proof of the theorem for m = m0 + 1.

Thus the theorem is true for all m and so henceforth we shall
omit 2m in refer ing to this theorem. The usual extension of the
above theorem is the following

THEOREM 3.2. Suppose that
( i ) f is continuous in [a, δ],
(ii) D2m~2f exists and D2kfe &r Π & in (a,b), 0 ^ k ^ m - 1,
(iii) D2mf^ 0 a.e. in (α, δ),
(iv) D2mf> -co, except on an enumerable set Ed (a, δ),

(v) /eJfm(α0, /or α e # .
Tfcβ̂  D2m~2f is convex in (α, δ) α^d D2m~2f is the continuous deriva-
tive f{2m~2) in (a, δ).

This can be proved from Theorem 3.1 by using standard argument
used to prove Theorem 1.1 of [5] or Theorem 16 of [1] and so we
omit it.

REMARK 3.1. The property D2kfe ^r for 0 <; k g m - 1, in the
above theorem plays an important role. For, consider the function /
where

lx\

Then D2f exists everywhere but D2f g £&+ Also / satisfies all the other
conditions of the above theorem and D4f — 0 everywhere; but D2f is
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neither convex nor concave in any interval including 0.

REMARK 3.2. The above example shows that if D2mf replaces
D2mf in the hypotheses (iii) and (iv) of the above theorem and if in
(v) smoothness of / of order 2m is assumed everywhere, then even
under this stronger conditions the theorem is false without the property

4* (2m + l)-convex f unctions. Now it is natural to ask whether
the analogous results hold for odd order derivatives. In [8], it is
indicated that the proof of Theorem 4.1, 3 of [8] was similar to that
of a theorem of Saks [14]. But Saks used the lower derivate Dzf and
not JD3/ and so the induction on m in [8] ensures the validity of
Theorem 4.1, 2m + 1 of [8], provided D2m+1f is replaced by D2m+1f in
its hypotheses. But if in the hypotheses of Theorem 4.1, 2m + 1 of
[8], D2m+1f is replaced by D2m+ιf then this new theorem is only a
consequence of Theorem 4.1, 2(m + 1) of [8] for the integrated func-
tion. The proof of Theorem 4.1, 2m + 1 of [8] is thus incomplete.
We complete the proof in the following more general theorem.

THEOREM 4.1. Suppose that
( i ) f is continuous in [α, 6],
(ii) D2™-1/ exists and D2k+1fe & Π & in (α, 6), 0 ^ k ^ m - 1,
(iii) S2m+1/:> 0 in (α, 6), except on an enumerable set E a (a, b),
(iv) fe<9ξm+1(x) for xeE.

Then D2™'1/ is convex in (α, b) and it is the continuous derivative
f{2m~1] in (α, 6).

The proof is similar to that of Theorem 3.1. It is necessary to
prove this theorem for m — 1 and to do this, Lemmas 4.1, 1, 4.2, 1,
4.4, 1, 4.5,1, which are analogous to Lemmas 3.1, 2m0, 3.2,2m0, 3.4,2m0,
3.5, 2m0, will be needed. The proofs of Lemmas 4.2, 1 and 4.5, 1 are
similar to those of Lemmas 3.2, 2m0 and 3.5, 2m0 respectively. In
proving Lemma 4.1, 1 one is to appeal to a result of [12] instead of
assuming Theorem 3.1, 2m0 as it was done in Lemma 3.1, 2m0 and in
proving Lemma 4.4, 1 one is to notice that since DιG e 3$, by the
same result of [12], ΌιG has mean value property and hence for any
h there is ζ, x0 — h < ξ < x0 + h, such that

h2θz{G) xOt h) = 3! φ Ό ί ί ) - D'GiXo)} £ 0

giving D3G(x0) <; 0. The proof of Theorem 4.1 for m = 1 will now
follow the same line of argument as in Theorem 3.1, 2(m0 + 1). The
^-integrability of D1/ will follow from the fact that F(x) = Mx —
f(x) is nondecreasing in [α0, δ0], [12] and M — D'fis the derivative of
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F where it exists. Proving the above theorem for m — 1 and sup-
posing it to be true for m = m0, all the lemmas beginning 4.1, 2mQ + 1
through 4.5, 2m0 + 1 can be proved and the proof of the theorem
for m = m0 + 1 can be completed. We remark that an analogue of
Theorem 3.2 is also true in this case.

5* The P2 m-integraL We now come to the definition of the
integral. We must show that the definition of major and minor func-
tions, as introduced earlier, actually helps to obtain a proper definition
of the integral. For, because of the presence of the exceptional set
E in condition (v) and (vi) of the definition of major function we
cannot apply directly Theorem 3.2 to prove that Q — q is a 2m-convex
function for arbitrary major and minor functions Q and q respectively.
(As the definition of the P2m-integral in [9] and that of the P2-integral
in [7] are also affected by the exceptional sets S and EQ respectively,
(see [9] and [7]) they would also need this clarification; but the
definition of the P2-integral in [6] is not affected since the smoothness
of major and minor functions is assumed everywhere). We shall
follow the method adopted in [15].

LEMMA 5.1. Given ε0 > 0 and x o e(α, b) there is a major func-
tion Q for the function t(x) = 0 such that

( i ) Q(2m~2> is continuous in [a, b],
(ii) D2Q{2m~2) ^ 0 in (a, 6),
(iii) lim M2(Q(2w-2); χOf h) > 0, lim hθ2(Q{2m~2); x, h) = 0, for x Φ x0,

(iv) | 5 2 - 2 ) | ^ ε 0 in (α, 6),
( v ) I hθ2(Q{2m-?); x,h)\<> "ε<>, for x Φ x 0 , and x , x ± h e (a, b).

Proof. Let g be the function such that

g(x0) = 0 , g(ά) = — min |^o(#o - α), ε° j ,

and g is linear and continuous in each of the interval [a, x0] and [xQ, b]
and let G be the (2m — 2)th indefinite integral of g in [α, b]. Then
the function Q defined by

Q(x) = G(x) - Σ X(x; a%)G{a%)

satisfies the requirements, where

<5.1) λ(x; at) = Π ^ , α = a, < a2 < < a2m = b .
gi at - as
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LEMMA 5.2. If Q is a major function of f and e > 0, then there
is a major function Qε such that

I D2m~2Qε - D2m~2Q I ^ ε , D2mQε > - co , in (a,b) .

Proof. Let ^ , #2, , xkf be an enumeration of the exceptional
set Ea (a, 6), where D2mQ = — oo holds. For each positive integer &,
let JF7* be the major function obtained from Lemma 5.1 with ε0 and
x0 replaced by ε/2k and xk respectively. Set

Ψ(x) - Σ Fl2m-2\x) , F(x) = Σ Fk{x) .

The first series being uniformly and absolutely convergent, Ψ is
continuous and Ψ = F{2m~2). By the mean value property there is η,
0 < rj < 1, such that

β2m(F; x, h) = Θ2(Ψ; x, ηh) = Σ Θ%{F?»-*>; x, ηh)
fc = l

and since by (i), (ii) of Lemma 5.1 and by Theorem 3.1, each F[

k

2m~2>

is convex in (α, 6), D2mF ^ 0 in (α, b). Also, for &< e JS/, the series
Σk=i+ihθ2(Fk2m~2); Xi, h) is uniformly and absolutely convergent with
respect to h and hence

lim hθ2m(F; xiy h) = lim Λ^2(r xif h)

h k

Now set

Q.(x) = Q(x) + F(x) .

Then if x^E,

lim hθ2n(Qε; xu h) = lim hθ2m(F; xif h) > 0

and hence D2mQt(xt) = oo. Clearly Qε is a major function o f / a n d by
construction | D2m~2Qε ~ D2m~2Q \ ̂  e.

LEMMA 5.3. If Q and q are any major and minor functions
then Q — q is 2m-convex.

Proof. By Lemma 5.2, for each positive integer n there is a
major function Qn and a minor function qn such that
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(5.2) I D2m~2Qn - D2m~2Q I ^ — , D2mQn > - oo , in (α, b)
n ~~

and a similar relation for qn holds. Hence D2m[Qn — qn] ^ 0 a.e. in

(α, b) and D2m[Qn - qn]> -oo in (α, 6). Since D2kQn e ^ and D2kqn e

^ 7 we have D2fc[Qπ - <?J e ^ " and hence D2k[Qn - g j e &, for each
A, 0 £ k ^ m - 1, [13]. So, by Theorem 3.2 D2m'2[Qn - g j is convex
in (α, 6) and hence by (5.2) and a relation for qn, D2m~2[Q — q] is
convex in (α, b) and so the result follows.

Lemma 5.3 gives the analogue of Lemma 5.1 of [8]. Once this
lemma is proved all the subsequent results of [8] can be deduced with
this definition of major and minor functions. The definition of P 2 m -
integral thus obtained remains valid and all the results of [8] except
Theorem 5.4 of [8] are true. We state Theorem 5.4 of [8] in our
setting whose proof is similar to that in [8]

THEOREM 5.1. If G is such that
( i ) G is continuous in [a, b],
(ii) D2m~2G exists and D2kG e & Π ̂  in (a, b), 0 £ k <: m - 1,
(iii) D2mG exists a.e. in (α, 6),
(iv) — oo < D2mG ^ D2mG < °o, except on an enumerable set Ed

(a, b),
(v) G is smooth of order 2m on E,

then D2mG is P2m-integrable over (a^ x), where a ^ ax < a2 < <
a2m ^ 6, and if ar ĝ x < ar+1, then

(-1)' Γ f(t)d2mt = G(x) - Σ λ.(«; «.)<?(«.)
J(oί) i=l

where λ is ίΛ,e function defined in (5.1).

6. The P2 m + 1-integraL The definition of P2w+1-integral can be
obtained from the P2m+1-major and minor functions in the same manner
as in the case of P2m-integral. The PMntegral i.e., P2w+1-integral for
m = 0 is not defined in [8]. Theorem 3 of [12] shows that the defini-
tion of PMntegral is also valid and so the definition of symmetric
PMntegral is valid for all n ^ 1.

7. The unsymmetxic PMntegraL The unsymmetric Pw-integral
as defined in [8] is not affected by Lemma 5.1 of [8]. We state here
the conditions to be satisfied by an unsymmetric P%-major function Q
of the function / in our improved setting:

( i ) Q is continuous in [α, 6],
(ii) Q{n-D exists in (α, 6),
(iii) Q(αέ) = 0, 1 ^ i ^ n,

(iv) Φu) ^ / a.e. in (α, 6),
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(v) Q(n) > — oo, except on an enumerable set Ed (a, b).
It is easy to verify that for any major and minor function, Q and qr

the difference Q — q is ^-convex. The definition of the unsymmetric
Pw-integral now follows that of the symmetric PMntegral. For differ-
ent approach we refer to [2, 3].

8* Application to trigonometric series* Now we shall show that
the results of [9] remain true with this definition of the P2m-integral.
For the notations Ak(x), Bt{x) and the upper and the lower (C, k) sums
Sk(x) and sk(x), which we shall use here, we refer to [9] (see also [19,
I, pp. 74-77]).

THEOREM 8.1. (Gf. Theorem 6.2 of [9].) Suppose that the series

1 °°

(8.1) —α0 + Σ (an cos nx + bn sin nx)
2 »=i

is summable (C, k) almost everywhere to a finite function f on [0, 2π]
and let

(8.2) - oo < sk(x) ^ Sk(x) < oo ,

except on an enumerable set in [0, 2π]. If for xe[0, 2π]

(8.3) Ak

n-\x) = o{nk) , Bk

n-\x) = o(nk) ,

as n—* oo, then f(x), /(x)cosrx, /(x)sinrx, are Pk+2-integrable over
{at) x) and the coefficients of (8.1) are given by

(8.4) ar = k^
k

 k+2 \ f(x) cos rx

(8.5) br = fe+1

fc

fc+2 I /(») sin rx

where

X f{ r

 ίf k is even

if k is odd .

Proof. Since (8.1) is summable (C, k), the series obtained by-
integrating (8.1) term by term k + 2 times converges uniformly to a
continuous function F and

an = o(nk) , bn = o(nk) ,
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as n—> oo, (see [18]) and hence F is smooth of order k + 2 (see [9,
Theorem 3.1]). Since the once-integrated series of (8.1) is also sum-
mable (C, k — 1) a.e. in [0, 2π] (see [11]), F is smooth of order k + 1;
hence by Lemma 2.1, 2^, exists and by Lemma 6 of [18], F{i)e&
in (0, 2π) for 0 ^ i <, k. By [18, Theorem B] we get from (8.2)

- c o < Dk+2F(x) ^ Dk+2F{%) < oo

except on an enumerable set and Dk+2F(x) = fix) a.e. in (0, 2π). So,
by Theorem 5.1, / is P&+2-integrable over (a,; sc). The proofs that
f(x) cos rx and /(#) sin rx are also Pfc+2-integrable and that the coeffi-
cients of (8.1) are given by (8.4) and (8.5) are similar to those given
in [9, Theorem 4.2 and its corollary].
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ON (/, M, m)-EXTENSIONS OF BOOLEAN
ALGEBRAS

DWIGHT W. READ

The class 3f of all (/, M, m)-extensions of a Boolean
algebra s>f can be partially ordered and always contains a
maximum and a minimal element, with respect to this partial
ordering. However, it need not contain a smallest element.
Should 3f contain a smallest element, then 3f has the struc-
ture of a complete lattice. Necessary and sufficient conditions
under which 3f does contain a smallest element are derived.
A Boolean algebra ^f is constructed for each cardinal m such
that the class of all m-extensions of ^f does not contain a
smallest element. One implication of this construction is that
if a Boolean algebra <s>f is the Boolean product of a least
countably many Boolean algebras, each of which has more
than one m-extension, then the class of all m-extensions of
s^ does not contain a smallest element. The construction
also has as implication that neither the class of all (m, 0)-
products nor the class of all (m, ̂ -products of an indexed
set {^}ter of Boolean algebras need contain a smallest
element.

1* Sikorski [2] has investigated the question of imbedding a
given Boolean algebra j y into a complete or m-eomplete Boolean
algebra & and has shown that in the case where the imbedding map
is not a complete isomorphism, the imbedding need not be unique up
to isomorphism. He further has shown that if J%Γ is the class of all
(J, M, m)-extensions of a Boolean algebra jy, then S%Γ has a naturally
defined partial ordering on it and always contains a maximum and a
minimal element. He has left as an open question whether it always
contains a smallest element. La Grange [1] has given an example
which implies that 3ίΓ need not always contain a smallest element.
However, the question of when does 3ίΓ in fact contain a smallest
element is of interest as it turns out that should <_^ contain a
smallest element, it has the structure of a complete lattice.

In § 2, necessary and sufficient conditions are given for 3Γ to
contain a smallest element. In addition, the principle behind La
Grange's example is generalized in Proposition 2.10 to show that if
Ssf is not m-representable then the class 3Γ of all (J, My m')-exten-
sion of J ^ where J,M<σ and m' > M, will not contain a smallest
element.

Since the proof of this result requires that J and M have cardi-
nality ^ σ, it is of interest to ask if the class of all m-extensions

249
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contain a smallest element in general, and the answer is no.
In § 3, a Boolean algebra Szf is constructed for each cardinal m

such that the class 3fΓ of all m-extensions of J ^ does not contain
a smallest element. The construction has as implication (Theorems 3.1
and 3.2; Corollary 3.1) that for each algebra in a rather broad group
of Boolean algebras, the class of all m-extensions will not contain a
smallest element. In particular, this group includes all Boolean
algebras which are the Boolean product of at least countably many
Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski's result that there is an
equivalence between the class & of all (m, 0)-products of an indexed
set {Ssζ}teτ of Boolean algebras and the class of all (/, M, m-exten-
sions of the Boolean product J < of {S^t\t^τ, for suitably defined /
and M, is generalized to show there is an equivalence between the
class έ^n of all (m, ̂ -products of {Szft}t&τ and all (J, M, m)-extensions
of ^ 7 where j ^ ~ is the field of sets generated by a certain set £f,
for suitably defined J and M. Then the above results imply that
neither &> nor ^ n need contain a smallest element.

The notation throughout follows that of Sikorski [2].

2* Let n be the cardinality of a set of generators for the
Boolean algebra J ^ let J ^ > Λ be a free Boolean m-algebra with a
set of n free m-generators, let J^,Λ be the free Boolean algebra
generated by this set of n free m-generators and let g be a homo-
morphism from Ssζ>n to J^f. Let Δo be the kernel of this homo-
morphism and let I be the set of all m-ideals A in J^4,n such that:

a. Δ Π JK,n = Δo;
b. A contains all the elements

A - U A , U A - Ao,
AeS1 At Si

AeS2 AeS2

where Aoej^ζ>n and S^f Si are any subsets of Stζ>n of cardinality
:S m such that:

Jf g(A0)= U g(A)

g(Si) e M , g(A0) = fl g(A) .
l6o/

For each A el let

and

gΔ([A]j) = g(A) , for all A e

Set iΔ = 071. We need the following results due to Sikorski.
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PROPOSITION 2.1. The ordered pair {iΔ, JtfΔ) is a (J, M, m)-
extension of the Boolean algebra Szf and if {%, &} is a (J, M, m)-
extension of j&f there is a A e I such that {i^, J^Δ) is isomorphic to
{i, &). Further, if A, Af e I then

if, and only if, A Ξ2 Δ' .

LEMMA 2.1. If S is a set of elements in J3f~ then the least upper
bound (lub) of S exists in

Now let 3Γ(Jt M, m) denote the class of all (J, M, m)-extensions
of

THEOREM 2.1. Let SΓ be the class of all (J, M, m)-extensions of
a Boolean algebra Ĵ Γ The following are equivalent:

1. 3ίΓ contains a smallest element;
2. 3ίΓ is a lattice;
3. 3ίί is a complete lattice.

Proof.
1. => 3. It suffices to show that if S is a set of (J, M, m)-

extensions of sf then the greatest lower bound (gib) of S exists in
J^f which follows from noting that if L is the set of all lower bounds
for the set S then L Φ 0 and by Lemma 2.1 the lub of L exists in
J^7 hence is in L.

3. => 2. By definition.

2. =>1. If {i, &) is an m-completion of J ^ {j, ^je^T, and SΓ
a lattice, then there is an element {jr, &"} e 5ίΓ such that

Thus

{f,
so

if,
implying

{i, ^ ) £ {3, c

Hence {i, ̂ } is a smallest element in

COROLLARY 2.1. If Jf a J and Mf 2 M then the following are
equivalent:

1. Sf{J, M, m) contains a smallest element)



252 DWIGHT W. READ

2. 3ίΓ{J\ M\ m) is a sublattice of 5ίί(J, M, m);
3. J5Γ(J\ M\ m) is a complete sublattice of 3ίΓ{J, M, m).

Proof.
1. => 3. Since J%Γ(J'9 M', m) contains a smallest element, so does

5ίί(J, M, m) hence 3ίΓ{J\ M\ m) and JΓ(J, M, m) are complete
lattices. If {{it, ^t}}teτ = S is a set of elements in 3ίΓ(J\ Mr, m),
{i, 9f} is the lub of S in S£T{J9 M, m) and {ί', <£"} is the lub of S in
3ίΓ(J\ M', m), then there is an m-homomorphism h mapping- ^ ' onto
^ such that hi' — i. Hence ΐ is a (J'9 M', m)-isomorphism. Thus
{i, %?} e 3T{Jf, M', m), implying

{i, ^} = {i'f ^} .

If {i, <£?} is the gib of S in ST{J, M, m) and {i\ <£"} e S, then
by a similar argument, i is a (/', M\ m)-isomorphism, which implies
K ^} is the gib of S in JSΓ(J', M', m).

3. => 2. By definition.

2. => 1. The proof is the same as that for showing 2. => 1, in
Theorem 2.1.

Thus it is of particular interest to know whether J%Γ(Jy M, m)
contains a smallest element, in general. Although, as it turns out,
c5^(J, M, m) need not contain a smallest element in general, a minimal
(J, M, m)-extension is always an m-completion, hence there is always
a unique minimal (J, M, m)-extension in S%ί (J, M, m).

PROPOSITION 2.2. An m-completion {i, &} of the Boolean algebra
is a unique minimal element in J%"7

Proof. That a minimal element in J%Γ is an m-completion is
clear.

If {i\ &'} is another minimal element in SZ~, there are Ay Δ
f el

such that

{i,

and

Now {i, ^} and {i\ &'} minimal in J%Γ imply Δ and A' are maximal
m-ideals in J, but if Δ is a maximal m-ideal in I then gϊ(J^>n) is
dense in j ^ > . The ideal / ' = </, A> in J ^ > % is an m-ideal and
Δ' e I, contradicting the maximality of / . So {i', 3?f) is an m-com-
pletion of J^ hence isomorphic to {i, &}, implying
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PROPOSITION 2.3. If jzf is a Boolean m-algebra that satisfies
the m-chaίn condition and

\JAt
teT

is the join of an indexed set {At}teτ in J^ then there is an indexed
set {Ar

t}teτ of disjoint elements of *S*f such that

1. U A!t = U At
teT teT

2 . A ' t S A t for all t e T .

Proof. Let Sf be the collection of all sets S of disjoint elements
in j y such that for each se S there is a t e T with s £ At. If

S1 S S2 S S S, S

is a chain of sets in S^ indexed by I and ordered by set theoretical
inclusion, then

\JSt = Se^.
iel

By Zorn's lemma there is a maximal set in S^, say S' = {Ar}reR, and
it immediately follows that

U Ar Φ A .
reR

Now let

φ: S' > T

be a mapping such that if Ar e S' then

Ar S AφUr) .

F o r e a c h teT d e f i n e

A't = \J{AreS':φ(Ar) = t}

if there is an Ar e Sf such that φ(Ar) = t, otherwise define

A: = A .
Then

\At} teT

is the desired set.

PROPOSITION 2.4. Lβί Jzf be a Boolean algebra. The following
are equivalent:
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1. Szf satisfies the m-chain condition:
2. for all sets S in Jϊf such that \JsesS exists,

\Js = \Js
seS seS'

for some set S' S S with S' :g m; and dually for meets.

Proof.
1. ==> 2. Suppose S^ satisfies the m-chain condition. It suffices

to show that if

S = {At}teτ and V = U At , T = m' > m ,
teT

then there is a set T g Γ, f ^ m, such that

U At = V
tT'

Let {i, &} be an m'-completion of Ĵ C Then & satisfies the m-chain
condition and

V- = i(V^)
= U^ i(At) .

teT

By Proposition 2.3, there is a set {&t}teτ of disjoint elements in
& such that

Bt £ i(At) and \J" B* = IT W .
teT teT

Since this set contains at most m-distinct elements,

\J"Bt = \J"Bt,
teT teT'

T Ξ T and Ψ ^ m. Thus

or

2. => 1. Suppose {At}teτ is an m'-indexed set of disjoint elements
of J^<m' > m. It may be assumed that {At}teT is a maximal set of
disjoint elements of Ĵ C Then for some T g Γ , f ^ m,

Since f' ^ f, there i s a ^ e T - f such that
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AtQe{At}teτ - {At}teτ, and AH Φ Λ ^ -

Thus

a contradiction. Hence T ^ m.
This gives, as an immediate corollary, the following result due

to Sikorski [2].

COROLLARY 2.2. If jzf is a Boolean m-algebra and satisfies the
m-chain condition, it is a complete Boolean algebra.

PROPOSITION 2.5. The class <β$Γ(J, M, m') contains a smallest
element if J%~(J, M, m) contains a smallest element^ m' < m.

Proof. Let {i, ^} be the smallest element in 3ίΓ(J, M, m). If
{/, <&'} e ST{Jy M, m'), let {fc, ^} be an m-completion of ^ . Then
{kj, %?} 6 JT(J, Λf, m).

By the fact that {%, &} is the smallest element in 3ίΓ{J, M, m),
there is an m-homomorphism h such that

h: ^ > & and hkj = i .

Also {i, &\ an m-completion of S*/ implies that there is an m'-
completion {i, ^ ' } of J ^ such that &' S ^ . Thus hk{^') is an
m-subalgebra of ^ , hence ^ ' S hk(^') and is an m-subalgebra of

Now Ay(j^) m-generates /b(^') in & and
hence

or

But

thus

so

Since hkj = i,
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{i, ^ ' } ^ {kj, k(<S»)} .

But k a complete isomorphism implies that

{kj, k{&")\ = tf, «"} >

and since isomorphic elements in 3ίΓ(J, M, m) have been identified,

{i, ^ ' } - {i, «"} .

LEMMA 2.2. If J^o and M^σ then there is a (J, M, m)-
ίsomorphism i of a Boolean algebra Stf into the field &~ of all
subsets of a space.

PROPOSITION 2.6. // the Boolean algebra Jzf is m-representable
but not m+-representable, m+ the smallest cardinal greater than m,
then 31ί(J, M, m+) does not contain a smallest element if

J, M, m+) Φ 0 .

If J^σ,M^σ then ^ ( J , M, m+) Φ 0 .

Proof. Suppose {j, £f} e ^ ( J , M, m+). Then & is m-represen-
table and if an m+-completion {i, &} of Jϊf is a smallest element in
3ίΓ(J, M, m+), there is a surjective m+-homomorphism

h: & > & ,

which implies & is m+-representable, hence J ^ is m+-representable,
a contradiction. Thus J%Γ{J9 M, m+) does not contain a smallest
element if 3fΓr{J, M, m+) Φ 0 .

If J ^ σ and M <Ξ σ then s*f is (J, ikf, m+)-representable by
Lemma 2.2, hence 3ίΓr{J, M, m+) Φ 0 .

The next proposition is an easy generalization of Sikorski's [2]
Proposition 25.2 and will be needed for the last theorem in this section.

PROPOSITION 2.7. A Boolean algebra J^f is completely distribu-
tive, if, and only if, it is atomic.

COROLLARY 2.3. A Boolean algebra Jtf is completely distributive,
if, and only if, S/ is m-distributive, m =

The following proposition is due to Sikorski [2] and will be given
without proof.

PROPOSITION 2.8. If the Boolean algebra Jϊf is m-distributive,
then 3£~{J, M, m) contains a smallest element for arbitrary J and M.
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LEMMA 2.3. // {i, &} is an m-extension of the Boolean algebra
and & is m-representable, then Szf is m-representable.

Proof. This follows immediately from the fact that J ^ is
m-regular in &.

Now to prove the main theorem of this section.

THEOREM 2.2. "Let Szf be a Boolean algebra. Then the following
are equivalent'.

1. 3$Γ contains a smallest element for arbitrary J, My and m;
2. S^ is m-representable for all m;
3. S^ is completely distributive;
4. J^ is atomic;
5. an m-completion of Stf is atomic for all m;
6. an m-completion of Jϊf is in 5ίΓr{Jy M, m) for arbitrary J, M,

and m;
7. 3ίΓ(Jy M, 2m*) contains a smallest element, where J— M— 0

and J$f= m*.

Proof.
1. ==> 2. If ejy is m-representable but not m*-representable, then

Proposition 2.6 implies j?Γ(Jf M, m*) does not contain a smallest element
if J, M < σ.

2. => 3. This follows from the fact that if a Boolean algebra
is 2w-representable, it is m-distributive.

3. <=>4. This follows from Proposition 2.7.

3. => 1. This follows from Proposition 2.8.

4. <=* 5. If {i, &} is an m-completion of J^ then i(j*f) is dense
in &, so & is atomic, and conversely.

2. => 6. This follows from noting that 2. =* 3. and J ^ completely
distributive implies an m-completion of sf is completely distributive,
hence m-representable for all cardinals m.

6. => 2. This follows from Lemma 2.3.

3. « 7 . If J== M = 0 and JΓ(J", M, 2m*) contains a smallest
element, then by Proposition 2.6, St? is 2m*-representable, hence
m*-distributive. Since m* = J^f~J^ is completely distributive, by
Corollary 2.3. The converse is clear.
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3* The example in § 2 of a Boolean algebra J ^ such that the
class of all (J, M, m)-extensions of Sf does not contain a smallest
element depends on the assumption that J, M ̂  σ. Thus it is of
interest to know whether an example can be found showing that the
class of all m-extensions of S^f does not contain a smallest element,
since this corresponds to the case where J and M are as large as
possible. As it turns out, there are Boolean algebras Ssf such that
the class of all m-extensions 3ίΓ does not contain a smallest element.
In this section such an example will be constructed for each infinite
cardinal m and several general types of Boolean algebras such that
31Γ does not contain a smallest element will be given.

Throughout this section J%Γ will denote the class of all m-
extensions of a Boolean algebra Ssf and ̂ %Γ{J, M, m) the class of all
(J, M, m)-extensions.

If ei^ is a Boolean algebra and {i, <£*} e 3T(J, M, m), let

{CeW: if i(A) g C , A € J ^ then A =

and

KP{9?) = {Ce if: if P = {A e sf\ i(A) 3 C} then f

Note that J5ΓP(<if) S

LEMMA 3.1. The set KP{^) is an ideal and K{^) = KP(
C^), if,

and only if, K{c^) is an ideal.

Proof. It follows easily that KP{Ί^) is an ideal.
If K(1f) is an ideal and We K{cέ?) let

P - {A e JV: i(A) 2 C) .

If A' esif and A ' g i for all A e P, then

ί(A') - CeK(W) .

Now i{Af) Π C G JBΓ(^), hence

i{A') = {i{A') - C) U (i(A') Π C) e

which implies ί(A') = A^ o r A' = A ^ Thus

so CeKP(W), and

i

Since KP(W) is an ideal, the converse is true.
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PROPOSITION 3.1. If jzf is a Boolean algebra the following are
equivalent:

1. J%Γ(J, M, m) contains a smallest element]
2. K{<&) = KP{^) for all {i, <Sf} e 3Γ{β, M, m);
3. K(^) = KP{^) if {i, ^} is the maximum element in

, M, m).

Proof.
1. =>2. Suppose J%^(J, M, m) contains a smallest element {i, &},

and there is an element

e 3ίT{J, M, m)

with the property that

Let h be the unique m-homomorphism mapping ^ onto & such that
hj = i. Let ker h be the kernel of this mapping. Then

P{) £ ker h

and

ker h Φ

Pick x e K{c^) - ker h and let

Δ = <x> ,

so J is a complete ideal. Thus

e 3ίΓ{β, M, m) ,

where

iΔ\

is defined by

iΔ{A) = ^

Consequently, there are unique homomorphisms hΔ and hr mapping
ctf onto ^ 7 ^ , ^ 7 J onto ^ and satisfying A î = ίJf hfiά — i, respec-
tively. Hence

h'hjj ~ hfiΔ = i

and by the uniqueness of h,

h — hfhΔ .

This implies

h(x) — hrhΔ{x) = A ^ 9
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a contradiction. Thus

2. => 3. Obvious.

3. => 1. To show that J%Γ{J, M, m) contains a smallest element,
let {j, ^} be the largest element in 3ίΓ{J, M, m) and suppose {f, <£"} e
3fΓ{J, M, m). Let {i, &} be an m-completion of Ĵ C Then there is
an m-homomorphism h' mapping & onto <g7' such that h'j = j ' and
an m-homomorphism h mapping ^ onto & such that hj = i. Thus

S ker h S

which implies, by assumption, that

KP{%?) = ker h =

so KP(^) and iΓ(^) are m-ideals in ^ . Further,

This implies that

hence UL(^') is an m-ideal. Let

Then ^f\Δ is an m-algebra and

m-generates <g"/J. Final ly, jr

Δ{^f) is dense in <if'/J. Thus {j[, <&ΊΔ\
is an m-completion of J^ hence is equal to {i, ^ } , as isomorphic
elements of ^Γ"(J, ikf, m) have been identified. The m-homomorphism

hΔ: ^f • <<g"lΔ

defined by

hΔ{C) = [C'h

has the property that

hj = j9

Δ for all A e J^f,

implying that

{i* ^ΊΔ) £ {f, <%»} .
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Hence J%Γ(J, M, m) contains a smallest element.
This, then, gives a way to construct a Boolean algebra Sf such

that S$Γ does not contain a smallest element. Namely, by finding a
Boolean algebra Sf with an m-extension {i, ^} such that KP{^) Φ

The next task is to construct such a Boolean algebra.
If T = m and <Stf= j^ft for all ί e ϊ 7 , the Boolean product of

will be called the m-fold product of J&ϊ Note that if Jz? is
a subalgebra of the Boolean algebra jy", ^ ~ is the m-fold product
of J ^ and ^~' is the m-fold product of Ssf', then

LEMMA 3.2. // j ^ is an m-regular subalgebra of the Boolean
algebra J%?r then the Boolean m-fold product ά?~ of Szf is isomorphic
to an m-regular subalgebra of the Boolean m-fold product ά?~f of J^f'.

Proof. Since ^ is a subalgebra of j ^ ' , ^ ϋ ^*\ Let
be the set of all φt(A\ 4 e j / and ί e T(A e j ^ ' and t e T). Then
FeSS(Fe&") implies - F e y ί - F e y ' ) and ^ ( ^ ' ) are sets of
generators for ^ r ( ^ ' ' ) F° r elements Fzjf' of the form

^ = ή Ft,

define

Note that if F e y ' and teT is such that Xt(F)φ\/^ then

In order to show ^ is m-regular in ^ \ it suffices to prove
that if {Ft}teτ is an m-indexed set of elements of JΓ such that

then

teT

Now Ft e &~ so Ft may be rewritten as

Pt Qt

Ft = nu FP,9tt,
p = l g = l

where Pt, Qt are finite numbers and Fp>qίteS^ for all pePu qeQt,
and * e T. Thus
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jr Pt Qt

Λ,=nnu
teT p = l g=l

j r Qs

after a suitable re-indexing, where S^m and F8>q = FP,q>t for suitable
pePt, te T. Without loss of generality, assume that for each
seS, Xt(Fβ,q) Φ Λ^' implies \(F8>g,) = \f j,, for all te T and q' Φ q,
and that F8>q Φ V*•* for all q, 1 <: q ̂  Q8, and all seS . Suppose
F ' G ^ - ' and F' S ^ for all t e Γ. Then

SO

M N

F' — \\ Γ\ F' Ff

l l

N Qsn W> c l i p
l

for 1 < m <; ikf, and all seS. Thus to show F' = λjr,, it suffices to
prove that if

for all seS, where Fi 6 ̂ ' , then

It may be assumed that for each n,l<^n£N, Xt{Ff

n) Φ k^> implies.
\t{F'J) = V^, for all ί e ϊ 7 and n' Φ n, and that F'%φ\j' *•, for all
n,l^n^ N.

Now

implies

and as each i^I and -jPβfβ is of the form <pt(A) for some 4

and ίGΪ 7, the independence of the indexed set {φt(J^')}teτ of sub-

algebras of ^~* implies that for some n8y 1 ̂  ns <£ iV, and some

?., 1 ̂  g, ̂  Q.,

^ n , Π —F8)qs = t^jr, ,

which implies Fis S F s, g s . This argument may be repeated for each
seS.



ON (J, M, m)-EXTENSIONS OF BOOLEAN ALGEBRAS 263

The set {na:seS} is finite so let {ns: seS} = {nt: 1 ^ i £ N'}.
Let Si = {s e S: Ff

n. g Fs>q). If ts e T is such that

χt8(F8>q)^ V^ ' for all seS

then Xts(F8}q)ej^ and

Thus

Fs,qg) Φ K^" 9
jy"

seSi

or

n \s(F$,q) Φ A ^ »

hence there is an A*e J ^ At Φ A^> with

Aέ g λίg(Fs,gβ) for all seSt .

Let i i M be the set of all x e X such that πts(x) e At. Thus AtΛ e
and this argument may be repeated for each i, 1 <£ i ^ iV'. Now

fi
i

and

n AM s u

for all seS. But then

Nr sr Qs

n AtΛ s n u — i\jr ,u
seS q = l

a contradiction. Thus ^ is m-regular in
The next lemma assumes there is a Boolean algebra sf such that

an m-extension is not an m-completion. Sikorski [2] cites an example
due to Katetov of such a Boolean algebra for the case m = σ. As
Lemmas 3.5 and 3.6 imply, there is such an Szf for all infinite cardinal
numbers m.

Assume for the moment that Ssf is a Boolean algebra such that
3fΓ contains more than one element and {i, &} e .βt~ is an m-extension
that is not an m-completion. Thus there is a Be έ%? such that
i(A) g JS, Ae Ssf, implies A — Λ^ Let &~' be the Boolean m-fold
product of ^ h0 an isomorphism of & onto the Stone space άf of
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^ X the Cartesian product of Jf with itself m times and indexed
by T, and

Bt = φth0(B) for all t e T .

Let

B Q = U B t ,U
teT'

where T is a fixed, but arbitrary subset of T such that T ^ σ,
and define

Since Ί" ^ σ, ^ Φ

LEMMA 3.3. If J^ is the Boolean m-fold product of Sf then
^ is isomorphic to an m-regular subalgebra of J^.

Proof. It may be assumed, without loss of generality, that
g &. Thus Jfςz ^ι% Let 6^{S^}) be a generating set for

Let

S^ - Sff U

so S^ is a generating set for ^ v As in the previous lemma, to
prove ^ is m-regular in ^ it suffices to show that if

for all se S, S ^ m; and

Γl F'n S U

Fs,q e ^ for all seS and 1 ^ g ^ Qβ, F ^ e ^f, 1 g ^ ^ ΛΓ; then

N

7 1 = 1

Since F'n e £%, there is an n, 1 S n g iV, such that ^ = 5 0 or F'n =
— So, otherwise there is nothing to prove. This may be reduced to
two cases:

Case 1.

ή F: n BQ s U

for all s e S, where ί7^ e Sf' and
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Case 2.

for all seS, where F'% e SSf and Fs>q e Sf.

Proof of Case 1. If for each se S there is an n8, 1 ^ ns ^ N,

such that there is a gs, 1 <; qs <: Q,, with i ^ s <Ξ JF1.,^, then

N Qs

n ^ s u F.,
n=l q=l

for all δ θ S , and

implies

ή F: = A*..

Thus it may be assumed there is an s0 such that

ί i = l g = l

Hence for all %, Fl g FS o > g for some q9 is false. If

let xeX be defined as follows. Let tl9 •••, ί n e Γ be such t h a t

\t{(Fl) Φ \f &, 1 ^ i g iSΓ. Choose an sc G X such t h a t it satisfies the

following conditions:

( a )

π (x) e \ X t i ( F ° i f Xti(Fs»q) = V ^ f o r a 1 1 q> X = q - Qs°
πAX) \\U(F!) - xti(FSo>go) if λ f <(FS o, g o) ^ V ^

for 1 ^ i ^ JV;

( b ) τr i g(s)6 -Xtq(FSo,q) for each ί ? e Γ such t h a t Xtq(F8Q,q) Φ

1 ^ ^ ^ Qs0 and tq Φ ti9 1 ^ i ^ n;

(c) T Γ ^ ) 6 hQ(B) for all ί ^ ί f f ; l ^ i ^ J V ; i ^ g ^ QSo.

Now x is well defined,

iV

x e Bo and a; € Π Fί ,
71 = 1

by its definition. But x$ FH>q for all q, 1 g q £ Qs, hence
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g = l

a contradiction.

Proof of Case 2. If

and \t%(F») Φ\/^,tneT, let A* = <Ptn(-B0), 1 ^ n ύ N. Then

ή ^ n (-£„) = ή(Fi n A.) n(-£„)

and

As before, an soe S may be found such that

Define ίx, , tN as before so t h a t Xti(Fί Π A%) Φ V^> l ^ i ^ J V .

Choose a? e X satisfying the following conditions:

( a )

y,u(FΪ Π A,) if λ t <(F.O f ί) - V^, 1 ^ 9 ^ QSo

\.u(Fl Π A,) - \u(F§Q,q) if λ ί4(jP.Off fo)^ V ^

for 1 ^ i ^ JV.

( b ) πtg(x)e - \(F8o,q) for each tqeT such that λ ί g(i^0, ?) Φ\/&;

1 ^ ^ ^ QSo, and ίg Φ tifl S i ^ N.
( c ) πt(x) e M-Bo) if ί Φ tt9 tq; 1 ^ i ^ wf 1 ^ q ^ QSo.

Now x is well defined and

ze(-£o)nn(i^n An) = -Bonr\Fϊ,

so

a contradiction.
Consequently, in either case

N

Π Fn =
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LEMMA 3.4. If j is the identity isomorphism of J^ into
and {i, ̂ } is an m-completion of J?\> then {ij, ̂ } is an m-extension
of

Proof. All that needs to be shown is that ij{^) m-generates
But this follows immediately from the fact that Ssf m-generates

and the definition of ^ and J?l.

THEOREM 3.1. // s%f m-generates & then ^Γ{^) does not
contain a smallest element.

Proof. f e ^ a n d F 3 S 0 then F= V 0>
 b ^ definition of Bo.

Thus if j and {i, ̂ } are defined as in Lemma 3.4, {ij, <tf} is an
m-extension of &~ and ij(B0) e K{^). By Proposition 3.1, JfX^O
does not contain a smallest element.

The results of this theorem may be generalized as follows. Let
{^t}teτ be an infinite indexed set of Boolean algebras and {{it}teτ, ^}
be the Boolean product of {J^}ter Let T' be the set of all teT
such that J%Γ(J^) contains more than one element.

THEOREM 3.2. The class of m-extensions J%Γ(^?) does not contain
a smallest element if Tr >̂ σ.

Proof. Define ^ ' to be the Boolean product of {{jt,
where \jt, &t} e 5ίΓ( j&ζ) for all teT and {jt, &t} is not an m-com-
pletion of j^f for all teT. For each &t, te T, there is a Bte^t

such that jt(A) S Btj Ae j^f, implies A — Λ^v Let φt map &t into
& and set

and

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and
3.4, and Theorem 3.1, J%Γ(&) does not contain a smallest element.

COROLLARY 3.1. If sx?t = sft, for all t, f e T then J%""(^) contains
a smallest element if, and only if, an m-extension of & is an
m-completion.

Proof. If 3ίΓ(0?) contains an m-extension which is not an m-
completion, let & play the role of J ^ in Lemmas 3.2, 3.3, and 3.4.
By Theorem 3.1, J^%^~) does not contain a smallest element. As
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the m-fold product &~ of & is isomorphic to ^ <-^*(^) does not
contain a smallest element. The converse is clear.

Now to prove the assumption on which these results are based.

LEMMA 3.5. For each infinite cardinal number m there is a
Boolean algebra Jzf such that an m-completion {i, &} of JZ/ contains
an element B with

BΦ\J n AUtV,
ueU veV

for all m-indexed sets {Au>v}ueUfV£V in Jzf.

Proof. The proof will be by constructing such an Jzf for each
m. Let S be an indexing set of cardinality m. Let &fm be the
Cartesian product of S with itself m times and indexed by T. Define

A, s = {de ^m: πt(d) = s} .

Fix si s'2eS, s[ Φ s[, and set S' = S - {s[, s'2}. Let D = \Jteτ(Dt,.{ U

Dt,s$. Thus D = 2m and de&m- D implies πt(d) Φ sf

k, k = 1, 2, for

all 16 T.
Let

^ = {{d}: de^rm}U {Dt,s: teT,seS'}.

Let J^f be generated by £S in ^ m and let & be the m-field of sets
m-generated by £f in &rm. Then s^ is dense in έ% and m-generates
&, so if i is the identity map of Sf into &, {i, &} is an m-comple-
tion of

Let

- u n AU,V ,
ueU veV

Suppose

{AUfV}ueu>vev an m-indexed set in J^C This can be written in the form

u n u Au,v,m;
ueU veV m,eMUfV

Au>υ>m or - Au>v>m e <9ζ MZ < o .

Let Bfj= {de&m: {d} = AUtV>m for some ue U, ve V, and m e l j .

Then B' ^ m, so if
-Mϋ, = {m e MU)V: AU)V>m is not of the form {d}9 de&J, it follows

that
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- u n u A.,,,m ^ m.
ueϋ t e c me if' „

It will now be shown that in fact

5 - U Π U Au.v,m > m ,
u&U v e V me 31'

u ,v

a contradiction. Hence it may be assumed that AUtVf1Λ is not of the
form {cZ}, d e j£rm, for all ueU,ve V, and m e MUtV.

If AU)V>m = — {cί}, dGu^m, for some meMu>v, then either

( 1 ) U A . . . f W = -{<*}

or

(2) J J Au,v,m= V .

If (1) occurs, it may be assumed that MUtV = {1} and AUtVtl = -{d}.
If (2) occurs, the term \Jm6MutV AUjV>m may be dropped. Thus for all
ueU,V may be written as" 'F w U VI, where (1) Vu Π VI = 0 ; (2)
.̂«,«,« = — {d*,v}f dUfV 6 £%rm, for all v e Vu; and (3) AM>VtW is either of

the form -Dt>s or A,, for all VG V'U. Consequently, for all ue U,

Dv M AUM =

V[) " {du'v] n ,eQ w e y Aw'^m

Let

c = n u A
veV m e M u } v

Suppose Z7 is the set of all ordinals u < a, where a = U. Let
A = {ώ G £^w: 7rt(cZ) = sj, s'2}. Now A = 2m implies there is a ^ e i ?
such that

dιe Π — {̂ i,„} .

Since dι g JS, this implies

^1 ί ΓΊ U Άl v m 9

hence for some vι G V[,

dt & U A l t V >m .

Also, A S - A , , for all t e T and s e S', hence

Alft>lfW = Dh m)8t

for some tUm e T and s ί l m e S', for all m e MUVl. Let 2\ = {ί1>m: m 6 AflfVl}
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and pick sL e S' such that sx Φ sh m for all m € MltVχ. Define

φ(t) = s1

for all t e Tx. Let B1 = 0 and define ί?2 = {d e i^m: τrt(d) = ^(ί) for
all t e ΓJ.

Note that £ 2 Π Ci = 0 .
Suppose i > 1 and a finite set TV has been defined for each

V < i so that TV Π TV' = 0 if i', ΐ " < i, V Φ i") 8t, e S' has been
chosen; 9> has been defined on each Tif, if < i, so that 9>(t) = sίf for
all t e TV; and if

jBί = [d e &m\ nt{d) = φ(t) for all t e U Γ }̂

then

Let

t = ^ ,̂

and note that T* < m. Let

Dt = {d e ^ m : π t(d) = ^(t) for all ί e ft

and πt{d) = s'k, k = 1, 2, if te T - Tt] .

Then Di^ D and Zζ = 2m, hence there is a ώ̂  e A such that

Since dt ί J5, this implies

di*vQ>.M v

At v'mf

hence for some vt e F/,

m e Λ f ΐ , » .

If Bif]Ci= 0 set Γ€ = 0 . If not, there is a ώ eB* such that
d\ e Cif so

Note that 7Γt((Z{) = πt(dt) for all t e Tt.

I t immediately follows that if
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die U Ait9i,m

then

AitVitin = A ί ( M , ί t i m f

where ί<fWe Γ* and

for some m e MiyV..

Let

T< = {ί<ιm eT- f,: AifVi>m = A ^ , . ^ m for some m e ΛΓ,,,,}

and pick s* e S' such that if tί>m e Ύt then

for all m e Mi)V.. Now define

φ(t) = s, for all ί e T, .

Thus Γ, Π ft = 0 which implies Γ, 0 ^ = 0 for all i' < i. If

5 i + 1 = {d 6 ̂ m : ττt(d) - φ(t) for all ί e Tt U f j

then it is clear that

Bi+1 n U c< = 0 .

Now let f = Uκ« Γi and set

B = {de ^m: πt(d) = <p(t) for all t e Γ

and πt(d) Φ s'lf si if ί e Γ - f} .

Then JB Φ 0 and B^ B. But JB n U^e^C,, = 0 which implies

B -\JCUΦ 0 .
ueU

If JB' = JB - U«β^ Ctt then for each J e f f ,

for some m-indexed set {se,6}ίeΓ in S' Thus

5 = u n u .̂..,« u u n A,.t»,
weZ7 veV meMUiV beB' teT

but the above construction shows that
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B-(un u A.,v,m u u n Dt,.t t) Φ 0
ueU veV meMu>v beB' teT *

if B' < m. Hence

B - \JCu>m .
ueU

LEMMA 3.6. If {i, &} is an m-completion of the Boolean algebra
and there is a Be & such that

BΦ U Πi(Att.)
teT seS

for all m-indexed sets {At>s}t<BT}SeS in J^, then there is an m-ideal
Δ in & such that {j, ^} is an m-extension of iΔ(J&) but not an
m-completion, where iΔ{A) = [ί(A)]j for all A e J < &Δ = &\Δ and
j is the identity map of iΔ(J*f) into &Δ.

Proof. Let

Δf = {Bf e^:B' S-B and Bf = f\ i(At) ,
teT

for some m-indexed set {At}teτ in

and let Δ = (Δr)m. Then if δeΔ,δ^B, so B <£ Δ. If A e j& and
[i(A)]j § [B]Δ then i(A) — Be Δ so i(A) — J3 S # which implies
i(A) gΞ JB, hence ΐ(A)€ J and [i(A)]Δ = A^Δ> implying iΔ(Ssf) is not
dense in &_.

It only remains to show that iά(Szf) is m-regular in &Δ. If

n ίί(A()i, = Λ^,

then i(A) S iί-A*) for all teT implies i(A) e Δ, so i(A) S B. If

Π i(Aβ) g B ,

then there is an A Φ A^ in J ^ such t h a t

() ft ί )
teT

contradicting the above statement. Thus

Π i(At) S 5
ί e Γ

SO
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and

Thus if sf is the Boolean algebra constructed in Lemua 3.5,
is a Boolean algebra such that 5ίΓ(iΔ( Jzf)) contains more than

one element. Hence it is justified to assume that for each infinite
cardinal m there is a Boolean algebra S$f such that J^f has an m-
extension which is not an ra-completion.

4* Let {J^t}teτ be a (fixed) indexed set of Boolean algebras.
Let ht be an isomorphism of Szft onto the field _^7 of all open-closed
subsets of the Stone space Xt of sft. Let X denote the Cartesian
product of all the spaces Xt. Let πt be the projection of X onto
and define

by:

if Fe jpς then φt{F) = {x e X: πt(x) e F) .

Let &~ be the Boolean product of {J^} i e r. Define h* = ΨtK and

let ^ be the set of all sets Γlteτ,h?(At); Ate Jϊft, T S Γ, Γ ^ w.

Define JF~ to be the field of sets generated by St. Let J be the set

of all sets S g / such that

1. S^m;
2. there is a teT such that S S h?(<M);

3. the join Ufe^A exists.
Let Mr be the set of all sets S S Γ such that

1. S ^ m ;
2. there ί s a ί e Γ such that S S ht{S*ft))

3. the meet ΠίU-A exists.
Let M" be the set of all sets S £ T such that

1. Srg^;
2. if A e S then A G hf{j*ft) for some ί e T;
3. if A, 5 G S, A ^ JB, then A e hΐ{*M) implies B $ hΐ(jχft). Let

Λf = M' U M".
The following lemma is due to La Grange [1] and will be given

without proof.

LEMMA 4.1. If {{ίt}teτ, ^}e^n then there is one and only one

(J, M, m)'isomorphism h mapping &~ into & such that

hhf = it for all teT .
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THEOREM 4.1. If {{it}tQTf ^\ e ̂  then there is a mapping h
/\ /\

0/ ά^ into & such that {h, &) is a (J, M, m)-extension of J?~. If
{h, &) is a (J, M, m)-extension of J^ then the ordered 'pair
{{hht}tβτ, .<

Proof. Let h be the (J, M, m)~isomorphism from ^ into &
such that hhf = i« for all te T. Then {Λ, ̂ } is a (J, Λf, m)-extension
of Jrm

Conversely, if {h, &} is a (J, M, m)-extension of ^ it follows
immediately that {{hh?}t€T,, ̂ } is an (m, ̂ -product of

THEOREM 4.2. 1/ {{it}ίeΓ, .^}, {{i't}teτ> ^f) are two (m, n)-products
°f {^t}teτ then

i/, and only if,

{i, m ^ {%', .$?'}

where {ί, .&} and {if, &'} are the (J, M, m)-extensions of ^ induced
by the (J, M, m)-isomorphisms ir and i of ά^ into &' and £%?,
respectively, given by Lemma 4.1.

Proof. Now

{{ith*T, ^} ^ {{ϊt}teτ, &'\

if, and only if, there is an m-homomorphism h such that

h\^f >&

and hi't — it for all te T. Similarly,

{i, ̂ } £ {*', έ&'}

if, and only if, there is an m-homomorphism

h: &' > &

such that h'i' — i. Thus it suffices to show that hi' = i, if, and
only if, hi[ — it. Let h? be defined as above. Then ihf = it and
i'h* = it, so if hi' — ί,

hi't = hi'ht = ihf = it ,

and if hi\ — ίt, then

hi' = hi'th?-1 = ithΐ~ι - i .
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La Grange [1] has given an example of an (m, 0)-product for
which & does not contain a smallest element and an example of an
(m, ^-product for which &n does not contain a smallest element.
Theorem 4.2 extends this result by showing that the question whether
& or £Pn contains a smallest element reduces to asking whether the
class of all (J, M, m)-extensions of J^J or J^ contains a smallest
element for J and M defined appropriately in each case, where j^J
and j?~ are denned as above. Now the class of all (J, M, m)-exten-
sions of J^J contains a smallest element only if the class of all m-
extensions of S^ contains a smallest element and Theorem 3.2 shows
that the class of all m-extensions of s^ need not contain a smallest
element, which implies the same is true for ^ . Since Theorem 3.2
may be extended to Boolean algebras of the form ^ it follows that
&>n need not contain a smallest element.
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MULTIPLICATIVITY-PRESERVING ARITHMETIC
POWER SERIES

DAVID REARICK

In the Dirichlet algebra of arithmetic functions let the
operator A be represented by an arithmetic power series
Af = Σa(F)fF. A condition on the coefficients a(F) is derived
which is necessary and sufficient for Af to be multiplicative
whenever / is multiplicative.

1# Introduction* In [2] a factorization F was defined to be a
nonnegative integer-valued arithmetic function having F(l) = 0 and
F(n) Φ 0 for at most finitely n. The index of F was defined by
i(F) = ΐ[7=ijFlj). If / is any arithmetic function, we defined fF —
ΠΓ=i [fU)V{j) with the understanding that 0° = 1. If a(F) is a
mapping from factorizations into the real or complex numbers, we
wrote

(1) Af = Σ a(F)fF

as an abbreviation for the arithmetic function Af whose value on n
is equal to Σiuo^ a(F)fF. In [2] a series of the form (1) was
called an arithmetic power series. Since for each n the series is
terminating, there is never any question of convergence. Such a
series defines an operator A on the Dirichlet algebra of arithmetic
functions, and the theory of these operators has been investigated
in [1] and [2].

In particular, if r is a real number, the Dirichlet rth power of

an arithmetic function / is represented, when /(I) — 1, by an arithme-

tic power series Σj(p)fF- The symbol (Wj was defined in [2]. It

is known [1, Theorem 5] that fr is multiplicative whenever / is, and

therefore the series Σ ί p ) / ^ * s a n example of a multiplicativity-

preserving arithmetic power series. The present paper is devoted

to determining a necessary and sufficient condition on the coefficients

a(F) in order that the general series (1) preserve multiplicativity.

The method, and the statement of the result (Theorem 1), depend

on a certain equivalence relation between factorizations, to be intro-

duced below.

2Φ Equivalent factorizations*

DEFINITION 1. If F and Fr are two factorizations, we say F is
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equivalent to Ff, written F ~ F', if fΓ — fF> for every multiplica-
tive arithmetic function /.

It is obvious that this is an equivalence relation. An example
of a pair of nonequal but equivalent factorizations may be con-
structed by taking F(2) = F(S) = F'(6) = 1, with all other values
being zero. Then fF = /(2)/(3) = /(6) = fF' for every multiplicative
/. Two equivalent factorizations F and Ff necessarily have the
same index, for if we choose the particular multiplicative function
f{n) = n, we have i(F) = fF = fF' = i(F').

DEFINITION 2. We shall use the letter C to denote an equivalence
class of factorizations. The index i(C) of an equivalence class C is
defined to be the index of the factorizations F belonging to C. If /
is multiplicative, we denote by fG the common value of fF for all
FeC. If F1eC1 and F2eC2, we define d + C2 to be the equivalence
class containing the factorization Ft + F2.

It is obvious that the definition of C1 + C2 is unambiguous.
If the operator (1) is applied to a multiplicative /, the sum

over all factorizations F of index n reduces to a sum over all
classes C of index n, thus:

Af(n) = Σ a(F)fF = Σ fc Σ a(F) .

Therefore, insofar as its action on multiplicative functions is con-
cerned, an arithmetic power series is determined by the sums of its
coefficients over equivalence classes of factorizations, and it is
natural to make the following definition:

DEFINITION 3. a*{C) = ΣiFeC

Thus, when / is multiplicative, we may write

(2) Af(n)= Σ a*(C)fc .

The main theorem may now be stated as follows.

THEOREM 1. The arithmetic function Af = Σ a{F)fF is multi-
plicative whenever f is, if and only if the following pair of con-
ditions holds:

(3) a*(C1 + C2) - α
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for every pair of equivalence classes Cx and C2 having relatively
prime indices, and

(4) α*(0) = 1

where 0 is the class containing the zero factorization.

3* Lemmas* Let those positive integers which are prime powers
be arranged in increasing order. Let xlf x2, be an arbitrary
sequence of complex numbers. We may construct a multiplicative
function / by setting /(I) = 1 and, it pv is the Jfcth prime power,
defining

(5) Λp») = x * .

The requirement that / be multiplicative then defines f(n) for all
positive integers n. Furthermore, every multiplicative / arises from
exactly one particular choice of the sequence {xk}. (Following the
usual convention, we do not consider the identically zero function
to be multiplicative.)

These observations establish a one-to-one correspondence between
the set of all multiplicative functions and the set of all sequences of
variables {xk}. Under this correspondence we may associate, with
each factorization F, an expression fF which is a monomial (with
coefficient 1) in certain of the variables xk. We note that a given
variable xk cannot appear in this monomial if it does not correspond,
in (5), to a prime power divisor of i{F), since, by definition of
index F(j) = 0 if j does not divide i(F).

LEMMA 1. Two factorizations F and Fr are equivalent if and
only if the two corresponding monomials fF and fF' are identical.

Proof. It is familiar from algebra [3, Chapter 4] that if two
polynomials always agree in value while each variable xk is assigned
infinitely many different values, holding the others fixed, then the
two polynomials are identical. The converse part of the assertion is
trivial.

Lemma 1 shows that equivalence classes of factorizations may
be identified with monomials in an arbitrary finite number of
variables. Also, it is clear that each equivalence class of prime
power index pv consists of a single factorization.

LEMMA 2. Let Flf-"fFr be nonequivalent factorizations.
Suppose that, for every multiplicative /, the linear combination
Σi-i bjfF* is equal to zero. Then each of the coefficients bj is zero.
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Proof. The linear combination referred to in the lemma is a
polynomial in certain of the variables xk, and the numbers bά are
precisely its coefficients, since by Lemma 1 no two of the monomials
fFj are identical. As in the proof of Lemma 1, each of these
coefficients must be zero.

LEMMA 3. Let F, F\ G, and Gf be factorizations, with i(F) =
i{F') = m and i{G) = i{Gf) = n, and assume m and n are relatively
prime. Suppose F + G ~ F' + G'. Then F ~ F' and G ~ G'.

Proof. As observed earlier, each variable xk appearing in the
monomial fF corresponds, in (5), to a prime power divisor of m.
Similarly, fG contains only variables corresponding to prime power
divisors of n. Since (m, n) = 1, these two sets of variables are
disjoint. Applying the same reasoning to Fr and (?', we see that no
variable appearing in either fF or fF' can appear in either fG or fG',
and conversely. By hypothesis we have fFfG = fF+G = fF'+G' =
fF'fG' for all multiplicative /, or equivalents fF/fr' = fG'/fσ. Since
opposite sides of this identity are rational functions in disjoint sets
of independent variables, both sides must be equal to a constant B.
In the identity fF = BfF', putting f(k) = 1 for all k, we obtain B =
1. Therefore fF = fF> and fG = fG>, meaning F ~ Fr and G ~ G'.

LEMMA 4. Let Fίf , Fr be nonequivalent factorizations of
index m. Let Gu « ,GS be nonequivalent factorizations of index
n. Assume (m, n) = 1. Suppose that, for every multiplicative /,
the linear combination ΣJ=i ΣίUi bjkf

Fj+Gk is equal to zero. Then
each of the coefficients bjk is zero.

Proof. By Lemma 3 the factorizations F3 + Gk are all non-
equivalent, and the result then follows from Lemma 2.

LEMMA 5. Let F be a factorization of index mn, where
(m, n) = 1. Then there exist factorizations Ft and F2, of indices
m and n respectively, such that F ~ Fλ + F2. Furthermore, if F[
and F[ also satisfy these conditions, then F1 ~ F[ and F2 ~ F'2. In
other words, if (m, n) — 1, then each equivalence class of index
mn is the sum of a unique pair of classes of indices m and n
respectively.

Proof. The uniqueness part follows immediately from Lemma 3.
As regards the existence of F1 and F2, we claim that the pair
defined as follows will satisfy the requirements:
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F^k) = 0 if k = 1

= Σ F(3) if k>l

F2(k) = 0 if k = 1

if k > 1 .

To check this, choose any multiplicative /. Then

= Π [/((?, ™))F(Λ Π
i=i i=i

= Π

= Π

= Π [/((i, m»))]"« = ft [f(3)VU) = Γ ,
j=l i=l

where in the last step we use the fact that F(j) = 0 if i does not
divide mn. Therefore F - Fx + JP2. TO find the indices of JP\ and
F2, we first observe that i{F^i(F^ = i(J?\ + î 2) = (̂-F7) = mw. Also,
if we choose for / the identity function f(k) — k, we have i(Fx) =
fFl = UT^iJ, m)F{j), and each factor in the product is relatively
prime to n, so i(Fλ) is relatively prime to n. Similarly, i(F2) is
relatively prime to m. Therefore i(F^) — m and i(F2) = w.

4* Proof of Theorem 1* First assume conditions (3) and (4)
hold. Choose any multiplicative /, and let m and n be relatively
prime. We are to show that Af(mn) — Af{m)Af(n) and 4/W = l
By Lemma 5, each equivalence class C of index mn is the sum of a
unique pair of classes CL + C2 where ί(C^) = m and i(C2) — n. Re-
membering (2), we may evaluate Af(mn) as follows:

Af(mn)= Σ a*(C)fc= Σ Σ
i(C)=mn i ( C 7 1 ) = « t ( C )

Σ α ί W 0 1 Σ α*(Q/C2 = A/(m)A/(%) .

Also, A/(l) = α*(0)/0 = 1.
To prove the converse, assume the operator A preserves multi-

plicativity. Choose m and n relatively prime, and let / be any
multiplicative function. Proceeding as in the last computation above,
we have

0 = Af(mn) - Af{m)Af{n)

= Σ Σ / ^ [ α ίCi + CO - a*(Cda*(CJ] .
t(C1) = m i(C2)=n
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This double sum is a linear combination of the type considered in
Lemma 4, and therefore, by the result of that lemma, the expres-
sion in square brackets is equal to zero for all CΊ and C2 in the sum.
That is, equation (3) is satisfied. Also, (4) is satisfied because 1 =
Af(ΐ) = α*(0)/0 = α*(0). This completes the proof of Theorem 1.

5* Further consequences• We wish to show how to construct
all solutions α*(C) of (3) which also satisfy (4) (and which we shall
refer to as nontrivial solutions of (3)). Given a nontrivial solution
α*(C) of (3), we can recover (nonuniquely) by Definition 3 the coeffi-
cients a(F) of an arithmetic power series (1) which preserves multi-
plicativity, and the class of such series will then be completely
characterized.

LEMMA 6. Let C be an equivalence class whose index is greater
than 1 and has prime factorization i(C) — pi1, •••, pv

r

r. Then there
are unique classes Cl9 , Cr, of indices pl\ , pv

r

r respectively, such
that C = Cx + + Cr.

Proof. Apply Lemma 5 repeatedly to the r maximal prime
power divisors pi1, •••, pv

r

r of i{C).

LEMMA 7. a*(C) is a nontrivial solution of (3) if and only if
α*(0) = 1 and

( 6 ) a*(C) = f[ a*(Ck)
fc = l

whenever i(C) > 1, where the classes Cl9 •••, Cr are related to C as

in Lemma 6.

Proof. Equation (6) is obtained from (3) by applying the latter
repeatedly to the maximal prime power divisors of i(C). Conversely,
(3) is obtained from (6) by applying (6) to the prime decomposition
of mn, separating the maximal prime power divisors of m from those
of n.

Lemma 7 gives us a process for constructing all nontrivial solu-
tions of (3). The method is analogous to that used at the beginning
of § 3 to construct all multiplicative functions, namely:

THEOREM 2. The nontrivial solutions α*(C) of (3) are exactly
those which take the value 1 on the zero class and are defined arbi-
trarily on classes of prime power index, the definition then being
extended to all C by the product formula (6).
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Finally, we shall determine the number of equivalence classes of
index n. Let this number be denoted by E{n). It follows from
Lemma 5 that E(n), as an arithmetic function, is multiplicative.
Therefore, it suffices to evaluate this function on prime powers p\
Since each class of index pu contains only one factorization, E(pv) is
equal to the number of factorizations of index pv, and this is
evidently just the number of unrestricted partitions of v. These
observations yield the following explicit formula for E(n):

THEOREM 3.

E(l) = 1

E(n) = Π P(v) ifn>\,

where p{v) is the partition function, and the product is extended
over all maximal prime power divisors pv of n.
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CHARACTERISTIC IDEALS IN GROUP ALGEBRAS

I. SlNHA

If %G is the group-algebra of a group G over a field $,
and % is any subgroup of the automorphism group of the
f?-algebra §G, then an ideal I of gG, is called ^-characteristic
if / α £ / , VaeA. If A is the whole automorphism group
itself, then we merely say that / is characteristic. Then D.S.
Passman has proved the following result:

"Let H<\ G such that G/ίZ" is g-complete. Then for each
characteristic ideal I of §G, I=(IΠ%H)C$G"

The main concern in this paper is to consider the converse
of this result.

2- Some preliminaries* For a given ideal I<^τ$G, let &(I) be
the set of all H ^ G such that I = (I Π %H)%G. Let C(I) be the set
of all H in G such that if for some right giϊ-module 3K, IΠ § # £
Ann STC, then I g Ann 2KG, the induced gG-module. We first of all
have:

THEOREM 1. (i) For any / < g G , C(/) £

(ii) 1/ fl"< G, then He &(I) if and only if He C(I).

Proof, (i) Let I n %H £ Ann 2ft imply that I £ Ann 2K*. Let
Σ Pi%i e I with p, G giϊ, where G = U -HΓα?€ is a coset-decomposition.
We have ( Σ 3ft (x) O ( Σ 2V*) = 0 if I n gίZ" £ Ann 2ft. In particular
(m (g) I)(Σ P A ) = 0, Vm G 501, i.e., Σ m P * ® ^ = 0> VmG 2ft. So 3ft-p* = 0
for each i. Thus p, G Ann 2ft. Since 2ft is arbitrary with the property
that i n g i ϊ S Ann9K, so we may take 2ft = %H/IΓ\%H, and conclude
that each pt e Ann 2R = I n &ff. Thus Σ PM e(/fl &ff)gG.

(ii) Suppose 1 = gG(Ingjff) and j n g i ϊ g Ann 2ft, for some gJEΓ-
module 2ft. Note that H<lG implies that gG(/ng£Γ) = (lnS£T)SG.
Let α - Σ xtpt e I where ^ e In gH. So α2ftσ = ( Σ ^ p J ( Σ % ® 3ft) =
v " "\ 0 Pl̂ Sft - 0 since p?; eI(~]%H^ Ann 2ft. Thus α 2ftσ = 0 andΣ

Theorem 17.4 of [1] then gives us:

COROLLARY 1. Let H<lG such that G/H is %-complete. Then
He C(I) for every characteristic ideal I of gG.

Also Theorem 17. 7 of [1] implies:

COROLLARY 2. If H<\Gs G/H is abelian and has no elements
of order p = Char. ^ then He C(J(G)), where J denotes the
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Jacobson-radical of %G.

3* Main result* We will prove:

THEOREM 2. For I — [gG, %G\, the commutator ideal and for
J=J(G), if HSG such that He^(I) and He&{J) then H^G,
G/H is dbelian with no elements of order p. In particular, %(G/H)
is semi-simple.

Further,if % is algebraically closed then G/H is ^-complete.

We observe that the last two statements in the theorem follows
from 17.8 and 17.1 (i) respectively of [1]. The rest of the theorem
will be proved by a series of results proved below.

LEMMA 1. Let H£ G, Ig %G and He &(I). Then H^ %-ι(I) =
{geG\g-leI}.

Proof. Let G = U Hxt be a coset-decomposition, and g e %"\I)
such that g$ H. Then g = hxt for some i, where xtΦl9 and he H;
and hxt - 1 e (I n %H)%G = Σ (J Π %H)xt. Since {xt} are linearly inde-
pendent over %H, held %H, and XiΦl, so gel which implies that
1 6 /, a contradiction.

LEMMA 2. If I = [%G, %G], and He & (I) then H^G and G/H
is abelian.

Proof. Observe that I is a proper ideal in %G, since §I(/) = 0.
Also by Lemma 1, H 2 Slr^J). Since (ghg~xh~γ — l)hg = gh — hg e I,
for all g,heG, so {ghg~ιh~ι -l)el. Hence ghg~ιh~ι e %~1{I) S H; i.e.,
G'f the commutator-subgroup is in H. Hence i ί < G and G/H is
abelian.

Now let H satisfy the hypothesis of Lemma 2. Then we have:

LEMMA 3. Let I = J(G) and He &(I). Then %(G/H) is semi-
simple and G/H has no elements of order p = Char. %.

Proof. J(G) = (J(G) Π%H)%G £ J(H) %G by 16.9 of [1]. Now
%H[%,H(H)~% where $tH(H) is the ideal of %H, generated by
{h~l\heH}. So %H(H) 3 J(H). Hence %H(H)%G - %G{H) 3
J{H).%G^J{G), where %G{H) is the ideal in gG, generated by
{λ - 11 λ e -ff}. Now 2CG(iϊ) is the kernel of the natural map of %G
onto %(G/H); {see for example proof of Theorem 1 in [2]}. Thus
%(G/H) — %G/%G(H) is semi-simple. Since G/H is abelian by Lemma
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2, so it is clear that it has no elements of order p, as %(G/H) is
semi-simple.

This also completes the proof of Theorem 2.
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HOMOMORPHISMS OF RIESZ SPACES

C. T. TUCKER

If L is a Riesz space (lattice ordered vector space), a Eiesz
homomorphism of L is an order preserving linear map which
preserves the finite operations "V" and "Λ". It is shown
here that if L is one of a large class of spaces and φ is a
Riesz homomorphism from L onto an Archimedean Riesz space,
then φ preserves the order limits of sequences.

The symbol θ will be used to denote the zero element of any vector
space. Suppose L is a Riesz space (lattice ordered vector space). If
feL then \f\=fVθ-(fΛθ). If M is a linear subspace of L then
M is said to be an ideal of L if, whenever \g\ <j | / | and/eikf, then
g e M. If each of L1 and L2 is a Riesz space, a Riesz homomorphism
φ from Lλ to L2 is a linear map from Lγ to L2 which preserves order
and the finite operations "V" and " A " A sequence /i,/2, A of
points is said to order converge to the point / if there exists a sequence
u^ u2^ u3^ and a sequence vλ ^ v2 ^ v3 ^ - of points such
that V VP = /> AUP = f> and vP ^ fp ^ up. Order convergence for
nets is defined analogously. A sequence /Ί, /2, /3, of elements of
the Riesz space L is said to converge relatively uniformly to the
element / of L if there exists an element g of L (called the regulator)
such that if ε > 0, there exists a number Nε such that if n is a
positive integer greater than Nε9 then | / — /Λ j ^eg. A Riesz space
L is said to be Archimedean if, whenever / and g are two points of
L such that 0 <^ nf <: g for all positive integers n, then / = θ. Also
L is said to be σ-complete if each countable set of positive elements
has a greatest lower bound and complete if each set of positive ele-
ments has a greatest lower bound. If φ is a Riesz homomorphism
which preserves the order limits of sequences then φ is said to be a
Riesz σ-homomorphism. If φ preserves the order limits of nets it is
said to be a normal Riesz homomorphism. A one-to-one onto map
which is a Riesz homomorphism is a Riesz isomorphism. If H is a
subset of L, H+ will denote the set of all points f of H such that
f^β. lΐ feL then /+ denotes fVΘ.

Suppose L is a Riesz space, M is an ideal of L, and the algebraic
quotient L/M is partially ordered as follows: If each of H and K
belongs to L/M and there is an element h of H and k oi K such that
h~^k, then H^ K. It follows that L/ikf is a Riesz space and the
normal map π: L —> L/M is a Riesz homomorphism (Luxemburg and
Zaanen [3], p. 102). The coset of L/M containing / will be denoted
[/]. Further, if M is the kernel of a Riesz homomorphism φ defined
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on a Riesz space L then the image of φ is Riesz isomorphic to L/M.
(Luxemburg and Zaanen [3], p. 102).

If M is a subset of a Riesz space L with the property that when-
ever mlf m2, m3, is a sequence of points of M which converges
relatively uniformly to a point b of L, b is in M, then M is said to
be uniformly closed.

In many instances properties of Riesz homomorphisms can be
related to properties of their kernels. The following four theorems
which are examples of this are listed for future reference.

THEOREM A. If L is a Riesz space and φ is a Riesz homomor-
phism defined on L then φ(L) is Archimedean if and only if the
kernel of φ is uniformly closed. (See Veksler [8] or Luxemburg and
Zaanen [3], Theorem 60.2.)

An ideal M of L is called a σ-ideal if, whenever {mj is a count-
able subset of M and b = y mi9 then beM.

THEOREM B. Suppose L is a Riesz space and φ is a Riesz homo-
morphism from L onto the Riesz space K. Then φ is a Riesz σ-homo-
morphism if and only if the kernel of φ is a σ-ideal. (See Luxem-
burg and Zaanen [3], Theorem 18.11.)

THEOREM C. Suppose L is a σ-complete Riesz space and φ is a
Riesz σ-homomorphism defined on L. Then φ(L) is σ-complete.
(See Veksler [7] or Luxemburg and Zaanen [3], Theorem 59.3.)

An ideal M of L is called a band if, whenever {ma}f a e λ, is a
subset of M and b = V ™a > then beM.

THEOREM D. Suppose L is a Riesz space and φ is a Riesz
homomorphism from L onto the Riesz space K. Then φ is a normal
Riesz homomorphism if and only if the kernel of φ is a band. (See
Luxemburg and Zaanen [3], Theorem 18.13.)

A question of interest is when can properties of L imply properties
of a class of Riesz homomorphisms defined on L. By combining some
known results it can be noted that to place requirements on all the
Riesz homomorphisms on L is quite strong.

The sequence flf f29 f3, is called a uniform Cauchy sequence
(with regulator g) if, for each ε > 0, there is a number N such that
if n and m are positive integers and n, m > N, then \fn — fm \ ̂  eg.
The Riesz space is uniformly complete whenever every uniform
Cauchy sequence (with regulator g) converges uniformly (with regulator
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g) to a point of L.

PROPOSITION 1. Suppose L is a uniformly complete Archimedean
Riesz space. Each two of the following four statements are equivalent:

(1) For each Riesz homomorphism φ defined on L, φ{L) is
Archimedean,

(2) For each Riesz homomorphism φ from L onto a Riesz space
K, φ is a Riesz σ-homomorphism,

( 3 ) For each Riesz homomorphism φ from L onto a Riesz space
K, φ is a normal Riesz homomorphism, and

(4) There is a nonempty set X such that L is Riesz isomorphic
to the space of all real functions which are zero except on some finite
subset of X.

Proof. By a theorem of Luxemburg and Moore [2], (1)—»(4).
By Theorems A, B, and D, (4)-> (3)-> (2)-> (1).

On the other hand, if requirements are placed on only a sub-
collection of the collection of all Riesz homomorphisms on L, results
of wider applicability can be obtained. In particular, in the following
theorems, it is shown that for a large class of Riesz spaces every
Riesz homomorphism onto an Archimedean Riesz space is a Riesz σ-
homomorphism.

If ω is a subset of L, ωd denotes the set of all elements g such
that \g\ A I/ | = θ for each point / of ω. If M is a band in L it is
said to be a projection band if L — M@Md.

A principal band is a band generated by a single element. The
Riesz space L is said to have the principal projection property if
every principal band is a projection band. The Riesz space L has the
principal projection property if and only if for each pair of points /
and g of L+, V~=i(?z/Λ g) exists. (See Luxemburg and Zaanan [3],
Theorem 24.7.)

Order convergence in L is said to be stable if whenever fly f2, f3,
is a sequence order converging to θ there is an unbounded, non-
decreasing sequence of positive numbers cίy c2t c3, such that cxfu

C2/2, C3/3, * order converges to θ. Order convergence in the spaces
Lpf 1 ^ p < 00; lP9 1 <ς p < 00; and Co is stable.

If order convergence in L is stable then every uniformly closed
ideal in L is a σ-ideal. Thus if φ is a Riesz homomorphism from L
onto an Archimedean Riesz space K, then φ is a Riesz σ-homomor-
phism.

For certain sets X order convergence in Rx is not stable. This
can be seen as follows: Let X be the set to which x belongs only if
x is an unbounded, nondecreasing sequence of positive numbers. Let
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fn be the function defined on X such that if clf cif c8, is a point of
X then fn(clf c2, c3, •) is l/cn. Then / l f /2, /3, order converges to
θ, but if cu ci9 cZy is an unbounded, nondecreasing sequence of
positive numbers then cju c2f2, c3/3, does not order converge to θ
since cnfn(clf c2, c3, •) = 1 for each positive integer n. If Xis made
of larger cardinality then clearly order convergence in Rx still fails
to be stable.

The author, in a paper concerned with the order properties of
convergence of Baire functions [6], defined a positive element x of a
Riesz space L to have property c if for each sequence ht ^ h2^
hz ^ of elements of L such that x = V hi9 there exists an element
b of L such that for each positive integer n, b ^ Σ?=i «̂

EXAMPLE 2. The constant function 1 in Rx has property c.
The constant function 1 in B[0, 1] (the space of all Baire functions

on the interval [0, 1]) has property c.
Let ω be the set of all functions defined on the interval [0, 1]

whose ranges are a subset of the rational numbers and let Q be the
vector space generated by ω. Then Q is a Riesz space with the
principal projection property but is not uniformly complete. This can
be seen as follows: If / is in ω, H is a subset of the interval [0, 1],
and / is the function obtained by setting / to zero on H and leaving
it unchanged off H, then / i s in ω. For Q to be a Riesz space it is
sufficient that / V θ exists for each point / of Q. Thus, if / is in Q
it is of the form Σ?=i c</< where the //s are in ω. Let i ϊbe the set
of numbers x for which f(x) < 0. Then / V θ = Σ?=i cJi and / V ^
is in Q. Clearly Q has the principal projection property. Each point
of Q has as range a countable number set, but a function which fails
to have this property, say g(x) = x on the interval [0, 1], is the uniform
limit of a sequence of points of Q. Further the constant function 1
in Q has property c.

Let L be a Riesz space and x a positive element of L which has
property c and M be a sub Riesz space of L containing x with the
property that if / belongs to L then there is a point g to M such
that g >̂ /. Then x has property c in M.

THEOREM 3. Suppose L is an Archimedean Riesz space contain-
ing a point x which has property c. Then each Riesz homomor-
phism φ of L into an Archimedean Riesz space K is a Riesz
σ-homomorphism.

Proof. If it can be shown that f, <; f2 <; /3 <; <; θ and V Λ = θ
implies V 9>(Λ) = θ, then the theorem is proved.

Now
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/, V {-x) + f, A (-») = /, - x

Ψ(fp V (-*)) + φ(f, Λ (-*)) = φ(fP) - φ(x)
Ψ(fp Λ (-*)) + 9>(a;) = <?(/„) - ?>(/, V (-*))

= 9>(/, Λ (-*) + *) = 9>((/P + x) Aθ)

Σ 9>((Λ + ») Λ θ) = Σ ?>(Λ) - ?>(Λ V (-*))

<P(± (Λ + *) Λ <?) = Σ ?>(Λ) - ?>(/, v (-»)).
j ) = l

As x has property c there exists an element b such that δ ^
ΣP=I (Λ + ^ ) Λ ^ for each positive integer n. Thus,

<PΦ) ^ 9>(Σ(Λ + χ ) Λ ί = Σ P ( Λ ) - <p(f* v ( - » ) ) .

Suppose that u ^ θ is an upper bound for {<£>(/?)}• Then

φ(b) ̂  Σ fa - ^(Λ V (-a))) ^ Σ (u ~ ?>(-&)) = ^ - <P(-x))
p = l p = l

Thus, w — ̂ »( — x) Ξ> 61 as i ί is Archimedean and ^ ^ ^(~x).
But if x has property c, (l/ri)x has property c for each positive

integer %. Therefore, ^ ^ (l/n)φ( — x) and w = ^ as K is Archimedean.
So V Ψ(fp) ~ θ and ^ is a Riesz σ-homomorphism.

Frequently inclusion maps do not preserve the order limits of
sequences. For instance the inclusion map of the space of continuous
functions on the interval [0, 1] into the space of all functions on the
interval [0, 1] fails to preserve the order limits of sequences. For this
reason most theorems which guarantee that a Riesz homomorphism
is a Riesz σ-homomorphism require that the mappings be onto. Theorem
B would not be true if ψ was not specified to be an onto map because
of the example just noted. However in view of Theorem 3, no such
problem can arise in a space that contains an element with property
c. Any embedding of such a space into an Archimedean space must
preserve the order limits of sequences.

If in Theorem 3, x is assumed to be a strong unit (a point with
the property that if feL there is a number r such that rx ^ |/ |)
rather than have property c, then the statement is no longer true.
For instance, let L consist of the set of all bounded sequences and M
be the set of all sequences sif s2, sd, with the property that if
ε > 0 there is only a finite number of positive integers n such that
I sn I > ε. Then M is a uniformly closed ideal but not a σ-ideal.

The Riesz space L is ^-complete if and only if it is uniformly
complete and has the principal projection property (Luxemburg and
Zaanan [3], Theorem 42.5). If L is uniformly complete and φ is a
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Riesz homomorphism defined on L then φ(L) is uniformly complete
(Luxemburg and Moore [2]).

Thus the question of when the operation of taking a quotient
preserves the property of cx-completeness can be included in the question
of when this operation preserves the principal projection property.

The Riesz space L has the quasi principal projection property
if for each point / of L, L == {f}d 0 {f}dd. Then L has the principal
projection property if and only if it has the quasi principal projection
property and is Archimedean. If L has the quasi principal projection
property then for each point / of L and g of L there is a unique
element g1 of {f}d and a unique element g2 of {f}dd such that g =
gι + g2. Denote g2 by Pf(g).

THEOREM 4. Suppose L is a Riesz space with the quasi principal
projection property, M is an ideal of L, and π is the natural map
of L onto L/M. Then the following two conditions are equivalent:

(1) If m is a point of M, PmL is a subset of M and
(2 ) (a) L/M has the quasi principal projection property and

(b) πPf = Pπfπ for each point f of L.

Proof. Suppose Condition 1 is true and each of H and K belongs
to (L/M)+. We wish to show that there exist points Ήx and H2

belonging to Kd and Kdd respectively such that H = Hx + H2. There
exist points h and k in L+ such that H — [h] and K = [k]. As L has
the quasi principal projection property there exist points hx and h2 of
{k}d and {k}dd respectively such that h = hx + h2. Now H = [hλ] + [h2]
and [ΛJ Λ [h2] = Θ. Since ht is in {k}d, h^ A k = θ, so [ht] A [k] =

[ht Λ k] = 0 and [ΛJ belongs to {iΓ}*. Suppose J"^ θ is in {lf}d, i e.,
J A K = θ. There is a point j of L+ such that [j] = J. There is a
point m of M such that j A k = m. By hypothesis there exists a
point mi of M such that Pm{j) = mt. Thus there is a point j^ ̂  0
and a point mγ^θ such that £. + m1 — j , jx is in {j A k}d, and m1 is
in {i Λ k}dd. Since j \ + m1 = j and m,. ̂  0, iL ^ i and j \ A j = j x .
Therefore, θ = jx A (j A k) = (j\ A j) A k = j1 A k or (i - mj Λ fe =
0. So j — mL is in {k}d and hence (j — m j Ah2 = θ. It follows that
[Λ Λ [AJ - θ and [ΛJ is in {K}dd.

Also ττPfc(/̂ ) = π(h2) = [fe2] = P^(iί) = Pπkπ(h).
Suppose Condition 2 is true. If m is a point of M and h is a

point of L

θ =z Pθπ{h) = Pπmπ(h) = πPm(h) .

Thus Pw(fc) belongs to M.

COROLLARY 5. Suppose L is a Riesz space with the quasi
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principal projection property, M is an ideal of L, and π is the
natural map of L onto L/M. Then the following two conditions are
equivalent:

(1) (a) If m is a point of M, PmL is a subset of M and
(b) M is relatively uniformly closed, and

(2) (a) L/M has the principal projection property and
(b) πPf — Pπfπ for each point f of L.

Proof. For L/M to have the principal projection property it is
equivalent that L/M have the quasi principal projection property and
be Archimedean. By Theorem A it is necessary and sufficient for L/M
to be Archimedean that M be uniformly closed.

THEOREM 6. Suppose Lisa Riesz space with the quasi principal
projection property and M is an ideal of L. Consider the following
two properties:

(1) (a) If m is a point of M, PmL is a subset of M and
(b) M is relatively uniformly closed, and

(2) M is a σ-ίdeal.
Then properties 1 and 2 are independent. If L is assumed to have
the principal projection property then property 2 implies property
1 but property 1 does not necessarily imply property 2. If L is
assumed to be uniformly complete then property 1 implies property
2, but property 2 does not necessarily imply property 1.

Proof. Suppose L is assumed to have the principal projection
property and property 2. For each positive integer n and point m
of M, nm A h belongs to M as M is an ideal. Now Pmh = V (nm Λ h),
PJi belongs to M since M is a (/-ideal, and property 1 (a) holds.
Property 1 (b) is clearly true.

An example of a space with the principal projection property in
which property 1 does not imply property 2 is the following: Let L
be the subspace of the space of all sequences generated by the collec-
tion of all constant sequences and all sequences which are zero except
for a finite number of terms. Let M be the ideal consisting of the
collection of all sequences which are zero except for a finite number
of terms. Then M satisfies property 1 but not property 2.

Assume L is uniformly complete and property 1 is true. Suppose
{mίf m2, m3, •} is a subset of M+ and h = y?=ί mt. Let rp = VίW m *
Then θ <̂  rx ^ r2 <; r3 ^ and VΓ=i rt = h. Let j be a positive
integer, f = Prj+}h, Λ = h - f, g1 = Pr.h, g2 = h- g19 and ds =f- gλ.
Note that dd is in M. Since f + /2 = gt + g2, dά = g2 — f2. As each
of g2 and /2 is in {rό}

d, d5 is in {r3)
d and d5 A #i = 0. Thus d, V & = ft.

Therefore, there exists a countable pairwise disjoint subset {du d2,
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d3, •} of M such that h = VΓ=i dt. Now the sequence du dλ + (l/2)d2,
d, + (l/2)d2 + (l/3)d3, dt + (l/2)d2 + (l/3)d8 + (l/4)ώ4, converges rela-
tively uniformly to a point m of M. Then /& belongs to the band
generated by m, Pmh = &, and it follows that A, is in M.

An example of a uniformly complete space with the quasi principal
projection property in which property 2 does not imply property 1 is
the lexiographically ordered plane. The vertical axis is a σ-ideal but
does not have property 1 (a).

Suppose L is a Riesz space and e ^ θ is a point of L. Then e
will be called a weak unit if e Λ | / | = 0 only in case f = θ.

When necessary, it will be assumed that L is a subspace of the
set of all almost finite extended real valued continuous functions on
an extremally disconnected compact Hausdorff space S. Further if
L has a weak unit β, this subspace may be chosen so that e is the
function identically to 1.

Suppose e is a weak unit of the Riesz space L. The pair (L, e)
will be said to be a Vulikh algebra if a multiplication can be defined
on L which makes it an associative, commutative algebra with multi-
plicative unit e which is positive in the sense that if / ^ θ and g ^ θ
then fg ^ θ. For some properties of Vulikh algebras see Rice [4],
Tucker [5], or Vulikh [9], [10].

Suppose that it is assumed that L is a subspace of the set of all
almost finite extended real valued continuous functions on an extrem-
ally disconnected compact Hausdorff space £ and that e is the function
identically equal to 1. If each of / and g belong to L their pointwise
product will be defined as follows: Both/and g are finite on a dense
subset Q of S. Their pointwise product on Q is a continuous function
on Q and can be extended uniquely to a continuous function on S,
since S is extremally disconnected.

There is at most one multiplication which makes (L, e) a Vulikh
algebra (Kantorovitch, Vulikh, and Pinsker [1]). If (L, β) is a Vulikh
algebra and it is represented as a Riesz space as a subspace of the
set of all almost finite extended real valued continuous functions on
an extremally disconnected compact Hausdorff space with e the constant
function 1, then the Vulikh algebra multiplication will be the same
as the pointwise multiplication described above.

THEOREM 7. Suppose L is a Riesz space with the principal
projection property, M is a uniformly closed ideal of L, π is the
natural map of L onto L/M and for each m in M+, if K is the
principal band generated by m, (K, m) is a Vulikh algebra. Then
L/M has the principal projection property and πPf = Pπfπ for each
point f of L.
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Proof. By Theorem 4 it is sufficient to show that for each point
m of M+ and / of L+ that V {nm A f) belongs to M. Let K be the
principal band generated by m.

By the representation theorem for Riesz spaces K can be assumed
to consist of almost finite continuous extended real valued functions
on a compact Hausdorff space S, where m is the constant function
with value 1 everywhere.

Let h = V (nm Λ / ) . The point h belongs to K. By hypothesis
(K, m) is a Vulikh algebra. Thus h2 belongs to K.

Suppose x is a point of S. If h(x) ^ n, then

(h - (nm A f))(x) £ h(x) ^ — h\x) .
n

If h(x) < n, then

(h ~ (nm A f))(x) = 0^ —h\x) .
n

Thus m A f, 2m A f, 3m Λ /, converges relatively uniformly to
h with regulator h2. As M is uniformly closed, h is in M.

If a is a subset of L+ with the property that for each two points
/ and g of a, f A g = θ, then α is said to be orthogonal.

THEOREM 8. Suppose L is a Riesz space with the principal
projection property, M is a uniformly closed ideal of L with the
property that if {fl9 f2, /3, •••} is a bounded countable orthogonal
subset of M+ there is an unbounded nondecreasing positive number
sequence cu c2, c3, such that {cλfu c2f2, csf3, •} is bounded, and π
is the natural map of L onto L/M. Then L/M has the principal
projection property and πPf = Pπfπ for each point f of L.

Proof. By Theorem 4 it is sufficient to show that for each point
m of M+ and / of L+ that V {nm A f) belongs to M.

Let K be the principal band generated by m. By hypothesis K
is a projection band, let h = V {nm Λ / ) . The point h belongs to K.
Also V {nm Λ /) = V {nm A h).

If k is in K+, let χ(k) = V {nk A m). This supremum exists as
K has the principal projection property. Let

dn = χ((nm A h ~ (n - l)ra)+) — χ(((n + l)ra Ah — nm)+).

By the representation theorem for Riesz spaces K can be assumed
to consist of almost finite continuous extended real valued functions
on a compact Hausdorff space S, where m is the constant function
with value 1 everywhere.

Suppose x is a point of S. If h(x) > n, then dn(x) — 0, if
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n i> h(x) > n ~ 1, then dn(x) = 1, and if h(x) <^ n - I, then dΛ(a?) = 0.
Let hn = (ίim Λh — (n- ϊ)m)+ — χ((h — wm)+) + (w —l)dΛ. If h(x) > n,
then ΛΛ(a;) = 0, if n ^ / φ ) > w — 1, then hn(x) = / φ ) , and if / φ ) ^
n — 1, then Λn(a?) = 0.

Therefore {ft,x, fe2, ha, •••} is an orthogonal subset of M+ bounded
above by h. By hypothesis there is an unbounded nondecreasing
positive number sequence clf c2f c3, such that {cjιlf c2h2, czhZy •} is
bounded above by a point b of L. Then if i is a positive integer,
& — {hι + A2 + + A<) ^ (l/c<+1)6, and the sequence / ,̂ hx + A2, /^ +
A2 + A3, converges relatively uniformly to h. As M i s uniformly
closed, h is in M.

COROLLARY 9. Suppose L is a Riesz space which is σ-complete
and with the property that if {fl9 f2y f3, •••} is a bounded countable
orthogonal subset of L+ there is an unbounded nondecreasing positive
number sequence cly c2, c3, such that {cxfu c2f2, c3/3, •} is bounded
then every Riesz homomorphism φ from L onto an Archimedean
Riesz space is a Riesz o'-homomorphism.

EXAMPLE 10. Suppose L is one of the space LP, 1 <£ p < co; lP9

1 ^ p < co or Co in which order convergence is stable or L is one of
the spaces Rx or B[Q, 1] which has a point with property c as described
in Example 2. Then L satisfies the conditions of Corollary 9. On
the other hand, let L be the space of all functions defined on the x-
axis with compact support. In this case L satisfies the hypothesis of
Corollary 9, while L neither contains a point with property c nor is
order convergence stable in L.

By what has just been shown, if L is a σ-complete Riesz space
with the property that if {flf f2, /3, } is a bounded countable orthog-
onal subset of L+ then there is an unbounded nondecreasing positive
number sequence clf c2y cd, such that {cλflf c2f2, c3/3, •} is bounded
is sufficient to imply that every uniformly closed ideal is a σ-ideal,
but this condition is not necessary, as the following example shows.

EXAMPLE 11. Let S be the set of all ordered pairs of positive
integers. Let L be the collection to which / belongs only in case /
is a real valued function on S with the property that there is a set
ω which includes all but at most a finite number of positive integers
such that if k is a positive integer in ω, /(I, ft), /(2, ft), /(3, ft),
is a bounded number sequence.

The space L is a complete Riesz space.
Suppose M is an ideal which is uniformly closed. Let / be the

l.u.b. of a countable subset a of M. Let β be the collection to which
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g belongs only in case there is a positive integer k and a member h
of a such that g(k, p) = h(k, p) for each positive integer p and if i
is a positive integer not k then #(i, p) = 0 for each positive integer 2).
Then / is the l.u.b. of β. For each positive integer k, let fk be the
function such that fk{k, p) = /(&, p) for each positive integer p and
if i is a positive integer not k then /fc(i, p) == 0 for each positive
integer p.

The function which is equal to /(i, j) at (ΐ, i) and zero elsewhere
is in M. Then since the function which is pfk(i, p) at (i, p) is in L,
fk is in M. Since the function which is ίf(ί, j) at (i, i) is in L, /is
in M.

Thus each uniformly closed ideal of M is a σ-ideal. For each
positive integer i let gt be the function such that gt{p, q) — 1 if p = i
and ^(p, g) = 0 if i 9̂  p. Then {̂ , g2, g3, •} is an orthogonal subset
of L which is bounded above by the constant function 1 but there is
no nondecreasing unbounded positive number sequence clf c2, cZy such
that {dglf c2g2, c3g3, •••} is bounded above.

The Riesz space L has the projection property if every band in
L is a projection band. Suppose L has the projection property, ω is
a subset of L, H is the band generated by ω, and / is a point of L.
There is a unique point ft of Hd and a unique point f2 of if such that
f = A + U Denote /2 by Pω(f).

The analogous question of when can the projection property be
preserved in a natural manner can be answered easily.

THEOREM 12. Suppose L is a Riesz space with the projection
property, M is an ideal of L, and π is the natural map of L onto
LjM. Then the following two properties are equivalent:

(1) π is a normal Riesz homomorphism, and
(2) (a) LjM has the projection property, and

(b) πPω = Pπωπ for each subset ω of L.

Proof. If (1) is true then the kernel of π, M, is a projection band
and 2 (a) and (b) clearly hold. If (2) is true and ω is a subset of M
with the point / as least upper bound, then πPωf = πf, but Pπωπf =
Pθπf = θ.

Also, several answers to the question of when is every Riesz σ-
homomorphism from an Archimedean Riesz space L onto a Riesz space
K a normal Riesz homomorphism are given in Theorem 29.3 of
Luxemburg and Zaanen [3].
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THE EXCHANGE PROPERTY AND DIRECT SUMS
OF INDECOMPOSABLE INJECTIVE MODULES

KUNIO YAMAGATA

This paper contains two main results. The first gives a
necessary and sufficient condition for a direct sum of inde-
composable injective modules to have the exchange property.
It is seen that the class of these modules satisfying the con-
dition is a new one of modules having the exchange property.
The second gives a necessary and sufficient condition on a
ring for all direct sums of indecomposable injective modules
to have the exchange property.

Throughout this paper R will be an associative ring with identity
and all modules will be right i?-modules.

A module M has the exchange property [5] if for any module A
and any two direct sum decompositions

iel

with Mf ~ M, there exist submodules A\ £ At such that

The module M has the finite exchange property if this holds whenever
the index set I is finite. As examples of modules which have the
exchange property, we know quasi-injective modules and modules
whose endomorphism rings are local (see [16], [7], [15] and for the
other ones [5]).

It is well known that a finite direct sum M = φ j = 1 Mt has the
exchange property if and only if each of the modules Λft has the
same property ([5, Lemma 3.10]). In general, however, an infinite
direct sum M = ®i&IMi has not the exchange property even if each
of Λf/s has the same property. On the other hand, Fuller [8] has
recently proved that every module over a generalized uniserial ring
has the exchange property (c.f., see [9, Theorem 9 and corollary to
Lemma 12]).

Therefore, two interesting questions arise:
(1) When does the infinite direct sumΛf = ®iQIMt of modules

Mt(ίel) with the exchange property have the same property?
(2) What ring R has the property that every module M has

the exchange property?
In this paper we consider these two problems for the class of

modules M which are direct sums of indecomposable injectives and
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completely make answers to them for such a class of modules. In
§1 we show a sufficient condition for a direct sum of modules with
local endomorphism rings to have the finite exchange property. In
§2 we prove the following results (Γ) and (2').

( Γ ) A module M which is a direct sum of indecomposable in-
jective modules has the exchange property if and only if it has the
finite exchange property, and moreover any of these assertions is
equivalent to that the Jacobson radical of the endomorphism ring
EndR(M) of M is {/ e End*. (M) | Ker / is essential in M).

(2') A ring R satisfies the ascending chain condition for (meet-)
irreducible right ideals if and only if every direct sum of indecom-
posable injective modules has the exchange property.

It is not known whether the exchange and finite exchange properties
coincide, so the first equivalence in (Γ) is meaningful. Since any direct
summand of a module with the exchange property has also the same
property as mentioned above, the second equivalence in (1') trivially
includes [2, Corollaire 5] concerning a problem on an indecomposable
decomposition of a direct summand of the module which is a direct
sum of indecomposable injectives (this is a problem of Matlis). (2')
is a strengthening of [19, Theorem 1] and, as seen in it, such a ring
in (2') has interesting properties concerning the Krull-Remak-Schmidt-
Azumaya's theorem and a problem of Matlis. If a module M is
quasi-injective, all properties in (1') are also valid for M, but con-
versely neither of them implies the quasi-injectivity of M. In § 3 we
show this fact with an example which means that the class of all
modules with the exchange property which are direct sums of in-
decomposable injectives is a new one of modules with the same
property. In §4 we generalize the results of Chamard [3, Theoreme
3] and Yamagata [17, Theorem 4] which are obtained from the point
of view of a problem of Matlis.

The author wishes to express hearty thanks to Prof. Tachikawa
for his advices.

1* A semi-T-nilpotent system* We will recall some definitions
and elementary results from [9] and [10]. A family {ΛfJ<ez, with an
infinite index set I, which consists of modules Mt whose endomorphism
rings are local is called (resp. semi-) T-nilpotent system if for any
family of nonisomorphisms {fin: Min —• Mtn+ι \n}>l} (resp. in Φ iw for
n Φ n') and any element xh e Mh, there is an integer m depending
on xh such that fimfίm_1 ftl(xtj = 0. If S^f is the full subcategory
of the category of all right modules whose objects are isomorphic to
direct sums of Λf/s, then it is said to be the induced category from
{ΛfJίei and we denote by J? the class of all morphisms / in J ^ such
that for two objects X = φjeJ X5 and Y = ®keκ Yk of J^ with f:X—*
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Y and indecomposable modules Xd and Yk, each πkfκd is a noniso-
morphism where κd is the canonical injection of Xd to X and πk the
projection of Y to Y*. In [9] we then know the quotient category
S^ = S^l^ is Cg-completely reducible abelian.

For a morphism /: M—* N and a submodule Mo of ikf, / | ikf0: Λf0 —>
N denotes the restriction of / to Mo. We denote by Endβ (M) an
endomorphism ring of a right module MR over a ring iϋ.

Now we write the proposition, without proof, which will play an
important role in our proofs.

PROPOSITION 1.1 ([12], [13]). Let {Mτ)ιeI be an infinite family of
modules with local endomorphism rings and M — @%eI Mz. Then the
following conditions are equivalent.

(i) {Mi}ieI is a semi-T-nilpotent system.
(ii) ^ Π End^ (M) is the Jacohson radical of End^ (M).
In this case, each direct summand of M is also a direct sum

of indecomposable modules which are isomorphic to some Mt.

LEMMA 1.2. For two modules M1 and M2, let

Λf = ΛfL 0 ilf2

and p a projection of M to Mx. Then for a nonzero submodule N
of M with NΠ M2 = 0 the restriction p\N is a monomorphism. If,
further, p(N) is a direct summand of M, then there exists a sub-
module N, of Mλ such that M= N®N,®M2.

Proof. The first assertion is clear. For the rest let p(N) be a
direct summand of M, M = ρ(N) 0 Mf and p a monomorphism on N.
By the modular law, we then have

with a projection π of Mx to ρ(N) where N1 = MXΓ\ Mf. We con-
sider the decomposition

M = p(N) 0 JVi 0 M2 .

It is then easy to see that the projection of M to p(N) be πp and
the restriction πp | N of πp to N is an isomorphism by the first part
of this lemma. As a consequence, we obtain the desired decomposi-
tion

The following corollaries are essentially proved in [9] but we
include proofs for completeness. In them, without proofs, we will
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use some properties for completely reducible objects in J ^ but they
are easily proved in the same way as for completely reducible modules
(see [9, p. 331-332]).

COROLLARY 1.3. Let M be a direct sum of indecomposable mod-
ules Mi (i e /), where each Mi has a local endomorphism ring, and
{Nj}jeJ an independent set of indecomposable submodules of M with
local endomorphism rings such that it is a semi-T-nilpotent system.
Then, if Σiej φ-Nί is a direct summand of M for every finite sub-
set FaJ, there exists a subset Ka I such that

M = Σ Θ Nj 0 Σ θ Mk .
j e j keK

REMARK. If J is finite, the finite direct sum Σ/e/φJVJ has the
exchange property by [15, Proposition 1] and [5, Lemma 3.10] and
is a direct summand of M by hypothesis. Hence there exists a sub-
set Kc: I such that M = Σiβ^ θ N3 0 Σ*ex φ Mk.

Proof. We assume J i s infinite. Let Szf and ^ be as above and
κ: N= Σ i e j φ Nό-+M an inclusion map. For a morphism / in Stf
we denote by / the induced morphism of / in the quotient category
Szf — Szfj^. Since N^ φ φ Njn is a direct summand for any
finite subset {jl9 •••, jn} of J by assumption, the restriction of Λ: to
Njt φ 0 NJn is then an injection in Jzf. This will imply that R
is an injection in Ĵ C

To show this we suppose that the kernel K = Ker ic is not zero.
Then there is a finite subset {jl9 , jn} c J such that K Π
(•WJΊ Φ φ Njn) Φ 0, because Szf is a C3-abelian category and N =
ΦiejNj in S^ ([9, Theorem 7]). Hence ^ ( f Π Σ L i θ ^ ) ^ 0 ^
the fact that ti \ Σ2= 1 0 Njk is injective in J^< a contradiction.

Then, since the category j>f is C3-completely reducible abelian,
the morphism R\ N—+ M splits and by the note just before this corol-
lary there is a subset Kc: I such that

(1) M= Σ Θ ^ Θ Σ @Mh

and

(2) M = N®Σ®Mk
keK

(3) = Σ Θ ^ Θ Σ ®Mk.
ieI-K keK

Let the projection of M to Σiez-*φΛf< be p. Then in (3) the pro-
jection of M to Σiei-K Mt is clearly p and so p o R is a bijection of N
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onto Σιe/-x Θ Mi in view of (2) and (3). This means that there is a
morphism φ of Σie i-* Θ M% to AT such that φ o p o £ = \- and p o iξ o φ ~
l Σ ί e / / ί @ i r Hence we obtain that 0 © (p © /c) — 1 and (p © /c) © φ — 1 be-
long to Jf(EnaR (N)) = ^ Π End,, (iSΓ) and ^ ( E n d β ( Σ ι e / - ^ θ ^ ) ) =
^ Π EndΛ (Σΐez-x θ Aί*) respectively. We will show that jθ © K is an
isomorphism of N to Σ1-f-Jfi:eA: © Aft.

First, r ( p o i c ) - l e ^ (Endβ (ΛΓ)) implies that φ o (p o /c) is in-
vertible, because ^ (End^ (N)) is the Jacobson radical by Proposition
1.1. The morphism p © /r is hence a monomorphism.

Secondly, to show that p © /r is an epimorphism it suffices to show
that the family {M%)ieI_κ is a semi-T-nilpotent system by the same
reason in the first part. Now since N= ΣJCJ © Nj is isomorphic to
Σίei-κ® Mιf there is a bijection σ:J—+I—K such that Nj ~ Mσ{j)

for every j e J because S-/ is a completely reducible C3-abelian cate-
gory (see the note before this corollary). It is therefore easy to see
that Nj is isomorphic to Ma{3) for every j e J on account of the facts
that ^ Π End^ (Nj) and J? Π EndΛ (Mσ(J)) are the Jacobson radicals
of EndΛ (iSΓ,-) and End^ (Mσ{j)) respectively. Hence the assumption that
{Nj}j€j is a semi-T-nilpotent system implies that the family {ikf,}?c/_^
is also semi-T-nilpotent, as desired.

Now then, since (p © κ)(N) = p(N) = Σ ιe/-iv © Mi is a direct sum-
mand of M, we can apply Lemma 1.2 to our case and have that

M = N © Σ © M,k ,
ke K

which completes the proof of the corollary.

COROLLARY 1.4. Let M be an infinite direct sum of indecom-
posable modules Mt (i e I) with local endomorphism rings. Assume
the family {Mt}ιeI is a semi-T-nilpotent system and let {NJt,^ be a
family of direct summands of M such that Nn g Nn+1 for all in-
tegers n^l. Then the union \Jn^Nn of the family {Nn}nZί is also
a direct summand of M.

Proof. Since, according to Proposition 1.1, the union U ^ i Nn is
also a direct sum of indecomposable modules with local endomorphism
rings, it is an immediate consequence of Corollary 1.3.

For two modules M = (&ίeI Mt and N = φ i e j N5 we can represent
every homomorphism / of M to N as a column summable matrix
(fjt), that is, for the injections Λ:, of Mύ to M and projections πά of
N to Nj (i el, j e J ) , f5ι = πjftz%\ Mi —> N, and, for any xe M and i e I
fji(Pι(%)) = 0 for almost all j eJ where pt is the projection of M onto
Mv. Hence, in this case we may denote that f(x) = Σ i πjf(χ) =

) for any xeM and f% = Σtjejfu (^e [9], p. 332).
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A submodule N of M is essential in Λf (JNΓS'Λf) if Nf] L Φ 0
for all nonzero submodules L oί M and ikf is uniform if every non-
zero submodule is essential in M. In the following we will denote
the kernel of a morphism / by Kerf.

LEMMA 1.5. Let M be a direct sum of uniform modules Mz (i e I)
and f = (fSi) e End^ (M). Then Kerf is essential in M if and only
if each Ker/^ is essential in Mt for all i, j e I.

Proof. Suppose that Ker fH is essential in Mx for all i9 j e I.
Then to show that Ker/S'Λf it suffices to show that Ker ff] Mτ £ '
Mi for all i e I. Now contrary to it, suppose that for some i e I,
Ker/n Mi is not essential in M, or equivalently Ker/Π M{ — 0 by
reason of the uniformity of M%. Then for 0 Φ x% e Mt there exists a
finite subset {jl9 , jn} S I such that 0 Φ /«(&<) = ΣΣ=i /^fe) a n d
/iι(^ί) = 0 for all j Φ j k , where ft = Σjejfji- Because the restriction
fi = f\Mτ: Mi—> M is a monomorphism. On the other hand, by hy-
pothesis, (ΠUi Ker /i4<) Π xtB Φ 0 and Λ((Πϊ=i Ker /ijfc<) Π ̂ ,i2) -
(Σ^i/i^)((Γl^iKer/ 4 z) Π xtB) = 0, a contradiction. Thus Ker/Π AT,
is essential in ikί, for every ie I.

Conversely, we assume that Ker/g'ilf. Clearly this implies
that Ker/n M, S ' Λf, by the uniformity of Mt(iel). On the other
hand, since ft(xt) = Σijejfh^i) a n d f^x^eM, for every ^eikί,, that
/.(xj = o implies that /J t(ίcι) = 0 for all j el. Therefore, Ker/, , Φ 0
for all i9 j e I, because Ker/^ = Ker/Π Mi Φ 0. As a consequence,
Ker/j: g'Af, for i, jel.

LEMMA 1.6 ([9], [10]). Let {Mi)iel be a family of a semi-T-
nilpotent system of modules with local endomorphism rings and
M — @ιei M%. Then S/J is a regular ring in the sense of von
Neumann and an idempotent of S/J can be lifted to S, where S is
an endomorphism ring of M and J its Jacobson radical.

This follows from Proposition 1.1, [9, Theorem 7] and [10, Theo-
rem 3].

PROPOSITION 1.7. Let {M%}ιeI be a family of a semi-T-nilpotent
system of modules with local endomorphism rings. Then M —
φιeiMi has the finite exchange property.

Proof. Let S = End^ (M) and J the Jacobson radical of S. Then

SfJ is a regular r ing and every idempotent is lifted to S by Lemma

1.6. Hence, for every element seS there exists an idempotent eeS

such t h a t sS + J = eS + J. This shows t h a t S has the exchange
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property as a S-module and so MR has the finite exchange property
by [17, Theorems 3 and 4].

2* The exchange property• In this section we prove our main
theorems being concerned with modules which are direct sums of
indecomposable injectives.

First we will continue to consider a general case of modules with
local endomorphism rings instead of indecomposable injectives.

LEMMA 2.1. Let M, N, and A, (iel) be submodules of a module
A such that

and, furthermore, let M be a direct sum of indecomposable submodules
Mj (j e J) with local endomorphism rings. If MΓ\^ieF^ At Φ 0 for
some finite subset F of I, then there exist elements % e F and jQ e J
such that

for a suitable submodule A'io of AiQ.

Proof. First we remark that, since each M3 (j e J) has a local
endomorphism ring, it has the exchange property by [15, Proposition
1], so that any finite direct sum of ikf/s has also the exchange prop-
erty ([5, Lemma 3.10]).

Now by hypothesis there exists a finite subset JQ of J such that
Σiej0 0 M3 Π ΣuieF θ At Φ 0. Hence applying the exchange property
of Σiejo©Λfi to the given decomposition A = Σ ι e z 0 A i , we have
decompositions such that

( 1 ) -A
iel

and

(2) = Σ
je JQ iel

Here there exists at least one element iQ of F such that BiQ Φ 0.
For, if the contrary were true, ^ £ ^ 0 ^ = 0 and hence Σ t e ^ θ
Ax = Σ*e^ θ Cf Sθ Σie^0 © Mj Π Σ.e^ © C% = Σie70 θ MS Π ΣieF φ
Ai Φ 0 by the definition of JQ, which contradicts the decomposition (2).
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Now it is clear that Mf = Σ i e j o θ ^ is isomorphic to Σ i
via the restriction π \ Mf of π to M', where π is the projection of A
onto Σίe/Θ-B* in the formula (1). It follows that

(3) π(M')= Σ 7r(Mj) = Bi0e Σ Θ * , .

Since each π(Mj) for j e Jo is isomorphic to M5, it has a local endomor-
phism ring. We can thus apply the Krull-Remak-Schmidt-Azumaya's
theorem [1, Theorem 1] to this module π(M') and the projection ξ of
π{Mf) onto BiQ in the formula (3). As a consequence, there exists an
element jQ e Jo such that the restriction ξ | π(MJQ) is a monomorphism
and ξπ(Mj0) is a direct summand of π(M') and hence of BiQ. On the
other hand, a simple computation shows that the projection of A to
Bio in the decomposition (1) is ξπ. Thus from these facts and Lemma
1.2 there is a submodule DiQ of JBio such that

Σ
{i

because the restriction ξπ \ MJQ is clearly a monomorphism. Setting
Ai0 = CH φ Dio, we finally have a desired decomposition

Σ
iel~{io\

Σ @At.

From now on we will consider indecomposable injectives.

LEMMA 2.2. Every indecomposable injective module is uniform
and has a local endomorphism ring.

This is well known (c.f., see [6, §5 Proposition 8]).

Assume Mx and M2 are indecomposable injectives and / a mor-
phism of Mι to M2. If / is a nonmonomorphism, then its kernel
Ker/is essential in Mt by Lemma 2.2 and the converse is, of course,
true. This shows that / is a nonisomorphism if and only if Ker/
is essential in Mt. Under this observation we have

PROPOSITION 2.3. Let {Mi}ieI be an infinite family of indecom-
posable injective modules and M = 0 { e j ^ Let S be an endomor-
phism ring of MR and J the Jacobson radical of S. Then J =
{/ G S\ K e r / £ ' M) if and only if the family {ΛfJίeJr is a semi-T-
nilpotent system.

Proof. We will represent every endomorphism / of M as a
column summable matrix: / — (/y<), where fίt = njKt for the projec-
tions πά of M onto M,- and injections κt of Mt into M(i, j el). Then,
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in accordance with our earlier notations (see § 1), by the above remark
we have

/ Π S = { / = (/,,) e SI Ker fH S ' Mt)

and by Lemma 1.5

{/ = ifώ e SI Ker fjt S ' ikfj = {/ e S | K e r / £ ' M} .

On the other hand, we know by Proposition 1.1 that the family {Mi}ieI

is a semi- T-nilpotent system if and only if J = ^ Π S. It follows
from them that {MJ<eI is a semi-T-nilpotent system if and only if
J= {f e S\ Ker/gi' M), which proves the proposition.

We need more lemmas for the main theorems.

LEMMA 2.4. A module M has the exchange property if for any
modules At(i e I) which are isomorphic to submodules of M and any
decomposition A = 0 , e z A% = M' 0 N where Mr ^ M, there exist sub-
modules A'i S At such that A = Mr 0 Σ ί e / Θ A .

This is well known in [5, Theorem 8.2] and its proof will be
omitted.

LEMMA 2.5. Let G = M 0 i V /or submodules M and N of a
given module G. We moreover assume M = X i e j 0 Mi9 where {ikfjίel

ΐs α^ infinite family of indecomposable injective submodules of G
and a semi-T-nilpotent system. Then if a module A is isomorphic
to a submodule of M and contains an injective submodulef there
exists a maximal submodule Ao of A with the property that Ao is a
direct sum of indecomposable injective submodules. In this case
such a module Ao is a direct summand of A.

Proof. Let the monomorphism of A to M be / and E an injective
submodule of A. Then by [1, Theorem 1] and Lemma 2.2, f(E) con-
tains an indecomposable injective submodule isomorphic to some Mz

in view of that f{E) is a direct summand of M. This implies that
A contains a submodule isomorphic to some Mt. Now then we can
take a family {AJ^ of submodules of A such that each An is a
direct sum of indecomposable injectives and An £ An+1 for any n^l.
Then, by JSbrn's lemma, we will be done if we can show that the
union Ao = {JnAn is also a direct sum of indecomposable injectives
and, furthermore, a direct summand of A.

Since / is a monomorphism, the image f(An) of An by / is also
a direct sum of indecomposable injectives and hence f(An) is a direct
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summand of M for any j e J by Corollary 1.3 and Lemma 2.2. Thus
the union \Jn f(An) is also a direct summand of M and a direct sum
of indecomposable injectives by Corollary 1.4. Taking account of
/(A) = U. f(An), we have M = f(A0) 0 N for a submodule N of M
and Ao is a direct sum of indecomposable injectives since Ao ~ f(A0).
By the modular law, f{A) = f(A0) 0 f(A) Π JNΓ. We therefore have
A = Aoθf~1(f(A)ΠN), where f~ι(f(A) Π N) is the inverse image
of f(A) f) N by f, which proves the lemma.

It is clear that the exchange property implies the finite exchange
property, but it is not known whether the converse is true in general.
However, in our case that modules are direct sums of indecomposable
injectives we can conclude this question affirmatively.

THEOREM 2.6. Let M be a module which is a direct sum of
indecomposable injective modules and let S be an endomorphism
ring of MB. Then the following assertions are equivalent.

( i ) M has the exchange property.
(ii) M has the finite exchange property.
(iii) The Jacobson radical of S is {f e S\ K e r / S ' M}.

Proof. Let Λf = Σ<βz0Λfi> where every submodule Mt is in-
decomposable injective. If the index set I is finite, then ikf is clearly
injective, so all of the above assertions (i), (ii), and (iii) are true. It
therefore suffices to show the theorem for only the case with the
infinite index set /.

Now let / he an infinite index set. By Proposition 2.3 the asser-
tion (iii) is then equivalent to

(iii') The family {ikfJίeJ is a semi-T-nilpotent system.
Thus we will consider (iii') instead of (iii) in the following.
The implication (i) => (ii) is trivial.
(ii) ==> (iii'). The idea of the proof is due to [9, Lemma 9]. As-

sume that M has the finite exchange property. Take an arbitrary
countable subfamily of {M^iGI9 say {Mn}n^lf and nonisomorphisms
fn:Mn—*Mn+ί(n >̂ 1). For every xeM1 we will find an integer n(x)
depending on x such that /n(β>Λ(ao-i fi(x) = 0.

For this put M'n = {x + fn(x) \xeMn}. It is then clear that M'n 0
Mn+1 = Mn 0 Mn+ί for n ^ 1. Since each Mt is indecomposable in-
jective, every nonisomorphism fn is only nonmonomorphism, i.e.,
Kerfn Φ 0. This implies that Mif] MnΦ 0 for every n ^ 1.

It is clear that
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(2) = ML e Mi e M8 e Λf e Θ ^ -1 e ML Θ

and we put

Then, applying the fact that N has also the finite exchange property
([5, Lemma 3.10]) to the decomposition (2), we have that ΣΓ=i0 Mi =
N®X(BY for some submodules X and Y of Σ~=i θ ^2—i and
Σ«=i θ Λβ» respectively. Here, in fact, it will hold X = 0.

To show this, suppose that X ^ 0 contrary. Then by Lemma 2.1
there exists M2m-X such that

Σ θ Mt = iV0 M2m_, 0 X' 0 Y
i = l

for some submodule Xf of X.

This however contradicts that 0 Φ M2m^ Π ML-i S Λ^m-i Π -ZV.
Thus it holds

Now we take an arbitrary nonzero element x e M1 and we let
x = y + z with y e N and z e Γ , Considering these 7/ and z in the
decompositions JV = Σ*=i 0 ML-i and Σn=i 0 Λίίn respectively, we have

2/ = Σ fe-i + /2ΐ-ife-i))

and

s

« = Σ fe + /2i(a;2i)) ,
ί = l

and substituting these expressions for y and «, we have

# = Σ fez-l + f2i-l(X2i-l)) + Σ fez + /2t(&2i))
i i

Therefore, α = a?lf f^x,) + a?ΐ+1 - 0 (1 ^ i ^ 2s - 1) and f2s(xzs) = 0, that
is, x, = x, x2 = -/ x(x), , α?28 =/2,(a?2β_1) and /2β_,(a?2β) = 0. By successive
substitutions, we obtain a?2β = (--l)2β"1/2β_i /i(sc) and, finally, /2s/2s-i

= 0 Thus we can put w(a?) = 2s, which completes the proof of



312 KUNIO YAMAGATA

(iii')=*(i). We assume the family {Mt}iBΣ is a semi-T-nilpotent
system. Suppose A = Σ e j © -Ay = -M7 θ AT, where Mr ~ M and each
Ay is isomorphic to a submodule of M'. Then, taking account of
Lemma 2.4, we will be done if we can find submodules A] of Ay
(j e J) such that A = W 0 Σ ej θ A's.

For this, we will first refine the given decomposition A = Σ i e / 0
Ay. We should note that Mr is also a direct sum of indecomposable
injective submodules M-(ieI). By Lemma 2.1 there exists at least
one element j0 e J such that AJQ has a nonzero submodule isomorphic
to some Λf/. Let the subset of J of such elements jQeJ be Jo- By
Lemma 2.5 there exist maximal submodules B3 of Ay (j" e Jo) such
that each .By is a direct sum of indecomposable injective submodules
of A3, in which case every B3 is a direct summand of A3, say Ay =
-By 0 Cj for a submodule C3 c Ay for i e Jo. Consequently, we have
such a refinement of A = Σ i e / φ Ay that

(1) A = Σ 0 # y 0 . Σ 0 C y 0 Σ AJf

where J — JQ is the complement of Jo in J and if J — JQ is empty,
we put Ay in the formula (1) to be zero submodule of A for con-
venience.

Next we will have that

(2) M'n(Σ0Cy0 Σ 0Ay) = o.

For this we suppose that M' f] ( Σ ^ o 0 C, 0 Σy.^-/0 θ
 A ί) ^ ° T h e n

by Lemma 2.1 and the choice of Jo there exists M-o such that for a
submodule X, o s Cj(s,

This implies there exists an injective submodule C'JQ of C3o which is
isomorphic to Λf/0. However, in this case we have that B3o 0 C o is a
direct summand of A3o and a direct sum of indecomposable injective
submodules, which contradicts the maximality of B3Q.

Now we can exchange the complement N of Mf for a direct sum
of submodules of A3(jeJ). For this let the projection of A onto
ΣjjejQ®B3 in (1) be p. The family {Ml}ieI is semi-Γ-nilpotent by
hypothesis, and so is {p(M[)}ιeI because the restriction p | Mf of p to
Mf is a monomorphism by (2) and Lemma 1.2. Using Corollary 1.3
the image ρ{M') therefore is a direct summand of Σ;e/ o 0#y and
there is a subset i f c J 0 such that Σ;e^ o 0 B3 = p(M')(BΣikeκ(B Bk

and, consequently we have A =/θ(M')ΘΣ*β*Θ-B*ΘΣyβ/ 0θ C y©
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Σie J-J0 Θ A,. Computing the projection of A to ρ(M') and by Lemma
1.2, we therefore have a decomposition

4 = I 'θΣθ^θΣ0Ciθ Σ @Ai9
keK i e j o jeJ—J0

which completes the proof of the implication (iii') => (i). Thus we
conclude the theorem.

The original definition of the exchange property given in the in-
troduction is due to Crawly and Jόnsson [5]. However, we will con-
sider the following weaker exchange property, too ([10]).

DEFINITION. A direct summand M of a module A has the ex-
change property in A if for any direct sum decomposition A = Σ*e/ ©
At, there exist submodules A[^At such that A =

We recall that for a ring R a right ideal / is {meet-) irreducible
provided I Φ R and / = ii Π I2 implies I — Ix or I = I2 for all right
ideals Ix and I2 or R.

THEOREM 2.7. The following conditions are equivalent.
( i) A ring R satisfies the ascending chain condition for irre-

ducible right ideals.
(ii) Any direct sum of indecomposable injective modules has

the exchange property.
(iii) Any direct sum of indecomposable injective modules has

the finite exchange property.
(iv) Any direct summand of the module M which is a direct

sum of indecomposable injective modules has the exchange property
in M.

(v) For any direct sum M of indecomposable injective mod-
ules, the Jacobson radical of the endomorphism ring ΈnάB (M) is
{feEnάR(M)\Kerf^'M}.

Proof. The equivalences (ii) <=> (iii) <=> (v) are trivial from Theorem
2.6, and (ii) => (iv) follows from [5, Lemma 3.10]. The implication
(iv) => (i) is contained in [19, Theorem 1].

(i)=>(ii): Let M= ^ieIφ Mίf where Mt is indecomposable in-
jective for any i e I. If / is finite, then M is clearly injective, so it
has the exchange property ([16, Lemma 2]). If / is infinite, the
family {MJί6j is a semi-Γ-nilpotent system by [19, Theorem 1 and
Lemma 2]. Therefore, M has the exchange property by Proposition
2.3 and Theorem 2.6.

3. Example* Here we show the existence of modules which are
not quasi-injective but isomorphic to direct sums of indecomposable
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injectives and have the exchange property.
We first note that a quasi-injective module M over a ring R is

injective by the criterion of Fuchs [7, Lemma 2] provided that M has
the property that some finite direct sum of copies of M contains an
element with a zero annihilator right ideal or, equivalently, contains
a submodule isomorphic to the ringjβ.

The ring R regarded as a right (left) module over itself will be
written RR(RR).

LEMMA 3.1. For a ring R the following conditions are equivalent.
(i) R is right perfect and its injective hull E(RR) is projective,

Σ-(quasi-) injective.
(ii) R is left perfect and its injective hull E(RR) is projective,

Σ-(quasi-) injective.

REMARK. By the above note the "I'-quasi-injective" and iζΣ-iτί-
jective" are coincident in Lemma 3.1.

Proof. We will only prove that (i) implies (ii) as the converse
follows by symmetry.

Assume (i). Since R is right perfect, E(RR) has an indecomposable
direct sum decomposition, E(RR) == ΣΓ=i 0 P*> where each P, is in-
jective projective right module. Let R — eJZ φ φ enR for primi-
tive idempotents et. Then there is an integer fc(i) such that Pi = eκ{ί)R
for any 1 <* i <; m. Let {Pj}s

j==1 be a subclass of mutually nonisomorphic
projective modules of {PJJU such that each P«(l ^ i ^ m) is isomorphic
to some Pj(l <^ j <. s) (here, if need, the indecies are renumbered)
and we put M= P t φ ••• 0 P8, then a right ideal 1 = eκ{ι)R® •••
φ eκis)R is isomorphic to M. Since M is clearly J-injective and faith-
ful, so is then also I. Thus, by [4, Theorem 1.3], E(RR) is projective,
and R is left perfect and contains faithful, J-injective left ideal
Σi=i Φ E(Si), where {SJUi is the representative class of simple left
ideals which are nonisomorphic mutually and E(Si) an injective hull
contained in R. As a consequence, E(RR) is J-injective because E(RR)
is isomorphic to a submodule of a finite direct sum of copies of
ΣLi 0 E(Si). This completes the proof.

Now then, we suppose R is a (left and right) perfect ring such
that E(RR) is projective and E(RR) is not projective (for the existence
of such a ring, see Miiller [14] and Colby and Rutter [4]). Then,
E(RR) = Σ Li 0 Pi9 where each P* is indecomposable injective for 1 <J
i ^ m and, since the radical of every projective right module over
a right perfect ring is small, any infinite family of modules each of
which is isomorphic to some Pt is a Γ-nilpotent system ([12, Theorem
3]). On the other hand, an infinite direct sum M.= φieIMt with
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Mt = E(RB) is not quasi-injective by Lemma 3.1. Thus M is the
desirable module having the exchange property by Proposition 2.3
and Theorem 2.6.

4* Applications* We will generalize the theorems of Chamard
[3, Theoreme 3] and Yamagata [18, Theorem 4].

We recall definitions. A submodule N of a module M is said to
be closed if it has no proper essential extension in M, that is, if JVS'
X for any submodule X of M, then N= X. A module M is said
to be well-complemented in case any finite intersection of closed sub-
modules of M is also closed.

LEMMA 4.1. Let M be a direct sum of indecomposable injective
modules Mt(i e I) and N a direct summand of M. If N is well
complemented, then N is also a direct sum of indecomposable in-
jective submodules.

Proof. By [1, Theorem 1] it is clear N has a nonzero indecom-
posable injective submodule, so we can choose a maximal independent
set {Nj}jej of indecomposable injective submodules of N. Put No —

We will show N= No. To show this take an arbitrary nonzero
element x e N. Then there exists an injective hull E(xR) of xR in N
by [18, Lemma 2] and it is a finite direct sum of indecomposable
injectives by [1, Theorem 1], say E(xR) = E10 0 En. By the
maximality of {Nj}jeJ, it is evident that Nof)EiΦθ for [1 ̂  i S n.
Then, since N is well-complemented by hypothesis, this will imply
Et S No for 1 <; i <; n and so x e E(xR) § N09 which means N = JV0.

Because there exists a finite subset {ju , jm} <ϋ J such that
ΣΓ=i 0 Nh Π Et Φ 0 for 1 ^ i ^ n. Since Σ?«i θ ^ and Et are in-
jective, they are closed in N and so is Σ Γ = 1 0 iVyΛ Π Et by hypothesis
of N for any 1 ^ i ^ ^. Then, since Et is an essential extension of
ΣΓ=i 0 iVifc Π Et by Lemma 2.2, it must be that Et = ΣϊU 0 ^ Π ^
and therefore Et £ ΣΓ=i 0 Ns k for any i. Consequently x e E(xR) S
Σ?=i 0 -̂ ijfe S iV, which concludes the lemma.

Under the same assumptions as in Lemma 4.1, we remark that
N has no proper essential submodule which is a direct sum of in-
decomposable injectives from the proof of Lemma 4.1. This is first
shown by Chamard [3, Lemma 4.1].

PROPOSITION 4.2. Let M be a direct sum of indecomposable in-
jective modules Mt{iel) and N a direct summand of M; M— iSΓ0
Nf. If N is well-complemented, then N has the exchange property
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and N and N' are also direct sums of indecomposable injective
submodules.

Proof. By Lemma 4.1, N is a direct sum of indecomposable in-
jective submodules Nj(jeJ). To show that N has the exchange
property we will check the property (iii) in Theorem 2.6.

Let S be an endomorphism ring of NB and J its Jacobson radical.
We must show that J = {/ e S\ Ker / S ' N}. The inclusion J g
{f e S\ Ker / S ' N} is known in [2, p. 564]. Conversely take an ar-
bitrary element fe S with Ker / £ ' N. To show that fe J, it is enough
to show that 1 — / is an isomorphism.

First we will prove that 1 — / is a monomorphism. If Ker (1 — /) Φ
0, xRΠKerfΦO for any nonzero element xeKer (1 — /) since
K e r / g ' N. There is hence a nonzero element y of xR with f(y) = 0
and so y = (1 — /)(τ/) which must imply y = 0, because # e Ker (1 — / ) ,
a contradiction.

Next we will prove that 1 — / is an epimorphism. Since 1 — /
is a monomorphism, (1 — f)(N) is also a direct sum of indecomposable
injectives. Take an arbitrary nonzero element xeN. Then xR Π
K e r / ^ 0 , that is, there is a nonzero element y exRf] Ker/. We
therefore have a iί Π (1 - f)(N) Φ 0, because 3/ = (1 - f)(y) exRΓ)
(1 - /)(iV). This shows that (1 - f)(N) is essential in N, so that
N= (1 — f)(N). Because iVhas no proper essential submodule which
is a direct sum of indecomposable injectives by the remark just
before this proposition.

Thus we have shown that N has the exchange property. We
can then exchange N' for Σ & e ^ © ^ f° r some subset Kal, M =
NζBΣikeK(BMk. This implies that N' ~ Σikeκ θ Mk, which completes
the proof of the proposition.

Let MB be any nonsingular module over a ring R, that is, M Φ
0 and if xI = 0 for cc e Λf and essential right ideal / of R, then a? =
0. It is then well known that the lattice of all closed submodules of
M is complete and so M is clearly well-complemented (c.f., see [6,
Corollary 8, p. 61]). Thus we can sharpen [18, Theorem 4] and [11,
Proposition 4].

COROLLARY 4.3. Let M, N, and N' be as above. If N is non-
singular, then it has the exchange property and so N and N' are
also direct sums of indecomposable injective submodules.
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