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CONTINUOUS SPECTRA OF A SINGULAR SYMMETRIC
DIFFERENTIAL OPERATOR ON A HILBERT SPACE
OF VECTOR-VALUED FUNCTIONS

ROBERT ANDERSON

Let H be the Hilbert space of complex vector-valued
functions f: [a, o0) — C? such that f is Lebesgue measurable
on [a, o) and S F*(8)f (s)ds < co. Consider the formally self
adjoint expressi(:m «(y) = — ¥y’ + Py on [a, ), where ¥y is a
2-vector and P isa 2 X 2 symmetric matrix of continuous real
valued functions on [a, o). Let D be the linear manifold
in H defined by

D= {feH: f,f’' are absolutely continuous on compact
subintervals of [a, «), f/ has compact support
interior to [a, co) and ¢(f)eH} .

Then the operator L defined by L(y) = «(y), yeD, is a real
symmetric operator on D. Let L, be the minimal closed
extension of L. For this class of minimal closed symmetric
operators this paper determines sufficient conditions for the
continuous spectrum of self adjoint extensions to be the
entire real axis. Since the domain, D,, of L, is dense in H,
self adjoint extensions of L, do exist.

A general background for the theory of the operators discussed
here is found in [1], [3], and [5]. The theorems in this paper are
motivated by the theorems of Hinton [4] and Eastham and El-Deberky
[2]. In [4], Hinton gives conditions on the coefficients in the scalar
case to guarantee that the continuous spectrum of self adjoint ex-
tensions covers the entire real axis. Eastham and El-Deberky [2]
study the general even order sealar operator.

DEFINITION 1. Let I denote a self adjoint extension of IL,.
Then we define the continuwous spectrum, C(E), of I to be the set
of all N for which there exists a sequence {f,> in D7, the domain
of I, with the properties:

(1) [Ifall =1 for all n,

(ii) <{f,> contains no convergent subsequence (i.e., is not com-
pact), and

(i) ||(L — Nfoll—0 as n— co.

For the self adjoint operator L we have the following well-
known lemma.

LEMMA 1. The continuous spectrum of L is a subset of the real
numbers.
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Proof. Let N =a + i@ where 8= 0. Then for all feD; we
can see by expanding || (L — \)f|J* that

WE—=NFIE= BRI,
which implies \ ¢ C(L).

THEOREM 2. Let L(y) = y" + P(t)y for a <t < «, where P(t) =
[a(t) v(t)

(&) B(t)} where Y(t) s positive and has two continuous derivatives.
Let g(t) > 0 be one of a(t) or B(t), where both a and B are con-
tinuous on [@, ) and g(t) has a continuous derivative. Then
iof for some sequence of intervals {A,} where A, S [a, ), 4, =
[en — Cm, Cu + @,] and a,, — oo, the following are satisfied:

(1) min{g(@)} — e,

(@) | (@) &= o),
(i) | o@ds = ofas),

@ | p@rd = o),
we can conclude that C(L) is (— oo, o).

Proof. We will establish the theorem for g(f) = a(t) since the
other case follows in exactly the same way.

Note that to prove the theorem then we need only show that
for any real number x there is a sequence (f,) in D(L) such that
| full =1, fu.—0 a.e., f, vanishes outside A, and ||[(L — 2)f.||—0
as m— oo,

Let <A,y be defined by

(1) ho(t) = [1—{¢ — ca)/anT for |t_cm|§am}
b for [t —cu|> an

Then define <{f,.(t)> by
b, i
(2) £ult) = hma)[bm:em] ,
where @,, @, are real functions with two continuous derivatives and

bmis bn; are normalization constants.
To find |b,, | = Vb, + b%, we have

Ty, 2" b
=l = | b Pt = 10,07 [1-(2) ] a0
e~ Ty m (229

-

N

=|b, |25 a1l — y’]'dy = | b, |2(2am)[1 + 56:- (i)(Zfr + 1)‘1] .

1
1 =1
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Hence for some positive constant K

(3) [bn [* = K(2a)™"

and

(4) |fa)] = |bn| = VKNV 2a,, .
Hence

(5) fu—0 as m-— o,

(6) [h2®) | = K(aa)™"

where K, does not depend on t or m.
Since f,, € D(L), we have

(L — pDf, = fi + (P — pD)fn
_ [ m (@ — ) fm + vfmz]
LS+ (B = I we t Vm
{(—QF + (@ — Wt + Ve + iQ;'fml}
{—Q + (B8 — tNfwe + Vfm + 1Qf 2
b, 6 0h] + 2iQb,.E 0N,
[bmewzk:,: + ZiQ;bmeiQZth

(L — pD)f = [

Now if @, is chosen so that
n_ " o_ o
I (44 /,C ] | 2’[/& — # ?

and b, is chosen to be identically zero we have that

~ Q1 foms b,.e* VR + 2iQ§bm1eiQ1h§n]
L — pD)f, = + .
(h = #D)r [’Yfm ] [0

By the way @, is chosen,
IE = pD5all S (g )5

Now, by (i)

- |= |20, =) ] = o a8 m—sen.

By condition (iv),

7 ] é(gg m]'rlz)m:o(l) as m— oo .

m

Next, by (iii), (3) and (6)

19 ll 4 11 balin || + || 2Qibnhn || -

3
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| Qb k|| = (SAM (@ — m%ﬂ.i{;y/z

- KK’<§ZE” Lm (@ — y))m —o(l) as m—— co.

Then, by (3), (6), and the Cauchy-Schwartz Inequality

tewr = (§, roar) (1, 1mr)”
= V—EE(SA (Kf/ain)>1l2 =o(l) as m—> oo .

Hence it follows that

(L~ pDfll —0 as m— o,

which is what we were to show.

COROLLARY 3. If P(t) = [gf | on some half-line d < ¢ < o
in Theorem 2 and
(i) a,e>0with 6 <0, 0< 0 <2, or

(ii) b,¢>0 with 0 <0, 0 <9 <2
then C(I) = (— oo, ) .

THEOREM 4. Suppose L(y) is as in Theorem 2, where 7(t) is
positive and has two continuous derivatives. If for some sequence
of imtervals {4,}, where A, = [Cpn — Gm, Cu + @), 4. S [a, ) and
Q, — oo, the following are satisfied:

(1) min {70 — o=,

(ii) SA (('ENH/(1(@) dt = o(a),
(iii) L Y(t)dt = o(a’),

(iv) EA @(t)dt and SA SOt are o(ay),
then C(L) = (—eo, o).

Proof. In the proof of Theorem 2 choose QF = QF = Y(t) — 4,
so that f,.. = fm- Then Q! = Q) = (Y ()/(@V () — t) and applying
conditions (i) — (iv) as before where g(t) is replaced by () we get
that || (L — pI)f,, || —0 as m — oo.

COROLLARY 5. Let P(¢) :[?g gz,j] wn Theorem 4. If ¢> 0,

0<d6<2and o, 7 <0 then C(LL) = (— oo, ).
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Let H be the Hilbert space Ly([a, «), w) of complex vector-valued
functions f: [a, ) — C* such that || f||* = S w(f*f) < oo, where w is

positive and w e C‘Zi[a, o). Let Il(y) = (1/w)y” + Py. Then define L,
as before and let L be a self adjoint extension of L,.

THEOREM 6. Suppose there is a sequence of intervels, A, S
[a, =), A, =[¢n — @p, ¢ + @,] wWhere a,— = as m— oo, such that

(i) |, @wppe=ofa), |, amw=of4.ly, mna()— -,

@) [, @yt =o(aa), |, @) = of .),
[, ot = o0 4,p),

(iii) Lm([(wa)’lz)/(awﬂ)—o(| D) and

(iv) SAM =o(l A,

as m— oo. Then C(L) = (—co, o).

Note that (ii) implies that g W' /wy): = o( A, ) by W'/ /w)*=
(w'y/w*-1/w and Cauchy-Schwartz Inequallty

Proof. As is the previous theorem define

T = [?’”} where f,, =0 and f,. = (0,6, )w'".
Then again b2, = K/a,, and |f,.| < b,w™'* = (K/(wa,))'?. Calculating
S = w0620 + fuliQ — 1/2w™'w']
i = Sl = (@) — 1Qw™'w' + 3/4w™*(w')* — 12w 'w"” + Q"]
+ be2w Q' k), — wPw'h, + wT PR .
Then (L — pI)f, = (1/w)f}] + Pfa, where the top element is

Lpm b (o — p)f = %{—(Q’)Z + (a — ]

3

- 1
2~ w')? —
W)

+ @[—iQ’w“w’ + —ww" + iQ”]
w 2
+ b eiQ[ —3/2”2,L‘thf . ,w—1wrhr + h:,i]
fml[ (Q )2 (C( — )w] + fml[ iQ'ww’ + 2 (w')z ww" +w ,LQN]
+ bW 2iQ' R, — ww'h, + R .

Of course, the second element of (L — pl)f, is 7f.. By choosing
(@) = (@ — p)w we have that by (i)
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Q = [(a — pw]”? = O((aw)'”®) as t— co .

Q" = (1[527],) as t— oo .

Then by the calculations above

II'

(L~ pDfull =

'ml

]+ ]

1!
2|

n fLQ__H + 2| b QN |
w

(7)
(1o B |
11w R + || U]

Since |fm [ = K/(wa,) and () = (@ — p)w,
[| frw ™2 Q" ||
< (ES (@ — #)w“s(w')2>1/2 =o(l) as m—c by (i).
a A

m

Similarly,

| fuw ™) || < (—aIiSA (@'Y ) = o1) by (i) -

m

By the definition of @ and f,,,

| frw™ Q" || = O(L M)‘” —o(l) by (i) .

., 0w

m

And by condition (ii),
1/2
w0 = (2 wywr)" = o)) -
am Am
Since |b,,|* = K/a, and |k, | £ K,/a,,
oworrl| < (KK | (22£))" = o) by 0.
A, w
Similarly, by the remark at the end of the theorem,
1/2
baw-srwhy, || = (KKZaz) | @)w) = o).
Am
Since | A, | < K,/a%,
1/2 ..
b)) < ((KKHaw) | w)" = o) by 6.
Am

By (iv),
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17l = (I |, )" = o) a5 m— o

Hence, by the above calculations and (7),
(L — pDfull— 0 as m—> oo .

Since this is what we were to show, this conclude the proof.
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THE ISOMETRIES OF L*(X,K)

MicHAEL CAMBERN

Let (X, %, 1) be a finite measure space, and denote by
L?(X, K) the Banach space of measurable functions F' defined
on X and taking values in a separable Hilbert space K, such
that || F(x) ||* is integrable. In this article a characterization
is given of the linear isometries of L?(X, K) onto itself, for
1 =p<oo, p#2. It is shown that T is such an isometry
iff T is of the form (T(F))(x) = Ux)h(x)(®(F))(x), where ¢ is
a set isomorphism of X onto itself, U is a weakly measurable
operator-valued function such that U(x) is a.e. an isometry
of K onto itself, and % is a scalar function which is related
to ¢ via a formula involving Radon-Nikodym derivatives.

Throughout this paper the letter K will represent a separable
Hilbert space which may be either real or complex. We denote by
{-, -> the inner product in K, and by S the one-dimensional Hilbert
space which is the scalar field associated with K.

A function F' from X to K will be called measurable if the scalar
function (F, e) is measurable for each e¢c K. Then for 1< p < oo,
we denote by L?(X, K) the Banach space of (equivalence classes of)
measurable functions F from X to K for which the norm

]
Il

JiF@ e, »<e,
ess sup || F(@) |

is finite. (Here || - ||, denotes the norm in L?(X, K) and L*(X, S),
and || -|| that in K.) If FeL?(X, K), we define the support of F
to be the set {x e X: F(x) + 0}.

Let {e,, e,, - - -} be some orthonormal basis for K. For F e L*(X, K),
we define the measurable coordinate functions f, by f,.(x) = (F(x), e,).
Then almost everywhere we have >, |f.(®)|* << «, and F(x) =
S fu(®)e,. Moreover, it is easily seen that each f, belongs to
L*(X, S).

Here we investigate the isometries of L?(X, K), for 1 < p < oo,
p # 2. For the case in which X is the unit interval, g Lebesgue
measure, and K = S, the isometries were determined by Banach in
[1, p. 178]. In [4], Lamperti obtained a complete description of the
isometries of L?(X, S) for an arbitrary finite measure space (X, 2, y).

Following Lamperti’s terminology, we will call a mapping @ of
2 onto itself, defined modulo null sets, a regular set isomorphism if
it satisfies the properties
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o(4) = (o),
o(J 4,) = U 2(4,) .

n=1 n=1

and
po(4)] =0 if, and only if , p4)=0,

for all sets A, 4, in 3. (Throughout, A’ will denote the complement
of A.) A regular set isomorphism induces a linear transformation,
also denoted by @, on the space of measurable scalar functions defined
on X, which is characterized by @().) = Xow), Where ¥, is the char-
acteristic function of the measurable set A. This process is described
in [3, pp. 453-454]. The induced transformation, moreover, has the
property that it preserves a.e. convergence:

(1) if lim f,() = f(x) a.e., then lim (@(£,))(@) = (&(f))(x) a.e.

Now given a regular set isomorphism @ of X onto itself, and
F=>,f.e.c L?(X, K), we define @(F) by the equation

(2) (@(F))(z) = 2(@(f)(@)e, .

For the case in which K is infinite dimensional, one must, of course,
verify that the series on the right in (2) is indeed convergent in K
for almost all x. But, for all scalar simple functions, we have
@1 1)) = |9(f) *(x) and hence, by (1), this identity holds for all
measurable scalar functions. Thus, as [|F@)| = 3.|fu@) =
limy 7. | f.(x) |?, again using (1), we have

0 FI) @) = @(| F )@ = lim (2(3} 17.) )@
= lim 3} | @)@ = 5| @)@ F = [ @ENE | -

n=1

(3)

Moreover, it is readily verified that the definition of @(F') is inde-
pendent of the choice of orthonormal basis for K.

For the case in which K is one-dimensional, Lamperti has shown
that if T is an isometry of L*(X, S) onto itself, 1 < p < e, p # 2,
then there exists a regular set isomorphism @, and a measurable
scalar function A(x) such that for fe L?(X, S)

(4) (T(N@) = h@)@(NE) -

Moreover, if the measure v is defined by v(4) = ¢[07'(4)], Ae X,
then

(5) |h(x)|? = dv/dpe a.e. on X.
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Conversely, given any regular set isomorphism @ of Y onto itself,
and a function h(z) satisfying (5), the operator T defined by (4) is
an isometry of L?(X, S) onto itself. Here we establish that the
isometries of L?(X, K), for any separable Hilbert space K, closely
resemble those of L*(X, S), except for the emergence of a measurable
operator-valued function.

2. The isometries. We begin with a lemma whose proof exactly
parallels that of Lemma 14, [5, p. 331], with the real numbers ¢ and
7 in that lemma replaced by vectors in K.

Lemma 1. Let @ and + be two elements of K. If 1=<p =2,
then

e +4lP +lle—vP=2(lell” + 1],
and if 2 =< p < oo,

e +4lP+lle—viPz2(lel” + [[v]P).
If p + 2, equality can hold only if ® or + 1is zero.

By integration, we then obtain the following:

Lemma 2. If 1=p< o and p+# 2, and if F and G are in
L(X, K), then

(6) WF+GI+IIF -Gl =2(FI[;+2]G];

if and only if F and G have a.e. disjoint supports.

Throughout the remainder of this article we assume that p is
a given real number with 1 < p < o, p # 2. We define ¢ to be that
extended real number such that 1/p + 1/¢g = 1. (The usual conven-
tions are in effect.) T will denote a fixed isometry of L?(X, K) onto
itself.

We will repeatedly use the map T*' defined on LY(X, K) by

S<F (@), (T*7(G)x)ydp = S<(T ) (), G)yde,

for F'e L7(X, K), Ge L(X, K), which is, almost, the Banach space
adjoint of 7. For the dual space of L?(X, K) is L(X, K*), where
K* is the dual of K, [2, p. 282]. And if ¢ is the usual conjugate-
linear isometry of K* onto K, ¢ induces a conjugate-linear isometric
mapping of L(X, K*) onto L X, K), which we shall also denote by
o, and which is determined by (0(G*))(x) = a(G*(x)), G* € L*(X, K*).
Our map T*°! is then actually ooT#% '™, where T#' is the true
Banach space adjoint.
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For any element ¢e K, we denote by e that element of L?(X, K)
which is constantly equal to e. If e = 0, it is an easy consequence
of (6), and of the fact that T is onto, that the support of T(e) must
be equal to X a.e.

LEMMA 3. Let e be any vector in K. If A is any measurable
subset of X, then T(y.e) is equal to T(e) on the support of T(}.e).

Proof. The functions y,e and x,e have disjoint supports, and
thus (6) holds if F and G are replaced, respectively, by y.e and y,-e.
Since T is isometric, it follows that (6) also holds for 7(x.e) and
T().€), and hence that these latter two functions have disjoint sup-
ports. Since T(e) = T(x.¢) + T(x.e), the desired conclusion follows.

LEMMA 4. Let e be an element of K with ||e]| =1, and let F =
T(e). If E s the vector function defined a.e. by E(x) = F(x)/|| F(x) ||,
then T* '(e) is that element of L(X, K) determined by (T* '(e))(x) =
|| F(x) ||"*E(x) for almost all xe X.

Proof. We have || F||, = ||e]l, = [#(X)]/*. Moreover, as T* " is
an isometry of L‘(X, K) onto itself, we also have || T*'(e) ||, = [(X)]'"%,
this latter equality holding even in the limiting case ¢ = «, since
llell. = 1.

Let G = T*'(e), and define the vector function H by H(x) =
G(x)/|| G(z)]] if = belongs to the support of G, and H(x) = 0 otherwise.
(If ¢ = «, we do not yet know that the support of G is equal to
X a.e., although this fact can readily be established by a separate
argument involving extreme points.) We then have

1X) = | e, dpe = | (T@)@), (T @i
= | F@), G@)ap
(7)
= | 17@ 1111 6@ || (B, He)dz
= {1 F@I1IG@ 1 de < 1 Fll, 161l = ) -

Hence we must have equality throughout in (7). Thus, by a known
result for scalar functions, [5, p. 113], for p > 1 the equality

SIIF(OG)II 1G@) |l dee = || F'll> [| G|, implies that
IG@)I* = |Gl | F@) [I?/I| F |5 = [| F(x)[[?

a.e., so that ||G@)| = | F()|** a.e. If p=1, the equality
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S | F@) ||| G(x) || dpt = (X)) = || F ||, implies that [|G(@)[|=1=[F(x)[["™

a.e. in this case too. Finally, the equality
| 1F@ 116611 (B, Hw)dp = [1F@ 11166 | x

yields the fact that H(x) = E(x) a.e., which completes the proof of
the lemma.

LEMMA 5. Let e and @ be two orthogonal elements of K, each
with norm one, and let F, = T(e) and F, = T(p). If E, and E, are
the vector functions defined a.e. by E,(x) = F,(x)/|| F.(x)]|| and E(x) =
F. (@) Fo(@)]l, then (E(z), E,(z)) = 0 a.e.

Proof. Let A be any measurable subset of X. Then F, =
Y F, + o F,, and since the two functions on the right have disjoint
supports, (6) holds when F' and G are replaced, respectively, by y.F,
and y.F,. Hence (6) also holds for T '(y.F. and T '(yx.F.), and
these latter functions thus have disjoint supports. Since e=
Tt F.) + T ((uF.), if we let B denote the support of T '(y.F.),
it follows that T(xze) = y.F..

We then have, using Lemma 4,

0 = [ e, @zt = [« TN, (T @)D
= | @ F@ 1 B@, 1| F.@) |7 By
= | IF@ I F@P (B, By

Since || F.(x)|]]|Fy(x)||>~* is an a.e. positive element of L'(X, S), and A
is an arbitrary measurable subset of X, we must have (. (z), E.,(x)) =
0 a.e. on X.

LEMMA 6. For any element e of K with norm one, let F, and
E, be defined as in the previous lemma. Then for feL”(X, S),
(T(fe))(x) = f(x)E,(x) for some scalar function f, and the mapping
@) — {T(fe))(x), E(x)) is an isometry of L7(X, S) onto itself.

Proof. If A is any measurable subset of X, we know from
Lemma 3 that (T(x.e))(x) is equal to || Fl.(x)|| E.(x) on the support of
T(r.e). It thus follows that for any simple function fe L?(X, S),
(T(fe))(@) = f(x)E,(x), where f is a function in L?(X, S) with the
same norm as f. For arbitrary fe L?(X, S), let {f.} be a sequence
of simple functions converging to f in the norm of L?(X, S). Then
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likmg I(T(fi))@) — (T(fe))(@)||? dt = 0 .

Hence || (T(f.e))(x) — (T(fe))(x)||* tends to zero in measure, and so a
subsequence tends to zero a.e. That is, (T'(f,e))(z) tends to (T(fe))(x)
almost everywhere.

Now, for almost all x, the elements of K given by (7(fe))(x),
j=12 --- lie in the one-dimensional (hence closed) subspace of K
spanned by E,(z), and thus (7'(fe))(x) must lie in this subsgace. That
is, (T(fe))(x) = f@)E (), for some fe L*(X,S) with |[fll, = [l
and the given mapping is an isometry of L?(X, S) into itself.

It is readily seen that the map is, in fact, onto L?(X, S). For
suppose we are given a function of the form f(x)Ee(x), where
fe L?(X, S). Incorporate ¢ into an orthonormal basis for K — say
e = e, where {¢,:n =1 2, ---} is such a basis. Let F(z) = >, f.(%)e,
be the element of L?(X, K) which maps onto f(x)E,(r) under T.

Now Fiy(x) = ..., f.(2)e, belongs to L*(X, K), where K is the
Hilbert space which is the closed linear span of {e,: » = 2}, and vector-
valued simple functions of the form G = 3.7, X4, Ps€ K, are dense
in L*(X, K). By Lemmas 3 and 5, for all such G, {(T(G))(z), E(x)) =0
a.e., from which it follows that {(T(F,))(zx), E.(x)) = 0 a.e. Thus as
F@E () = (T(fie))(@) + (T(F))(x), with (T(f.e))(x) pointwise a scalar
multiple of E,(x) and (T(F}))(x) a.e. orthogonal to E,(x), we conclude
that T(F,), and hence F,, are both equal to the zero element of
L*(X, K). It follows that the mapping given by the lemma is indeed
onto L?(X, S).

LEMMA 7. Let {e,;m =12 ---} be some fixed orthonormal
basis for K, and for each n define F,, E, by F,= T(e,), E.(x) =
F.(x)/|| F.(x)||. Then there exists a regular set isomorphism @ and
o fizxed scalar function h(x) defined on X and satisfying (5), such
that for all m=12 --- and for all feL*(X,S), (T(fe.))(x) =
~()(O(F))(2)E, (%)

Proof. By Lemma 6 and Lamperti’s result for scalar functions,
we know that if e, and e, are two elements of the given orthonormal
basis and if fe L?(X, S), then (T(fe,))(®) = hn(x)(P.(f)(@)E,(x) and
(T(fe))(®) = b (x)(D.(f))(x)E, (x), where h,(x) and h,(x) are scalar
functions defined on X, and @,, @, are linear transformations induced
by regular set isomorphisms. We wish to show that &, = &k, and
?,. = @, modulo sets of measure zero.

If A is any measurable subset of X, we have

(8) (TOLaen)) @) = hn(@)Xo,,0)(@) En(x) ,
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and
(9) (T(rse))®@) = ho(®) Yo, (@) E,(2) .

Consider y,(e, +e,)/vV 2. If welet F, , = Tl(en + ¢,)/V 2], and define
E, . by E,.x)=F,,.@)|| F,.x)|, again by using Lemma 6 and
Lamperti’s result, we conclude that there exists a scalar function
Pm,, and a regular set isomorphism @,,, such that

(10) (T[Xd(em + e’n)/L 2 ])(.’Z) = hm,n(x)xlﬁmm(A)(x)E’m,n(w) *
Now, using the linearity of T, we have

B o(#) = Fou(@)/|| Fo o) |
(11) = (Fu(@) + F.@)/|| Fu(®) + Fu(2) ||
= (| Fu(@) || En(@) + || Fo(@) || E(2))/|| Fu(@) + Fu(2) ] -

And, combining (11) with Lemma 4, we have

(T*[(en + eV 2D)(@) = || (Fu(@) + Fu@))V 2 ([ En,n(@)
(12) = [[(Fu@) + F@)V 2 |7 (| Fu@) || En(x)
+ [ Fu(@) || B(@)/|| Ful®) + Fo(e) || .

Also, using Lemma 4 and the linearity of T*', we find that

(T*[(en + €V 2]D(@) = || Ful@) |77 Ep(2)V' 2

1 .
{15) | Fy@) P BT

Since Lemma 5 shows that E,(r) and E,(x) are a.e. linearly inde-
pendent, we conclude from (12) and (13) that

2001 || Fo(@) + Fo@) 72| Folw) || = [| Fa@) PV 2 , ace.,

from which it follows that || F,.(x) + F.(x)||=1"2 || F.(x)|| a.e. Simi-
larly, || F.(®) + F, ()| =V 2 || F.(x)|| a.e., so that (11) then gives
E, . () = E,()/V'2 + E,@@)V'2 .

Thus from (10) we conclude that (T[x.(e. + eV 2])(®) =
B, (@) Yo, )@V B () V2 + T (@), @) Eo(x)V 2. But the line-
arity of T, together with (8) and (9), implies that (T[x.(e.+e.)/V 2 @)=
bn@) Yo, 0y @) En(@)V' 2 + ho(@))o, (@) E,(x)/V" 2. Hence, once again
employing the a.e. linear independence of E,.(x) and E,(x), we find
that 7,.(2)Xe, 6 (®) = I, ()Xo, (@) = hn(@)Xo, () a.e. Since this
equality holds for every measurable set A, we can conclude that
h, =h, and @, = @,, modulo sets of measure zero.

Thus, if we let @ = @, and h = h,, then for all fe L*?(X, S) and
all n, we have (T(fe,))(x) = h(@)(@(f))(x)E, (x) a.e., and k = h, satisfies
(5) by Lemma 6. This concludes the proof of lemma.
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A function U defined on X and taking values in the space of
bounded operators on K is called weakly measurable if (U(x)e, @) is
measurable for all ¢, pe K.

THEOREM. Let T be an tsometry of L*(X, K) onto itself, and
let {e,;m=1,2 ---} be some fixed orthonormal basis for K. Then
there exists a regular set isomorphism @ of the o-algebra X of measur-
able sets onto itself (defined modulo null sets), a scalar fumction h
defined on X satisfying (5), and o weakly measurable operator-
valued function U defined on X, where U(x) ts an isometry of K
onto itself for almost all xe X, such that for Fe L*(X, K),

(T(F)N(@) = U@)h(x)(@F)) () ,

where O(F) ts defined by (2). Conversely, every map T of this
form is an isometry of L?(X, K) onto itself.

Proof. If T is of this form, then it follows from (3) and the
fact that U(x) is almost everywhere an isometry, that

| U@)(z)(@(F) ) || = [ h@) || (| F[))| (@), for FelL*(X, K),

so that T is norm-preserving by Lamperti’s result for the scalar
case. The fact that 7 maps L?(X, K) onto itself can readily be
established, for example, by noting that since @ is onto, and U(x)
is a.e. an isometry of K onto K, no nonzero element of L‘(X, K)
can annihilate the range of 7.

Now suppose that T is any isometry of L?(X, K) onto itself. We
define U(x) on the basis vectors ¢, of K by U(x)e, = E.(x), where
the E, are determined as in Lemma 7, and then extend U(x) linearly
to K. Since by Lemma 5, {E,(x):n =1, 2, ---} is almost everywhere
an orthonormal set in K, U(x) is an isometry of K into itself a.e.,
and if K is of finite dimension, the remaining assertions of the
theorem then follow immediately from Lemma 7.

Thus we may as well assume that K is infinite dimensional. Let
F(x) = 3, fu(x)e, belong to L?(X, K). Then the sequence {Fy}, where
Fy(x) = 30, f.(x)e,, converges a.e. to F' and is dominated by [ F'|l.
Hence by the dominated convergence theorem, || Fy — F||,—0. We
thus have T(F') = lim, T(Fy) in L?(X, K), and so at least a subse-
quence of the T'(Fy) converges a.e. to T(F). But we know from (3)
and the fact that U(x) is almost everywhere norm-preserving that
Ux)h(z)(@(F))(x) = limy Ux)h(z)(@(Fy))(x) = limy (T(Fy))(x) exists in
K for almost all xe€ X, and thus it follows that (T(F))(x) =
U@)h(x)(@(F))(x), as claimed. Finally, since the elements of
T(L?*(X, K)) take their values a.e. in the range of U(x), and since
T is onto, U(x) must map K onto K for almost all z¢ X.
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3. Remarks and problems. (i) Throughout we have assumed
that the measure space is finite, but the theorem is also valid for
o-finite measure spaces, and the generalization to this latter case is
largely straightforward. We say “largely” only because there are
a few modifications (other than the obvious ones) of statements and
proofs necessary for the o-finite case, whose necessity might easily
be overlooked. For example, if the space is o-finite, a suitable
reformulation of Lemma 4 is the following:

Let A be a measurable subset of X with finite positive measure
and let ¢ be an element of K with [|e| = 1. If T(x.e) = F, and if
E is that vector function defined by E(x) = F(x)/|| F(x)|| if « belongs
to the support of F, and E(x) = 0 otherwise, then T*7'()x,e) is de-
termined by (T '(x.e))(x) = || F(x) || *E(x), for almost all z ¢ X.

The proof of this fact is analogous to that given for Lemma 4,
provided p > 1. However, in the case » = 1, additional arguments,
unnecessary if p#(X) is finite, have to be introduced.

(ii) For a certain class of measure spaces, the set isomorphism
¢ may, of course, be repleaced by a measurable point mapping
[5, Chap. 15].

(iii) In [4], Lamperti provides a description of all isometries of
L?(X, S) into itself, not just the surjective ones. One may ask if
such a description is attainable in the vector case. The type of
argument needed would presumably differ substantially from that
used here, since we often rely on the existence of the mapping T*!
from LY(X, K) to itself.

(iv) Can a reasonable description of the isometries be obtained
if the Hilbert space K is replaced by a suitable class of Banach spaces?
In particular, it might be of interest to see if K can be replaced by
an arbitrary finite dimensional Banach space.
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TWO RELATED INTEGRALS OVER SPACES
OF CONTINUOUS FUNCTIONS

R. H. CAMERON AND D. A. STORVICK

In this paper the authors evaluate Yeh-Wiener integrals
(which apply to functionals of a variable continuous
function of two arguments) in terms of multiple Wiener
integrals (which apply to functionals of several variable
continuous functions of one argument). First somewhat
specialized cases are given where the multiplicity of the
Wiener integral is finite, and then quite general Yeh-Wiener
integrals are evaluated in terms of limits of n-fold Wiener
integrals as n — oo,

Introduction. James Yeh [5]' defined Wiener measure in the
space G,[S] of continuous real valued functions of two variables
defined on the square S:0<s <1, 0<t¢ <1 and vanishing whenever
s or t equals zero. More recently James Kuelbs [3, 4] extended
Yeh’s integral to integration over C,[X], the space of continuous real
valued functions on any compact subset X of the plane. Kuelbs
also defined a similar integral over spaces of functions of several
variables and even infinitely many variables [4].

In the present paper we shall consider integration over C,[X]
in the case where X is the rectangle R = {(s,t) |a £ s b, a <t < 8.
We note that this is closely connected with Yeh’s integral over C,[S]
and that Kuelbs has given a formula for relating integrals over
C,|R] with integrals over G,[S], [3, p. 18].

Yeh’s measure as applied to the space

ClR] = {z(-, -) | #(a, t) = (s, @) = 0, z(s, ¢)
continuous for a <s=<bh,a =t = B}

is defined as follows. Let o =5, <s§, < ++- <s,=20, and a =1¢, <
t, < -+ <t,= B be subdivisions of [a, b] and [«, B8] respectively and
let —c0o < P;,<Q;, <+ c be given for 7=1,---,m and k=
1, ---, n. Then

I:{xeCZ[R]IPj,k<x(8h tk)éQ]k forj:l, ) m:kzly "',’I?/}

will be called an “interval” in C,[R]. He defines the measure of the
interval I by

! See also reference to Kitagawa in [5].
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m(I) = T (s, — 8g) <+ (Sm—Sm )] [t — ) -+ (B — Eud)]TE
SQm,n (mmn) m

SQmeXp{—Z zn; [ua‘,k_uj—l,k—uj,k—l+ui-1,k—1]2}dul Lo AU,
P11 J=1k=1 (sj—sj—l)(tk_tk—l) ’ '
where %, , = %;, =0 for j=1, -+, m; k=1, .-, n.

This measure is countably additive on the set of intervals in
C.[R] and can be extended in the usual way to the sigma-algebra of
sets generated by the intervals and can then be further extended so
as to be a complete measure. Thus “Yeh-Wiener measurable set”
and its “measure” are defined in C,[R].

The integrals of functionals integrable with respect to this
measure will be called “Yeh-Wiener integrals”.

In Theorem 1 of the present paper we establish a formula for
evaluating in terms of a Wiener integral the Yeh-Wiener integral of
a functional of z(-, -) which actually depends solely on the values
of £ on one horizontal line.

Theorem 2 treats the case of a functional depending only on the
values of z on a finite number of horizontal lines.

Theorem 4 deals with the case of a functional depending only
on the values of x on the two (perpendicular) free edges of R.
Examples are given to show how Theorem 4 can be used to evaluate
Yeh-Wiener integrals of specific functionals.

Finally in Theorem 5 we consider a class of functionals that may
depend on the values which x assumes at all points of the rectangle
R and not only on the values x assumes on some restricted set.

P'm,”

1. The one line theorem. Let Cie, ] = {y(-)]|y(a) =0, y(t)
continuous on [a, b]}, let R = [a, b] x [«, 8] and let

GIE] = {2(-, )| #(a, t) = (s, @) = 0, a(s, 1)
continuous for a <s=<bha =t p}.

THEOREM 1. Let a <7 =< B, and let f(-) be a real or complex
valued functional defined on C.a, b] such that f(V'(v — a)2y) is a
Wiener measurable functional of y on C.[a, b]l. Then f(x(-, 7)) is a
Yeh-Wiener measurable functional of x(-, -) on Cy[R] and

f(«/ ?z"—ay)dy )

where the existence of either integral tmplies the existence of the
other and their equality.

(1) SGZ[R]f(x(" Mde = S

Cylea,b]

Proof. Let g(y) = f(V' (v — a)/2y). Then it suffices to prove that
g(V'2/(v — a)x(-, 7)) is Yeh-Wiener measurable and that
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(1.2) Scztm («/

where the existence of either implies the existence of the other and
their equality.

x( ’ 7)>dx - Scl[a,b] 9(W)ay

Case I. Let us consider a subdivision ¢ = s, < s, < +++ <8, =0b
and let g(y) = Y (y) where I is the interval

={yeCla,b]| —~ =2, <y(@s)Sw, < +oo,t=1, -, m}
so that

oV, ) = 1y -2 e, M) = 2alaC, )

where

K={ceCR]| - <7

s < (s, M =y S,
g +oo, ’i, -..’ m} .
Thus in this case, g(v'2/(v — @)x(-, 7)) is Yeh-Wiener measurable on
C.[R] (see Definition (2.1) of [4, p. 434]).
Because g(V'2/(7 — @)x(-, 7)) is the characteristic functional of

an interval, the left member of equation (1.2) equals the measure of
the interval K, i.e.,

o/ 52 e i = [, e, i

= (25 = (e — ) -+ (5w — 87 — )] |

Vi—aw, (m) S~’<r~a}/2w1
V(=)

v (r—a)l2zy, I22y

. exp{—— i (u, — u,_)* }dul cee du, ,
#=1 (3t - Si—l)(7 - a)
where u, = 0.
The right hand member of (1. 2) can be evaluated in the following
manner,
wy

Sol(“vblg(y)dy: S cylasb ]Xl(y)dy = [2m)"(s;— 8) * * + (Sm — Sm-x)]'”zsj: (M) S

.exp{ zzlé_z;;;"“—l);}dvl...dvm’

where v, = 0. If we set v, = 1V2/(v — a)u, we obtain (1.2) and hence
1.1).

Case II. Let g(y) = xo(y) where 2 is the union of the disjoint
intervals I,, I,, ---. Then by Case I, we have
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2

T -

i

yle,

| 11, 0)dy
CylR] 5]

including the measurability of the left hand integrand. The functional
obtained by summing over %k is Yeh-Wiener measurable, i.e.,

——'—x(-, ’7)> =Yg (\/’Y—E;x(, 7))

T«

5 1V
is Yeh-Wiener measurable. Then summing the integrals we have

chm; Xg(x/Tx(., 7)>dx = SCIW] voly)dy -

7T«

Thus (1.2) holds in this case.

Case III. Let g(y) = xA{y) where 4 is a countable intersection
of sets 2 of the type considered in Case II. Since finite intersections
of such sets are of the same type, we can set

k=1
where 2, 02,002,2 --- and each 2, is of the type considered in

Case II. Thus
g(y) = lim 70,(y) ,

and g(y) is Yeh-Wiener measurable. If we now apply (1.2) to o,
and take limits we obtain (1.2) for g(y) = y.(y), including the meas-
urability of g(V'2/(v — a)xz(-, 7).

Case IV. Let g(y) = xx(y) where N is a Wiener null set. Let
N, be a Wiener null set of the type discussed in Case III such that
N,D N. Then (1.2) holds for %y (y) and we have

ScZ[R] le(l/:?—ax(-, ’7)>dx = SC . Xv,(¥)dy =0,

i

including the measurability of the left hand integrand which we now
know to be Yeh-Wiener almost everywhere zero. Thus

1y 2, )

is also Yeh-Wiener almost everywhere zero and (1.2) holds.

Case V. Let g(y) = xz(y) where E is any Wiener measurable set.
Then £ = 4 — N where 4 and N are sets of the type considered in
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Cases III and IV. By applying (1.2) to 4 and to N we obtain (1.2)
for E including the measurability of the left hand integrand.

Case VI. Let g(y) be a simple functional (with respect to Wiener
measure). Then g(y) is a linear combination with constant coefficients
of a finite number of functionals of the type considered in Case V.
Hence (1.2) holds.

Case VII. Let g(y) be a real nonnegative Wiener measurable
functional. Then g(y) is the limit of a monotone increasing sequence
of simple functionals and (1.2) follows from Case VI by monotone
convergence.

Case VIII. General case: Because any complex valued functional
can be decomposed into its real and imaginary parts and they into
their positive and negative parts, the theorem is proved.

2. The m-parallel lines theorem. Having obtained a formula
for Yeh-Wiener integrals where the functional of «(-, -) actually
depends only on the values of (-, 7), i.e., on the values of « on one
horizontal line of the fundamental rectangle R, it is natural to
inquire next concerning functionals that depend solely on the values
of  on a finite number of horizontal lines, i.e., functionals of the
form

(2'0) F(x) = f[x(': tl); x('; t2)’ Tty fk?(', tn)] .

One might expect to obtain the Yeh-Wiener integral of F' as an
n-fold Wiener integral over the product of n Wiener spaces. Since
it is not immediately apparent what the formula should be, we begin
with the case where f depends on the values of the y,(-) at a finite
number of points. Thus we let

@.1) flyy -+, vl
= PYu(s), «, Yi(Sm)s Ya(s), *+ 7, YolSm)s ++5 Ya(8), * ) YulSw)]
where
cp(um’ Uozy * %y Umps * > Unmy *° %y umn) = @( U)

is defined on R™ and U denotes the rectangular array
{#;,3}i=1,.. mijet,ne Then from (2.0) and (2.1) we have

Integrating over C,[R] and evaluating the Yeh-Wiener integral we
have
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_11:[ ﬁ (5: — si)(t; — tj—l):l_ll

=1 j=1

S F(x)dx = [n"‘”
ColR]

2.3 g {_ S (Usys — Wiy — Wiy + Wiy i)’ aU
@ |, o0)exn{= 5 5 (o= fun Sl

where dU = du,, - - - du,, ,, Where u,; = u;, =0 .
We now make the transformation

-—1/t s = %)

i—1

SO

W5 = /tlgavi,l + \/t_zlz_._th)i'2+ oo - \/ﬁ——ztj;l'vi,j

and obtain

(2.4) SW 9”<W t

avi,l 4 t,— ¢,

s
»

1T exp {— L i (@us = V) v"‘l'j)z}dV , where dV=4dv, dVn,,
where v,;=0.

For each fixed j, the sums in the exponential are those which
would occur in the evaluation of a Wiener integral, and so we see
that the whole expression is the evaluation of an n-fold Wiener
integral. Thus

SOZIR] Fla)yde = Sc’l[a,b] SCl[a 5] ({ b-a ?/1(3)
+ \/tz - t‘yz(si) + oo+ x/t =y (8; )} -t Yﬁ)dyl e dy, .

We shall use the following notation for the cartesian product of =

n (n)
Wiener spaces X C,[a, b] = C/a, b] x --- x C\a, b].
We have given the motivation for the following theorem:

(2.5)

THEOREM 2. Leta =t <t, < ---<t,=p8 and let fly, +-, ¥.]

n
be a real or complex valued functional defined on X Ca, b] such that
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(2.6) f[\/tl — by, x/t‘ — by,
2 2
t,— ¢ t, —t t, — to_
22 1y2’..., l/_#ylﬁ_...-}-"/__z__iyni]

n
is a Wiener measurable functional of (y, ---,¥.) on X Cja,b].
Then flx(:, t), +--, (-, t,)] ts a Yeh-Wiener measurable functional
of x(+, -) on GC,[R] and

[y 760, 8, o (e, ]

t, — &, \/tl—to
chliab] l:l/ Y 2 Y
+\/———t2“t1yz,---,1/t‘gt°yl+

. /t tams yn}d(yl e X )

@.7)

where the existence of either integral implies the existence of the
other and their equality.

Proof.t Let
9(yy, -+ YY) = f(«/tl ; toyu te kgl ]/Elc_z“ilc’_‘l_yk) .

Making the substitution z, = 3., V/({, — t,—.)/2 ¥, We have

£z = o(y R @), e A e — 20)

t1 - to tn - tn—l

Thus it suffices to prove that if g(y, ---, ¥,) is a Wiener measurable
functional of (v, ---, ¥,), then

@) oIt ey et ) — (e 1)

is a Yeh-Wiener measurable functional on C,[R] and

R A e

t - tn—l

(o, ) = (-, ) [da

(@) ()

- S S 9y, -+, Y)Y, - - dy, .
Cyla,b] 0yla,b]

Case 1. Let g(y, «-+, ¥.) = X:(¥y, -+, ¥.), Where I is the interval

2 The proof has to proceed in the opposite order from the motivation because of
the measurability argument.
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I={(y1,'-,yn)exC[a b]l—oo<z,k<yk(sj)<w,k + oo, for j=
1, ---,m k=1 ---,n}. Clearly I=LNLN---NI, where I;=

n
{(Us -+, ¥)eXCila, b] | —c0 =25 < Yu(s;) S Wjp = +o0, for k=
1, ..., »}. Now

o[ V2, 8, oy A 2tale, 1) — (e, )|

t, — t, t, ——tn_1
@10) =11 20V 2t ), o VG 1) = 2, 8]
= I %5,(a(-, )

where

K; = {x €CIR] | —eo =4/ ﬁ‘—_—zﬁ‘—‘—lzj,,, (s, 1) — a5, £y)]
< \/E:Etﬁ_wj,, <+ for k=1, n} ,

and

(2.11) A, (@Cy ) = Az lwlss, 8, - ooy @5, t]

where

Li= {[uf,u ) uj.n] ER"| —eo \/tk — tk ik < Wip = Wik

= \/E”—:éhwj,,,é +oo for k=1, ,n}

Thus in this case (2.8) is Yeh-Wiener measurable on C,[E] since X,
is a Lebesgue measurable function in R™. Integrating the expression
(2.8) we obtain by using (2.10) and (2.11),

G = Sczmﬂ[l/:x(’ 0, ooy N2ty £) = (-, ) Jda

tn ~—t”1

- Soz[R] H XL [x(S“ 1) ) x(Sj, tn)]dx
= AE(s, = 8) <o (5 — ST — ) e (B — E)]

© (mn) © m
: S e S IIIXL][?’I’J',M Tt uj,n]
—o0 —o0 J

O (u’ak w;k 1 uz 1k+u1-1k 1)}
. exp{~ avu,
72=“1 kzl (3 — 8- 1)(tk - tk 1)

where u;, = u,, = 0. If we set v;, = V2/(, — te—s)(%jx — Uj—1) SO
that u;, = Sk, V(¢ — t._)/2v;,;, we obtain
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G = @r)y "™ P(s, — )+ + (8 — Su-)IT

o (mn) fo  m t—t_-_-
: S S—-ool;]: ( t tov:l 19 " ; '\//l—é—i:_l_,uj,i’ tt Yy

m n . — . 2
Z\/t by, ) exp{ PIPH ——*——(vz’(; Vizst) }dvm c QU

- 33‘—1)

(n)
=§C[m---§ T2, @i, -+, 0o, =+, 0oy, -+ du,

Cyla,b] 5=

(n)
=S S 9, =, Yu)dy, -+ Ay,
C,[a,b] ¢yla,b]}

and Case I is proved. The remaining cases are analogous to those
of Theorem 1 and are proved in the same way.

3. The orthogonal transformation. Theorem 2 which we have
just proved gives us an evaluation of the Yeh-Wiener integral of a
functional F'(x(-, -)) which depends only on the values of x on n parallel
lines. It is natural to inquire next concerning functionals that depend
solely on the values of ¢ on two perpendicular lines. We shall limit our
investigation in this paper to the case where the two perpendicular
lines are the free edges of the fundamental rectangle. Before we
can obtain such a theorem, we will need to establish a generalization
of Bearman’s theorem [1, 130] on rotations in the product of two
Wiener spaces. (A theorem of this sort was once proved by Edwin
Sheffield, but so far as the authors know, it was never published.)

THEOREM 3. Let F(y, +--, y,) be any Wiener integrable fumnc-

n
tional of yi(+), *++, ¥.(+) on X Cila, b] and let (¢; ;)i j=1,.... be a real
orthogonal matrix (so that S, ¢, i, =0,; for 4,7 =1 --- m).

Then the transformation
(3‘0) yi('):zaci,jzj(') fO’r 1= 1y e, M
J=1

n
18 @ measure preserving transformation of X Cla, b] onto itself.
Moreover,

F(yu Yy yn)dyl cte dyn

v Cila,b]

¢ (n)
3.1) ‘S.Cl[a 8] (n) g n %
!”1[“ 2 Sclta,bl F<Z ik " Z‘ >dz1 .- -dz, .

=1

Proof. Case I. Let F' depend only on the values of v, -, ¥,
at a certain finite set of points, a =5, < 8, < +++ < 8, = b, i.e., let
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F(yy, <+ ya) = FWis), - y:(sn); ¥e(s1), =+ 5
yz(sm); ceey yn(sl)r *t Ty yn(sm)) ’

where f(uy,1, ++* Upms *+ 3 Un,y ***, Un,m) 1S @ bounded measurable fune-
tion of its mm arguments. It is clear that F is Wiener measurable

(3.2)

and bounded on >7é Cia, b]. Now we have

(n)
IES S F(y, -+, y)dy, - dy.,
Cyla,b] Cyla,bd]
o (mn) 0
(3:3) = (@) (s — @) -+ (50 — 50 )| HW

n m 2
. f(ul,ly cee, un’m) exp {_ Z Z M:i}dulll e du%m ,
SEEL 2(s, — 8im)

where u,;, = 0.

Let us make the transformation u,, = >, ¢, v;, Where ¢ =
1, :---,nand k=1, .--, m, to obtain
o (mn) Sco

I=2r) ™ P[(s, — @) «++ (Sm — Sm_i)] ™2 S

i=

—o0

k=14=1 2(8; — 841)

Since (¢;,;) is an orthogonal matrix,

n n 2 n 2

> <2 €, (Vi — vj,k*l)) = 21 Wi — Vig)
=

and we obtain

I= (27[)‘(7»%%)/2[(81 —_ CL) e (Sm — sm_l)]~n/2 Soj

(m’ﬂ) o
” n m R R 2
. f(Z CLiViy 2 C%,ﬂ)a',m> exp {" > 20 (-M—v]—k—l)—}
= = == s, — 51
(3.4) cdvy e AV,
= S T S f(Z €1,%4(81), ~ 0y 2. cn,jzi(sm)>dz1 ceedz,
0yla,b] 0,la,b} i is1

i=1

(n) n n
= RS e S em())in o dz.
Cyla,b] Cyla,b] i=1

j=1

In the above argument, the measurability of each successive inte-
grand follows from the measurability of f(u,., « -, %.n), and the
boundedness of f implies the integrability of each integrand. Thus
(3.1) is established for Case I. If we apply (8.1) to the case where
f is a characteristic function of a measurable set we observe that

n
(3.0) is a measure preserving transformation of X C,[a, b] onto itself.



TWO RELATED INTEGRALS OVER SPACES OF CONTINUOUS FUNCTIONS 29

Case 1I. Let F(y,, +--, ¥,) = %o(¥;, *++, ¥,), Where 2 is the union
of a countable disjoint set of intervals 2 = U, I; and each I; is

an interval in the product space Xn C/la, b], (as in the proof of
Theorem 2, Case I). Because each Ar; satisfies the hypothesis of
Case I, the theorem holds when F is of the form F(y, -, ¥.) =
Xz,(¥sy +++, Ya). Since Q is the countable union of measurable sets, it
is measurable, and by summing both sides of (3.1) applied to %, we
obtain (3.1) applied to Y.

Case I1I. Let F = yu(y, ---, ¥.) Where E is a Wiener measurable
set in X" C [a, b]. The result of Case II can be extended from 2 =
Ui, I; to countable intersections of sets of this form and then to
null sets and then to general measurable sets in the usual way.

Case IV. Let F be a nonnegative functional. If F' is actually a
simple functional the result follows from Case III by multiplication
by constants and addition. If F is not a simple functional, it can
be expressed as a limit of a monotone increasing sequence of simple
functionals, and the theorem follows for this case.

Case V. General Case: If F is real, we write F=F*— F~
and apply Case IV to F* and to F~ and thus establish the theorem
for real functionals. The extension to complex functionals is
immediate.

4. The two perpendicular lines theorem. We now proceed to
establish a formula for the evaluation of the Yeh-Wiener integral of
a functional that depends solely on the values of # on two perpen-
dicular lines.

THEOREM 4. Let f(z, y) defined on CJa, b] x Ci[«, B8] be a functional
such that

(4.0) f(x/ £S5 10) - “1[\/ b 7 I, j ?f_(g N vz(zﬁgbl oc)]>

18 Wiener measurable on Cila, b] x Cia, B8]. Then it follows that
flz(-, B), (b, +)] s Yeh-Wiener measurable on C,[R], where R =
[a, b] X [, B]. Moreover,

SUz[R] Sflx(-, B), (b, -)ldx
(4.1) B S”lia,blwl{a,ﬂl f{x/zg——z——azr ) — a][\/ﬁzgﬂ dy(7)

T —«a
2(b)
* R m e x v
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where the existence of either member implies the existence of the
other and their equality.

Proof.* Case 1. Let f(z, v) = 9(z; y(t,), ---, y(t.)), where a = ¢, <
t, < .-+ <t,= R and let g(z; u,, ---, u,) be the characteristic functional
of a half-open interval Iin C\a, b] X R™; l.e., I={(z; %y, * =+, U,) | —c0 =
Y <s;) L0, £ +ooforj=1,---,m —oZe, < U, =d, = +oo for
k=1 nla=s5<s < - <s, =0

The right member of (4.1) becomes

Iz = SG’l[a,b] SCl[a,ﬁ] g{ B ; az, (tl B a)
[

12(8 — @)
()
(e = ) e

(4.2)

We now apply the well-known result: If ¢, ---, ¢, are ortho-
normal on [e, b] and of bounded variation on [e, b] and if A(u,, ---, u,)
is measurable, then

b 00, oot

oo

() R n 2
= o U e ) exo (- 3 hau, - au,

where the existence of either member implies that of the other and

their equality.
To apply this result, we let

1 for =1+, m

if t;,<t=p
t—«

0 if a<t<t;,
ﬁ(t)—{

and note that 4,(t) = 0, so

(4.4 || 2~ " o0aue), for j=1, -0

We define

8 This proof is given in the logical order. For motivation read in reverse order,
using the inverse of the matrix (e, ;).
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P,(t) = ;‘ [‘9i+1(t) — ai(t)]
I, 050 - 0,z
= /B D, () — 0] for =1, m - 1

and observe that {®, ---, ®,_,} forms an orthonormal set on [a, 8].
To solve for 6; we write

O1.it) = 0:8) = = =)

and sum from j =%k to j = n — 1 to obtain

O:(t) = Z \/ ”)1(; 4 570

and consequently (4.4) becomes

Faym) _ % biys — b #
Sik r—a .12}0 J(tj — a)(tj, — @) Sa ¢j(t)dy(t) )

Substituting the value of Xﬁ dy()/(c —a) for k=1, .-+, n—1
t
into (4.2) we obtain *

= L o~
C1la,b] clta,ﬂ]g 2 @ (¢ ) \/ 2

n—1

. biys — ta’ # . ___EQ))____ e
SV e LW + b

(tes — 2 y L5 2 el [ o0t

) «0)
) Oyt e

We now use (4.3) to evaluate the inner Wiener integral above
and obtain

N R T

o T R _tg)‘(;f"_ SRR

(b) b —
(s = “)L/ 253 \/ 2 s \/(t,,,_ — a)(t - a) "“] ’

. — )1/2(76?) a)} exp{—u—z—% T ﬁg—“—}dul e du,_dz .

(4.4)
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If we set v; = u;1/b — a, then

&~ ) )+1/1?:§\/(t —ti?f(t_,f— v}

_ 2(b) 1 b — bus
(s “)[1/2(5 —a) + V2 Y (tay — @)(t, — @) Un- ‘]’

— 2(b) — vt . V1
o = D )} exp { 206 — a) 206 — a,)}
v, - dvy iz .

Using the formula

1 e —v2[(2(b—a)) —
WS F(v)e1e0-o)dy = SCM] Fla(b)dz

(n — 1) times, we see that (replacing z by z,)

(n) — —
L= Sclta,b] o Sc’lta b {x/ﬁ 2 t11/ 2“ [T/Zn(f)a

E— ti — b %@}.W(%ﬂiaxvhw

(t — @)t — @) v 2 8 —
tacs t— ) 2,0) 1. .
+4/ T )], Lo St Ve, dz,

We next apply Theorem 3, using the transformation

n
n=2%m
=

where for k< n — 1

(tk+1 — tlc)(t 1 1) 3 >
Vit it s

Cp; = —
A VAN if j=k+1
tk+1“
0 if j>k+1
and
t; — ¢t .
Cnj = = for 7=1,:-,m
e ;

We note that (c,,;) forms a real orthogonal matrix and that

(¢, — a)[ﬁz"_—a + ni ]/( - jg)l(t—]:f_ a) :]

—ZVt tiwy;, for k=1, -+, n
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Thus by Theorem 3

D oS VE
15,81 2 !

J=1

|

Cyla,b]

VESE00, - S Y e - i,

and by Theorem 2,

I, = SC - g(@(-, t.); 2(b, t), + -+, x(d, t))dx = SC [R]f[x(.’ ), (b, -)ldz ,

2 2

and Case I is established.

We then proceed as in Theorem 1 to establish Theorem 4.
5. Applications of Theorem 4.
ExampLE 1. Let us apply Theorem 4 to the functional:
5 s
(5.0) 1w = | pelerds | q@wora
where p € Lifa, b] and g€ L,Ja, B]. Then
b s
1=\ A\ '@t ords| a@le, oratlds
ColR] a a
b
— /8 — &\ s ? — 2
6D = b L PO(F )0 Laore — o

a

[ T

and each expression can be evaluated by known techniques to yield

_Lpy o)t — @b — a)(6 —
sy L7 ELLPOIO6 - a6 - Dl6 - o - o

+ 2(s — a)(t — a)]dxdt .

ExaMPLE 2. We next show how to calculate the following
integral using Theorem 4: (the authors know of no way of evaluat-
ing the integral without applying Theorem 4)

(.3) I= Sczm exp {A S" [(s, B)F'ds + B SB (0, t)dt}dx )
Let us set

(.4) f(z, ) = exp {A Sb [2(s)ds + B Szy(t)dt} :
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By Theorem 4,

I= Sc‘l[a,b] Scl[mﬁl exp {:4_(18—2—&) S [z(S)]ZdS

(5.5) +B {1 - a][\/g | A %}dt}dwz
= I,- I, where

(5.6) I, = Swyb] exp {A(%L‘L) S" [z(s)]zds} exp {BS %dt}d

and

G.7) I, = SCM] exp {B\/ﬁ Si(t — a) Sf —z‘_i—y_gc)?dt}dy .

To evaluate I,, we shall use the following theorem of Cameron
and Martin [2, 75] where we have changed the scale and the variance:

THEOREM la. Let q(t) be continuous and positive on [a, b] and
let p, be the least characteristic value of the differential equation

(5.8) R"(s) + rq(s)h(s) = 0
subject to the boundary conditions
(5.9) h(a) = h'(b) =0.

Then of F(x) is any Wiener measurable functional, tf p < tt, and
if hu(t) is any nontrivial solution of (5.8) satisfying hi.(b) = 0, we
have

SCl[a F(x) exp { S Q(S)xz(s)ds}dx

2

V0 Vo PO e o

where the existence of either member implies that of the other and
their equality.

(5.10)

We now identify in the expression for I, in (5.6)

_ Bz(b) S o\
5.11 = _2*9) — — .
(5.11) F(2) = exp { i = ). ¢ a)dt} exp {Bz(b)( ) }
Let q(s) = 1, # = A(B — a). An examination of the differential system
shows that the least characteristic value is p, = 7*/(4(b — a)’). We
must therefore have A < 7°[4(b — a)*(@ — a)]"*. Now
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hu(s) = cos ((s — b)p'?)
=cos ((s — )V A(B — ),

and our integral I, may be evaluated:

L= 1
‘/cos (® — )V A(B — @) gc’l[a 51

" exp {B<B ; “)3’2 5,, cos ((o — (I))l)y1(/034(3 — a))}d

In order to employ (4.3), we normalize the secant function ap-
pearing in the Stieltjes integral, i.e., since

(o — A7 —lde — tan[(d — a4
Ssec [(0 — b/ A(E — @)]do — tan [("I/A((l,)@-— 6(5 )]

we let p(0) = sec [(¢ — D)V A(B — a)](tan V) P[A(8 — «)]'¥, where ¥ =
(b — aV A(B — @). Our integral I, becomes

I =1V secy Sol[a’“ exp {c- gz p(o)dy(o)}dy

where ¢ = B((8 — a)/2)""V tan Y[A(B — a)]~"".
We apply (4.3) to obtain

I = "/SGCVS ete " tdy,
2w -

=1 sec exp

B2<B ; a>a tan Y(A(B — a))“lz}
2

= [sec [(b — a)(A(8 — a))]]'

exp | B8 = @) tan [~ [ A5 — @)
Aot °

In I,, we set

J

Il

(- S dy(fo)é dt

|
(- o2

% L (z — a)dy(z) .

™ R

fl

Il

We normalize the integrand of this Stieltjes integral and set p(r) =
(c — a)(p — a)™*™/ 3, so the integral becomes
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— ) (f
7= B2 @),
and (5.7) becomes

L= exn] B‘/%(ﬁg 9™ [’ pe)tn@)}dy

= 1—/% S: exp {Bl b —2?}?6—_ u %}du
= exp {Bz(b —3a.)(2,£9 - “)3} .

Thus our original integral has the value I = I,.I,, so that
I = [sec[(b — a)(A(B — a))"]]'"

. eXp{BZ(B — a)5/2 tan [jibllzg4 a,)(A(B . a))uz] }
B(b — a)(B — a)3} ’
3.2

where A < m?/(4(b — a)*(8 — «@)) and A = 0.

. exp{

6. General functionals. Finally we consider a class of func-
tionals which are not required to depend only on the values of z on
a restricted set. We do this by approximating F(x) by a sequence
of functionals F'(x,) where %, is determined by the values of z on
1 horizontal lines and is defined in between the lines by linear inter-
polation. We then apply Theorem 2 to F(x,) and take limits.

THEOREM 5. Let F(x) be a functional which is bounded and
continuous in the uniform topology on C,[R]. Let

60 0l ooy v 1] = (BN + (B )

tk - tk—l tk - tk—l
Jor a =s=b t, , =t t, ¥, €Cla, b] fork=1, -+, n; where o is a
subdivision, a =t,<t,<-++ <t,=p, and norm ¢ =max,_, ..., | t,— t,_/,
and Y, = 0.

Then

X (n)
S F(x)de = lim S ce g
CslR] ¢yla,b]

norm o—»0

t, —t
Cl[a,b] g '\/ 2 yl, 1

«/t—‘iz"ﬂyl + oo+ «/t”—"ﬁf“—iyn]}d% cee dy, .

(6.1)

Proof. If we set
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@y« ¥a) = Flaaly, -+, ¥as -, -1}
so that
fla(, ), -« -, (e, t)] = Flg[e(-, t.), -+, (-, &)5 +, -1}
our functional f satisfies the hypotheses of Theorem 2 and we have

Jo 7O B, <oy 2, )

) t, — 1 t, — 1 PR
= coe 1 0 Y 1 0 + 2 1 e
SCl[a,b] Scl[a,b] f[\/ 2 Y 1/ 2 Y, \/ 3 Ye

\/t, = fy 4 .. \/t_%zuyn]dyl---dyn.

If we let

Fo(x) = F{ga[x('y tl)’ ) w('y tn); s ‘]}

we obtain
S F(x)dx
ColR]
(n) tx . to n tk :'_tk-1
T Scl[a,b] F{g,,[ 2 Yy =y ]Z;l'\/_‘?——yk]}d% ceedy, .
It is clear that limuorm .o Fio(x) = F(x) for all « € C,[R] and since F is

bounded we may apply Lebesgue’s convergence theorem to obtain
(6.1).

Scl['lv b]
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RAMSEY THEORY AND CHROMATIC NUMBERS

GARY CHARTRAND AND ALBERT D. POLIMENI

Let %(@) denote the chromatic number of a graph G. For
positive integers 7, %,, ---, 7. (5 = 1) the chromatic Ramsey
number (%, n,, + -, ;) is defined as the least positive integer
p such that for any factorization K, = Ui, G, x(G,) = n, for
at least one 7,1 <37 <%. It is shown that x(n, n,, -+, %) =
1 4TI, (n, —1). The vertex-arboricity a(G) of a graph G is
the fewest number of subsets into which the vertex set of G
can be partitioned so that each subset induces an acyclic
graph. For positive integers n, %,, - -+, n; (k = 1) the vertex-
arboricity Ramsey number a(n,, %, ---, n;) is defined as the
least positive integer » such that for any factorization K, =
Ut Gy, a(G,) = n,; for at least one 4,1 <2 =<Fk. It is shown
that a(ng, N, -+, ng) =1 4+ 2L TTE, (0, — 1).

Introduction. The classical Ramsey number r(m, n), for positive
integers m and n, is the least positive integer p such that for any
graph G of order p, either G contains the complete graph K, of
order m as a subgraph or the complement G of G contains K, as a
subgraph. More generally, for k(= 1) positive integers n,, n,, + -, %,
the Ramsey number r(n, n, ---,n,) is defined as the least positive
integer p such that for any factorization K, = G, U G, U --- U G, (i.e.,
the G, are spanning, pairwise edge-disjoint, possibly empty subgraphs
of K, such that the union of the edge sets of the G, equals the edge
set of K,), G; contains K, as a subgraph for at least one 7,1 <¢ <
k. It is known (see [5]) that all such Ramsey numbers exist; how-
ever, the actual values of »(n,, %, -+, n;), k = 1, are known in only
seven cases (see [2, 3]) for which min {n, %, ---, n;} = 3.

A clique in a graph G is a maximal complete subgraph of G.
The cliqgue number w(G) is the maximum order among the cliques of
G. The Ramsey number »(n,, n,, ---, n,) may be alternatively defined
as the least positive integer p such that for any factorization K, =
GUGU - UG, o(G) = n, for at least one ¢, 1 <7 < k.

The foregoing observation suggests the following definition. Let
f be a graphical parameter, and let %, %, ---, %, k=1 be positive
integers. The f~Ramsey number f(n, m,, ---, n;) is the least positive
integer p such that for any factorization K, =G, UG, U -+ UG,
f(G) = n, for at least one 7,1 <7 =<k. Hence, w(n, %y -, %) =
r(Ny, Ny, +++, Ny), i.€., the w-Ramsey number is the Ramsey number.

The object of this paper is to investigate f~Ramsey numbers for
two graphical parameters f, namely chromatic number and vertex-
arborieity.

39
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Chromatic Ramsey numbers. The chromatic number %(G) of a
graph G is the fewest number of colors which may be assigned to
the vertices of G so that adjacent vertices are assigned different
colors. For positive integers =, m, ---, %, the chromatic Ramsey
number X(n,, %, -+, n,) is the least positive integer p such that for
any factorization K, = G,U G, U +-- G, %(G)) = n, for some 4,1 <7 <
k. The existence of the numbers ¥(n, %, ---, #,) is guaranteed by
the fact that x(n,, %, ---, %) < r(n,, %y -+, n,). We are now pre-
pared to present a formula for ¥(n, %, ---,n,). We begin with a
lemma.

LEMMA. If G=G, UG, U ---UG,, then
k
16) = 3 1) .

Proof. For i =1,2, ---, k, let a x(G,)-coloring be given for G,.
We assign to a vertex » of G the color (¢, ¢, ---, ¢;), Where ¢; is
the color assigned to v in G,. This produces a coloring of G using
at most IT%, x(G.) colors; hence, %(G) = TTi. x(G).

THEOREM 1. For positive integers M, My, -+, Ny,
ke
X(nl, (2 "':nk) =1+ I:.[l(%z - 1) .

Proof. The result is immediate if n, = 1 for some %; hence, we
assume that n, = 2 for all 7,1 <7 < k. First, we verify that

k
Aty My =y ) =1+ (g — 1)

Let p =1+ [I:t,(n, — 1), and assume there exists a factorization
K, = G,UG,U--- UG, such that ¥(G;) < n, — 1 foreacht=1,2, ---, k.
Then by the Lemma, it follows that

L+ T (e~ 1) = 2(K) S TG s v — D),

which produces a contradiction. Thus, in any factorization K, =
GUGU - ---UG, for p=1+ T[4, (n, — 1), we have x(G,) = n, for
at least one 7,1 <7 < k.

In order to show that

k
X(’n’ly Mgy * nk) = 1+ I_]l(nz - 1) ’

we exhibit a factorization Ky, = G,UG,U---UG,, where N, =
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o, —1) and y(G)=<m, —1fori=1,2 ..., k. The factorization
is accomplished by employing induction on k. For k =1, we simply
observe that x(Ky) = x(K,_,) =n, — 1. Assume there exists a fac-
torization Ky, = H,U H,U --- U H,_, such that y(H) < n, —1 for
1=12 ---,k— 1. Let F denote n, — 1 (pairwise disjoint) copies of
Ky, , and define G, by G, = F. Thus, G, contains n, — 1 pairwise
disjoint copies of H, for ¢ = 1,2, ---, k — 1, which we denote by G..
Hence, Ky, =G, UG, U -+- UGy, where 2(G,) <n,—1 for each 2,
1 £ £k, which produces the desired result.

Vertex-arboricity Ramsey numbers. The vertex-arboricity a(G)
of a graph G is the minimum number of subsets into which the ver-
tex set of G may be partitioned so that each subset induces an
acyclic subgraph. As with the chromatic number, the vertex-arbo-
ricity may be considered a coloring number since a(G) is the least
number of colors which may be assigned to the vertices of G so that
no cycle of G has all of its vertices assigned the same color.

Our next result will establish a formula for the vertex-arboricity
Ramsey number a(n, n, ---, n,), defined as the least positive integer p
such that for every factorization K, = G, U G, U - - - UG,, a(G;) = », for
some t,1 <t <k. Since a(K,) = {n/2}, it follows that a(n, n, -,
n) <r@n, — 1,21, —1, -+, 2n, — 1). In the proof of the following
result, we shall make use of the (edge) arboricity a,(G) of a graph,
which is the minimum number of subsets into which the edge set of
G may be partitioned so that the subgraph induced by each subset
is acyclic. It is known (see [1, 4]) that a,(K,) = {n/2]}.

THEOREM 2. For positive integers n, M, - -+, fy,

k
o1y, Mgy ++v, M) =1+ 26 [ (n; — 1) .

Proof. In order to show that
k
Ay, Mgy +ov, ) =1+ 2611 (n; — 1),

we let p =1+ 2k [, (»;, — 1) and assume there exists a factoriza-
tion K, =G, UG, U -+ UG, such that a(G) =%, — 1 for each 7=
1,2 +++, k. Foreachi=1, 2, ..., k, there is a partition {U,,, U,,, -,
Ui i} of the vertex set V(G,) of G, such that the subgraph (U, ;)
of G, induced by U, ; is acyelic, 7 =1,2, ---, n, — 1. At least one
of the sets U, U, +-+, Uyn-1» say U, ., contains at least 1+
2k T1%-. (», — 1) vertices. Thus, at least one of the sets U,,, U,,, -,
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Ui y—» 83y U, .., contains at least 1 + 2k [[f.,(n, — 1) vertices of
U. . Proceeding inductively, we arrive at subsets U,m, Usm, -,
Ui m, such that Ni., U, contains at least 1 4 2k [Ti.:1 (v, — 1) ver-
tices, 1 =t =<k — 1. In particular, Ni., U, ., contains a set U hav-
ing 1+ 2k vertices. For each ¢+ =12 ... k, (U) is an acyclic
subgraph of the graph (U, ,,>. This implies that a,(K,,:) = &, which
is contradictory. Therefore, a(G,) = n, for at least one 7,1 <1 < k.
The proof will be complete once we have verified that

k
a’(nlyn27 .."nk)zl—*—Zk];[(nz——l)'

Let » = [[%, (n, — 1). We shall exhibit a factorization K,,, = G, U
G,U -+ UG, such that a(G)=n,—1 for :=1,2 ---, k. We begin
with » pairwise disjoint copies of K,,, labeled K}, K3, ---, K. Since
a,(K,,) = k, it follows that K,, = %, F;, where each F) is an acyclic
graph. We introduce the notation F';; to denote the F, contained in

i l=1,2 -, rand t=1,2, ---, k. With each of the r k-tuples
(e, €y ++,¢), ¢,6=1,2,«-+,m;—1 and j=1,2 ---, k, we identify
a complete graph K}, 1 =1,2, ---, », in such a way that the identi-
fication is one-to-one. Then, foreach:=1,2 ..., kandl =12, ---,
r, we associate with F',, the k-tuple identified with K}. Define the
graph G, 1 =12, ---, k, to consist of the graphs F,, F,, ---, Fy,;
in addition, each vertex of F,, is adjacent to each vertex of F,,
s,t=12 .-+, 7, provided the ith coordinate is the first coordinate
in which their associated k-tuples differ (otherwise, there are no edges
between F,, and F,). It is then seen that K,, = U:,G,. For
each 1 = 1,2 .--, k, define V,; to be the set of all vertices v such
that v is a vertex of an F';, whose associated k-tuple (c, ¢, -+ -, ¢i)
has ¢, =J; 7=1,2 ---,m;—1. Then {V,, Viy -+, Vima} is a
partition of V(G for which the subgraph (V,;> consists of
r/(n; — 1) pairwise disjoint copies of F,, j =1,2, ---, n;, — 1. Thus,
{(V,;> is an acyclic graph for each such j. Hence, a(G;) < n, — 1,
1=12 ---, k.
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CHARACTERIZATION OF COLLECTIVELY COMPACT
SETS OF LINEAR OPERATORS

J. D. DEPREE AND H. S. KLEIN

The basic results in this paper show that each collec-
tively compact set of linear operators can be viewed as an
equicontinuous collection followed by a single compact
operator. This observation not only gives insight into the
character of collectively compact sets of linear operators,
but also yields easier proofs of many of the results obtained
by earlier workers in the field.

1. Factorizations of collectively compact operators. A fairly
complete treatment, with applications, of collectively compact sets
of linear operators is given in the recent book [1] by Anselone.
Collectively compact sets of linear operators on normed linear spaces
were originally studied by Anselone and Moore [2] in connection
with approximate solutions of integral and operator equations.

The general properties of such sets of operators, again in normed
linear spaces, were studied by Anselone and Palmer in [3] and [4].
Collectively compact sets of linear operators were studied in the
more general setting of linear topological spaces by DePree and
Higgins [5]. In the current work new characterizations are given
for collectively compact sets of operators on a linear topological
space.

We assume that X and Y are separated topological vector spaces
and that [X, Y] is the space of all continuous linear operators from
X to Y. For a collection & & [X, Y] and U a subset of X, let
F(U) ={T(x).xc U, Te #}. For a set 2 with topology 7z, we
adopt the notation (£, 7). For a set .+~ of operators, we will be
making statements of the following nature: Viewed as mappings
between the unit ball of Y* endowed with its relative weak-star
topology and X* equipped with norm topology, .4 is equicontinuous;
we shall simply say that _#":(Y* weak*) — (X*, norm) is equi-
continuous.

Following the work of DePree and Higgins [5], we make the
following definition.

DeFINITION 1.1. Let X and Y be separated topological vector
spaces. Then & & [X, Y] is collectively compact if there exists a
neighborhood U of the origin in X such that # (U) has compact
closure in Y.

The easy proof of the following lemma belies its importance for

45
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the situation described in it is typical of collectively compact sets
of operators; i.e., they can always be factored as in Theorem 1.3.

LEMMA 1.2. Let X, Y, and Z be separated topological vector
spaces, A" & [X, Z] an equicontinuous collection, and Ke[Z, Y] a
compact operator. Then the collection K ¢~ ={KN:Ne . 4"} 1s
collectively compact.

Proof. Let V be a O0-neighborhood in Z such that K(V) is
compact. Since the family .+  is equicontinuous, there is a O0-
neighborhood U in X such that .+ (U) & V. Thus K.+ (U) S K(V).
It follows that K._7" is collectively compact.

THEOREM 1.3. Let & S [X, Y] be such that there exists a
0-neighborhood U in X with the closure of the balanced convex hull
of & (U) compact in Y. Then there exist

(a) a Banach space Z,

(b) an equicontinuous collection 4~ < [X, Z], and

(¢) a compact operator Ke|Z, Y]
such that # = KN.

Proof. The following proof is based upon the construction of
an auxiliary normed space.

Let the set C be the closure of the balanced convex hull of
Z (U) and Z the span of C in Y. Since C is balanced and convex,
Z = UpnC and C is absorbing in Z. Hence p, the Minkowski
functional of C, is defined on Z.

If (Z, p) denotes the set Z endowed with the topology generated
by v, then let K:<{Z, p> — Y be the natural injection which maps a
point z€ Z to the same point z considered as an element of Y. K
is a compact operator since C, the unit ball of Z, is compact in Y.
In particular, K is continuous and the p-topology on Z is stronger
than the Hausdorff relative topology on Z. So (Z, p) is Hausdorf
and Z is a normed linear space.

Let {z,} be a Cauchy sequence in {(Z, p). Since {z,} is a bounded
subset of (Z, p) and K is a compact operator, {K(z,)} is a Cauchy
sequence with {K(z,)} compact in Y. So there exists a y € ¥ such that
lim, K(z,) = y. For a > 0, choose ! such that n, m = [l implies that
(2, — 2,) < «. For these n and m, z, — z, is an element of «aC.
In Y, C is a closed set and y = lim, 2,. So y — 2z, is an element of
aC for m = 1. We see that y € Z and that p(y — 2,) < « for m = [.
It follows that <Z, p> is a Banach space.

Let xe X and Te.#. Since 0-neighborhoods are absorbing and
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U is such a neighborhood in X, there exists an a > 0 such that
xeaU. Hence, T(x)e aC and T(x)e Z. Solet .+ < [X, Z] be defined
as the collection .&# mapping X to <(Z, p). The collection _#~
is equicontinuous since _#"(U) is a subset of the unit ball of Z.
Obviously, &# = K_+".

Suppose F# & [X, Y] satisfies the hypothesis of Theorem 2.3
and can be factored, & = K_#~, as above. The single compact
operator K has been the object of study for years. The next section
shows that our knowledge about K gives insight into the collection &

2. Characterizations of collectively compact operators defined
on Banach spaces. Throughout this section, X and Y will be
Banach spaces with closed unit balls X, and Y,, respectively, X*
and X** will denote the first and second duals of X with their
usual norm topologies, and [X, Y] will be the space of continuous
linear operators from X to Y endowed with the uniform operator
topology.

Note that &# S [X, Y] is collectively compact if and only if
& (F') has compact closure in Y.

LemMA 2.1. Let & S |X, Y]. & s collectively compact if
and only if there exist

(a) a Banach space Z,

(b) an equicontinuous collection .~ < [X, Z], and

(c) a compact operator Ke|[Z, Y]
such that F = K_71".

Proof. Mazur’s theorem [6, p. 416] states that if # (X)) is
relatively compact, then so is the balanced convex hull of & (X).
Apply Lemma 1.2 and Theorem 1.3.

For TelX, Y], let T*e[Y*, X*] denote the adjoint of 7. While
Schauder’s theorem implies that the adjoint of a compact operator
is compact, the following example shows that this phenomenon has
no generalization for collectively compact sets of operators. This
example will also serve as an illustration for the results of the
remainder of this paper.

ExAMPLE 2.2. Let X = Y = [, with the usual orthonormal basis
{exk=1,2, ---}. For each positive integer n, define T, by letting
T.(x) = (x, e,)e,. The set {T,:n =1} is collectively compact since
U.T.(X)) is a bounded subset of the finite dimensional subspace
generated by e,.

However, the collection of adjoints {T*} is not collectively compact
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since T¥(x) = (x, e)e, and |, T¥(X*) contains the orthonormal basis

{e.}.

LEMMA 23. Let &% S[X,Y]. Then F*r={T*TeF}c
[Y*, X*] is collectively compact if and only if there exists a Banach
space Z, an equicontinuous collection ¥ = |[Z, Y], and a compact
operator Ke[X, Z] such that & = &K = {SK: Sc.&}.

Proof. Assume that & = 7K, with K a compact operator and
& equicontinuous. The process of taking adjoints is an anti-
homomorphism which preserves operator norms. So if & = K,
then &* = K*<#*. If & is an equicontinuous (i.e., bounded)
subset of [Z, Y], then .&°* is an equicontinuous subset of [Y*, Z*].
Lemma 2.1 implies that & * is collectively compact.

Conversely, if & * is collectively compact, there exists a Banach
space W, an equicontinuous collection & & [Y*, W], and a compact
operator Lec[W, X*] such that & * = L~

Let J, and J, denote the natural injections of X into X** and
Y into Y **, respectively. Note that & = J.F **J, = (J;\F*)L*J,).
Let K = L*J,. Then K is a compact operator mapping X into W*.

Since J, is an isometry and °* is equicontinuous, it follows
that & = J,"<”* is an equicontinuous subset of [W*, Y] such that
K= J PYK = F.

A description of the bounded weak-star topology of a Banach
space Y is given in [6, pages 427-430]. The feature of the bounded
weak-star topology that will be of interest to us is the equivalence
of parts (i) and (ii) of the following theorem.

THEOREM 2.4. Let Y be a Banach space. If Y* denotes the
closed unit ball of Y*, then a set US Y* is a bounded weak-star
netghborhood of 0 if and only if either ome of the following are
satisfied:

(i) For each a >0, UNaXYy is a relative weak-star neigh-
borhood of 0 in aY;*.

(ii) There exists o sequence {y,} S Y such that lim,|ly,|| =0
and {y*€ Y* | y* v | £ 1 for each n} is a subset of U.

Of course, statement (ii) may be rephrased in the form: There is a
sequence {y,} & Y converging to 0 in norm such that the polar of
{y.} ©s a subset of U.

THEOREM 2.5. For & < [X, Y], the following are equivalent:
(a) & 1is collectively compact.
(b)) F* (Y, weak*) — (X* norm) is equicontinuous.
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(c) F*: (Y}, weak*) — (X* norm) s equicontinuous at the
origin.

(d) {1 T*w*") || £1 for each T*e . F *} is a bounded weak-
star neighborhood of 0.

(e) There exists a sequence {y,} S Y such that ||y,||— 0 and
Z (X)) ts a subset of the closure of the balanced convex hull of {y.}.

Proof. (a) implies (b). If & 1is collectively compact, Lemma
2.1 implies that there exists a Banach space Z and a factorization of
&, which, after taking adjoints, is of the form:

(1) FF = K *,

(2) K*:{Y* norm)— {(Z* norm) is a compact operator.

(3) 7% KZ* norm) — (X * norm) is equicontinuous.

Now since K* is a compact operator, K*: (Y*, weak*)> — (Z*, norm)
is continuous: It maps bounded nets which converge in the weak-
star topology to weak-star convergent nets which are also totally
bounded in the norm topology of Z*. By (8), .# *K* is an equi-
continuous collection of mappings of {Y*, weak*) into (X*, norm}.
We see that (b) follows immediately from (1).

(b) implies (¢). This implication is obvious.

(c¢) implies (d). If the situation || T*(y*)|| < r for each T*e & *
is abbreviated || *(y*)|| < r, then for any a > 0, (¢) implies that
{y*: 1| # *(y*) || < lJa} N Y7 is a relative weak-star neighborhood of
0 in Y*. Multiplication by a yields that {y*: | & *(¥*) || < 1}na Y}
is a relative weak-star neighborhood of 0 in aY;*. Theorem 2.4,
part (i), yields (d). -

(d) implies (e). Statement (d) together with Theorem 2.4, part
(i), guarantee the existence of a sequence {y,} < Y such that
%, 1l—0 and

(4) {y*:|1<y* ¥ | =1 for each n} & {y*: || F *(y*) || = 1}. Now
take polars in Y of both of the above sets. By the Bipolar Theorem
[7, p. 141], the polar of the left-hand side of (4) is the closure
of the balanced convex hull of {y,}. Since || *(y*)| <1, implies
that || y*(# (X)) || =1, the polar of the right-hand of (4) contains
F(X).

(e) implies (a). The set {y,} is compact. Therefore, the closure
of the balanced convex hull of {y,} is also compact.

The following corollary was first proved by Palmer [8]. A new
and simpler proof is given below.

COROLLARY 2.6. Let &7 < [X, Y]. If
(a) F is collectively compact, and if
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(b) for each y*e Y*, & *(y*) is totally bounded in the norm
topology of X*,
then Z 1s totally bounded in [X, Y].

Proof. By Theorem 2.5, (a) implies that if we consider & * ag
a set of mappings between (Y}, weak*) and (X* norm), then & *
is equicontinuous with respect to these topologies. Since (Y*, weak*)
is a compact topological space, (b) together with the Ascoli theorem
[7, p. 81] imply that the collection & * is totally bounded in the
topology of uniform convergence on Y*, that is, in the uniform
operator topology. Since the adjoint is an isometry between [X, Y]
and [Y*, X*], & is totally bounded in [X, Y].

COROLLARY 2.7. If 4" S [X, Y] is totally bounded and each
member of ¥~ 1is a compact operator, then 4~ is collectively
compact.

Proof. If 4~ = [X, Y] is totally bounded, sois #"* & [Y*, X*],
i.e., .#7* is totally bounded in the topology of uniform convergence
on Y;*. Since each T*e 4 * is a compact operator, each

(5) T*: (Y}*, weak*y —— (X * norm)

is continuous. Considered as a collection of mappings between the
topological spaces of (5), .#"* must be equicontinuous. By Theorem
2.5, .+~ is collectively compact.

In order to extend the range of application of Corollary 2.6, the
following theorem is stated.

THEOREM 2.8. Let &7 = {S,:n =1} be a sequence of bounded
linear maps from X to Y. Suppose there exists a collectively
compact set {V,.n=1}<[X, Y] such that lim,..||S,— V,||=0.
If &*(y*) s a totally bounded subset of X * for each y*e Y*, then
& 18 a totally bounded subset of [X, Y].

Proof. Since lim,||S,— V,||=0, lim,|[S¥— Vy| =0. Let
y*e Y* and ¢ > 0 be given. Choose an integer N such that

(6) ISx(w*) — Viw*) || =¢3 for n=N.

S*(y*) is totally bounded and consequently has a finite &/3-net.
The inequality (6) then implies that {V}(y*):n = N} has a finite
e-net. Since the excluded points are finite in number and ¢ > 0 is
arbitrary, the set {V.*(y*):n = 1} is totally bounded. By Corollary
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2.6, {V,:n =1} is a totally bounded subset of [X, Y]. However,
lim, || S, — V,|| = 0. By using an argument similar to the one above,
it follows that .57 is a totally bounded subset of {X, Y].

LEMMA 2.9. Let & S[X, Y]. If for each x € X, () is totally
bounded in Y, then 7% (Y weak*)— (X* weak*) 1is equi-
continuous at the origin.

Proof. Let x be any fixed element of X. Then
W= {x*: [<z*, x) | = 1}

is a neighborhood of 0 in the weak-star topology of X*. In fact,
the family of all such W form a sub-basis of the neighborhood
system of 0 for the weak-star topology. Therefore, it suffices to
show that Y*N{y*: *wy*) S W} = Y*N{y*|{(F*y*),»| =1} =
Yin{y*:| <y* &x))| <1} is a neighborhood of 0 in the relative
weak-star topology on Y.

Let {y, ¥ ---, ¥, be a 1/2-net for S”(x). Consider V =
fy*[<y*yp 1 =1/2, 1=i=n). If y*eVNYr and ye (),
choose j such that ||y — y;]| <1/2. Then |{y* v> = |y y»| +
Ky v~y | =12+ y*|||ly —y;]| = 1since y*e Y*. So VNY* &
YN {y*: & @y*) & W} 1t follows that

F*(YF, weak*y —— (X*, weak*)

is equicontinuous at the origin.

THEOREM 2.10. Let X, Y, and Z be Banach spaces and let
F S [X, Z] be collectively compact. For ¥ S |[Z,Y], suppose
() is totally bounded in Y for each ZeZ. Then L F =
{ST: Se.s”, Te F} is collectively compact.

Proof. Since $”(z) is bounded for each z¢ Z and Z is complete,
there exists a constant m such that || S]] < m for each Se & If
U is any 0-neighborhood in the norm topology of X*, choose, by
Theorem 2.5, a weak-star neighborhood W of 0 in Z* such that
F*WNZX) S A/m)U. Lemma 2.9 guarantees that there exists a
weak-star neighborhood ¥V of 0 in Y* such that &“*(VNY) S mW.
So I/m)F*(VNnYHEWnA/m)Fs«(Y:) = WnZF. It follows that
FZ H((U/m) (VN Y¥) S @/m)U and that (L5 )*: (YF, weak*) —
(X* norm) is equicontinuous at the origin. Theorem 2.5 implies
that the set &% is collectively compact.

ExAMPLE 2.2 continued. Let C = {x:| T, (x)]| <1 for each =}
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Then C = {x:|(x, e,)| £ 1 for each »} and C is the polar of {e,}. C
is not a bounded weak* neighborhood of 0, since if it were, the
Bipolar Theorem would then imply that the orthonormal basis {e,} is
a compact subset of l,. Since [, is a Hilbert space, one can view
{T,} as the adjoint of the collection {T¥}. Theorem 2.5, part (d),
implies that {T¥} < [, I,] is not collectively compact. In particular,
an explicit calculation of the adjoints is unnecessary in determining
whether or not {T}} is collectively compact. The next theorem
shows that it is unnecessary to calculate the adjoints even when
the operators involved are acting on arbitrary Banach spaces.

THEOREM 2.11. For & < [X, Y], the following are equivalent:

(a) F*[Y* X*] is collectively compact.

(b) F:(X, weak topology) — (Y, norm) is equicontinuous.

(e) F:{(X, weak topology) — (Y, norm) is equicontinuous at
the origin.

(d) There exists a sequence {xi} = X* such that ||} || —0 and
{fre X:| <k ad| £ 1 for each n} S {x: || F (x)]] < 1}.

(e) There exists a sequence {x%} = X* such that ||z} || — 0 and
F *(Y{*) 1is a subset of the closure of the balanced convex hull of {xy}.

Proof. The equivalence of (a) and (e) follows from Theorem 2.5.

The polar of the closure of the balanced convex hull of {x}} is
{o: | (x¥, )| <1, n = 1}. Also, the polar of F *(Y)is {x: || & @) ]| =
1} since [{(F *(Y{), )| <1 if and only if |(Y}¥* & (x))| =< 1. The
equivalence of (d) and (e) follows from these two observations.

(a) implies (b). By Lemma 2.3, there exists a Banach space Z, a
compact operator Ke[X, Z], and an equicontinuous collection .&¥ &
[Z, Y] such that & = $”K. Since K is a compact operator

K: (X, weak) — (Z, norm) is continuous .

Moreover, .&:<{Z, norm) — (Y, norm) is equicontinuous. Hence,
F (X, weak) — (Y, norm) is equicontinuous.

(b) implies (¢). This implication is obvious.

(¢c) implies (a). By Theorem 2.5, it suffices to show that
G (X ¥, weak*) — (Y ** norm) is equicontinuous at the origin.
If J denotes the natural injection of X into X **, (c) implies that

(7) F i (J(X)), weak*) — (Y** norm)

is equicontinuous at the origin.
Let V be a O0-neighborhood in the norm topology of Y**,
Choose a 0-neighborhood U such that U < V, where the bar denotes
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closure in the norm topology of Y**. By (8), choose W, a 0-
neighborhood in the weak-star topology of X**, such that

(8) FHIX)NWYS U.

Let 7** be an element of & ** and z**e X** N W. Since J(X)) is
weak-star dense in X**, it is possible to choose a net {x.,} S X, such
that the weak-star limit of {J(X,)} is x**. {J(x.)} is eventually in
W since z**e W. Therefore, {T**(J(z.))} is eventually in U, by (8).
Since T**is a compact operator, || T **(x**)-T**(J(x,)) || — 0. Hence
T**(x**)e US V. So in addition to (8),

F XN wWye V.

In order to indicate how some previous results in the theory of
collectively compact operators follow from our results, we prove the
following lemma.

LEmMMA 2.12. Let L <[X,Y] be bounded in the wuniform
operator topology. The following are equivalent:

(a) L:<{X, weak) — (Y, norm) is equicontinuous at the origin.

(b) For each &> 0, there exists a subspace X(¢) of finite
codimenston in X such that the restrictions of operators in L to
X(e) have operator norms no greater than e.

Proof. Let the bound on ¥ S [X, Y] be M, i.e., ||T| < M for
each Te &

(a) implies (b). Let €> 0. By (a), there exists a finite set
{af, «--, 25} & X* such that {x:|<xf 2| =1, 15i<pnNX &S
{z:]] L@l <¢). Let X(&) = {x:{xf,2) =0, 1<17=p}). Then (b)
follows since X(e) N X, & {x: || &L () || = ¢}.

(b) implies (a). Let ¢ and X(¢) be given. If Te ¢, then the
operator norms of the restrictions of 7T to X(¢) and X(¢) are the
same. Consequently, we may assume that X(c) is a closed subspace
of X.

Choose linearly independent {x,, ---, 2,} & X such that ||z;||=1
for each ¢ and X = X(¢) @ Span {x,}. Since for each j, X(¢)P
Span {x,, <+, ®;_y, X4y, -+, T} is a closed subspace which does not
contain x;, there exists {#}:1 <4 < p} & X* such that zf(X(e)) =0,
1=<4<p, and x¥(x;) = 0,5, 1 =<1, § < p. Consider the weak open set

W = {xg | (&%, 2> | < min g, 1}} .

If e WN X,, then z has the representation
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2 =0,@3 @, o,
with 2, € X(¢). Since ||z;|| =1,
lodlslizl+ 31l <2,

Then for Te L, || T(X.) || £ 2¢ and

1 T@) 1| < 26+ 31 w2, @ |1 T@) || < 26 + Me .

We have shown that for any ¢ > 0, {z:]|| £ (@) | £ 26 + Me} N X, is
a relative weak neighborhood of the origin. Hence, statement (a)
follows.

Finally, in view of Theorem 2.11, one obtains the result of
Palmer [8] that for the collection & above, &* is collectively
compact if and only if condition (b) of the above lemma is satisfied.
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SEMI-GROUPS AND COLLECTIVELY COMPACT SETS
OF LINEAR OPERATORS

J. D. DEPREE AND H. S. KLEIN

A set of linear operators from one Banach space to
another is collectively compact if and only if the union of
the images of the unit ball has compact closure. Semi-groups
S={T(t):t = 0} of bounded linear operators on a complex
Banach space into itself and in which every operator T(t),
t > 0 is compact are considered. Since T(¢, + t;) = T(t) T(t,)
for each operator in the semi-group, it would be expected
that the theory of collectively compact sets of linear operators
could be profitably applied to semi-groups.

1. Introduction. Let X be a complex Banach space with unit
ball X, and let [X, X] denote the space of all bounded linear
operators on X equipped with the uniform operator topology. The
semi-group definitions and terminology used are those of Hille and
Phillips [6]. Let S be a semi-group of vector-valued functions
T:[0, <) —[X, X]. It is assumed that T(¢) is strongly continuous
for t = 0. If lim,,, || T(t)xr — T(t)x|| = 0 for each ¢ =0, xe X and
if there is a constant M such that the || T(¢)|| £ M for each ¢t = 0,
then S = {T(¢): t = 0} is called an equicontinuous semi-group of class
C,. The infinitesimal generator A of the semi-group S is defined by

Az = lim L[ T(s)e — a]
S—0 S

whenever the limit exists. The domain D(A) of A is a dense
subset of X consisting of just those elements « for which this
limit exists. A is a closed linear operator having resolvents R(\)
which, for each complex number M\ with the real part of ) greater
than zero, are given by the absolutely summable Riemann-Stieltjes
integral

(1) ROe = r e T(t)edt, we X .

It follows from (1) that

(2) | ROV || < r(jg), re(\) > 0 .

In particular, sets of the type {R(\): re(\) = a > 0} are equicontinuous
subsets of [X, X].
Results yielding the collective compactness of the resolvents of
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A have recently been obtained independently by N. E. Joshi and M. V.
Deshpande.

2. Semi-groups of compact operators. First, note that (1)
states that the resolvents of A are Laplace transforms of the semi-
group S. Consequently, there are many other important integral
expressions involving the elements of the semi-group and the re-
solvents. In order to take advantage of these, we prove the follow-
ing lemma, in which [v| denotes the total variation of a complex
measure v.

LEMMA 2.1. Let Q be a topological space and _# a collection
of complex-valued Borel measures on Q. Suppose there exists a
constant a for which |v| 2 < « for each ve _#. Let 57 : 2— [X, X]
be an operator-valued function defined on 2 which is strongly
measurable with respect to each ve M [6, page T4l and suppose
= {K(w): we 2} is a bounded subset of [X, X]|. For each ve #

and xe X, let F,(x) =S K(w)xdv, where the integral exists in the
2
Bochner sense sinceg [Kw)x| d|v| < e [6, page 80]. Let & =
Q

{(Foove #Z}). Whenever 92 (577*) is collectively compact, F (F *)
18 also collectively compact.

Proof. Assume that .27 is collectively compact. Let B =
{(K(w)x:we 2, ||z|| <1} and let C denote the balanced convex hull
of B. Both B and C are totally bounded subsets of X. It suffices
to show that F,(x)ecaC for any F,e.& and z with |[z| =< 1. Let
€ >0 and choose {K(w)w, ---, K(w,)x,}, an ¢/a-net for B. For
1=1,---,n, let Q, = {w:| Kw)xr — K(w,)z,|| < ¢/a} and let Q2=

,\U*“Q be a decomposition of the 2, into pairwise disjoint sets.
Then

'

Since >, |v(Q)| £ a, S, K(w)xv(Q;) is an element of «aC. It
follows that F(x)c «C and so % is also collectively compact.

Now assume that .2°* is collectively compact. Let V be any
neighborhood of 0 in the norm topology of X. There exists an
€>0 such that U= {x:||z]|<e & V. Since % * is collectively
compact, [2, Theorem 2.11, part (c)] implies that there exists a weak
neighborhood W of the origin with 2 (WnX)<S (1/a)U. For

F,e # andze WN X, [[F(v)] = SQ | Kw)z|ld|v] = (/) [v](Q) =

o =2, 1K@e - Kwwid v @)
SCCITCOEES
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e. So F(WNX)S V. Again using [2, Theorem 2.1, part (c)], we
see that .# * is also collectively compact.

The following is essentially a result of P. Lax [6, page 304].
Rephrased in the terminology of collectively compact sets of operators,
it becomes quite transparent.

THEOREM 2.2. Suppose that some T(t,), t, >0, is a compact
operator. Then ¢ = {T(t):t =t} is a totally bounded, collectively
compact subset of [X, X]. Consequently, T(t) is continuous in the
uniform operator topology for t = t,.

Proof. Since T(t) = Tt — t,)T(t) = T(t)T({E — t,) for t =t¢, it
follows that %% = T(t)s” = & T(t,). T(t,) is a compact operator
and the collection &7 is equicontinuous. By Lemmas 2.1 and 2.3 of
[2], both 227 and 2#°* are collectively compact. [2, Corollary 2.6]
implies that %" is a totally bounded subset of [X, X]. Since TI(¥)
is continuous in the strong operator topology, 7(t) is continuous in
the uniform operator topology for ¢ = ¢,.

COROLLARY 2.3. Suppose every T(t), t >0, is a compact operator.
Let & = {R(\): re(\) = 1} be the collection of the resolvents of the
mfinitesimal generator A corresponding to the half-plane {\e
C:re(\) = 1}. Then &# s a totally bounded, collectively compact
set of operators.

It should be noted that for any a > 0, the following arguments
can be applied to {R(\): re(\) = a}. One particular half-plane is
chosen simply to keep the notation as uncomplicated as possible.

Proof. It will suffice to show that for each & > 0, there exists
a totally bounded, collectively compact set of operators .9 such
that for any R(\) e &, there exists a Ke .27 with || R(\) — K[| Z e.

For this &, choose 6 > 0 with XZ e~'dt < ¢/M, where M is such that
| T\ || < M for ¢ > 0. Let )\ be any complex number with re(\) = 1
and zeX. Since B(Mo = g‘” o T(t)edt, HR(x,)x— Sje‘“T(t)xdt“ <
SO o || T(t) || dt SS etdtM||¢|| < ¢ |||l Consequently, ”R(x)~
r cHT(E)dt < 6. Now .57 = {S TRt re(\) 2 1 is a totally
bounded, collectively compact set of operators. To see this, note
that sup {S, |3 di: re(\) = 1} <1 and that both {T(t):¢= 9} and
{T*(t):t = o} are collectively compact. Lemma 2.1 implies that both
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2% and 9¢°* are collectively compact. As before, [2, Corollary 2.6]
implies that 2" is a totally bounded subset of [X, X].

The following lemma will be useful in the next section. Since
a quotable reference cannot be found, a brief proof is included.

LEMMA 2.4. Let & be an equicontinuous semi-group of class
Co. Then R(\) converges to zero im the stromg operator topology as
[N|— o0, re(N) = 1. Whenever {R(\): re(\) = 1} 1s a totally bounded
subset of [X, X], the R(\) converge to zero in the uniform operator
topology as || — oo, re(\) = 1.

Proof. The second assertion follows immediately from the first.

Let 2 e D(A), the domain of the infinitesimal generator A. Since
R(\)(M — A)x = «, we have the identity

ROz = %[x + ROV Az] .

By (2) of § 1, {R(\)Ax: re(\) = 1} is a bounded subset of X. It follows
that || R(\)x||—0 as |A|— oo, re(N) =1, for each xe D(4). Since
-‘D(A) is dense in X, the Banach-Steinhaus theorem implies that this
type of convergence holds for each xeX. We see that the first
assertion of this lemma holds also.

3. Semi-groups with compact resolvents. Suppose that the
domain of the infinitesimal generator of a semi-group can be given
a topology 7 such that the topological space (D(4), 7) is a Banach
space and the natural injection i: (D(4), ) — X is a compact operator.
In such cases, it might be possible to prove that certain sets of the
resolvents of A are equicontinuous subsets of [X, (D(4), )], i.e.,
collectively compact subsets of [X, X]. A specific example is the
case in which X is some L* space and A is the negative of a
uniformly strongly elliptic differential operator defined on a Sobolev
space H = (D(A), t). The so-called “a priori inequalities” [4,
Theorems 18.2 and 19.2, pages 69 and 77] imply that, after a
suitable translation, {R(\): re(\) = 1} is an equicontinuous subset of
[L?, H]. Since the injection 4: H— L? is a compact operator [4,
Theorem 11.2, page 31], {R(\): re(\) = 1} is a collectively compact
subset of [L?, L?]. The obvious question is what are the implications
of such assumptions for a general semi-group .54

We first consider the case in which A has one compact resolvent.
Of course, the first resolvent equation,
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R(M) - RO\'Z) = (7\'2 - )‘fl)R(M)R()"z) ’

then implies that all resolvents of A are compact operators.

LEMMA 3.1. Suppose A has one compact resolvent. Let 2 be a
compact subset of {\:re(N) > 0}. Then {R(\):Ne R} 1is collectively
compact.

Proof. Since R(\) is a holomorphic function in the right half-
plane, {R(\):ve 2} is a totally bounded subset of [X, X]. Each
element in this collection is a compact operator. So [2, Corollary 2.7]
implies that {R(\): M€ 2} is collectively compact.

The following is a partial converse of Theorem 2.2.

PROPOSITION 3.2. Suppose A has compact resolvents. Let t, > 0.
If T(t) is continuous in the uniform operator topology for te€ [t, o),
then T(t,) is @ compact operator.

Proof. Since the resolvents are Laplace transforms of {T(¢):¢t =
0}, we may use the formula based upon fractional integration of
order two [6, page 220] which states that

8 1 14400 els
S (s — O)T(A)dt = _g L RO, 5> 0.
0 27 Ji—ieo N2

For ¢ > 0, choose N such that

1—4N I+‘i°°1
S +S LRy lldIn] < e

1—ico 144N |7\,2 |
Then

[ ~or@a - 1 ran] <.

By Lemmas 3.1 and 2.1, the integral of (e*/\?)R(\) over the finite
segment of the vertical line is a compact operator. It follows that
for each s = 0, S (s — t)T(t)dt is a compact operator.
0
Consider the function
F(s) = S (s — O)T(t)dt, s =0 .
0
Each value of F is a compact operator. Elementary calculations

show that F' is differentiable in the uniform operator topology. Con-
sequently, each
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F'(s) = S T(t)dt, s = 0,
0
is the limit in the uniform operator topology of a sequence of com-
pact operators. Hence, each F'(s), s = 0, is a compact operator. In

taking derivatives again, we see that for # > 0,

H% St” T(t)dt — T(t,)

s sup{|| TG + @) — T 1 0= @ < A} .

If T(t, + a) is continuous in the uniform operator topology for
a = 0, then

. . 1 tot+h
T(t,) = uniform — lim —}-L-S T(t)dt .
¢

h—0Tt

It follows that T(¢,) is a compact operator.
See [6, page 537] for a discussion of the following example.

ExampPLE 3.3. Consider the semi-group & of left translations on
the space C,[0, 1] consisting of continuous functions z(u) vanishing
at 1, where the norm ||z || = sup {|z(%)|: 0 < » < 1}. Let [T(H)x](w) =
2(u + ¢t), for 0 < u <max{0,1 — ¢}, and 0 for max{0,1 — ¢} Su <1.
The infinitesimal generator of & is the operator of differentiation
d/(du) with domain

d

D<%> = @’ e G0, 1]} -

The compact resolvents are given by

(RO (w) = g “ e tg(u + t)dt, e C .

For t =1, T(t) is the compact operator 0 while for ¢, s <1,
[| T(t) — T(s)|| = 2. This can easily be seen by evaluating 7(t) —
T(s) at a function z e Gy[0, 1] with ||« || <1 and «(t) =1, x(s) = —1.
So T(t) is continuous in the uniform operator topology only for
t=1.

Choose a monotonically increasing sequence of positive functions
{v.} & C,[0, 1] such that lim, y.(u) =1 for each v <1. For t<1,
{T(t)y.} is a sequence of functions having no subsequence which can
converge uniformly. So T(¢), ¢t < 1, is not a compact operator.

For M =0 + ir, let x,(u) = ¢*y,(u) in the definition of R(\).
We see that

[B02,10) = | eyt -
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Sinece ||z,]] =1 for each =,
1
IR0 | = sup | RO | = | eat .

It follows immediately from the definition of R(\) that the reverse

1
inequality holds also. Consequently, || R(\) || = S e "'dt. In particular,
0
lim,,_. || B(c + i7)|| #£ 0. This serves to distinguish this differential
operator from the class of infinitesimal generators which we consider
next.

LEMMA 3.4. Suppose & 1s a semi-group such that the set of
resolvents {R(\): re(\) = 1} corresponding to the vertical line re(\) =
1 4s collectively compact. Then {R(\): re(\) = 1} s also collectively
compact.

Proof. For each ze X, R(\)x is a holomorphic and bounded
function of A, re(\) > 1/2. So R(M)x admits Poisson’s integral re-
presentation [6, page 229]

sy, a—1(= R(1 + ip)x
R(o + it)x = - S_w R\ — ag

for 0 >1, zeX. Since {R(1 + i8): —co < B < =} is collectively
compact and the integral of the Poisson kernel over —« < g8 <
is identically one, Lemma 2.1 implies that {R(\): re(\) > 1} is collec-
tively compact. Taking the union of this set and {R(\): re(\) = 1},
one obtains the desired result.

For xe€ X and z*e X*,
(¥, R(o + it)z) = S“ (et (o*, T(t)x))dt -
0

This is this Fourier transform of the absolutely summable function
e t(x*, T(t)x), t = 0. The convergence of

| B(o + 7) || = sup {| (2*, R(o + ir)x) |: || «]], [|2*] = 1}

to 0 as |o| and | 7| approach infinity can be viewed as a “uniform”
Riemann-Lebesgue lemma.

THEOREM 3.5. If & = {R(\): re(\) = 1} s collectively compact,
then || R(\) || converges to 0 as |N| approaches oo, re(\) = 1.

Proof. Throughout the following proof, we assume that re(\) = 1.
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Let ¢ > 0 be given and choose real 8 so large that 14+ g =
M/e, where M is the constant in §1 which bounds the operator
norms of elements of &2 By (2),

M < M _
red)+B- 1+5 7

TR+ B) | =

In view of Lemma 2.4, & 1is an equicontinuous collection with R(\)
converging to zero as |\|— o pointwise on the relatively compact
set Z# (X)). Therefore, ||R\)F||—0 as |[\|— « uniformly for
Fe #. Choose N such that |A| = N implies that

IROBRO + B) Il = ¢/8 -
The first resolvent equation states that
R\ — R+ B) =N+ 88— NERMNEMX+ B).
So, for |A| = N,
HRMN | = [|BROMVBRM + B + | B+ B = 2¢.

Note that we have used the fact that & contains those re-
solvents R(\) with re(\) arbitrarily large in an essential way.

COROLLARY 38.6. Let &7 be any semi-group whose infinitesimal
generator A has compact resolvents, i.e., each R(\), re(N) > 0, is a
compact operator. Then F = {R(\):re(N) = 1} s collectively com-
pvact if and only if || R(\)||—0 as |N]— o, re(n) = 1.

Proof. The assumption that [|R(\)||— 0 as [A|— o, re(N) = 1,
simply implies that R(\) can be extended to a continuous function
on the compactification of the half-plane {A\: re(\) = 1}. Consequently,
if A has compact resolvents, .# is a totally bounded set of com-
pact operators. [2, Corollary 2.7] implies that & is collectively
compact.

The converse is simply Theorem 3.5.

The behavior of the holomorphic function R(\) on the vertical
line re(\) =1 is of fundamental importance. For example, if d(\)
denotes the distance of the complex number )\ from the spectrum of
A, then [3, page 566]

: 1
d(l + w)zm.

We see that the spectrum of A must be bounded on the right by
the curve
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1

=t rErr @

1T, —o0 < T < o0,

In particular, it follows from Theorem 3.5 and Lemma 3.4 that
when {R(\): re(\) = 1} is collectively compact, the spectrum of 4 is
severely restricted.

The usual methods of inverting Fourier transforms can be
typified by the use of (C,1) means. In [5, page 350], it is shown
that for each ¢t >0

T(t) = lim L S’” (1 — Ii])e““’”R(l + it)dr
2 J-w w

wooo 7T

However, the measures involved no longer satisfy the requirements
of Lemma 2.1. As this situation is typical, we are not able to
prove that if {R(\):re(\) =1} is collectively compact, then each
T(t)ye & t > 0, is a compact operator.
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CHAIN BASED LATTICES

G. EPSTEIN AND A. HORN

In recent years several weakenings of Post algebras
have been studied. Among these have been P,-lattices by
T. Traczyk, Stone lattice of order » by T. Katrinak and
A. Mitschke, and P-algebras by the present authors. Each
of these system is an abstraction from certain aspects of
Post algebras, and no two of them are comparable. In the
present paper, the theory of P,-lattices will be developed
further and two new systems, called P,-lattices and P,-lattices
are introduced. These systems are referred to as chain
based lattices. P,-lattices form the intersection of all three
weakenings mentioned above. While P-algebras and weaker
systems such as L-algebras, Heyting algebras, and B-algebras,
do not require any distinguished chain of elements other
than 0, 1, chain based lattices require such a chain.

Definitions are given in §1. A P,-lattice is a bounded distributive
lattice A which is generated by its center and a finite subchain con-
taining 0 and 1. Such a subchain is called a chain base for A. The
order of a P,-lattice A is the smallest number of elements in a chain
base of A. In §2, properties of P,-lattices are given which are used
in later sections. If a P,-lattice A is a Heyting algebra, then it is
shown in § 3, that there exists a unique chain base 0 = ¢, < e, < -+ <
¢,—, = 1 such that ¢,,,—e¢, = ¢, forall 1 >0. A Pylattice with such
a chain base is called a P-lattice. Every P-lattice of order » is a
Stone lattice of order ». If a P.-lattice is pseudo-supplemented then
it is called a P,lattice. It turns out that P,-lattices of order n are
direct products of finitely many Post algebras whose maximum order
is n. In §4, properties of P,-lattices are studied. In §5, equational
axioms are given for P,-lattices. P,-lattices share many of the proper-
ties of Post algebras and have application to computer science. Among
examples of P,-lattices are direct products of finitely many p-rings.
These further remarks on P,-lattices are in §6. In §7, prime ideals
in P,-lattices are studied. It is shown that the order of a P,-lattice
is one more than the number of elements in a chain of prime ideals
of maximum length. A characterization of P,-lattices by properties
of their prime ideals is given. Such a characterization of P,-lattices is
also indicated.

1. DEFINITIONS. We use ¢ for the empty set. Let A be a
distributive lattice which is bounded, that is, has a largest element
1 and a smallest element 0. The dual of A4 is denoted by A% The
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complement of z is denoted by & or —x. The center of A is the set
B of all complemented elements of A. We use z\Vy for the join,
and z A y or zy for the meet of two elements ¢, ¥ in A. z—y denotes
the largest z ¢ A (if it exists) such that zz < y. A is called a Heyting
algebra if xz—y exists for all ,ye A. —2x =x—0 is called the
pseudo-complement of x (when it exists). An element x is called
dense if —x =0. A is called pseudo-complemented if —x exists
for all xte A. x =y denotes the largest ze B such that zz <y. A4
is called a B-algebra if x =y exists for all 2, ycA. lx =1=w is
called the pseudo-supplement of x. A is called pseudo-supplemented
if lx exists for all x e A.

A Stone lattice is a pseudo-complemented lattice satisfying the
identity —aV ——x = 1. An L-algebra is a Heyting algebra satis-
fying x—y)V (y —x) = 1. A P-algebra is a B-algebra satisfying
(x=y)V (y=2) =1. We denote the interval {z: 2z < 2z < y} by [z, y].
A is an L-algebra if and only if every interval in A is a Stone lattice
[1, 8.11]. The identity 2 — (y V2) = (* — ) \V (x — #) is satisfied in
an L-algebra. The identity z = (y V?2) = (x = y) V (x = 2) is satisfied
in a P-algebra.

2. Prlattices. Let A be a bounded distributive lattice and let
B be a Boolean subalgebra of the center of A. A chain base of A
is a finite sequence 0 = ¢, <e¢, < .-+ < e,_, = 1 such that A is gener-
ated by BU {e, ++-, ¢,_.}. If A has a chain base then A is called a
Py-lattice [13], in which case every element x € A can be written in
the form

(1) x:,t‘_vlbiei’

where b,e B. If b,=0b,,, for all ¢, then (1) is called a monotone
representation (abbreviated mon. rep.) of x. If bb; =0 for ¢ # j,
then (1) is called a disjoint representation (disj. rep.) of xz. Every

element in a P,-lattice has both a mon. rep. and a disj. rep.

LEmMMA 2.1. If (1) is @ mon. rep. of x and y = V,ce, is a
mon. rep., then x\Vy =V,0b;,Ve)e, and xy = V,bce, are mon.
reps.

Proof. This follows from the distributivity of A.

The following theorem shows that B must coincide with the
center of the P,-lattice A, and gives a method for constructing
Pj-lattices.

THEOREM 2.2. Let A be a bounded distributive lattice. Let



CHAIN BASED LATTICES 67

B be a subalgebra of the center of A and let 0 =¢, < +++ < ¢, = 1.
If A, is the sublattice generated by B U {e, -+, ¢,_.}, and B, ts the
center of A,, then B, = B.

Proof. Let x = V;b,e; be a disj. rep. of an element x€ B,. For
each ¢, xb, = be; is in B,. Let VY, ce; =0 be a mon. rep. of the
complement of b,;. Then b V,cse; = 0 implies b,c.e; = 0, hence
be, <b,,. Alsol=be,V V,cje; implies 1 < e, \/¢;, hence b,C; < b.e,.
Thus b,e, = b,¢,e B for all ¢, and so ze B.

DEFINITION 2.3. A Pjlattice A is said to be of order n if n is
the smallest integer such that A has a chain base with n terms.

LEMMA 24. If (A;e, -+, e,y 1s a Pr-lattice, then (A% e,
<+e, e 18 a Prlattice. A® has the same order as A.

Proof. This is obvious by inspection.

THEOREM 2.5. If (A;e, -+, e,_» 18 a Pylattice with center
B and A’ = e, ¢;], where 1 < j, then {A’;e, -+, e;y is a Pylattice
with center B' = {e,\Vbej:beB). If e,=f, <+ <foi=¢€ 15 @
charn base of A', then e, +++, €,y fo, *+ ) Foosy €541y *** €ny 1S G ChaIN
base of A. If A has order n, then A’ has order j — i + 1.

Proof. Let x = YiZ!b,e, be a mon. rep. of an element zc A'.

Then
x = (e;Va)e; = e,V . \]/ bier = 3 V (e: V bies)ey -
o =51 =4+1

B’ is clearly a subalgebra of the center of A’. Therefore by 2.2, B’
is the center of the P,-lattice (A4’;e,; ---, ¢;>. The remaining parts
of the theorem hold because if 7 < k < 7, then ¢, is in the sublattice
genera’ted by B, U {f‘Oy Y fr—l}'

LemmA 2.6. Let A be a bounded distributive lattice with center
B, and x, y, z€ A.

(i) If x—z and y — z exist, then (x\Vy)— 2 = (& —2)(y — 7).

(ii) If z—x and z— Yy exist, then z—xy = (z — x)(z — ).

(iii) If x—y exists, beB and c€B, then br—(cVYy)=
bVeV(@@—y).

(iv) If =2z and y = z exist, then (x\V y) =z = (x = 2)(y = 2).

(v) If z=x and z=1y exist, then z =1y = (z = x)(z =1Y).

(vi) If x=19y exists, beB and ce€B, then br=(cVYy)=
bVveV (= 1y).
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Proof. The proof is straightforward.

LEmmA 27, If 0, < - Za,, and b, = -+ = b,_, are elements
of a distributive lattice, then V7= a;.,b; = a,b, AT= (a; \V b)).

Proof. This is easily proved by induction.

THEOREM 2.8. Let (A;e, +++, ¢,_,) be a Pylattice with center B.
Then the following are equivalent:

(i) e,= 0 exists for all 4.

(ii) —e,; exists for all 1.

(iii) A s pseudo-complemented.

(iv) A is a Stone lattice.

(v) Each xe A has a mon. rep. x = Y, be, such that
b, < ¢, for every mon. rep. x = Y, c.e,.

Proof. (i) implies (ii): Let xe, = 0 and suppose © = VY ;bse; is a
mon. rep. of . Then be; = 0 for 7 < ¢, while if 7 > 1, then be, =0,
80 b; < e,=0. Hence x <e¢,—0. Therefore, —e, exists and equals
e, = 0.

(ii) implies (iii): If 2 = V,b,e, is a mon. rep., then by 2.6(i)
and 2.6(iii), —« exists and equals A, (b;\V —e;). If follows from 2.7
that

(2) ——m:?\__llliﬂei_l.

(iii) implies (iv): If z,ye A, then by 2.1 and (2), —(xy) =
—2x\V —y. This implies that A is a Stone lattice [8].

(iv) implies (v): If = = V,ce; is any mon. rep., then ¢,z =0,
80 ¢, < —x, hence x £ —— 2 < ¢,. Therefore x =V, (¢, =—2)e,. If
we set b, = ¢, m— 2, we get a mon. rep. in which b, = —— .

(v) implies (i): Let ¢, = V;bje; be a mon. rep. of e, having the
property stated in (v). Then be, = 0. If be B and be, = 0, then
¢, < b, so e, = V;bbse;. By hypothesis, bb, = b,. Therefore b < b,
and so ¢, =0 = b,.

LEMMA 2.9. If A is a bounded distributive lattice, then A®is a
Stone lattice if and only if A is pseudo-supplemented and Yx '\ y) =
le vy for all x, ye A.

Proof. It is easily verified that the pseudo-complement of x in
A¢ is Tz in this case.

THEOREM 2.10. Let (A;e, -+, €,,» be a Pylattice. Then the
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Sollowing are equivalent:

(i) lei exists for all 4.

(ii) A s pseudo-supplemented and !(x\/ y) =le\Vly for all
x, yeA.

(iii) FEach x€ A has a mon. rep. V,b.e; such that b,_,= ¢, for
every mon. rep. x = VY, ce,.

Proof. This is derived from 2.8 by using 2.4 and 2.9.

THEOREM 2.11. Let {A;e, ---, e,_.) be a pseudo-complemented
Pylattice. Then A has a chain base 0 =f,<fi< - Sfou=1
such that f, is the smallest dense element of A. If 0=¢g, < --+ =<
g,_. =1 1s any chain base of A such that g, is dense, then g, = f,
and for any mon. rep. x = V! b;g;, we have —x = b,.

Proof. Let f, =0, fi = Vi (—e._)e, and f; = e,V fi for i = 2.
By 2, —fi=Vi——e_,—e=0. Also fi=¢V Vi e
Therefore f; —— e, = ¢,;, since ——e, —¢;_, < —— ¢, — ¢, = 0 for j > 1.
If x = V,.be, is any element of A4, then z = V, (b, —— e,)f;. Thus
fo» ¢, fuos 18 a chain base of A. Let g, ---, g,., be a chain base
of A such that g, is dense. If 2 = V;b;g; is a mon. rep., then
—2 = b, by (2). So if x is dense, then 2= g,. Thus g, = f, is the
smallest dense element of A.

3. P-lattices.

THEOREM 3.1. Let {A;e, -+, e,_,» be a P-lattice with center B.
Then the following are equivalent:

(i) e, —e; exists for all 1, j.
(ii) A ¢s a Heyting algebra.
(iii) A is an L algebra.

Proof. (i) implies (ii): If x = V.be; and y = V,c,e, are mon.
reps., then by 2.7, y = Azl (c; \Ve;,_,). Therefore by 2.6, x — y exists
and equals A, ; (b, \Ve¢;V (e;— ¢))).

(ii) implies (iii): Letz = V.be;, ¥y = V,c,e; be mon. reps. Then
c—y = Ai(e,;—y) = Ai(b,Ve). Therefore, (x—y)V(y—2)=
A:BVe)V AV E) = Aii (B VD Ve, VE) =1 since b,Vbi=1
for © = j, and ¢, vV ¢; =1 for ¢ < j.

(iii) implies (i): This is obvious.

DEFINITION 3.2. A P-lattice (4;¢, -+, ¢,_,> is a P,lattice to-
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gether with a chain base such that e,,, —e¢, = ¢, It follows that
e,—e;=¢e; for 1> 7 and e¢,—e¢; =1 for 1 < 7, so that (i) of 3.1
holds.

THEOREM 3.3. If (A4;e, -+, €,y is a Pylattice and A is a
Heyting algebra, then there exists a chain base 0 = f, < -+ < fo =1
such that {A;f, -, fa-r) s a P-lattice.

Proof. This is obvious for n =1,2. Suppose n > 2 and the
statement holds for » — 1. By 2.11, we may assume ¢, is dense.
Let A" =e, 1]. By 2.5,<{4’;e, +--, ¢,_,> is a P,-lattice. If z, ye A4’,
then z —ye A’. Therefore by the induction hypothesis, there exists
a sequence ¢, = fi < -+ < f,., =1 such that (A" f, ---, fu_y i a
P-lattice. If we set f, =0, then by 2.5, {4;f;, +++, fa_y IS & P-
lattice.

THEOREM 3.4. Let {(A;e, ---, e,y be a P,-lattice. Then for
some m=1, 0=¢ <e¢< -+ <€y ,=¢,=---=1. A has order
m. For each i, e, is the smallest dense element of [e, 1]. Thus
€y ***, 6u_y S the wunique strictly increasing chain such that
{Aj ey +**, by 18 @ P-lattice. If x = VI be, is a mon. rep., then
e, Vb =@—e)e, 0=i<n—1. Ifx= Vi be is a disj. rep.,
and y = ViZice, is a mon. rep., then v —y =y Vil b, where
b, = Azt Z)—iy ¢ = 1.

Proof. If m is the first integer such that e, = ¢,_,, then e,_, =
€y — €, = 1. Since e, is dense in [¢, 1] it follows from 2.5 and
2.11 that e,., is the smallest dense element of [e¢;, 1]. Using 3.3, it
follows that A has order m.

If ©= V2l be, is a mon. rep., then xVe, = ViZi. (e; V bye,.
Applying 2.11 to [e, 1], we find (x \V ¢;) — e, = e, \V b,,,. Since (zV e)—
e, = & — e, it follows by 2.6 that (x —e,)—e, =€,V b,

To prove the last statement, we observe that

&;—Y = :zl(ez — i€;) = :\;/0 (e: — ci)(e; — ¢))
= zcjej\/:\;/:cj =yVe for 1<i<n-1.
Therefore,
p—y = AGe—1) = AGVe vy =yV A6V

n—1
=yVV be,
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where the last equality is easily proved by induction.

DEFINITION 3.5. A Stone lattice {A;e, -+, e,_,y of order m is
an L-algebra A in which there exists a chain 0 =¢, <¢ < -+ <
¢,., = 1 such that e¢,,, is the smallest dense element of [e;, 1]. If
B, is the center of [e,, 1], let h;: B,— B,,, be the Boolean homomor-
phism defined by h,(x) = 2V e,,,, with B, = B. These definitions are
in [11].

THEOREM 3.6. {4;e, -+, €,_,> 1s a P-lattice of order n, if and
only if {A;e, -+, e,_> is a Stone lattice of order m such that h; is
onto B,,, for each % = 0.

Proof. 1If (A;e, ---, e, is a P,-lattice of order =, then it is
a Stone lattice of order % by 3.4, and h, is onto by 2.5. Conversely,
suppose (A;e, +--, €,_,» is a Stone lattice of order » and &, is onto
B,,, for each 9. Then B, = {b\V ¢,;:be B} by 2.5. It was proved in
[11, 8.4], that if ze A, then x = A’?w;, where z,€ B,. Therefore
(A; e, ++-, e,_,) is a P,-lattice.

THEOREM 3.7. If A is a Heyting algebra with center B, 0=¢, =

- =Ze,,=1¢e., is the smallest dense element of [e, 1], and if

whenever © < J, the center of e, ¢;] is {e, \V be;: b€ B}, then {A;e, <+,
e._ry 18 @ P-lattice.

Proof. The point of this theorem is that the condition that A
is an L-algebra is replaced by the condition that A is a Heyting
algebra such that the center of [e, e;] is {e;\Vbe;: be B}, for all
1< j. We omit details of proof since this theorem is not used in
what follows.

4. Pylattices.

DEFINITION 4.1. x = V'be, is called the highest monotone
representation (hi. mono. rep.) of z if for every mon. rep. Vi c.e;
of x, the relation b, = ¢, holds for all ©. The lowest monotonic repre-
sentation (lo. mon. rep.) is defined in a similar manner.

THEOREM 4.2. Let {(4;e, ---, e,y be a Pylattice. Then the
following are equivalent:

(i) e, =e; exists for all 1, j.

(ii) e;—e; and le;, exist for all 4, j.

(iii) every x€ A has a hi. mon. rep.

(iv) every xe€ A has a lo. mon. rep.
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(v) A is a B-algebra.
(vi) A is a P-algebra.
The hi. mon. rep. of x is VYV, (e; = x)e;,, and the lo. mon. rep. of x

s V. (x=e;_)e; .

Proof. The equivalence of (i), (v), and (vi) is proved exactly as
in the proof of 3.1. By [7], A is a P-algebra if and only if 4 is a
pseudo-supplemented L-algebra in which !z Vv y) =2V !y for all
2, ¥y. Therefore, by 3.1 and 2.10, (ii) is equivalent to (vi).

To prove (iii) implies (i), let V;bje; be the hi. mon. rep. of e,.
Then b,,.¢,., <e. Let beB, be,,; <e;.. Thus ¢V :--Ve,\be,, is

a mon. rep. of ¢,. Therefore b,., = b, which proves b,,, = ¢,;;, = e,.
Hence if © > j, e, =¢; = ANiZi(e, = ¢,,), and for ¢ < j, ¢, —¢; = 1.
To prove (vi) implies (iii), let * = V, b.e; be any mon. rep. Then

¢, =ux=e¢ =be, =b,. Also ¢(e,=x) <x. Therefore,
r=V.ele,=2) =V, be, =x.

Thus V,e,(e; = ) is the hi. mon. rep. of z.

The equivalence of (iv) and (vi) is a consequence of the equi-
valence of (iii) and (vi), since the dual of a P-algebra is a P-algebra.
The formula for the lo. mon. rep. is obtained by duality, for if
x = V,be, is a mon. rep., then © = A, (b; Ve,_,).

DEFINITION 4.3. A P,-lattice is a P-lattice (4;e¢, ---, €,_,» such
that le, exists for all z.

Using 2.2, it is easy to construct a P.-lattice which is not a
P,-lattice.

THEOREM 4.4. If {A4;e, +++, €, is a Py-lattice of order n and
A is a B-algebra, then there exists a unique chain fy, +++, fur SUch
that {A; fy, +++, fay 18 a Pylattice.

Proof. This follows from 3.3, 3.4, and 4.2.

THEOREM 4.5. Let {A;e, -, e,_,» be a Pylattice. Then

(i) Every xc A has a unique mon. rep. VY, D,(x)e; such that
D,_(x) = x. This representation is also the hi. mon. rep. of x.

(ii) Ewvery xe¢ A has a unique disj. rep. V.C(x)e; such that
C,_.(z) = lz.

(iii) Dy(x) = ¢; ==, C,(x) = D,(x) — D,.,(x) and for i<m —1,
Ci(@) = (@ = e;)(e; = x) — !(e,).

(iv) DyxVy) = D(x)V D(y), Di(xy) = D(x)D(y).

(v) 2=y = Vi C(x)Di(y), where Dy(y) =1 and Cyz) =1—
D,(x).



CHAIN BASED LATTICES 73

Proof. (i) Let x = V;bse; be a mon. rep. such that b,_, = lz.
If > j, then ¢, =e¢; = (e, —¢;) = l¢;. Therefore,

e = =V (e, =bje;) = V (e, = bj)(e. = ¢;)
J J
=V ble;v Vb =b,,
jzt

i<t

since V732ible; = lo < b,. We set Di(x) =¢; = for 0<i1=<n—1.
By 4.2, the hi. mon. rep. of z is V, D,(x)e;, and D,_,(x) = 1 =z = lx.
(ii) Follows from (i), with C;(x) = D,(x) — D,..(x).
(iii) For0=i<mn—1,

v=e,= A (Di®)e;=e) = A D) V (¢; = ¢)))

i i

= I>\ (Di(x) V le)) = D;i(2) Ve,
i>1
Therefore (2 = e,)(¢; =) = C,(x) V D;(x)le;. Since D(z)le; < e(e; =
z) < x, we have D,(x)le; < ¢ = D,_,(x). Hence D,(x)le; = lxle, = l(xe,).
Also Ci(x)lx = Ci(x)C,_,(x) = 0. Therefore,

Ci(x) = (x = e;)(e; = x) — l(ze,) .

(iv) follows immediately from D,(x) = e, = x.
(v) By 34, z—y =yV Vi C(x)D,(y). Therefore,

e =y =1V V C@DW =V C&)DW) ,
since Vi) Ci(2)Di(y) = D,-.(y) Viz Ci(x) = ly.

THEOREM 4.6. The following are equivalent:

(i) {A;e, +++, e, is a -P-lattice of order n.

(ii) <Asey *++, €,y ts a Stone lattice of order mw, the homo-
morphisms h; of 3.5 are onto, and the kermel of h; is a principal
ideal for each 1.

(iii) <{A; ey *++, €,y 18 a Stone lattice of order n and A® is a
Stone lattice.

Proof. The equivalence of (i) and (ii) follows from 3.6 and 2.9,
using the fact that the kernel of h, is a principal ideal if and only
if le,,, exists. The equivalence of (ii) and (iii) was proved in [11].

The following is the dual of the definition given in [5].

DEFINITION 4.7. A Post algebra is a P.-algebra {(4;e, -, €,-)
such that le,_, = 0; that is, e,_, is dense in A% Note that A has
order =, unless 4 = {0}.
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THEOREM 4.8. If (A;e, -+, e, is a P,-lattice then the follow-
ing are equivalent:

(i) A is a Post algebra.

(ii) every element xc A has a unique mon. rep.

(iii) e;=e,_, =0 for all ¢ > 0.

Proof. This was proved in [13].

LEMMA 4.9. If (Aj; ez, =+, €jm;—1y) s @ P-lattice for jeJ, where
r=20,1,0r2 A =TI, A;, n = max {n;: jeJ} < =, and e;;, 18 defined
to be ;1 for k> m;, then {(A;e, -, e,,) is a P-lattice, where
e, = {ejrjed).

Proof. This is obvious.

LEMMA 4.10. If {A;e, -+, e,_) ts a Py-lattice, B is a distribu-
tive lattice and f: A— B 1is a lattice homomorphism onto, then
(B; fley), ** -, fle._)) 15 a Pylattice. If (A;e, +++, e,y is a Pi-lattice
and f: A— B is a Heyting homomorphism onto, then {B; f(e), -+,
fle,_)) is a P-lattice.

Proof. This is easy to verify.

THEOREM 4.11. Let A be a finite distributive lattice them the
Sollowing are equivalent:

(i) A is a Pylattice.

(ii) A is a P-algedbra.

(iii) A 7s a direct product of chains.

(iv) A has a chain base e, ---, e,_, such that (A;e, -, €,_,) i
a Py-lattice.

Proof. (i) implies (ii): Since A is finite, A is a pseudo-supple-
mented Heyting algebra. By 4.2, A is a P-algebra.

(ii) implies (iii) was proved in [7].

(iii) implies (iv): If A is a finite chain 0 = a, < ++* < @py =1,
then (A;a, +--, a,_,> is a P,lattice. Therefore (iv) follows by 4.9.

(iv) implies (i) is obvious.

A finite chain with » elements has exactly one chain base with
n terms. If (A;e, -+-, €,.y and {(B; f, -, fuy are Pylattices of
orders » and m respectively, where n < m, then A x B has more
than one chain base. In addition to the chain base described in 4.9,
there is also the chain base (em fo); ) (eo, fm—'n)’ (61, fm—n+1), (92, fm—n+2)!
v+, (n—yy fu-)- These remarks lead to the next theorem.
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THEOREM 4.12. A distributive lattice A is a Post algebra of
order n if and only if A has a unique n-term chain base.

Proof. Let A be a Post algebra of order =, and let ¢, -, €,_,
be an n-term chain base. A is a subdirect power of an n element
chain C. If f; = A— C is the jth projection, then by 4.10, fi(e),
.-+, filea—y) is a chain base of C. This determines f;(e¢,) uniquely for
all ¢, j. Therefore ¢, ---, ¢,_, is unique.

Conversely, suppose A has a unique n-term chain base ¢, -+, €,_,.
We prove A is a Post algebra of order » by induction. This is
obvious for » =1, 2. Suppose » > 2 and the statement holds for
n — 1. By 2.5, [e, 1] has a unique chain base with # — 1 terms.
Therefore, [e, 1] is a Post algebra of order » — 1. This implies ¢;,, =
e, =0 in [e, 1] for ¢ = 1. This implies e;,, —e¢, = 0 in A since the
center of [e, 1] is {b\V e,: be B}, where B is the center of A. By 4.8,
we need only show ¢, =0 = 0. If not, there exists b € B with be, = 0,
b+#0. Let B, ={0,0b, b, 1}, and let A, be the sublattice of A gener-
ated by B,U{e, -+, e,_;}. By 2.2, A, has center B, and so every
chain base of A4, is a chain base of A. Thus A4, is a finite lattice
with a unique n»-term chain base. By 4.11, A, is a direct product of
finite chains. If all the chains have the same cardinal, then 4, is a
Post algebra with unique »-term chain base e, ---, ¢,_,, and by 4.8,
we have ¢, = 0 = 0, which contradicts be, = 0, b == 0. If two of the
chains have different cardinal, then A, has more than one n-term chain
base. This contradiction proves ¢, = 0 = 0.

THEOREM 4.13. If (A;e, -+, e,y ts a P-lattice with center B,
then there exists a Py-lattice {(A'; e, «-+, €,y with center B’ such that
B is a Boolean subalgebra of B’ and A is the sublattice of A’ generated
by B U {e, -+, €ui}.

Proof. By 3.1, A is an L-algebra. By [9], we may assume A
is a Heyting subalgebra of a direct product of chains C;, jeJ and
the projections f;: A —C; are onto. Then by 4.10, (C;; fi(e,), * -+, fi(€._1)>
is a P-lattice. Therefore, C; has at most » elements and (C;; fi(e,),
«oo, file,—r)) is a Pp-lattice. Let A’ = [[;.,C;. By 4.9, {4;¢, +++, €,
is a P,-lattice. Since A is a sublattice of A’ containing 0, 1, the center
of A is a subalgebra of the center of A'.

THEOREM 4.14. Let {A;e, -+, e,_.y be a P,lattice of order n
with center B. Then A is order isomorphic with a direct product
of Post algebras of maximum order n.

Proof. Let w,=le, —le,., 1<k=<mn—1. Then uu, =0 for
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j+*k,and u,\V+--Vu,, =1 Let P, =[0,u,. Clearly the center
of P,is BNP,. Lete, =¢eu,0=t=k. Ifx=Vilbe isa mon.
rep. of any z¢€ P,, then

n—1 k—1 n—1 k
T — XU, = _Vl bew, = iVl b.eu,\V in bu, = le (b;up)ey; .
= = = =

Therefore {(P,; ey, * -+, ewry is a Pylattice. If be P,N B, bey; = €41,
0<i1=k, then be, <e,,. Therefore b=<e¢ —e,_, =!e_,. This
implies b = 0, since b < u,. Thus by 4.8, P, is a Post algebra of
order k + 1, or else P, = {0}. Define f: 4 — [[izi P. by f(x) = (zu,,

., Xu,_,). fisontosinceif z,€ P, then f(z,V+:+-V2,,)= (2, ***, 2,_1).
If # <y then f(x) = f(y), and f(x) = f(v) implies

n—1

n—1
r=Vaou; =Vyu =y.
i=1 1=1

Therefore f is an order isomorphism. Finally, P,_, has order = since
U,y 7= 0.

Theorem 4.14 may be used to apply known results on Post
algebras to P,-lattices. For example, since every Post algebra is
isomorphic with the set of all continuous functions on a Boolean space
to 'a finite discrete chain, it follows that every P,lattice is iso-
morphic with the set of all such functions which are < some fixed
continuous function. In other words, a P,-lattice is a principal ideal in
a Post algebra. It also follows from 4.14 that a P,-lattice is complete
if and only if its center is complete, and that the normal completion
of a P,lattice A is a P,-lattice whose center is the normal completion
of the center of A. Also every P,-algebra is isomorphic with its
dual. This isomorphism is given explicitly in the following theorem.

THEOREM 4.15. Let {(A4;e, -+, e,_.» be a Pylattice. Let f,=
mi-iglei, 0Si<mn—1 and f,_,=0. Then A is isomorphic
wzth A?¢ under the normal involution

8@) =V D@ = AD@ V) -

Proof. We have f, = V2! (’ek —le)=1. ForO0<i<mn-—1,
1f: = 0, so that by 4.5(i), Dk(fl) =leps;a for 1<k<n—1—14, and
Dy(f) =0 for k= n — 1.

Hl1gsi15n -2,

—1

8(7) =V 1D ="V Filesein vV i

j=n—1i

n—1 n—j

= vlfj—1!3:+z -1 = .Vl €itimt V ek735+k 2
iz

n—1

1 n—1i
=Ve V(e —leu)V V e V (ejsis — lejiprs) -
j=1 k=i+1 i=1
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But v;:{‘ (lejpiey — lejips) = 0 if k>4, and by 2.7, if k <+,

Y n—1 — —
_v1 (lejpims — lesips) = lopy _/\2 (lejsi—z V leji—s) = leg_; «
= i=

Therefore, B(f:) = Vi (e, — le,_,) = e..
Now = < y implies B(x) < B(y) and

B6@) = V £V D@D7) = V 6(F)D@) = Y Di@e. == .

This implies that 8: A— A? is an isomorphism. The proof that S is
a normal involution—that is, that 28(x) < v V B(y) for all z, ye A—
is omitted since this fact will not be used here [10].

5. Axioms and P,functions. P,-algebras (4;e, -+, €,_y of
order <n may be regarded as algebras (4;V, A, C, «++, C._y, €
-+, e,_,y with two binary operations, n binary operations, and 7
distinguished constants. This class of algebras can be characterized
by the following set of equational axioms, in which @ < y is used as
an abbreviation for x Ay = 2.

H1. Identities characterizing {4; \V/, A) as a distributive lattice
[8, pp.5, 35].

H2. (a) ¢ =12«

(b) e,Ze;for0<i<j<n-1
(C) T = e,
H3. (a) Cix)ACix) =e¢, for i = j
(b) C)VC(x)V - VC,,(x) = e,
H4. (a) CileAy) = (Cx)A Vizi Cw)) V (Cy) A Vizi Cu(2))
(b) CozVy) =C, i)V Coi(¥)
H5. (a) Cue) =¢ for j#1and i <n —1
(b) Cn—z(eo) =€

H6. o= (C@)Ae)V - V(Cos(@) N ens)-

Note that in every P,-lattice H4 holds by 4.5(iv) and H5 holds
by 4.5(ii). Conversely, if A satisfies the axioms then one proves
C...1) =1, C(0) =0, C(x) = —2 and C,_,(z) = lz. Then using H4
and H5, it can be proved that xe; = e¢,_, implies # = ¢,_,. This shows
that {4;e, ---, e,_,» is a P,-lattice.

The class of Post algebras of order n (together with the trivial
lattice {0}) can be characterized by adding the axiom C,_,(e¢,-,) =0
(see also [6]).

We may also characterize P,-lattices equationally as the class of
all algebras (4; \V, A, =, €, **+, ¢,_,» with 3 binary operations and
n constants which satisfy the following axioms.
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K1. Identities characterizing {4; \V, A\, =, e, ¢,_,> as a P-algebra
(see [7]).

K2. ¢, <¢; for i<y

K3. e,,.(e;=¢)=<e; for j<i<mn—1

K4. 2z = o (ei A (e, = )).

Indeed, if we set D,(x) = ¢;—=x for 0 <7 <n — 1land let Ci(x) =
D,(x) — D,,,(x) for 7 <m, then H1-3, H5(b), and H6 are obvious. By
properties of P-algebras, D,(x\/ y) = D(x)\V D,(y) and Di(xAy)=
D,(x) A D,(y). This proves H4. H5(a) is equivalent to e;—e; =e€,.,=¢;
for j= 14,7 <mn—1. This is obvious for ¢ < j, and follows from
K3 for 7 > j.

P.-lattices may also be characterized equationally as algebras
CA; V, A, =, L ey +o, e, ), sincex =y = l(x—y),z—y=yVE@=19)
and lz = 1 = z.

A P,-function of order » in m variables is a function built from
the identity functions I, +--, 2,) =2; 1 < j < m, and the oper-
ations in any of the fundamental sets of operations described above.
A normal form for such functions is given in the next theorem.

THEOREM 5.1. If h 1s a P,-function of order n in m variables,

then
(@, «--, 2,) = mk\[n_lh(eiv ctey eim)cil(xl) ce Cim(xm) .

Proof. The n™ terms C,(x,) --- C, (v,) are pairwise disjoint and
have join 1, by axiom H3. By H6, the statement holds when £ is
one of the identity functions. If the statement holds for %, and k.,
then it holds for A,V h,and h, A h,. If it holds for h, then it holds
for D,(h) by 4.5(iv). From this it follows that the statement holds
for Cj(h).

The normal form in 5.1 was proved for Post algebras in [5], and
gives a truth table approach to Post functions. However, in a
Pylattice, h(e;, -+, e;,) is not necessarily in {e, -+, e,-}, as is the
case for Post algebras.

6. Applications. P,-lattices are of interest in computer science.
They can be applied to the theory of machines with m,-stable devices,
2<m;,<n, and to the analysis of machines with 2-stable devices
@, (flip-flops) whose outputs are discretized as signals in transition
0=¢<e¢<-++<e,,=1. The case n =3 is of special interest
and is studied in [2] and [3]. Py lattices provide the complete
multiple-valued logics for these applications.

P, lattices which admit operations of ring addition and multipli-
cation are of interest in information processing. It is known that
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if R is a ring with unit element which satisfies the identities z* =
and px = 0, where p is a prime (so-called p-rings [12]), then lattice
operations can be defined as polynomials in such a way that R becomes
a Post algebra of order p. Conversely in any Post algebra of order
», ring operations can be defined in terms of the Post operations so
that we obtain a p-ring. Therefore, direct products of finitely many
p-rings are P,-lattices. Such direct products can be characterized
equationally. Indeed one can show that a ring R with unit element
is a direct product of rings R, ---, RB,, where R, is a p,ring and
p; + p; for i+ 7, if and only if R satisfies the following set of
identities:

(1) 2™ =wx, where m =1+ l.em. (p, — 1, ---, p, — 1).

(2) p---p2x=0.

(3) (Il pi)a” —2) =0,1 <1 <t

7. Prime ideals.

DErFINITION 7.1. Let Z?(A) be the set of prime ideals of A. Let
(A; e, +++,€,_,> be a Pr-lattice with center B. If Qe Z?(B) and
1<k=<n-—1, let P(Q) = {xrec A: x has a mon. rep. V, b.e; such that
b.cQ}. It was proved in [13, Th. 1.5] that either P,(Q)e .Z”(4) or
P,(Q) = A (the latter possibility was not mentioned). If P,(Q) + 4,
then P(Q)N B = @ since if be @ then b = V, be; e P,(Q) and prime
ideals in B are maximal ideals. If Pe.Z%(4), then P is said to be
of type k if k is the smallest integer such that e,¢ P. Since ¢,_, =
e,V oo Ve, € P(Q), P(Q) is of type = k.

LEMMA 7.2. If Pis a prime ideal of type k in A and Q@ = PN B,
then
P = P(Q) = {a: for every mon. rep. Y,be, of x,b,€Q}.

Proof. If xe A has a mon. rep. V,b,e, with b,€@Q then z =
¢,..Vb,eP. If xe¢ P and V,b,e, is any mon. rep. of x, then b,e,c P
and ¢, ¢ P, so that b, e Q.

THEOREM 7.3. The prime ideals of a Pylattice (A; e, -, €,—1)
lie n disjoint maximal chains with at most n — 1 members.

Proof. By 7.1, each prime ideal of A is of the form P,(Q). If
Pk(Q1) = Pj(Qz)y then Ql = Pk(Q1) NB - PJ(Q2) NB = Q29 so that Q) = Qz-
It is obvious that P(Q) & P...(Q). This proves the theorem.

LEMMA T4. If {A;e, -+, e, is a Prlattice with center B,
and Qe F(B), then P,(Q) = {x: for some be @,z <e¢,,\Vb}. Also



80 G. EPSTEIN AND A. HORN
P.(Q) = P(Q) if and only if e, e P(Q).

Proof. If xe P,(Q), there exists a mon. rep. V,be;, of = such
that b,c Q. Alsox=<e¢,,Vb, Ifx=<e,,\VbandbecQ then xzec P,(Q)
since ¢,_, Vb = ViZle; v V?Zibe;. Suppose e, € Py(Q). If ze P,.(Q),
then « < ¢, \V b for some b e Q, hence x € P,(Q). Thus P,.,(Q) = P(Q).
Conversely if P,.,(Q) = P,(Q), then e, e P,(Q) since e, € P;.(Q).

THEOREM 7.5. Let (A;e, +--, e,..> be a P-lattice with center
B, and let I, be the ideal {be B:be,<e,,} im B, L<k=<=n-—1.
Then the following are equivalent:

(i) Every chain in P(A) has fewer than n — 1 elements.

(ii) For every Qe F2(B), there exists be Q and an integer k=1
such that e, < e,_, \V b.

(i) Lve--VI,_, = B.

(iv) A has a chain base with fewer than m elements.

Proof. (i) implies (ii): If Q€ .Z?(B), then either P, (@) = A or
P(Q) = P,,,(Q) for some k< n — 1. Hence by 7.4, e¢,€ P(Q) for
some k,1 <k <n—1, and therefore there exists be @ such that
€, = €, V.

(ii) implies (iii): If L\ --- \VI,_, # B, there exists Q¢ F(B)
such that Q 2 I,V -+ VI,_,. There exists be Q@ and k such that
e, < e,_,Vb. But then bel, & Q, which is impossible.

(iii) implies (iv): There exist elements b, I, such that 1 = b,V
*++Vb,_,. By replacing the b, by smaller elements, we may assume
the b, are pairwise disjoint. Let f, = 0 and

k
fi=e Ve Vb, 1<ks=n-2.
j=1

Then f, < f,., and f,_, = 1, since b,V +++ V by_y = b,_, and b,_, < e,
Now fios Vi ViZien b5 = €,y V Vixi bj. Therefore,
€ :fk—l\/fk'v b,
j=k+1
and so f,, -+, fu_s is a chain base of A.
(iv) implies (i) by 7.3.

THEOREM 7.6. Let A be a Pj,-lattice. Then A is of order n if
and only if the maximum number of elements in o chain in F(A)
m n — 1.

Proof. This follows from 7.3 and the equivalence of 7.5(i) and
7.5(@1v).



CHAIN BASED LATTICES 81

DEFINITION 7.7. Let &#(A) = ¢, and let Z,,,(A) be the set of
minimal elements of #(4) — & ,(4).

THEOREM 7.8. Let (A;e, -+, €,_,y be a P-lattice with center B.
Then for 0 <1 <n — 2,

¢; € ngiﬂ(A) - jngi UﬁJ(A) .

Proof. By 7.4, P(Q) + A for all Qe &#(B). Hence F(A)=
{P(Q):Qe FPB). If 1<i1<mn—2, then ¢;e P(Q) if and only if
e; <e,_, Vb for some be Q. Thisin turn is equivalent to b < ¢;,—e,_,
which is equivalent to b <e,,, or 1 <e,_,\Vb. By 7.4, this is equiva-
lent to P(Q) = A. Also, P,(Q) = P,,,(Q) if and only if e, e P(Q).
Therefore #(A4) = {P,(Q): P,(Q) # A}, and e, ¢ P,(Q) for all P(Q)e
F(A). Since e, e P, (Q) for all Qe Z(B), the proof is complete.

LEMMA 7.9. Let A be a bounded distributive lattice. Suppose
FP(A) 1s a union of disjoint maximal chains and there exists an
element ec N (FP(A) — F(A) — U F(A). Let A =]|e 1]. Then
F(A) = {PNA;: Pe &# (A)} for each © = 1.

Proof. If Pe P(A) — F(A), let (P) = PN A,. Then ¢(P)e
FP(A). If Qe F(A), let ¥v(Q) = {xe A: x = an element of @}. Then
¥(Q) e F(4) — F(4) and yo(P) = P. Thus ¢: F(4) — F(4)— F(A)

is an order isomorphism.

LEMMA 7.10. Under the hypotheses of 7.9, let B and B, be the
centers of A and A, respectively. Then B, = {b\Ve:beB}). IfxzcA,
then there exists be B such that x = b(e \V x).

Proof. Let {D,;:i€S} be the set of maximal chains in Z#(A).
The intersection and union of any nonempty subset of D, is in D,.
Let P, and @, be respectively the smallest and largest member of
D, let V={i:P,#+@Q;}. For ieV, let B, =N{PeD;:ecP}. R,
is the immediate successor of P, in D,. We divide the proof of the
lemma into several parts.

(a) If xe P, there exists y such that 2y = 0 and y¢ @Q,.

Indeed for each j such that xz¢ P;, choose y;€ P; — Q,. Then
every prime ideal in A contains a member of {x} U {y;: x ¢ P;}. There-
fore, the filter generated by this set is not proper and so there exists
a finite meet y of the y; such that 2y = 0. Clearly y¢ Q..

(b) If x¢Q,, there exists y ¢ P, such that ¢ \Vy = 1.

For each j such that x€@; choose y,e P, — Q;. The ideal
generated by {x} V {y;: x € @Q;} is not proper. Therefore, a finite join
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y of the y; satisfies the requirements.

(¢) If ¢ Q, there exists y <a such that y¢Q, and yeP;
whenever r e Q;.

By (b) there exists z € P, such that vV z = 1. By (a) there exists
y ¢ Q; such that yz2 =0. If xeQ;, then z¢ Q;, hence z¢ P; and so
ye P;. If P is any prime ideal containing « then Pe D; for some j,
and so x€Q;. This implies y e P; < P. Thus y < 2.

(d) If x¢ P, there exists y ¢ Q, such that ey < 2.

For each j such that x ¢ P;, choose y;€¢ P; — Q,. If P is a prime
ideal containing x but not e, then P = P; for some j and so y;€ P.
This implies that x belongs to the filter generated by {¢} V {y;: x € P;}.
The desired y will be the meet of a finite number of ¥;.

(e) If xe R, there exists y ¢ Q, such that 2y Ze.

For each j such that x¢ R; choose y;€ P; — Q;. If P is a prime
ideal containing e but not x, then P 2 R; for some j and since z ¢ R;,
y;€ P; & P. This implies that e belongs to the filter generated by
{r} V{y;:x¢ R;}. The desired y is the meet of a finite number of y;.

(f) If xe B, then for all ¢, either xe R, or 2¢ Q..

Let y be the complement of  in A4,. If xeQ, then y ¢ @, since
2V Yy = 1. Therefore y ¢ R,, hence x,c R, since vy = ec R,.

(g) If for all 7, x€ P, or ¢ Q,, then z¢ B.

By (a), for each ¢ such that x ¢ P,, there exists ¥, ¢ @; such that
2y, = 0. No prime ideal contains x and {y,:x e P)}. There exists a
finite join ¥ of the y, such that x\Vy = 1 and clearly xy = 0.

(h) If xe A, there exists ¥ € B such that x = y(e V ).

Let T={j:xeP;}. If T=8S then =0 and y=0. If T=9¢
then £ > ¢ and ¥y =1 will do. Suppose T# S, T # ¢. By (d), for
each 7€ S — T, there exists ¥,¢ @, such that ey, <x. By (a), for
each je T there exists z;¢ @; such that zz; = 0. No prime ideal
contains {y;:1eS — T} U {2;: 7€ T}. Therefore, there exist y, z such
that y Vz =1, ey <2, and 2z = 0. This implies 2 =2y = 2y Vey =
2(yVe) If jeT,theney <xcP;,e¢ P;sothatyeP;. IfieS— T.
then ze P, since 2 ¢ P, and xz = 0. Thus yze P, for all 7€ S, and so
yz = 0. Hence y € B.

(i) If xe B, there exists y € B such that t =y Ve.

Let W= {jeVizecR)}. If W=V, then x =¢ and y =0. If
W = ¢ then by (f), x =1 and ¥y = 1. Suppose W=V, W+ 4. By
(c), for each 1€ S — W there exists y; < « such that y,¢ Q, and y, € P;
for all je W. By (e), for each je W, there exists z;¢ Q; such that
xz; < e. No prime ideal contains {y,:1e S — W}V {z;: € W}. There-
fore, there exist ¥, z such that 1=y Vz 22<¢, y <2 and y e P; for
all jeW. If te V— W then x¢ R, and ec R,, hence z€ R, and so
yeR,. If iecS— V, then ye P, or y¢ @, since P, = Q,. Therefore
by (g), yeB. Finally yVe<ax=ayVez<y Ve and so x =y Ve.
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(h) and (i) yield the lemma since it is obvious that {b \/ e: b€ B} < B..

THEOREM 7.11. Let A be a bounded distributive lattice. Suppose
F(A) is a union of disjoint maximal chains with maximum number
of elements equal to n — 1, and for each i, 0 < 1 < n — 2, there exists
an element e, € N.Z,..(4) — Ui=. U F(A). If we set e, , =1, then
(As e, -, e,_.» is a P-lattice.

Proof. Clearly 0 = ¢, <e, < +++ <e,,<1. If n =2, then A is
a Boolean algebra by Nachbin’s theorem [8, p. 76], and the theorem
holds. Assume % > 2 and the theorem holds for n — 1. Let 4, =
[e, 1]. By 7.9, A, satisfies the hypothesis for n — 1. Therefore
(Aj; e, -+, e, ) is a P-lattice. Let x be any member of A. By 7.10,
zVe = Vizi(e, \Vb)e, where b,c B. Again by 7.10, there exists
be B such that # = b(x \V e,). Therefore x = be, \V V2, bb,e,. Clearly
€, —e, = e, in A, for : = 1. It remains to show ¢,— 0 = 0. Suppose
ye, =0 and y # 0. There exists a maximal filter F containing ¥.
But A — Fe &#(A), and so ¢,c F. Thus 0¢ F, a contradiction.

THEOREM 7.12. Let A be a bounded distributive lattice. Then
there exists a sequence e, -+, e,, such that {(A;e, -+, €,.) 18 @
P-lattice of order n if and only if

(i) FA(A) is a union of disjoint maximal chains with maximum
number of elements equal to n — 1, and

(i) N4 — Uiz U F4(4) = 6.
Proof. This follows from 7.6, 7.8, and 7.11.

THEOREM 7.13. Let A be a bounded distributive lattice. Then
there exists a sequence e, «--, e, , such that {(A;e, -+, €,.,) 15 @
Pi-lattice of order n if and only if conditions (i) and (ii) of Theorem
7.12 hold as well as

(iii) There exists an element ce A such that for all Pe P(4),
c€ P if and only if P is a maximal ideal.

Proof. By the equivalence of (i) and (iii) in Theorem 4.6, this is
a consequence of [11, 4.9].

A characterization of Post algebras A by properties of F(A) is
known [4]. However, we know no such characterization of P,-lattices.
We give an example of a P-algebra A such that &7(4) consists of
disjoint maximal chains with at most 2 elements but A is not a
Pylattice. Let C = {0, ¢, 1} he a 3 element chain and let A be the
set of all functions f on an infinite set I to C such that {C: f(i) = ¢}
is finite. Since A4 is a P-subalgebra of a Post algebra of order 3,
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each chain of prime ideals of A has length at most 2, [7, Th.7.1]. If
0 :fo <f1 SOERE <f'n—1 =1 and Sk = {"'fk("') = e}! and if f = V?;fbifu
where b; are in the center of A, then {i: f(i) =¢ &S, U---US,_,.
Therefore, A does not have a chain base.
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ON THE IRRATIONALITY OF CERTAIN SERIES

P. Erpos AND E. G. STRAUS

A criterion is established for the rationality of series of
the form > b,/(ay, --:,a, where a,, b, are integers, a, =2
and lim b,/(a,-;a,) = 0. This criterion is applied to prove
irrationality and rational independence of certain special
series of the above type.

1. Introduction. In an earlier paper [2] we proved the fol-
lowing result:

THEOREM 1.1. If {a,} is a monotonic sequence of positive integers
with a, = n'*" for all large n, then the series

w=1 Qylly *** Gy =L @y v 0 Ay,

are irrational.

We conjectured that the series (1.2) are irrational under the
single assumption that {a,} is monotonic and we observed that some
such condition is needed in view of the possible choices a, = @(n) + 1
or a, = o(n) + 1. These particular choices do not satisfy the hypothe-
sis liminf a,,,/a, > 0 but we do not know whether that hypothesis
which is weaker than that of the monotonicity of @, would suffice.

In this note we obtain various improvements and generalizations
of Theorem 1.1, in particular by relaxing the growth conditions on
the a, and using more precise results in the distribution of primes.

In §2 we obtain some general conditions for the rationality of
series of the form >.b,/(a, ---,a,) which are modifications of
[2, Lemma 2.29]. In §3 we use a result of A. Selberg [3] on the
regularity of primes in intervals to obtain improvements and generali-
zations of Theorem 1.1.

2., Criteria for rationality.

THEOREM 2.1. Let {b,} be a sequence of integers and {a,} a
sequence of positive integers with a, > 1 for all large n and

2.2) lim 8l — 9.

2=t Qp_1Qp
Then the series
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_ b,
@ - ay,

Ms

2.3

1

n

18 rational if and only if there exists a positive integer B and a
sequence of integers {c,} so that for all large m we have

2.4) Bb, = ¢,0, — Cpi1 s | Cuis| < @12 .
Proof. Assume that (2.4) holds beyond N. Then

S b . S Colly, — C
Ba, "'aA’~1Z‘——“"——" = integer + Z Intm  Tmtl

w=L Qv @, A=N Oy cc* Ay

= integer + ¢y = integer .

Thus condition (2.4) is sufficient for the rationality of the series (2.3).

To prove the necessity of (2.4) assume that the series (2.3) equals
A/B and that N is so large that @, =2 and |b,/(a,.a,)| < 1/(4B)
for all » = N. Then

> b
Aaq"‘aN—l:Bal"'aN-lZ'_—n_—

n=1 a/l PEEIRY an
2.5 ®
@-5) = integer + Bby + 3> __Bb,
Ay RENHL Gy 0 Oy

If we call the last sum R, we get

lli"vlémaxlBI”‘l fl 1

n>N an—lan n=N+1 aN Tt an—z

(2.6)

Ms

1&1 1
SBT3

£
Il

0

Thus, if we choose ¢y to be the integer nearest to Bb,/a, and
write Bby = cyay — ¢y,, then (2.5) yields that —cy./ay + Ry is an
integer of absolute value less than 1 and hence 0, so that

@.7) oye g Bbyn 1 p
Ay AyAy g Ay
or
2.8) Bowss g — Ry,
Oyt

From (2.8) it follows that c¢y., is the integer nearest to Bby./ay.,
and if we write Bby,, = ¢y 0y — Cyyr We get

BbN+2

Ay 2

= Cyt2 — RN+2 .

2.9)
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Proceeding in this manner we get the desired sequence {c,}.

REMARK. Since (2.2) implies B, — 0 it follows that for rational
values of the series (2.3) we get ¢,.,/a,— 0. Thus either a,— co or
¢, = 0 and hence b, = 0 for all large =.

COROLLARY 2.10. Let {a,}, {b.} satisfy the hypotheses of Theorem
2.1 and in addition the conditions that for all large m we have
b, >0, a0, = a, lim®,,, —b,)a, =0 and liminf a,/b, = 0. Then the
series (2.3) is irrational.

Proof. According to Theorem 2.1 the rationality of (2.3) implies
the existence of a positive integer B and a sequence of integers {c,}
so that

an = Cplly — Qo
for all large » where ¢, . /a,— 0. Thus

bn-H — Cut1Pny1 = Cris > (cn+1 - 5) > Cny1 — €

b, Colly — Cuis Colls - Ca

for all ¢ > 0 and sufficiently large . Thus ¢,., > ¢, would lead to

@11) b, > (1 +1= 8>bn > b, + (1 — e)(a,b — %:4)/3

>b, + (1 - ¢&%a,/B.

This contradicts our hypothesis for sufficiently large n. Thus we get
0 < ¢y = ¢, for all large n and hence b,/a, is bounded contrary to
the hypothesis that lim inf a,/b, = 0.

In fact, if we omit the hypothesis liminf a,/b, = 0 then we get
rational values for the series (2.3) only when Bb, = C(a, — 1) with
positive integers B, C for all large n.

3. Some special sequences.

THEOREM 3.1. Let p, be the nth prime and let {a,} be a monotonic
sequence of positive integers satisfying lim p,/ai =0 and lim inf a,/p,=
0. Then the series

(3.2)

Ms
3
3

Ky
l
8
]
3

18 rrational.

Proof. Since the series (8.2) satisfies the hypotheses of Theorem
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2.1 it follows that there is a sequence {c,} and an integers B so that
for all large n we have

(3'3) Bpn = Cplly — Cpys o

For large n an equality ¢, = ¢,,, would imply ¢, | B and a, > p,.
Since {c¢,} is unbounded there must exist an index m = n so that
Cw = C, < Cn.;. But this implies by an argument analogous to (2.11)
that

(3.4 Pais > Pu + 0a/(2B) > (1 + =)o,

which is impossible for large m. Thus we may assume that ¢, = ¢,
for all large n. Now consider an interval N<»n <2N. If ¢,., > ¢,
then as in (3.4) we get

Doys > Do + @,/(2B) > p, +V D,

which therefore happens for fewer than (py — px)/V Dy < N'*e
values in the interval (N, 2N). If ¢,,, < ¢, then we get

1 > Cna/,,b - C,,H_]_ > cn(a’n _ 1) > (1 + _L>u
C

Cot1@pi1 — Cpye Crnt+1@n+1 a1’ Oyt

so that

(3.5) o > a0+ "L g 41,

G'n+1

Since case (3.5) holds for more than N/2 values of » in (N, 2N)
we get a,y > N/2 and thus for all large n we have a, > n/4, ¢, <
Duje, + 1 <V n/4. Substituting these values in (3.5) we get

(8.6) Quiy >0n +1V 1 when ¢, <c,n large;

so that a,y > N*?/2, contradicting the hypothesis that liminf a,/p, =0

THEOREM 3.7. Let {a,} be a monotonic sequence of positive in-
tegers with a, > n'**° for some positive 6 > 0 and all large n. Then
the numbers 1, x, y, z are rationally independent. Here

Z @(n) y=3 o(n)
=1 n=L Qe

’
cQ, ¢ Oy

and
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where {d,} 1s any sequence of integers satisfying |d,| < n'*~° for all
large n and infinitely many d, #= 0.

Proof. Assume that there exist integers A, B, C not all 0 so that
setting b, = A@(n) + Bo(n) + Cd, we get that S = 3,2,0,/(ay, -+, a,)
is an integer.

From Theorem 2.1 it follows directly that z is irrational and thus
not both 4 and B can be zero. We consider first the case A + B # 0
so that without loss of generality we may assume A + B=D > 0.
Since S satisfies the hypotheses of Theorem 2.1 there exist integers
{e,} so that

b, =c¢,a, —c,,, for all large = .
Since |b,| < n'™*” for all large n we get
[e.| < n®~ 27 for all large = .
Let p, be the nth prime and set
Q) = Gp,, br =bp, € =Cp, € = Cp 115
then
b, = A(p, — 1) + B(p, + 1) + Cd,, = D,, + d,
where
d, = Cd,, — A+ B with |d,| <n®?? for all large = .

Now
b, = cra;, — ¢
b = Cri1@ni1 — Criy
so that from

wit _ DD,y + diy — DPais 1+ dnsi/(DDyyr)
b, Dp, + d, p, 1+ d./(Dp.,)

— pn+1(1 + o(n~1+oR))
VY

n

we get
’ ’ rn
p;ﬂ — Cn;l?;z:d_ C,C:n+1(l + o(n~1romy)
n nyYn n
c’ . ’” ’ ’ _
(3.8) — COnn 1 Cr1/(@n4:Cnsr) a+ o(n 1+ [2))

e 1—cl/(anc,

— C;_,H (1 + o(n~—0+oi)) |
Cn
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Here the last inequality follows from the fact that

Cuis | _ l Buss + €o13)/@0sy | _ [AP(n + 1) + Bo(n + 1) | + On~2F)
Ca (ba + Cuii)/an | Ap(n) + Bo(n)| + O(n"~"")
= o(n’) .

From (3.8) we get that c,., > c, implies

(3.9) Do > Du + %"— — P> p 4 —;—p;’”’

for all large n.
We now use the following result of A. Selberg [3, Theorem 4].

THEOREM 3.10. Let ®(x) be positive and increasing and O(x)/x
decreasing for x > 0, further suppose

O(x)/x—0 and liminflog @(x)/logx > 19/T7 for x— oo .
Then for almost all x > 0,

@ + 0()) — n(z) ~ 2@
log x

We now apply this theorem with the choice @(z) = x'*** to in-
equality (3.9) and consider the primes N < 9, < Do < +++ < 9, < 2N
in an interval (N, 2N) with N large. According to Theorem 3.10
the union of the set of intervals (v, p;,..) where p,, p,,, satisfy (3.9)
and m <1 <mn, form a set of total length < eN where ¢ >0 is
arbitrarily small. Also the number of indices ¢ for which (3.9) holds
is o(v/N). Thus by (3.8) and (3.9) we have

f_;_ _ ey — ﬁl C:_H_ < N + SN(l + O(N—<+a)12))fﬁ
Cn i=m ¢ i=m = C] N
1%
<1+ 2 <2,

From the monotonicity of a, it now follows that for any ¢ > 0 we
have

(8.11) le, | < n® for all large m.

Substituting this inequality in (8.9) we get that ¢, > ¢, would
imply
D 1/245 4 1 ..
(3.12) Puss > o+ 22— P > Put S
which is impossible for large = when ¢ < 5/12. Thus {c,} becomes
nonincreasing for large » and hence constant, ¢, = ¢, for large n.
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This implies a, > p/(¢c + 1) for large primes p and by the monotonicity
of a, we get
Un s @ 5 1
n 2p 4c

where p is the largest prime < n.
Now consider the successive equations

b, = ca, — cpyy
boi1 = Cppalpiy — Cpyp »
Thus
Ap(p + 1) + Bo(p + 1) + O(p'F*7°) = €p118ppx
Dp + O(p'*7°) = ca,

for all large primes p. This leads to

(3.13) Ao+l  Bo@+1) e

~1/2
D p+1 D p+1 o | SPT

and hence to the conclusion that the only limit points of the
sequence

(Aptr+1) | Botw+

= prime
D p+1 Dp+1|p P }

are rational numbers with denominator ¢. To see that this is not
the case, consider first the case B = 0. Then by Dirichlet’s theorem
about primes in arithmetic progressions we see that o(p + 1)/(p + 1)
is everywhere dense in (1, ). Thus we can choose p so that the
distance of Ba(p + 1)/D(p + 1) to the nearest fraction with denominator
¢ is greater that 1/(3c) while at the same time o(p + 1)/(p + 1) is so
large that | Ap(p + 1)/D(p + 1) | < 1/(3¢), contradicting (3.13). If B=0
we use the fact that @(p + 1)/(p + 1) is dense in (0, 1) to get the
same contradiction.

Finally we must consider the case A + B = 0. Here we can go
through the same argument as before except that we consider the
subsequence b,, = Ap(2p) + Ba(2p) + Cd,, = 2Bp + (8B + Cd,,) = 2Bp +
O(p'*%). As before we get

by = CQyp — Cypy, for all large primes »
which leads to the wrong conclusion that

{0(210 +1) _ e@p + 1),
2p + 1 2p + 1

lp = prime}

has rational numbers with denominator ¢ as its only limit points.
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MEASURABLE UNIFORM SPACES

ZDENEK FROLIK

A uniform space is called {,-measurable if the pointwise
limit of any sequence of uniformly continuous functions (real
valued) is uniformly continuous. A uniform space is called
measurable if the pointwise limit of any sequence of uniformly
continuous mappings into any metric space is uniformly con-
tinuous.

It is shown that measurable spaces are just metric-fine
spaces with the property that the cozero sets form a s-algebra,
or just hereditarily metric-fine spaces.

Metric-fine spaces seem to form a very useful class of spaces;
they were introduced by Hager [5], and studied recently by Rice [7]
and the author [2], [3]. Separable measurable spaces are studied in
Hager [6].

The notation and terminology of Cech [1] is used throughout; for
very special terms see Frolik [2]. The main result of the author’s
[3] is assumed, and [4] may help to understand the motivation.

If X is a uniform space we denote by coz X, zX or BaX accord-
ingly the cozero sets in X (i.e., the sets coz f = {x | fx = 0} where f is
a uniformly continuous function), or the zero sets in X (i.e., the
complements of the cozero sets), or the smallest c-algebra which
contains coz X (equivalently: zX). Since any uniform cover is realized
by a mapping into a metric space, the completely coz-additive uniform
covers form a basis for the uniformity. Completely coz-additive
means that the union of each subfamily is a cozero set.

If X is a uniform space then ¢X is the set X endowed with the
uniformity having the countable uniform covers of X for a basis of
uniform covers; e¢X is a reflection of X in the class of separable
uniform spaces (i.e., in spaces Y with ¢Y = Y).

We denote by a the usual coreflection into fine uniform spaces.
Recall that aX is the set X endowed with the finest uniformity which
is topologically equivalent to the uniformity of X. The first theorem
is a version of a simple classical result on measurable functions. The
equivalence of Conditions 1-5 appears in Hager [6]. This theorem
is repeatedly used in the sequel, and therefore an economical proof
is furnished.

THEOREM 1. Fach of the following conditions is mecessary and
sufficient for a uniform space X to be Y ,~measurable.
1. eX is W,-measurable.

93
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2. coz X = z2X = BaX, and every countable partition ranging in
BaX is a uniform cover.

3. FEach countable partition ranging in BaX is uniform.

4. The countable partitions ranging in BaX form a basis for
uniform covers of e¢X.

5. A function f: X— R is uniformly continuous tf (and only
if) the preimages of open sets are the Baire sets in X.

Proof. It follows immediately from the definition that Condition
1 is necessary and sufficient. Condition 5 implies that X is ¥,-mmeasur-
able by the classical result that measurable functions are closed under
the operation of taking pointwise limits of sequences (“only if” in
Condition 5 is always satisfied). We shall check that each of the
Conditions 1-4 implies the subsequent one. Two implications are almost
self-evident; namely 2 implies 3, and for 3 implies 4 we must just
recall that eX always has a basis consisting of countable covers ranging
in coz X(BaX).

Condition 4 implies Condition 5, because if f is Baire measurable,
and if 77 is any countable open cover of R, then f~[%] is refined
by a countable partition ranging in BaX.

It remains to show that Condition 1 implies Condition 2. Assume
1. If G is a cozero set, and if £ = 0 is a uniformly continuous function
with G = coz f, then the characteristic (=indicator) function g of G
is a pointwise limit of the uniformly continuous functions

Ju=min (1, m-f),

and hence ¢ is uniformly continuous by 1. Hence coz X = zX, and
hence coz X is a o-algebra, and hence coz X = BaX. Now let {B,} be
a partition ranging in BaX. Let f, be the n multiple of the char-
acteristic function of B,. The limit g of uniformly continuous functions
> {fuln = k} realizes {B,} in the sense that {B,} = ¢7'[U] for some
uniform cover U of R. This concludes the proof.

THEOREM 2. For each uniform space X let My X be the under-
lying set of X endowed with the uniformity having for a basis of
uniform covers the covers of the following form:

(*) {B,NU,|neN,ac A}

where {U,} is a uniform cover of X, and {B,} ts a partition of X
ranging in BaX.

Then:

1. eMy X has for a basis of uniform covers the countable parti-
tions ranging in BaX.
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2. My X 1s the meet of X and MyeX.

3. My X is a coreflection of X in the category of W,-measurable
spaces.

Proof. 1. The partitions {B,} are uniform because the cover (*)
refines {B,}. If {V,} is a countable uniform cover of M X, take a
cover of the form (*) which refines {V,}; we may and shall assume
that the union of any subfamily of {U,} belongs to coz X. Put

Ckn:U{BnnUa[-BnmUaCVk}
=B, NU{U.|B,.NU,CV,}.

Clearly {C,,} is a countable cover which ranges in BaX and refines
{Vi}. Now take any partition which refines {C,;}. This concludes the
proof of 1.

2. The assertion 2 follows from 1.

3. Every My X is W,-measurable by Theorem 1 because obviously

BaMy X = coz My X = BaX .

Let f be a uniformly continuous mapping of an Y,-measurable space Y
into X. We must show that the mapping f: ¥ — My X is uniformly
continuous. Taking in account the description of M® X, it is enough
to show that the preimage under f of any partition {B,} ranging in
BaX is a uniform cover of Y, and this follows from Theorem 1
because f: Y — X is self-evidently “Baire measurable”.

THEOREM 3. The sums, quotients and subspaces of Y,measur-
able spaces are YW,-measurable.

Proof. This follows immediately from Theorem 1.

REMARK. Theorem 3 implies by a purely categorical argument
that Y ,-measurable spaces form a coreflective category, and also the
coreflectivity of Y,-measurable spaces (established in Theorem 2) implies
that the sums and the quotients of Y{,-measurable spaces are N,
measurable, again by a purely categorial argument.

For separable uniform spaces the next theorem is Hager [6, 6.5].

THEOREM 4. Fach of the following two conditions is necessary
and suffictent for a uniform space X to be YW,-measurable:

(1) Ewveryuniformly continuous function on X factorizes through
My R.

(2) Every uniformly continuous mapping of X into a separable

metrizable space S factorizes through My,S.
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Proof. Since My, is a functor Condition (2) is necessary, and
clearly (2) implies (1). Condition (1) implies immediately that the
pointwise limit of uniformly econtinuous functions is uniformly con-
tinuous.

For the next result we need to recall further definitions. A
uniform space X is called metric-fine if for every uniformly continuous
mapping f of X into a metric space M the mapping f: X — alM (see
introduction) is uniformly continuous. A uniform space is called
(separable metric)-fine if the condition is fulfilled for f’s into separable
M’s. For properties of metric-fine and (separable metric)-fine spaces
we refer to Frolik [3]; Hager [5] is a good reference, but it is not
enough for our purpose. We need the following description of the
coreflections my X and mX of a uniform space X in (separable metric)-
fine or metric-fine spaces respectively (see Frolik [3, Theorems 1 and 3]:

The covers of the form

{U.NB,|ac A, ne N}
form a basis for my X, and the covers
{UrnB,|neN,ac A,}

form a basis for the uniform covers of mX, where {U,|ac 4},
{Ur|ac A,} are uniform covers of X, and {B,} is a cover of X by
elements of coz X; in addition we may assume that all covers are
completely coz X-additive.

We also need to know that

emX = emy X = meX = myueX .

A uniform space X is called inversion-closed if the set U(X) of
all uniformly continuous functions is inversion-closed, and this means,
that if fe U(X) and fx == 0 for all x ¢ X, then 1/f is uniformly con-
tinuous.

If X is (separable metric)-fine then X is inversion-closed; this is
obvious.

LEMMA 1. Let Y be an inversion-closed subspace of a uniform
space X. For each zero set 7 C X — Y there exists a zero set Z' DY
such that Z' N Z = ¢. Hence, if Y is a cozero set in X, then Y is
a zero set.

Proof. Take a nonnegative function f in U(X) such that Z =
{x|fx =0}, and let g be the inversion of the restriction of f to Y.
Take a uniformly continuous pseudometric d on Y such that f is
uniformly continuous on (X, d>, and ¢ is uniformly continuous on the
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subspace Y of (X, d>. The function g extends to a uniformly con-
tinuous function ¢’ on the closure Z’ of X in (X, d); Z’ is a zero set
in (X, d), hence in X. We shall check that Z'NZ =g¢; if 2z€Z'N Z,
then fz = 0, and a sequence {y,} in Y converges to z; in (X, d), since
J2 = 0 necessarily fy, — 0; hence the value of the extended ¢ should
be « ¢ R, and this contradiction proves the lemma.

REMARK. In the proof of Lemma 1 we used the following simple
but useful proposition:

If YC X, M is metric, and ¢g: Y— M is uniformly continuous,
then there is a uniformly continuous pseudometric d on X (X!) such
that g is uniformly continuous on (Y, d). (Proof. For each n, let
%, be a uniform cover of X such that the trace of u, on Y refines
the inverse image under g of the 1/n-cover of M. Arrange it so that
U, Star-refines u, for each =, and let d be the pseudometric asso-
ciated with the sequence {u,}.) The existence of the d in the proof
of Lemma 1 now follows. We note that the proposition implies that
if YcX and g: Y— R is uniformly continuous, then g has a continuous
extension over X: Choose d as above, extend ¢ over the d-closure of
Y by uniform continuity, then over all a X by the Tietze-Urysohn
Theorem. (If ¢ is bounded, there is a uniformly continuous extension
by Katétov’s well known theorem.)

THEOREM 5. The following properties of a uniform space X are
equivalent:

1. X s Womeasurable.

2. X is hereditarily (separable metric)-fine.

3. X s (separable metric)-fine, and each subspace is inversion-
closed.

4. X 1s (separable metric)-fine, and each cozero subspace of X
18 1nversion-closed.

Proof. Since ,-measurable is hereditary and implies (separable
metric)-fine, Condition 1 implies Condition 2. Next (separable metric)-
fine implies inversion-closed, and hence Condition 2 implies Condition 3.
Self-evidently Condition 3 implies Condition 4. It remains to show
that Condition 4 implies Condition 1. Assume 4. By Lemma 1 we get
coz X = 2X, hence coz X = BaX. As is noted above, since X ig
(separable metric)-fine, this implies that X is %,measurable.

REMARK. For separable spaces, the equivalence of 1 and 2 in
Theorem 5is in Hager [5, 4.2]. We are in a good position to derive several
results which are not needed in the sequel, but may help the reader
to get better understanding of the spaces used. Again for separable
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spaces, Propositions 1, 2, 8 and the corollaries appear in Hager [5].

PROPOSITION 1. The following properties of a subspace Y of a
(separadble metric)-fine space X are equivalent:

1. Y s inversion-closed.

2. Y s (separable metric)-fine.

3. If GDY 1is a cozero set, then Y C ZC G for some zero set Z.

Proof. By Lemma 1 Condition 1 implies Condition 3, and obviously
Condition 2 implies Condition 1. The remaining implication is obtained
as follows: If {U,} is a countable cover of Y by cozero sets in Y,
then we can take cozero sets G, in X such that G, N Y = U,, and apply
Lemma 1 to Y, the complement Z of U {G,}, and to X. Let G’ be
the complement of Z’. Clearly all G, together with G’ form a count-
able cover of X, which consists of cozero sets in X, hence form a
uniform cover of X. The {U,} is just the trace of the cover on Y.

COROLLARY. If YT X, then my Y is a subspace of my X if and
only if Condition 3 of Proposition 1 holds.

The following Proposition 2 is a corollary to Corollary.

PROPOSITION 2. Let Y be a dense subspace of a uniform space
X. Then myY is a subspace of my X if and only if Y is Gs-dense
in X (i.e., X — Y contains no nonvoid G,-set, or equivalently, no non-
void zero set).

Finally:

PRrROPOSITION 3. Let K be a compactification of a topological
space X (completely regular). The following properties are equivalent:

1. K s the Samuel compactification of some metric-fine uni-
formity on X.

2. K is the Samuel compactification of some tnversion-closed
uniformity on X.

3. If G ts a cozero set in K, XCGC K, then K isa Cech-Stone
compactification of G.

Proof. Since every metric-fine uniformity is inversion-closed,
Condition 1 implies Condition 2. Assume Condition 2, and let g be a
bounded continuous function on GO X, G being a cozero set in K.
Pick up a bounded nonnegative continuous function f on K such that
G = cozf. The function f-g on G extends to a continuous function %
on K; indeed, put Ax = 0 for x in K — G. Thus the restriction of g
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to X is the ration of two uniformly continuous functions, namely
gz = hx/fx

hence is uniformly continuous, and hence extends to K.

Assume Condition 8, and let us consider the (separable metric)-fine
coreflection of the relativization of the uniformity of K to X. We
must show that every uniformly continuous bounded function f extends
to K, and in view of Condition 3, it is enough to extend f to a cozero
set G D X. Take a countable base {U,} for R and extend each U, to
a cozero set G, in R; let G be the union of all G,. Clearly f is
uniformly continuous with respect to the relativization of the fine
uniformity of G to X, and hence f extends to a continuous function
on G. This completes the proof.

COROLLARY. The Samuel compactification of a uniform space X
enjoys the properties in Proposition 3 if and only if mX is proxvimally
equivalent to X.

For more results on rings of uniformly continuous functions we
refer to Hager [5].

Now we proceed to measurable spaces which seem to be quite
interesting. The first result is a characterization of measurable spaces
which will be used to describe the coreflection into measurable spaces,
and which connects immediately the theory of measurable spaces with
the theory of metric-fine spaces.

THEOREM 6. A uniform space X is measurable if and only if for
any sequence {{Ur|ac A,}} of uniform covers of X, and for any
partition {B,} of X ranging in BaX the cover

(*) {B,NnUr|meN,acA,)

18 uniform.

Proof. First assume that X is measurable, and let (*) be given.
We shall realize (*) by a uniformly continuous mapping ¢ into a metric
space Y.

Since X is W,-measurable, for each % the cover

7, ={B.NU: | keN,acA,}

is uniform, and hence there exists a uniformly continuous mapping
f of X into a metric space (M, d), which realizes all 7,. We may
and shall assume that d < 1, and the preimage of the 1/n-cover of
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(M, d) under f refines 7; for k < n. In particular, the preimage of
the 1-cover of M, d refines {B,}. Hence C, = f[B,] form a uniformly
discrete partition of (M, d). Now let Y be the set N X M endowed
with a metric D defined as follows:

D, vy, (m, 2)) =1 if n = m,
=min (1, n.d{y, z)) if n =m.

If we put d, = min (1, n.d), then d, is a metric for M uniformly
equivalent to d, and

Jo = {y — {n, )} (M, d,) — (Y, D)

is metric preserving (hence uniform embedding).

Define a sequence {h,} of uniformly continuous mappings of M
into Y, and a mapping h: M — Y (which will not be uniformly con-
tinuous in general) as follows:

gy = {n,yy for y in C,,
9.y =<k, y) for y in C, with k< n,
={n,y) for yin C, with k= n.

The mappings ¢,: M — Y are uniformly continuous, because

g.=dJ, on B, with k<mn
gann on U{Bk[kgn}‘

For each y in M the sequence {g,¥} is eventually constant and converges
to gy, namely if yeC, then g,y = gy for n = k.

Now let h =gof, h, =g,of. The mappings h, are uniformly
continuous, and hence % is uniformly continuous because {k,} converges
pointwise to & and X is measurable.

It is easy to check that the preimage of the 1-cover.%Z of Y under
h refines our given cover (*). Indeed,

7 n x M] = f7[C,] = B,,

and if U is the open sphere of radius 1 centered at a point {(w, ¥),
then Ucn x M and V = J;[U] is the open sphere of radius 1 in
(M, d,) centered at y, and hence V is the sphere of radius 1/z in
(M, d) centered at y, and hence f'[V] is contained in some Ur. Thus

RUL = U
is contained in U?, and since UcCn X M,
rYUlcB,NU:.

This concludes the proof.
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Now assume the condition, and let {f,} be a sequence of uniformly
continuous mappings of X into a metric space M, which pointwise
converges to a mapping f: X — M. We must show that f: X— M is
uniformly continuous. For each positive number », and for each n
consider the set

B, ={x|d{fix, fro) < r for k, h = n}.

Thus d{fz, fix) <r for xzeBj, | =n. Clearly the union of the
sequence {B:} is X for each 7, and each B belongs to BaX. Now
given any positive number ¢ choose a uniform cover {U”|ac A,} such
that the diameter of f,[U?] is less than 1/3-¢ for each @ in 4,. Finally
put

Bn = B:» - B;~1

with » = 1/3s. Clearly the diameter of each f[B, N U}] is at most &.
By our assumption {B, N U7 is a uniform cover, and hence f is
uniformly continuous. This concludes the proof.

THEOREM 7. The sums, subspaces and quotients of measurable
spaces are measurable.

Proof. By a routine argument from Theorem 6.

THEOREM 8. The following conditions on a uniform space X are
equivalent:

1. X s measurable.

2. X is W,rmeasurable and metric-fine.

3. X is hereditarily (separable-metric)-fine and metric-fine.

4. X is hereditarily metric-fine (i.e., each subspace of X is
metrie-fine).

Proof. If we compare the characterization of metric-fine spaces
recalled above and Theorem 6 we see that Conditions 1 and 2 are
equivalent. Conditions 2 and 3 are equivalent by Theorem 5. Finally,
obviously Condition 4 implies Condition 3, and is implied by Condition
1 because measurable spaces are hereditary.

It follows from Theorem 7 that measurable spaces are coreflective.
Now we shall describe a coreflection measurable spaces and get as o
byproduct that measurable spaces are coreflective.

THEOREM 8. For every uniform space X let MX be the set X
endowed with the uniformity having for a basis of uniform covers
the covers of the form described im Theorem 6. Then:

1. eMX has for a basis of uniform covers the countable parti-
ttons ranging in BaX, and hence eM X is W,~measurable, and BaX =
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BaMX.
2. eMX = eMy X = MeX = MyeX.
3. MX 1is a coreflection of X in measurable spaces.

Proof. Let {W,} be a countable cover of MX, and let
{UzNB,|neN,ac A,

be a defining cover which refines {W,}. We may and shall assume
that {U; | ac A,} are completely coz-additive (such covers form a basis
for every uniform space). Put

Ckn:U{U:anIU:mBnCWk}
=B, NU{U: U NB,CW,}.

It is easily seen that {C,,} is a countable cover which ranges in
BaX, and {C,,} refines {W,}. Thus the countable partitions ranging
in Ba X form a basis for uniform covers of eMX, hence Ba X=coz MX=
BaMX, hence eMX is W,-measurable. This proves 1.

It follows from 1 and Theorem 2 that eMX = eM, X, again by
Theorem 2 we have eM, X = MyeM. If X is separable then clearly
MX is separable (we may take all {U? in the basis consisting of
countable uniform covers, and then the defining covers are countable),
and hence MyeX = MeX. This concludes the proof of 2.

Every space MX is measurable, because it follows from the defini-
tion of MX and from 1 that MMX = MX, and by Theorem 6 X is
measurable if and only if MX = X. It remains to show that if
S+ Z— X is uniformly continuous and if Z is measurable then f: Z —
MX are measurable. This follows from Theorem 6, and the definition
of MX. This concludes the proof.

The next result says that the functor M is metrically determined.

THEOREM 9. MX is projectively generated by mappings fr MX —
MP where f are uniformly continuous mappings of X into metric
spaces P. A wuniform space X 1is measurable if and only if for
each uniformly continuous mapping f of X into a metric space P
the mapping f: X — MP is uniformly continuous.

Proof. The second assertion follows immediately from the first
one. The first assertion follows from Theorem 8, because any sequence
of uniform covers, and a sequence of Baire sets may be realized in
a metric space by a uniformly continuous mapping. To be sure we
formulate the fact about the realization of Baire sets in a lemma.

LEMMA 2. Let {B,} be a sequence of Baire sets in a uniform
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space X. Then there exists a uniformly continuous mapping f into
a separable metric space S, and a sequence {C,} of Baire sets in S
such that f[C,] = B, for each n.

Proof. Take a countable collection {U,|ac A} of cozero sets in
X such that all B, belong to the smallest o-algebra containing all U..
We may and shall assume that A = N. Take uniformly continuous
functions f, such that

U,=cozf,,
and 0 < f, < 1/2". Then f, are uniformly continuous, and
i X—> RY

has the required properties, where f is the reduced product of {f.},
i.e., fx = {f.x}. This concludes the proof.
The next result describes a nice basis for MX.

THEOREM 10. The space MX has for a basis of uniform covers
the collection of all o-uniformly discrete (in X) partitions of bounded
class in BaX.

COROLLARY. A space X ts measurable if and only if each o-
uniformly discrete partition of bounded class in BaX is a uniform
cover of X.

We must explain the notion “of bounded class in BaX”. We know
that BaX is the smallest o-algebra which contains coz X (or equiva-
lently, 2X). It follows that

BeX = U {Z|a < wy}
ZU{.@;|CK<0)1}

where %, = coz X, &} = 2X, and by induction <&, (<&}, resp.) is
obtained from U {<Z; | 8 < a}(U {<Z' | B < a}) by taking all countable
intersections (countable unions) or countable unions (countable inter-
sections) according to as « is odd or even.

DEFINITION. A family {X,} is of bounded class in BaX if {X,}
ranges in some <£Z, U &Z,; the smallest « is called the class of {X,}.

Proof of Theorem 10. Let {X;|ne N, a€ A} be a o-discrete par-
tition of bounded class, say a, in BaX. Put B, = {X*|ecd,}.
The sets B, are of class at most @ + 1 because {X|ac A4,} are uni-
formly discrete. The sets X are cozero sets in B,, and they form
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a uniform cover of the subspace B, of X. By Theorem 6, {X} is a
uniform cover of MX.

It remains to show that these covers form a basis. By A. H.
Stone Theorem every uniform cover % of every uniform space X has
a uniformly o-discrete refinement 7" = |J {V,}; 7”7 is not necessarily
uniform, but it is a uniform cover of MX by Theorem 6 (in fact it
is a uniform cover of mX, which is the coreflection in metric-fine
spaces); indeed put C, = U {7}, B.=C, — U {C, |k <n}. Now if
{Uz? N B,} is a typical defining cover of MX, we may replace each cover
{Ur|ae A} by a uniformly (in X) o-discrete cover {Viy|ke N}, and
put B,, = B, NVE Then U {B,..N[ 7]} is a uniformly (in X) o-
discrete cover of a bounded class which refines {U; N B,}. We need
a partition; well order {(n, k)} according to w,, and take the differences
as above. This concludes the proof.

In conclusion we show that for mappings of metric-fine (and hence
of measurable) spaces uniform continuity depends on two data only:
Cozero sets and “o-discreteness”. I do not know whether this property
characterizes metric-fine spaces. Recall (we shall not use it) that just
metric-fine proximally fine spaces are completely determined by cozero
sets, see Frolik [3, Theorem 4]. First let us stress that the only
distinction between metric-fine spaces and measurable ones is in cozero
sets.

THEOREM 11. A wuniform space X is measurable if and only if
coz X = BaX, and X is metric-fine.

Proof. This follows immediately from Theorems 1 and 7.

THEOREM 12. Assume that X is metric-fine. A mapping f of
X nto a uniform space Y is uniformly continuous if (and obviously,
only if) it enjoys the following properties:

A. The preimages of cozero sets are cozero sets.

B. The preimages of uniformly o-discrete families are uniformly
o-discrete.

Proof. Assume that X is metric-fine, and that f: X — Y satisfies
Conditions A and B. To prove that f: X — Y is uniformly continuous
it is enough to show that

h=gofi X— Z

is uniformly continuous for every uniformly continuous mapping ¢ of
Y into a metrizable space Z. If % is any uniform cover of Z, then
by the A. H. Stone Theorem we can take a uniformly o-discrete open
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refinement 7" = |J { 7;} (not necessarily uniform), and the preimage
of " under % is, in view of Conditions A and B, uniform by Theorem
2 in Frolik [3], which was recalled just after Theorem 5.

REMARK. M. Rice [7] proved independently that a space X is
hereditarily metric-fine if and only if the condition in Theorem 6 is
satisfied.
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CHARACTERS FULLY RAMIFIED OVER A
NORMAL SUBGROUP
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Let H be a group and N a normal subgroup. Assume
that y is an irreducible (complex) character of H, and that
the restriction of ¥ to N is a multiple of some irreducible
character of N, say 0. Then xy=ef, and e is called the
ramification index. It is easy to see that it always satisfies
¢* < | H: N|, and when equality holds, y is said to be fully
ramified over N. It is this ‘““fully ramified case’’ which will
be studied here in some detail. As an application of some
of the methods of this paper, we prove the following solv-
ability theorem in the last section. If H has an irreducible
character fully ramified over a normal subgroup N and if
p* is the highest power of p dividing |H: N| for all primes
corresponding to nonabelian Sylow p-subgroups of H/N, then
H/N is solvable.

1. Fully ramified triples. Groups of type f.r. To simplify
notation, say that (H, N, x) is a fully ramified triple if y is an
irreducible character of H, N is normal in H, and y is fully ramified
over N. It has been conjectured in [13] that H/N is solvable in
this case, and some partial results in this direction appear in [12].
We extend this work in Theorem 4.5 below. It is also possible to
show that no known simple group can occur as a homomorphic image
of H/N, but we will only need to consider a few cases in this paper
(see Lemmas 4.1 and 4.3).

Since we are primarily concerned with the factor group H/N,
rather than with H itself, the following theorem (due ultimately to
I. Schur and A. H. Clifford) is extremely useful.

THEOREM 1.1. Let H be a group, N a mormal subgroup, and
Y an irredqueidble character of H. Let 0 be an irreducible constituent
of Ay, and assume Yy = e0 (i.e. 0 is tnvariant). Then, there exists
a group H*, with an irreducible character x*, and a normal subgroup
N* having ¢ faithful trreducible character 0%, such that

Yoe = €0%
N* s central in H*
and H/N = H*/N* .
Morcover, the isomorphism is “natural” in the sense that if K s
any normal subgroup of H containing N, and K*/N* corresponds
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to K/N, then:

Ax = m(yy + + o+ + )
and Yg = myF + -0 +4F),

where ry, -+, P (resp. ¥, -+, ¥F) are the distinet conjugates of some
irreducible constituent of Yx(resp. k). In particular, (H, K, Y) is @
Sully ramified triple if and only iof (H*, K* x*) is a fully ramified
triple.

Many other properties hold than those listed above, but they
will not be needed. A proof may be found in [9].

If (H, N, x) is a fully ramified triple in which N is a central
subgroup, then it is easy to see that N must be the center, since
|H: N| = x(1)* = |H: Z(H)| < | H: N|. Groups with this property have
been referred to in the literature as groups of central type, and in
view of Theorem 1.1, there is no essential difference between fully
ramified triples and groups of central type.

Lemma 2.3 (a) gives a way of constructing new fully ramified
triples from old ones. Unfortunately, these new triples need not
correspond to groups of central type, even when the original triple
does. Because of this, we state our results for triples, rather than
groups of central type.

Define a group G to be of type f.r. if G is isomorphic to H/N,
for some fully ramified triple (H, N, ). Groups of type f.r. have
been characterized in [12] as those groups G having a factor set «,
over the multiplicative group of complex numbers, such that the
corresponding twisted group algebra C[G], is simple (or equivalently,
has center = C). We shall have no occasion to use this character-
ization here.

The next theorem may be used to construct examples of fully
ramified triples. It will not be needed in any of the later sections,
but it does restrict the kinds of properties that hold in groups of
type f.r. In particular, if &” is any property of groups which is
inherited by subgroups, then the existence of any solvable group
not satisfying .27 implies the existence of a (solvable) group of type
f.r. not satisfying .

In the following, 7(K) denotes the set of prime divisors of the
order of K.

THEOREM 1.2. Let G be any solvable group. Then there is a
Jully ramified triple (H, Z, x) with G isomorphic to a subgroup of
H|Z. Furthermore, such a triple may be chosen with n(H) = n(Z) =
n(@Q), x faithful, Z = Z(H) and |Z| square-free.
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Proof. Choose M <] G with |G: M| = p, a prime. By induction,
there is a fully ramified triple (K, Z(K), {) with { faithful, M iso-
morphic to a subgroup of K/Z(K), n(K) = n(Z(K)) = n(M), and |Z(K)|
squarefree. If » t|K]|, replace (K, Z(K), {) by (K x C, Z(K) x C, L % \),
where C is a cyclic group of order p, and ) is a faithful linear
character of C. We may therefore assume 7(K) = n(Z(K)) = =(G).
Let

W= {(z ~++, 2s) € Z(K) X +++ x Z(K)|TI 2, = 1} .
Then W& Z(K x K X -++ x K), and we may form the quotient
U= (K x cee X K)W.

Let n ={xx -« % {elrr (K x ---x K), and note that W = ker 7, so

we may view nelrr (U). It is easy to check that Z(U) = (Z(K) X

-+ X Z(K))/ W, and p(1)* = |U: Z(U)|. Also Z(U) = Z(K), so its order
is square-free and n(U) = n(G).

Let <b) be a cyclic group of order p. Fix an element ze€ Z(K)

of order p, and construct an automorphism a of U x (b) as follows:

(@ %oy =+, @)W, b) —— (55, @,y @y -+, To) W, D),

for x, +--, 2, € K and 0 < ¢ < p. It is easy to check that a is well
defined, and is an automorphism of order p. Using this automorphism,
construct the usual semi-direct product H = (U x (b)) {a). Notice
Z(H) = Z(U).

Extend nelrr (U x <b)) so that ker 7 = <b). Now <(b) is not
normalized by a, so 7 is not an invariant character. It follows that
x = 7% is irreducible, and ker y = Core,({b)) = 1.

Now:

20 = 7)) = pp(1)* = p*|U: Z(U)| = | H: Z(H)]|,

so (H, Z(H), x) is a fully ramified triple. By construction, 7(G) =
n(H) = n(Z(H)), and | Z(H)| is square-free.

It remains only to check that G is isomorphic to a subgroup
of H/Z(H). From the construction of H, the group H/Z(H) is iso-
morphic to the direct product of a cyclic group of order p (generated
by the image of b in H/Z(H)) with the wreath product (K/Z(K)) 2 {a).
As M is isomorphic to a subgroup of K/Z(K), it follows M2 (a) is
isomorphic to a subgroup of (K/Z(K)) 2 {a). Finally, G < M2 (G/M) =
M?2 <a), and this completes the proof. (Elementary properties of the
wreath product which were used may be found in [8]. See especially
pp. 98-99).
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2. Restriction to normal subgroups. Let (H, Z, x) be a fully
ramified triple, and K a normal subgroup of H containing Z. More
can be said about the irreducible constituents of Y than is already
contained in Clifford’s theorem. The explicit statement is Lemma 2.3
below.

We begin first with a lemma describing what happens when K
is not assumed to be normal. If a and A are characters of the same
group, write a < g(or 8 = a) if B — « is zero or a character.

LEMMA 2.1. Let (H, Z, y) be a fully ramified triple and let L
be a subgroup of H containing Z. Write

¢
XL = ; a,

Jor positive integers a,, +--, a, and distinct irreducible characters ¢,
<+, & of L. Let 0 denote the unique irreducible constituent of Y,
sothat Y, = e and ¢* = |H: Z|. Letb,=|L: Z|a;le for i =1, ---, t.
Then:

(@) e6* =|L: Z|y;.

(b) 0% =3V, bL. In particular, e||L: Z|a;, for 1 =1, -, t.

() Cz=0b0and ¥ =a,y for 1 =1, --- t.

(d) iwal=|H:L| and 3} b= |L: Z|.

() Suppose t =1. Then (L, Z, §) s a fully ramified triple,
and X, = a,&;, while {F = a,), with o = | H: L|. Suppose additionally
that L < H. Then (H, L, x) is a fully ramified triple.

Proof. Since ey = 67, the character ¥ vanishes off of Z. But
(e0"); = e|L: Z|60 = |L: Z|y,. Thus (a) holds. Conclusion (b) is
immediate from (a) and the definition of the coefficients b,. Now
Ciz = %z = ef. By Frobenius reciprocity, ¢, = b,0. Similarly, (¥ <
0" = ey, and C¥ = a;.

Now (x.)¥ = |H: L|x as both sides vanish on H — Z, while on
Z they equal |H: L|ef. Also (6%), = |L: Z|6 holds, again because
0 is invariant. We conclude,

| H: L] = ()" ) = (s 22) = S0
and

L Z] = (0., 0) = (0, 09) = 331,
proving (d).

When ¢ = 1, then (b), (¢) and (d) imply conclusion (e).
A slight variation of the next lemma appears in [12], but is
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given here for completeness.

LEMMA 2.2. Let (H, Z, %) be a fully ramified triple, and let L
be o Hall m-subgroup of H for some set @ of primes. Thus, LZ|Z
18 o Hall m-subgroup of H|Z. Write X, = e0 where 6 €lrr (Z), & =
|H: Z|. Then Y., 1s a multiple of some unique irreducible character,
say ¢, of LZ, and (LZ, Z,0) is a fully ramified triple. If Z =
Z(H), then (L, LN Z, £;) 1s also a fully ramified triple.

Proof. Let Y., = D\, a,(; as in Lemma 2.1, with LZ in place
of L. Write ¢ = e.6,, where ¢2 = |LZ: Z| and ¢ = |H: LZ|. By
Lemma 2.1 (b), e.e.||LZ: Z|a,. Therefore e, |a,, and in particular,
e = a,. Now use the first equation from Lemma 2.1 (d):

Sai= |H:LZ| = ¢t < af .

1

*

Thus ¢ = 1 and the character { = ¢, is the only irreducible constituent
of %.z. Lemma 2.1(e) shows that (LZ, Z, €) is a fully ramified triple.

Finally, if Z is central, then LZ = L x Z, where Z, is an abelian
#n' group. Thus ¢, is irreducible and {(1)*=|LZ:Z|=|L: LNZ|.
Also (Cr)inz = €(1)0.nz so (L, L N Z, £;) is a fully ramified triple, and
the proof is complete.

If p is a prime and G is a group, let Syl,(G) denote the set of
Sylow p-subgroups of G. Also, for any integer =, let %, denote the
p-part of n.

LEMMA 2.3. Let (H, Z, X) be a fully ramified triple with Z =
Z(H) and let K be a normal subgroup of H containing Z. Let R
be a subgroup of H containing Z with R/Z e Syl, (H/Z), and let §
be the unique irreducible comstituent of Y. guaranteed by Lemma
2.2. Write

Az = 0Ty + «++ 4+ TY)
CR[’]K = b(O', oo + 0',)
where the 7, and o; are the distinct conjugates of an irreducible con-

stituent of Yx and Cznx respectively. As in Clifford’s theorem, choose
the unique 4, € Irr (L% (z))) and ¥, € Irr (U%(0,)) with

¥ =% (P)x = az,
and

¥ = g (“px)RnK = bo, .
Then:
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@) at=|H:K| andbs = |R: RN K|. Moreover, (F(t,), K, )
and (%(0,), RN K, ¥,) are both fully ramified triples.

(b) b=a, s =1ty t.(1), = 0,(1) and wunder suitable ordering,
RN F(r) = A0).

(¢) H contains a subgroup T containing K which satisfies |H:
T =s TNR=_%() and TR = H.

(d) If H/K is a simple group, then Corep(#%(0,) ts either R
or RN K.

Proof. (a) By Lemma 2.1 (d), |H: K| = a*t. Now,
o't = |H: K| = |H: ()| | A7) K| = t| F(r): K|

so a* = | F(7r): K|. Also (y)x = ar, and this means that (_#(z)),
K, ) is a fully ramified triple. The rest of (a) now follows by
applying the above to the fully ramified triple (R, Z, §).

(b) By Lemma 2.1 (b), there are integers w and v so that §*"% =
u(o, + -+ + 0,), while 6 = v(r, + --+ + 7,). Hence, there are non-
negative integers a,, ---, a, so that

t
ok = ch aT; .

Now, (t)rnx = Xenx = Ur)rnx = ((H: B[ pax = | H: B["*b(0, + +++ +
0,). (The second equality follows from Lemma 2.2 and Lemma 2.1
(e).) Hence, there are nonnegative integers b, ---, b, so that

(T)rnx = 2. bi0; .
Comparing degrees: |K: RN K|o,1) = (Za,;)r,(1) and
7(1) = (2b;)0.(1) .
The second equation implies o,(1)|7z,(1) and thus, z,(1)/o,(1) divides
|[K: RN K| by the first equation. But o¢,(1) is a power of p and
|K: RN K| is prime to p. It now follows that z,(1), = 0,(1).
From (a) we have o’ = |H: K| and bs = |R: Z|. As |R:Z| is
the order of a Sylow p-subgroup of H/K, we get ajt, = b’s. We

have already derived that Yp.x = |H: R|'*b(0, + -++ + 0,). Since
Yz = a(t, + --+ + 7,), we have by comparing degrees:

| H: R|"*bsa,(1) = atr,(1) .
Equating p parts:
bsa,(1) = a,t,7,(1), .

But 7,(1), = 0,(1), so a,t, = bs. We already had ait, = b%, so a, =
b and t, = s.
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The group ._%(o,) stabilizes o, and acts on the set of irreducible
constituents of ¢f = Ya,7,, As RN K is contained in _%(z;) for all
1, it follows that all orbits of .#%(g) on {z,, -+, 7.} have p-power
size. Clearly a;, = a; if 7, and 7; lie in the same orbit, and we may
write 0f = 3,. a.(\ze,7), wWhere the outer sum extends over all
orbits, and a, is the common value of a, for any ,€ 2.

Comparing degrees, |K: KN R|o,(1)=(2.a.|2|)t.(1). Nowo,(1) =
(1), and |K: KN R| is prime to p, so Ja,. || # 0(mod p). Thus,
there exists an orbit « with a.|”| # O0(mod p). But this means
& = {r;} for some 7, and a; = 0 (so that z; < oF). Choose notation

so that 7; = z,. Hence 7, is invariant under .%(0,), and thus
A0) & )N ER.

From (a), (%(z)), K, 4,) is a fully ramified triple, so a} is the order
of a Sylow p-subgroup of .7,(z,)/K. Now | %(0):RNK|=0b=a},=
() NR)K: K| = | )N R: RN K|. But we had

(0) & AE)NER,

so equality holds, and this completes the proof of (b). In fact the
last argument shows slightly more, namely

2(0)K/K € Syl, (F(T)/K) .

(¢) Let N= Ny (RNK). As (RN K)/ZeSyl,(K/Z), the Frattini
argument yields NK = H. Now N acts on the irreducible constituents
of §%"%, Hence N permutes the set {o, ---,0,}. Now RS N and
R acts transitively on this set, so N acts transitively. Clearly,
RN K is in the kernel of this action. Moreover, (NN K)/(RN K) is
a normal subgroup of N/(R N K) having order prime to p. The set
of characters therefore breaks up into % distinct N N K-orbits, each
containing ! elements where | [ NN K: RN K| so (p,1) =1. But s =
kl is a power of p, so !l =1 and k¥ =s. This means NN K is con-
tained in the kernel of the action. Hence S = _%(0,) contains NN
K and has index s in N. Thus, T = SK has index s in H, and TR =
H is clear. Finally TN R = SN R = _%(0).

(d) In the notation of (¢c), N/(NN K) = H/K and so N/(NN K)
is simple. We may assume s > 1, in which case N acts transitively
on {o, ---0,} with kernel NN K. Core,(_#(0,)) is contained in the
kernel, so Corep(%(0) S RN(NNK)=RNK.

The following consequence of Lemma 2.3 generalizes a theorem
appearing in [11].

COROLLARY 2.4. Let (H, Z, ¥) be a fully ramified triple. If Z &
K < H and yx ts induced from a character on K, then H/K is solvable.
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In particular, if K is solvable, then so is H.

Proof. Continuing with the above notation, let xx = a(z, + -+ +
7). Then t = |H: #(r)| = |H: K| = a%, so a = 1. By the previous
lemma, H/K possesses a subgroup of index ¢, for every prime divisor
of t. The solvability of H/K now follows by Philip Hall’s theorem
(see p. 662 of [8]).

A special case of the next result appears as Theorem 5 of [12].
It is extremely useful in showing that many simple groups do not
occur as homomorphic images of groups of type f.r.

THEOREM 2.5. Suppose (H, Z, %) is a fully ramified triple, Z S
K< H and G = H/K. Let P bea Sylow p-subgroup of G and assume
P is cyclic. Then P has a p-complement M in G. If G is simple,
we also have:

(@) The prime p s unique, i.e., all other Sylow g-subgroups for
q # p are non-cyclic..

(b) P is a self-centralizing T.I. set in G.

(¢) G acts doubly transitively on the cosets of M.

Proof. By Theorem 1.1, and the remarks following that theorem,
we may assume Z = Z(G), so that Lemma 2.3 becomes applicable.
Let R/ZeSyl,(H/Z), and let ( o, -+, 0, and 7, -+, 7, be as in
Lemma 2.3. Now _%(c,) has a character which is fully ramified over
RN K, and the factor group .#%(0g,)/R N K is cyclic. Thus, all irre-
ducible constituents of 0, %, including the fully ramified one, are
extensions of g,. (See p. 54 of [3].) This can only happen if _Z(0,) =
RNK, so s=|R/(RNK)|=|P|. (This could also be seen by apply-
ing Theorem 1.1 to the group .%(¢,).) By Lemma 2.3 (¢), HK = G
has a subgroup M of index s, and this is clearly a p-complement in
G. Suppose now G is simple. If a Sylow g¢-subgroup, say @, of G
is cyclic for some other prime ¢, then Q acts faithfully on the |P|
cosets of M, so that |@Q| < |P|. Interchanging the roles of P and
Q yields |@| > | P|, and this contradication establishes (a).

To prove that P is a self-centralizing T.I. set in G, it suffices to
show Cy(2,(P)) = P. Let C = Cy(Q2(P)). As PN M =1and PM = G,
we have C= P(CN M), so that CNM is a p-complement in C.
Now N,(P) acts on P and centralizes Q,(P), and hence centralizes
P by Fitting’s lemma (see p. 178 of [6]). But then by Burnside’s
transfer theorem (see p. 419 of [8], also p. 252 of [6]), C has a
normal p-complement, which must be CN M. Now G =CMand CNM
is normal in C, so the normal closure of C N M is contained in M.
Hence, CN M S (CN M)¢ =1, as G is simple. Thus C = P, proving



CHARACTERS FULLY RAMIFIED OVER A NORMAL SUBGROUP 115

(b).

If |P| = p, then G must be doubly transitive on the cosets of
M by a theorem of Burnside’s (see p. 609 of [8]). If |P|> p, then
P is a B-group (p. 65 of [15]) and it suffices to show that G is pri-
mitive on the cosets of M. Suppose G is not primitive, so there
exists a subgroup L with M < L < G. But then 1< PNL and
PN L is normalized by P. Since G = PL, it follows that the normal
closure of PN L is contained in L, contradicting the simplicity of G.
(This last assertion can also be proved by considering the Brauer
tree of the principal p-block of G. It can be proved that the principal
character can be connected only to a nonexceptional character, and
the double transitivity follows.)

3. Special elements. Let (H, Z, y) be a fully ramified triple,
and let K be a normal subgroup of H containing Z. Also, let &
denote an irreducible constituent of y.. Information about the group
H/K was obtained in the previous section by considering the possible
indices for the inertia group of &. In this section, we obtain infor-
mation about the group K/Z by considering elements of K at which
¢ does not vanish (for all possible &). Under the right conditions,
K/Z will have a proper normal subgroup. The main application of
the methods of this section are contained in Corollary 3.6.

The following concept first appears in [5], and a slight variation
of it appears in [9].

DEFINITION. Let N <] G, and let + € Irr (N) be invariant under
G. For every z, ye G with [z, y] = a7'y 'zy € N, define the complex
number {z, y) as follows. Extend + to - on (I, y>. Now 2 nor-
malizes the group (N, y), and fixes 4, so 4 is another extension of
. It follows that «° = A+, where )\ is a linear character of (N, y)
with N in its kernel. Moreover, )\ is uniquely determined, i.e., is
independent of the choice of the extension +y. Define {x, ¥) to be My).

The definition above of course depends on +. Properties of the
map {,) may be found in [9]. In particular, {x, ¥) is multiplicative
in # and y whenever it is defined, and {z, v) = {y, )" if (=, y) is
defined.

We are now ready to define special elements.

DEFINITION. Let N <|G and + € Irr (N), with « invariant in G.
Let (,) be defined as above. Say that ge G is special if {z, g) = 1,
for all » satisfying N e C,/x(gN).

If ¢ is special, then so is every conjugate of g, and every element
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the of the coset gN. We may therefore speak of the special classes
of G/N. The following theorem and its proof appear in [5].

THEOREM 3.1. Let N <] G and + € Irr (N) be G-invariant. Define
spectal conjugacy classes of G/N as indicated above. Then, the
number of distinct irreducible constituents of ¢ is the same as the
number of special classes of G/N.

Because of Theorem 1.1, the case that N& Z(G), and + is a
faithful linear character of N, deserves to be singled out. In this
case, the computation of (x, ¥), for x, ¥y € G with [z, y] € N, becomes
easier to carry out: Let + be an extension of + to (&, y). This
is an abelian group, so + is linear. Moreover, 4* = M) for X € Irr ({N,
¥)) with N & ker A. All characters appearing in this equation are
linear, and so we may solve for A: N = 7%,

Evaluating at y yields:

(x, ¥) = My) = ' WP W) = FH HVleye™) = Fy wyrT)
= 3(ly, «7]) = §([x, y]) = v, ¥]) .

Thus (z, y) = v([x, y]), for all z, ye G with [z, y]e N. As ¥ is
faithful, we may identify (,) with [,], defined for all pairs of ele-
ments satisfying [#, y] € N. In particular, it is easy to see that z ¢
G is special if and only if Cy(x) = Cs(xN mod N).

The following easy consequence of Theorem 3.1 will be useful
later:

COROLLARY 3.2. Let (H, Z, %) be a fully ramified triple. Then
H|Z contains no self-centralizing cyclic subgroups, unless H = Z.

Proof. As usual, we may assume Z = Z(H), and then we may
identify ¢, ) with [,]. If 6 is the unique constituent of y,, then ¥ is
the unique constituent of 7. By Theorem 3.1, there is only one special
class of H/Z, and this must be the class of the identity element.
Suppose {gZ) is a self-centralizing subgroup of H/Z. Then [z, g]€
Z implies x€{(Z, g), and since this last group is abelian, [z, g] = 1.
But then g is special, and since 1 is the only special class of H/Z,
it follows that g€ Z. Hence,

H=Cy9) &9, Z)=Z, so H=17Z.

LeMMA 3.3. Let «elrr (N), where N <|G and + ts faithful.
Assume N S Z(G), so that + is invariant in G, and special elements
of G are defined. Let y be a constituent of . If g is not special,
then x(g) = 0.
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Proof. For g not special, there exists x € G with [z, g]e N and
[z, g] # 1. Since y is a class function:

209) = 2eg2) = y(997 27 gx) = x(9lg, =]) = x(@)v(ly, D) ,

where the last equality follows from the fact that [g, «] is represented
as a scalar matrix, with scalar +([g, #]), in any representation affording
¥. But v ([g, x]) # 1, as +r is faithful, so x(g) = 0.

When N & Z(G) and + is a faithful character of N, the following
gives a stronger relation between constituents of ¢ and the special
classes of G/N than is already implied in Theorem 3.1.

THEOREM 3.4. Let N& Z(G) and + €Irr (N), with + faithful,
and let o, ++-, An be the distinct irreducible comstituents of . Let
gy, *+*, n be any m elements of G. Then, the matriz (x,(9;)) is non-
singular if and only if ¢, -+, g, represent the m distinct special
classes of G/N.

Proof. (Only if) If (y.(¢;) is nonsingular, then certainly for
every j, the jth column is nonzero. By the previous lemma, thig
means that g; is special. Let — denote the natural map from G to G/N.
We need to check that g, ---, g, lie in distinct conjugacy classes.
Suppose g, is conjugate to §;. Then x7'g,x = ng;, for some x € G and
ne N. Then, for every Fk:

Xl:(gz) = X:’c(x_lgim) = xk(/n’gﬂ') = Q#\(n)xk(g]) ’

so that the 4-th and j-th columns of the matrix differ by the scalar
multiple +r(n). This can only happen if 7 = j, and we are done with
this half of the theorem.

(If) Suppose g, ---, g, represent the m distinct special conjugacy
classes of G/N. Again let - denote the map G — G/N. Then,

0.5 = (A %) = (l/lGl)gEGJG 19197
= G Dg S Igclmzz(g)xj(g‘l)

= UE)S S @0

= UIG) S 1G: Co(@) |- IN |- 207005 -

The third equality follows from Lemma 3.3, and the last follows
from the fact that y,(¢9)y;(¢g™") is constant on cosets of N. We there-
fore have:

0.0 = (NG S 140152 Co(@) 1007 -
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Writing this last identity in matrix form:
I = (IN|/|G)(1(9) diag (G: C3@) (Ao »

where [ is the m x m identity matrix. Hence, (¥:(95)) is nonsingular,
and we are done.

THEOREM 3.5. Let (H, Z(H), }) be a fully ramified triple with
X faithful. Let Z = Z(H) S K <| H and let R be a subgroup of H
containing Z with R|/Z e Syl,(H/Z). Finally, let 6 be unique consti-
tuent of Yz, and g, +--, 9, be representatives of the distinct special
classes of (RN K)|Z, computed with respect to 6. Then:

(@) The s|Z| elements, zg,, for ze€ Z and 1<1=<s, are all
special in K, and lie in distinct conjugacy classes of K.

(b) If ge RN K is a special element of K, then g ts special in
RN K. In particular, g is RN K-conjugate to a unique element of
the form zg,.

(¢) If g, he RN K and g s special in RN K, then g ~ x h implies
9 ~ gk h.

REMARK. The above implies that there is a natural correspondence
between conjugacy classes of special elements in BN K and conjugacy
classes of special elements of K which meet BN K. The correspon-
dence is given by & — <%, where &© is a conjugacy class of RN
K consisting of special elements, and <% is the unique class of K
containing <. The inverse is given by . #Z — # N(RN K), where
A is a class of special elements of K which meets RN K.

Proof of Theorem 8.5. Following the notation of Lemma 2.3,
let ¢, -+, 0, and 7, ---, 7, be the distinet irreducible constituents
of %znx and yx respectively. We know there are s constituents
of %znx because there are s special classes in (RN K)/Z. Let
Z]z,, -+, 7] denote the additive subgroup of the character ring of

K generated by 7, ---, 7, and similarly define Zfo, -+, 0,]. Let
r denote the restriction map from Z|z, ---,7,] to Zlo, -+, 0,].
Since Yznx=(Yz)znx, it is clear that » maps Z[z,, - - -, 7] into Z[o,, - - -, 0,].

Reducing coefficients mod P, we have the following commutative
diagram:

Zlz, ++, 7] — Zlo, -, 0]

l l

Zr[z'u Sty Tt] __’f‘__) ZP[GI’ ct O's]

Now R acts on {r, -+-, 7}, and because RN K< R, R acts on
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{o), +--, 0. The group RN K is contained in the kernel of both
actions, so the p-group R/(R N K) acts on both sets. This action may
be extended in the natural way to each of the four additive groups
above, so that each such group is an R/(R N K)-module. The second
row of groups may be viewed as Z,[R/(R N K)]-modules. All maps in
the above diagram are R/(R N K)-homomorphisms. Since RB/(RN K) is
a p-group acting transitively on {o,, ---, 0,}, the module Z,[o,, ---, 0]
contains a unique maximal submodule M = {¥l,0,|l, € Z, and 2, = 0}.
As in the (b) part of Lemma 2.3, write

(@) = (T)rnx = JZ:=1 bjo; .

As 7,(1), = 0,(1), it follows that Xb; = 0 mod p. Hence
7(r) = Z; gjo'j ¢ M,

where b; denotes the residue class of b; mod p. Since 7 is a Z,[R/(R N
K)]-map, it follows that 7 is surjective.
Now define the ¢ x s matrix B = (b,;;) as follows:

r(T) = T)rnx = ;;1 b.0; .

Let B = (b,;) be the matrix B with all entries reduced mod p. Then
B is the matrix of 7 using the natural bases. Thus B, and hence
B itself, has rank s. Now

(z:i(95)) = B(o.(95)) ,

where (0.(g;)) is nonsingular by Theorem 3.4, and B has rank s. Thus,
(z:(9;)) has rank s, so that its columns are linearly independent. This
means that g, -+, g, represent distinct special classes in K/Z.

We now have to check that there is no K-fusion among the
elements zg,. Suppose 2g; ~x2'g;. The above implies that 7 = j.
Now choose 7, so that 7,(g;) # 0. Then

0(z)7(9:) = T4(29:) = TW(2'9)) = 0(z")Ti(9) »

and so 0(z) = 0(2'). But 0 is faithful because y is, and so z = z'.
This proves (a).

Now suppose ge RN K and ¢ is special in K. We have just
shown that g, ---, g, represent distinct (special) conjugacy classes
in K/Z. We may therefore find {x, ---, 2} & {9y, ---9,} such that
g =2, &, -+, &, represent distinct conjugacy classes in K/Z, so that
the ¢ x s matrix (z,(x;)) has rank s, by Theorem 3.4. Now (z,(x;)) =
B(o.(x;)), and this equation implies that the s x s matrix (o,(x;) is
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non-singular. By Theorem 3.4 again, x, = ¢ is special in RN K.
Hence ¢ is conjugate in RN K to some element of the form zg,.
Uniqueness of this element is clear, as these elements are not fused
in K even. This proves (b).

Suppose now g, he RN K, g is special in RN Kand g ~x k. By (a)
above, ¢ is special in K and hence so is . However, he RN K, so
by (b) above, h is special in RN K. From (b) again, g and A are
conjugate in RN K to elements of the form zg, and ?'g; respectively,
for some 2,27¢Z and 1 <1, j <s. Hence 29, ~,?g;, and from (a)
we get 2z =2',¢ = j. Thus, g and % are fused in BN K, completing
the proof of (c).

As an application of the above non-fusion theorem, we have:

COROLLARY 3.6. Let (H, Z, %) be a fully ramified triple. Let
K = O0"(H)Z, and assume that a Sylow p-subgroup of K|Z is abelian.
Then (H, K, x) is o fully ramified triple, and for « the unique
constituent of g, the triple (K, Z, +) is fully ramified.

Proof. By applying Theorem 1.1, we may assume Z = Z(H) and
that y is faithful. Let R/Z e Syl, (H/Z), and let 7, ---, 7, and o,,
-++ 0, be as in Lemma 2.3. Then ¢ = s as |H: K| is a power of p.
If ¢t =1, this means that (H, K, x) is a fully ramified triple, and
hence so is (K, Z, 7,), and we are done.

Suppose then ¢ =s>1. Let N = Ng(RN K), and let—denote
the natural map K — K/Z. Thus N = Nzx(R N K). Since s > 1, there
is an element ge RN K which is special in RN K and g¢ Z. If ze
N, then g°e¢ RN K, and clearly g ~x¢°. By Theorem 3.5 (c), g° is
conjugate in RN K to g. But BN K is abelian, so §° = §, and this
shows:

1#geRNKnNZWNzRNK)) .

However, this implies O°(H)Z = O°(K)Z < K, (see p. 253 of [6]).
Thus, the case s > 1 leads to a contradiction, and the corollary is
proved.

4. A solvability theorem. The final theorem of this section is
a solvability theorem for certain groups of type f.r. In order to
prove that theorem, it is first necessary to show that certain groups
do not occur as homomorphic images of groups of type f.r.

LEMMA 4.1. Let G be a simple subgroup of A, (the alternating
group on 9 letters). Then G ts not a homomorphic image of a group

of type f.r.
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Proof. Suppose G is such a homomorphic image. Now |G| divides
9.-8.7-6.-5-4-3 = 2°.3*.5.7.

Suppose 5||G|. By Theorem 2.5 with p = 5, we get G < A4, and
so G = A,. This contradicts Theorem 2.5 (a), and so 5+/|G|. By
Burnside’s p°g® theorem (see p. 131 of [6]), #(G) = {2, 3, 7}. Hence,
7|1G|, and using Theorem 2.5 with p = 7, we get G < A4,. Thus |G|
divides 7-6-4-3 = 2°-3*.7, as 5} |G|.

Using Theorem 2.5 (a) again, a Sylow 3-subgroup of G cannot be
cyclic. We therefore have |G| = 27.3%.7, for some j. By Burnside’s
transfer theorem, P < Ny(P) = N, (P), where Pis a Sylow 7-subgroup
of G. This last group has order 21, so | N4i(P)| = 21. By Sylow’s
theorem, 2:3 = 1 mod 7, and this is the final contradiction.

The next fact which is needed is a purely number theoretic
statement, due to G. D. Birkhoff and H. S. Vandiver, which first
appeared about the turn of the century.

LEMMA 4.2. Let o and n be integers both greater than one.
Then, except for the following two cases, there exists a prime divisor
p of (o™ — 1), satisfying p t (@™ — 1) for all m with 1 £ m < n:

I »=2andaisa Mersenne number, i.e. a + 1 is a power of 2.

II) n=6 and a = 2.

A proof of the above lemma for » = 3 may be found in [1],
where, in fact, a more general version is given. Of course, the case
n = 2 is a triviality.

The above lemma is extremely useful, when used in conjunction
with Theorem 2.5, in eliminating known simple groups from occuring
as factor groups of groups of type f.r. However, in this section, we
shall only need the following:

LeEmMMA 4.3. Let PSL (2, p™) = X < PI'L (2, p™), where p is a prime,
and p* = 4. Then X is not the homomorphic image of any group
of type f.r.

Proof. We first note that PSL (2, ") can have no subgroup of
index ¢* # 1, where ¢° is a prime power less than p". This is true
because PSL (2, p*) contains a proper subgroup of index m < p", only
in the case p* =9 and m = 6 (see p. 214 of [8]). This proves the
statement, as 6 is not a prime power.

Suppose X is a homomorphic image of H/Z, where (H, Z, y) is
a fully ramified triple. Let K be the kernel of this homomorphism,
and S the inverse image of PSL (2, p”). Then, Z & K & S & H, where
K and S are normal in H, H/K = X and S/K = PSL (2, p"). Clearly,
|H: S| divides 2n, as |PI'L (2, p"): PSL (2, p™)| = n(2, p — 1).
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Suppose there exists a prime q satisfying the following conditions:

(i) q|IPSL (2, p")|

(i) ¢#0p

(iii) ¢ is odd

(iv) 1+ p" is not a power of ¢

(v) qtm.

Then ¢ divides exactly one of (p" + 1) or (p" — 1), as ¢ is odd, and
a Sylow g-subgroup of S/K is cyclic of order < p™ by (iv). By (v),
a Sylow g¢-subgroup of S/K is also one for H/K, implying that H/K
has a g¢-complement, by Theorem 2.5. But then S/K also has a
g-complement, contradicting the first paragraph.

We now prove, under the hypothesis p" = 4, a prime ¢ can always
be chosen satisfying (i)-(v) above.

Suppose ¢ is an odd prime dividing »" — 1, but not dividing p™ — 1
for any m < n (if » = 1, this last condition is vacuously true). Clearly,
q satisfies (i)-(iv) above. Now ¢ divides p*™* — 1, forcing n < q — 1,
so that ¢ also satisfies (v). In particular, we are done if » =1,
unless p — 1 is a power of 2. If »n > 1, then Lemma 4.2 is applicable
(with p in place of a), and any prime satisfying the conclusion of
that lemma also satisfies (i)-(v) above. This brings us to one of the
following cases:

(@ m»=1and p—1is a power of 2

(b) n=2and p+11is a power of 2

(¢) =6 and p = 2.

We consider these cases in turn.

Case (a). Since p™ = 4, it follows that p + 1 is even, and is not
a power of 2. Any odd prime divisor of p + 1 satisfies (i)-(v) above,
and we are done in this case.

Case (b). Since p* + 1 is twice an odd number, in this case, let
q be an odd prime divisor of p®+ 1. Again, it is readily checked
that ¢ satisfies (i)-(v) above.

Case (c). Here |PSL (2, p™)| = 65-64-63, and the prime ¢ =5
satisfies the five conditions above.

Let (H, Z, y) be a fully ramified triple, and assume that H/Z
has an abelian Sylow p-subgroup for some prime p. We saw in the
previous section (Corollary 3.6) that (H, O*(H)Z, y) is also a fully
ramified triple. This suggests the following definition:

DEFINITION. Let @ be a p-group of type f.r. Say that @ is
reductive if, for every fully famified triple (H, Z, }) with @ isomorphic
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to a Sylow p-subgroup of H/Z, the triple (H, O*(H)Z, y) is fully
ramified. '

By the remarks preceeding the definition, an abelian p-group of
type f.r. is reductive. In the following lemma, we extend slightly
the class of reductive p-groups of type f.r. The author is unaware
of an example of p-group of type f.r. which fails to have this pro-
perty. We use the classification of groups with dihedral Sylow 2-
subgroups in the case p = 2 of the following.

LEMMA 4.4. Let Q be a p-group of order p* and of type f.r.
Then Q s reductive.

Proof. Suppose @ is a p-group of order p* which is of type f.r.,
but which is not reductive. Then, there exists a fully ramified triple
(H, Z, x) with a Sylow p-subgroup of H/Z isomorphic to @, such that
the triple (H, O°(H)Z, %) is not fully ramified. By Theorem 1.1, we
may assume Z = Z(H). Let K = 0°(H)Z and let R/Z¢eSyl,(H/Z).
Now K < H as (H, K, ) is not a fully ramified triple. By Corollary
3.6, (RN K)/Z is a non-abelian p-group, and so has order = p*. This
forces [(RNK)/Z|=p*and |H: K|=p. Let C/Z=((BRNK)/Z) =Z
(RN K)/Z). Using Lemma 2.3 and Theorem 3.1, there are p special
classes of (RN K)/Z. Suppose that some element, say g, of C — Z
is special. As ¢gZ is central in (RN K)/Z, we get [g, RNK] & Z.
But g is special, and this means [g, RN K] =1, so ge Z(RNK). It
is clear that 1, g, ¢° ---, g** represent the p distinct special classes
in (RNK)/Z. Let te RNK — C. Then « is not special. However,
Caraxiz(Z) =<KxZ, C|Z) S Crox(®)/|Z S Craxz(xZ). This contradicts
the fact that x is not special, and proves that the only special element
of (RN K)/Z which lies in C/Z is the identity.

Consider now the case that p is odd. Let N = Ng(R N K) so that
N=N/Z = Nz(RNK). As pisodd, (RN K)/Z is a regular p-group,
being of class 2. It follows from the Hall-Wielandt theorem (see p.
447 of [8]), that N controls p-transfer, i.e., 0O?(K) N N = O?°(N). As
0*(K/Z)=K|Z, we will obtain a contradiction by proving that O?(N)< N.

Let V denote the transfer homomorphism from N/Z into (R N K)/C.
The map V is computed by

V(gZz) = tg (tgt™C, for ge RN K,

where T is a right transversal for RN K in N. (We used the fact
that RN K <] N.) Now let g be any special element of RN K with
g¢ Z. Thusge C, fromabove. For any te N, tgt™' is R N K-conjugate
to g, by the last part of Theorem 3.5. Thus, tgt™'C = ¢gC for all te
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T, and V(9Z) = (gC)"' = g'M:E0KIC,  As |N: RN K| is prime to p, we
have ge N-kerV. This yields the contradiction O?(N) < N, and we
are done if p is odd.

Suppose now p = 2. Then (RN K)/Z is non-abelian of order 8,
and a nonidentity special elemet, say ¢gZ, of (RN K)/Z does not lie
in C/Z.

Consider first the case that (RN K)/Z is the quaternion group.
Again, if N = Nx(R N K), the element gZ can only be conjugate to
¢'Z in N/Z. This implies N/Cz(RNK) is a 2-group. Clearly,
Nz(S)/Cz(S) is a 2-group for all S < RN K, as S is cyclic. Thus, K
has a normal 2-complement by Frobenius’ theorem (see p. 253 of [6]).
This contradicts OXK)Z = K, forcing (RN K)/Z to be the dihedral
group of order 8.

From the classification of groups with dihedral Sylow 2-subgroups,
and the fact that OXK/Z) = K/Z, it follows that K/Z has a factor
group isomorphic to Y, where PSL (2, p*) £Y < PI'L (2, p”) for some
odd prime power p" #= 3, or Y = A,. From this, it follows that K/Z
has exactly one chief factor isomorphic to the simple group S, where
S = PSL (2, p), or S = A,. Therefore, H/Z has a chief factor iso-
morphic to S. Let Z&V < U< H, with V and U normal in H, and
U/V = S. Define C by the equation: C/V = Cy,,(U/V). Then C< H,
and CNU=V. Replacing U and V by UC and C respectively, and
continuing this process, if necessary, we may assume C =7V. The
factor group H/V is isomorphic to a group X, which satisfies: S <
X < Aut (S). Since Aut (PSL (2, p™)) = PI"'L (2, p"), Lemma 4.3 forces
S = A,. Now, Aut (4, = S,, the symmetric group on 7 letters, so
that H/Z has a factor group which is either 4, or S;. Both of these
groups contain a cyclic Sylow 5-subgroup of order 5, but neither
group contains a subgroup of index 5. This contradiction to Theorem
2.5 completes the proof of the lemma.

We are now ready to give an application of the above. In [12],
G is shown to be solvable if G is of type f.r., and p*/ |G| for any
prime p dividing |G|.

THEOREM 4.5. Let G be a group of type f.r. Assume that G
has an abelian Sylow p-subgroup for every prime p satisfying || G|.
Then G is solvable.

Proof. Let (H, Z, x) be a fully ramified triple with G = H/Z.
We proceed by induction on |H/Z|, the assertion being trivial if H =
Z. Suppose that H/Z is not perfect. Then O°(H)Z < H for some
prime p. The hypothesis of the theorem, together with the previous
lemma, imply that a Sylow p-subgroup of H/Z is reductive of type f.r.
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Therefore, H/O*(H)Z and O*(H)Z/Z are of type f.r., and we are
done by induction.

Suppose then H/Z is perfect, and let K/Z be a maximal normal
subgroup. Then H/K is a non-abelian simple group, and hence has
even order by [4]. Also, a Sylow 2-subgroup S of H/K has order
= 4, as otherwise H/K would have a normal 2-complement.

Suppose S has order 4. Then H/K = PSL (2, q), where ¢ is an
odd prime power. But these simple groups are eliminated as possible
homomorphic images of H/Z by Lemma 4.3. If (S| = 8, then apply
Lemma 2.8 for the prime 2. Here d?s = 8, and so s =2 or 8. By
the (c) part of that lemma, H/K has a subgroup of index s, which
implies s = 8. However, this possibility is ruled out by Lemma 4.1.
Thus, |S| = 16.

If S is non-abelian, then the hypotheses of the theorem imply
that | S| = 16, and S is isomorphic to a Sylow 2-subgroup of G. By
Lemma 2.2, S is of type f.r. However, the only non-abelian groups
of order 16 that occur as Sylow 2-subgroups of simple groups are
dihedral and semi-dihedral. These types have cyclic self-centralizing
subgroups, and by Corollary 3.2, S can have no such subgroup.
Therefore, S must be abelian and |S| = 16. By Walter’s Theorem
[14], H/K = PSL (2, | S|). This contradicts Lemma 4.3, and establishes
the theorem.

It is possible to show that no known simple group can be a factor
group of a group of type f.r. This strongly suggests that a group
of type f.r. cannot be perfect. It would be desirable to have a proof
of this fact, since it would represent a major step in proving that
groups of type f.r. are solvable.

I wish to express my appreciation to Professor I. M. Isaacs for
his invaluable advice during the preparation of this paper. In par-
ticular, he pointed out the short proof of Lemma 4.3. I originally
had a much longer character theoretic proof that did not use the
number theoretic result of Lemma 4.2. Finally, I would like to thank
the referee for carefully reading the first draft, and for making a
number of good suggestions for this revised version.
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OPERATOR VALUED ROOTS OF ABELIAN
ANALYTIC FUNCTIONS

FrRANK GILFEATHER

In this paper, all spaces are separable Hilbert spaces and
all operators are bounded linear transformations. Questions
involving the structure of an operator for which an analytic
function of it is normal or which satisfies a polynomial with
certain operator coefficients have been considered and studied
separately. Using von Neumann’s reduction theory, a unified
approach to these and similar questions can be given. This
method yields generalizations of the cases which has been
previously investigated, including structure results for =-
normal operators. Through reduction theory of von Neumann
algebras, the study of structural questions for a particular
orerator is reduced to the properties of the often simpler,
reduced operators. In all of the applications presented in
this paper, the reduced operators will simply involve algebraic
operators.

In §1, we introduce and study analytic functions +(z), defined
on a complex domain <7 and taking values in a commutative von
Neumann algebra .&~ Such a function will be called an abelian
analytic function; and where there is any question, we shall specify
the algebra .o Using the direct integral decomposition of .o~ into
factors, we obtain the decomposition of + into a normal family of
scalar valued analytic functions on <7 indexed by a real variable.
The main results in this section will be to show that the zeros of
the scalar valued analytic functions can be chosen to be Borel fune-
tions of the real variable. We shall restrict our attention to a class
of abelian analytic functions, called locally monzero, so that each
scalar valued analytic function in the corresponding normal family
has no subdomain on which it is identically zero.

An operator T in the commutant .7’ of . is called a root of
an abelian analytic function +, if ¢(T), the spectrum of T, is con-
tained in = and ¥(T)=0 where ¥(7T) is to be defined in the usual
B* algebraic manner or in an equivalent way using the direct integral
decomposition of .o into factors. Section 2 develops the struc-
ture for roots of locally nonzero abelian analytic functions. The
main result, Theorem 2.1, states that the root of an abelian analytic
function is “piecewise” a spectral operator of finite type. The
structure theorem shows that roots of abelian analytic functions have
hyperinvariant subspaces or are scalar multiples of the identity.

The remaining two sections of this paper are essentially appli-
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cations of the structure theorem for roots of abelian analytic func-
tions to several classes of operators and the further use of reduction
theory in their study. In §3, our investigation leads to theorems
concerning solutions of

(*) f(4) =N,

where f is an analytic function on a domain containing o(4) and N
is a normal operator. The use of reduction theory in the study of
(*) was introduced by the author in [9], and solutions of (*) have
been previously studied by many authors with various restrictions
on f, A, or N. The most complete investigation of the solutions of
(*) has been done by C. Apostol in the setting of the theory of
generalized spectral operators, however, his results are of a quite
different nature from those given here [1]. If we set ¥(2) = f(z) — N,
then +r becomes an analytic abelian function and a solution A of (*)
is just a root of . Hence, we may apply our methods and results;
and in doing so, we are able to obtain two structure theorems for
A. If there is no subdomain of on which f is identically zero, then
f will be called locally monzero. We show that whenever A is a
solution of (*) where f’ is locally nonzero and, of course, where
0(A) is contained in <7, then it follows that A is the direct sum of
two operators; the first, A,, which is algebraic and the second, A4,,
which is “piecewise” similar to a normal operator. In the latter
situation, the summand A4, and the corresponding normal operator
have the same spectrum. TUnder certain conditions, we may conclude
that the solution A of (*) is “piecewise” similar to a normal solution
N, of (*) and that A and N, have the same spectrum. We also
give a decomposition of certain operators satisfying (*) into direct
summands each of which satisfy certain operator valued polynomials.
Thus, we are able to generalize results obtained previously by
C. Apostol, H. Radjavi, and P. Rosenthal and others [1,10-13, 15,
16, 18].

The structure of operators satisfying certain operator valued
polynomials is studied in § 4. An important class of such operators
are the m-normal operators (n X » matrices of commuting normal
operators). An n-normal operator A satisfies a normal valued poly-
nomial of degree » by virtue of the Hamilton-Cayley Theorem; and
moreover, the coefficients of the polynomial are in the center of the
von Neumann algebra generated by A. N. Dunford has studied these
operators primarily from the viewpoint of when they were spectral
operators [6]. Since operators in a type I, von Neumann algebra
are also m-normal, they naturally occur in the study of operator
algebras. Also the structure and existence of hyperinvariant sub-
spaces for certain n-normal operators have been investigated by
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various authors [3-5, 12,13, 15]. We may then apply the theorems
in §1 to m-normal operators showing that they are “piecewise”
similar to spectral operators and obtaining conditions for similarity
which are compatible to those given in [6]. Whenever an operator
A satisfies a monic polynomial of degree less or equal to two with
coefficients in the center of the von Neumann algebra generated by
A, we can use reduction theory to obtain a complete structure
theorem for it. This result will generalize results in [3, 16] and is
closely connected to the work of A. Brown on binormal operators
(2-normal) [2, 11].

Finally in § 4, we give some sufficient conditions for a root of
an abelian analytic function to be a spectral operator and, more
specifically, a scalar type (similar to a normal operator) operator.
For the m-normal case, our results complement those given by
N. Dunford [6]. Also, we give some examples based on an example
introduced by J. Stampfli of a 2-normal operator whose square is
normal yet it is not similar to a normal square root of its square
[18].

The essential component of von Neumann reduction theory is the
concept of the direct integral decomposition of an algebra. For the
details of the direct integral decomposition of a von Neumann algebra,
we refer to [17]; however, we shall introduce some basic notations
and results here. Let ¢ be the completion of a finite positive regular
measure defined on the Borel sets of a separable metric space 4, and
let ¢,, 1 < n < o Dbe a collection of disjoint Borel sets of 4 with union
A. Let HE H, < --- & H, be a sequence of Hilbert spaces, with
H, having dimension » and H, being separable. By

H={ & HMu

we shall denote the space of weakly p-measurable functions from 4
mmﬂﬁmhmMﬂMH%HXG%amgﬂﬂmwwm<unTM
space H is a Hilbert space, and we shall denote the element fe H
determined by the vector valued function f(\) as 84@ SO an) .

An operator A on H is said to be decomposable if there exists
a p-measurable operator valued function A(\) so that (Af)(\) =
AN f(\) for fe H. The operator A is denoted by

A:L@AWMML

Furthermore, every von Neumann algebra & on a separable space
is spatially isomorphic to an algebra of decomposable operators on a
direct integral of Hilbert spaces, such that the von Neumann algebra
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&7 (\) generated by {A(\)}, where A€ .57 is a factor p-a.e. Finally,
we use the fact that if A = g @ A(\)dp(\) generates &7, then A(N)
A

generates the von Neumann algebra .o7(\) p-a.e. Whenever in our
use of this decomposition, there is no confusion over the space 4,
we shall suppress it.

If A is an operator, we shall denote by R(A), R(4), and Z(A),
respectively, the von Neumann algebra generated by 4, the commu-
tant of E(A) and the center of R(A4). N. Suzuki has introduced the
notion of a primary operator. One calls an operator 4 primary, in
case R(A) is a factor; i.e., Z(A) is just the scalar multiples of the
identity. Let A be defined on a separable Hilbert space and let

H= gﬂea H(\)(d)) be the direct integral decomposition of H related
to R(A) for which the algebra R(A)(\) is a factor p-a.e., then this
decomposition is unique in the sense of [17; I. 6]. Thus, the operator
A is decomposed as A = SAGA(x)p(d)n), where A(\) is primarily
p-a.e., and we shall refer to this particular decomposition as the

primary decomposition of A. We shall call a projection central for
T if it is in Z(T). Finally, we shall let R(z; A) denote (I — A)7.

1. Abelian analytic functions. In this section, we shall develop
the notion of an abelian analytic function and investigate its proper-
ties. Let .o be an abelian von Neumann algebra and +¥(z), an &
valued analytic function on a domain < in the complex plane, then
is called an abelian analytic function with domain &. For the usual
facts about B* valued analytic functions, we refer to [7; ILI, 14].

Given an abelian von Neumann algebra .% we may decompose
it into a direct integral of factors. That is, H is unitary equivalent
to a direct integral of Hilbert spaces SA @ H(\)p(dN), and this induces
a spatial isomorphism between .o and the diagonal operators on

SA @ HO)(d\). Thus, H— g @ H(\)(d)); and for Ae . there is a
A

unique g€ L. (4, 1), so that 4 = E @ g\ I\ p(dr), where I(\) is the
A

identity operator on H(\) [17; I, 2.6].
Let 4+ be an abelian analytic funection and .97 the corresponding

von Neumann algebra with SAQ H(\)p(dx) the decomposition of H
given above. Since v+(2) belongs to . for each z, we have

(1) ¥@) = | ©¥(z NIMpaN)

where (¥2, A) corresponds via the isomorphism mentioned above to
¥(z). We first give the relationship between the analyticity of +(z)
and that of (2, \).
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PROPOSITION 1.1. If 4(2) is an abelian analytic function with
domatin =, then y(z, N), given by (1.1), is analytic on = for almost
all v and ||z, N) |l.. s uniformly bounded on compact subsets of 2.
Conversely, let 4(z, ) be a family of functions defined on & X 4,
where & is a complex domain. If ¥(z, N) is analytic in z for almost
all » on the domain =z and if ¥(2, M) € L.(4, 1) with ||z, - )|l
uniformly bounded on compact subsets of 2, then +(2), given by (1.1),
18 an abeltan analytic function with domain <.

Proof. We assume that + is an abelian analytic function on
=7 and that z,€¢ 2. The series ¥(z) = 3, N,((z — z,)"/n!) converges
with N, given by Cauchy’s formula is in .% and z is in some neigh-

borhood S, of z,, If N, = LGB 9. (NI p(dN), then for z fixed in

So v = S 0.0 (2 — z)"/nDI(N) for almost all A. Hence, by
the convergence properties of power series, we may conclude that
(2, \) is analytic in a neighborhood of z, and hence on Zy a.e.
Conversely, we assume that +(z, \) belongs to L.(4, #) and
1 ¥(z, -)|l. is bounded for z in compact subsets of <. For z, in &, let
Pz, M) = 3. 9.0 ((z — z)"/n!) be the power series expansion in a
neighborhood S, of 2z,. Since the funections {g,} are given by Cauchy’s
formula and +(z, -) is measurable, we conclude that {g,} are meas-
urable. We are done if we can show that g,c L.(4, ). That,
however, also follows from Cauchy’s formula and using the hypothesis
that ||y (2, -) ||, are uniformly bounded on compact subsets of .

RemMARK. If it is the case that y(z, \) is independent of A, then
the proposition is trivial. For example, if ¥(2) = f(2)I, then ¥ (z)(\) =
F@)I(\) almost everywhere. In order to save the repetitiousness of
deleting a set of measure zero from every argument, whenever +(z)
is an abelian analytic function on a domain <7, we will always assume
that (2, \) is analytic on a domain containing <.

The main result in this section will show that the zeros of
(2, M) can be chosen in a ¢ measurable way. Such a result consti-
tutes a generalization of the key lemmas in the study of n-normal
operators by N. Dunford [6; XV, 10] and is also related to the
Theorem 1 in [5].

For this problem to be well defined, we must make a restriction
so that (2, \) is not identically zero on some subdomain of & We
shall call an abelian analytic function +r locally nonzero if for every
convergent sequence {z,} in &7 with z, —z,in & then N, /" (¥(2,) =
{0} (#7(A) denotes the nullspace of the operator A). For scalar
valued functions, this is the usual definition of locally nonzero. To
see this, we just let H be one dimensional, then v(z) is just a scalar
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valued function and _#7(v(2,)) = {0} means that (2,) =0. The
following lemmas establish the relationship between ¥(2) and +(z, \)
with respect to this property.

LEMMA 1.2. An abelian analytic function + is locally nonzero
iof and only if ¥(-, N) is locally nmonzero for almost all \.

Proof. First assume that + is not locally nonzero. That is,
there exists a nonzero « € H and a sequence {z,} in & converging to
2, in 2, so that ¥(z,)x=0. If E,={ed|z(\)#0} and E, =
U. M vz, Mz(A) == 0}, then E = E\E, is a set of positive measure
on which 4(+, A) is not locally nonzero.

Conversely, if +¥(-, A) is not locally nonzero for : in a set E of
positive measure, then we can show that +(z) is not locally nonzero.
For this, we let 4(z, \) be zero on the subdomain &, if A€ K. Since
the domain of analyticity of (2, \) contains =, each <2; containg
one of the subdomains of <; and thus, there is a subset F of E
with positive measure so that [Vi.r 2,2 &, a subdomain of <.
Therefore, ¥(z, ) = 0 for A€ F' and z€ &,. Let 2,—2, in &, and
x € H so that {\ | z(\) == 0} = F, then x € ) 4" (¥(z,)). This completes
the proof of this lemma.

Let a locally nonzero abelian analytic function ¥ be decomposed
as in (1.1). The following theorem shows that the zeros of the
functions (-, \) restricted to a compact subset of & can be made
measurable.

THEOREM 1.3. Let +(z, \) be given by (1.1) with domain <& x A.
If D is a bounded subdomain of <r with D C &7, then there exist
disjoint Borel sets E;, 1=0, 1, --- with the measure of A\, E; zero
and for € E;, the analytic function (-, \) has exactly j zeros counted
to their multiplicities in D. Moreover, there exist Borel functions
{rde=, so that if ne Ej;, then r,(\) 1 £ 1 =< 7 are those zeros.

Proof. Since the number of zeros of an analytic function inside
a desk is given by an integral formula, it is easy to see that if n(\)
denotes the number of zeros counted to multiplicity of (2, \) con-
tained in D, then S, = {A [n(\) = k} is Borel subset of 4. Hence, if
we may set E, = S,\S,., then E, is a Borel set; and it follows
that A\Uz, E; has measure zero. We shall fix » and define », on
E,; and this will be clearly sufficient to complete the proof.

Henceforth, we are assuming that E, = 4, 1 <7 < «, and, the
mapping 4 on D x 4 is a Borel measurable map from the product
space into the complex numbers. The projection of {(z, N) [v¥(z, N) = 0}
onto 4 is 4 (a.e.) and by the Principle of Measurable Choice one
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finds a Borel function #,;: 4-— D so that (r,(\), \) is in the null space
of 4, that is, ¢ (r,(\), ) = 0 for all xe 4 [17; I, 4.7]. Consider now
the function (2, M)(z — r.(\))™* = é(z, A). By judiciously applying
Schwartz’s lemma on the modulus of a complex valued function one
can show that ¢(z, \) is uniformly bounded in X\ on compact subsets
in <. Thus by Proposition 1.1 we conclude that ¢ is again an abelian
analytic function. Moreover, it is clear that ¢(-, A) has » — 1 zeros
in D counted to their multiplicity almost everywhere. The propo-
sition now follows with repeated application of the above argument.

The motivation for introducing abelian analytic functions is to
study the structure of certain of their operator roots; and in doing
80, unify several previous investigations. Whenever +(z) is a poly-
nomial with commuting normal coefficients and 7T is an operator
commuting with those coefficients, then (7)) has an obvious definition.
The definition of 4(T') we shall now give will be compatable with this
usual definition when + is a polynomial.

Let 4 be an abelian analytic function on a domain <7 with values

in the von Neumann algebra .o If H= SAGB H(\)p(dn) is the direct

integral decomposition of H corresponding to the decomposition of
<7 into factors; and if Te.”’, then T is a decomposable operator.

That is, T is represented as T = SA@ T\)p(dx) where T(\) is an

operator on H,. Now let T'e %7’ and o(T) C &. Since a(T(\) Cca(T),
almost everywhere, the operator (7(\), ») is well defined by the
usual functional calculus [7, 11].

To complete the definition of 4 (T), let I" be an admissible curve
for ¥(T) in =2. Thus (T, \) = @)™ SFR(z; TN (z, N)dz and
¥(T(\), N) is clearly a measurable operator function. If we can show
that it is essentially bounded, then we may define ¥(T) to be the
decomposable operator given by Y(T)(\) = ¥v(T(\), ). Now let 2z, be
a dense set on I. Since almost everywhere || R(z,; T(V)|| =
l| B(z,; T) ||, we may eliminate a set E of measure zero and have on
the complement of E, [|R(z; T\\) || = ||R(z; T)|| for all zeI'. By
Proposition 1.1, }j4(z, M) |l. M <o for all z on I" and thus
¥z, N)R(z; T(\) || < M on the complement of a set of measure zero

and for all zel. Hence if k=(27ti)‘18 ldz|, we have that
r

(T, M) || = Mk, for almost all v and therefore (T) is a bounded
operator on H if it is the decomposable operator defined by ¥(T)(\) =
Y(T(\), 7). It is clear that ¥(T)e .o’ since ¥(T(\), N) € 7'(\) for
each ». We conclude our remarks on the definition of ¥(T) be noting
that we have actually shown that (T) satisfies the conditions of a
Fubini type theorem. Alternately v(T) may be defined by usual B*
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algebraic techniques as
(1.2) W(T) = @ai)™ Srn/r(z)R(z; T)dz ,

where ¥ (z) is a . valued analytic function defined on a domain
containing ¢(7') and with T'e .’ and the integral converging in the
norm. We may conclude that

| WT) = | @©@ri | v MRE TO)dzay
(1.3 :
= @) | | @ v MRE TO)adNdz

that is, ¥(T)(\) = ¥(T(\), \) almost everywhere.

In the two applications of this theory, we wish to pursue we
note that «(T') coincides with previously understood definitions. If
4r(z) is the polynomial +(z) = N,2" + .-+ + N,z + N,, with coefficients
N, in an abelian von Neumann algebra, then by (1.3) we see that
Y(T) is just N,T* + --- + N, T+ N,. On the other hand, if +(z) is
a scalar valued analytic function, then by (1.3) we have established
that +(T) is the usual operator determined by the standard functional
caleulus [7; VII]. Moreover, in this latter case, the fact that the
definition above for +4(7) and the usual one given by contour inte-
gration are the same as a special case of Theorem 1 in [11].

2. Roots of abelian analytic functions. We shall call T a root
of the abelian analytic function + if ¥(T) =0 where (T) was
defined in §1. If 4 has domain of analyticity & and takes
values in the von Neumann algebra .57 then, by the definition of
¥(T), we are assuming that Te .o’ and that o(T)C .o~ In this
section, we give a structure theorem for all roots of an abelian
analytic function and several applications.

We shall state and prove the main theorem after which we shall
restate it using the language of spectral operators.

THEOREM 2.1. Let + be a locally nonzero abelian analytic func-
tton on <& taking values in the von Neumann algebra &7 and let T
be a root of 4. There exists a normal operator S in &' and a
sequence of mutually orthogonal projections {P,} in & with I = Y P,
so that TP, is similar to (S + L,)P,, where L, is a nilpotent operator
SL, = L,S and both L, and the operator which induces the similarity
are in 7.

Proof. In assuming that T is a root of +(2) we have that
Te.w'. We shall give the structure of T by first decomposing T
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into a direct integral of operators via the direct integral of decom-
position of & and then determining the structure of each reduced
operator in the decomposition of T.

Let H= SAe H(\)p(d\) be the decomposition of H corresponding
to the primary decomposition of & Since T € .97’, we may decompose
Tas T= S @ T(\)(d\). Furthermore, by (1.3) if ¥(T) =0, then
almost evexfywhere ¥(T(\), v) = 0, where (2, \) is an analytic
function in a neighborhood of o(7'(x)). By Lemma 1.2, the analytic
function ¥ (z, \) is locally nonzero in &. In fact, by Theorem 1.3,
there are disjoint Borel sets E; 2 =0,1, ---, where 4\ E; has
measure zero, and Borel functions r,(A), ¢ =1, -+, so thatif Ae E,
then r,(\), ---, 7,(\) are the zeros of (2, A) in o(T) counted to their
multiplicities. Since {F,} determine mutually orthogonal projections
in % we may assume without loss of generality that for almost all
N in 4, ¥(z, \) has &k roots in o(T) counted their multiplicities and
since ¥(A(\), ) = 0 a.e., that p(E,) = 0.

It follows from the measurability of {r.(\)}-,, that the distinct
roots of (2, \) as well as their multiplicities can be chosen measurably.
Thus we let z,(\), ---, 2,(\) be the distinct roots of (2, A) in o(T)
for )\ in the Borel set F, = {\|¥(z, \) has n distinct roots in o(T)}
and let the multiplicity of z,(\) be k,(\). Define 0(\) = min,.; |z,(\) —
2;(\)|, which is also a Borel function. For each ¢, we determine the
algebraic projections

@.1) E(\) = (219)" L. Rz TOV)dz

where I'; is the circle centered at z,(\) of radius 6(\)/2. Since T(\)
is an algebraic operator with ¢(T(\)) < {z.(\)}%=, we have

(2.2) T/EHMN) = [z(MI0) + N/EMNHRM) ,

where N,(\) is nilpotent of order k;(\). Setting

1/2
’

(2.3) R\ = (g Ei(N)E’i(x)*>

then R(\) is invertible on H(A), R\V)E. (MR = P,(\) are mutually
orthogonal self-adjoint projections with I(\) = 3%, P;(\), for ve F,
and

(24) EMTMEM™ = 32 0P0) + L ,

where L(\)* = 0 and P,(\)L(\) = L(\)P,(\) for each 7. The form (2.4)
is what we desired as our structure theorem. The only drawback to
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integrating the expression (2.4) over F', and then taking direct sums
is the boundedness of the projections E,;(\) (the boundedness of R(\)
and R(\)"* only depend on » and the boundedness of the E;(\)).

It is not the case that the projections F,(\) are in general
bounded independent of A and thus the structure theorem is given
in terms of “piecewise” similarity. Let

Gm:{x’anI“Ez(k)Hém’?’:l)zy "'7”}7

and g,(\) the characteristic function of the Borel set G,. Let @,
be the corresponding projections in given by

Q= | ® 0.1 @

and set H, = Q,H and T, = T/H,. Then R(\), R(\)""and L(\) are
uniformly bounded for M€ G, and hence we may define

B, = (- Q) + | @ 0B,

N. = | @ g.0N@v)

and

s=| ® @ zWPoYu@

where the summation under the integral in S is taken over the number
of distinet roots of ++(z, ) in o(T), for example, » for N\ in F,.
Considering all the special conditions on the operators, we have

R,TR;'/Q.H = [S + R,N,E;'|/Q.H
or if we set L, = R,N,R;', then
R,TR;'Q, = (S + L,)Q. .

Finally, it is clear that Se .’ is a normal operator, L,c .’
and SL, = L,S.

REMARK. Recently, decomposable operators on a direct integral
of Hilbert spaces have been investigated by E. A. Azoff [2]. He has
shown that in general, the spectrum of a decomposable operator is
measurable. The results in § 1 and this section imply this result for
roots of abelian analytic functions, so that Azoff’s work is related to
certain results in these sections.

The following proposition will give a connection between the
spectrum of 7 and that of the corresponding normal operator S.
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This will be useful in the next section where we discuss special abelian
analytic functions.

ProrosiTION 2.2. If T and S are as in Theorem 2.1, then the
spectrum of S intersects every connected component of o(T).

Proof. Let =, be a subdomain of <7 containing a connected
component of ¢(T) and let I" = 0=, be an admissible curve which

also is contained in 2. Let K = (Zm')“ls R(z; T)dz, then Ee .o’
.
and E = (2m3)™" SA ® SFR(z; TON)dzp(dn) = SA @ EQ\)p(d) [11]. Clearly

if SFR(z; T(\))d(z) = 0 almost everywhere, then E = 0. Thus there

is a Borel set F' so that E(\) = 0 for A€ F and u(F') = 0. Hence,
the set G = {Ae F|o(T(\)) N =2, # ¢} and consequently for some %
the set G, = {A e F'| r,(\) N &, = ¢} has positive measure. Therefore,
0(S) N =; contains the essential range of z, restricted to G..

REMARK 1. The operator S in the theorem is also a root of
J(2) as well as each of the operators S + L,. Later we shall see
that in special cases where the nilpotent part does not appear, we
will then have all roots “piecewise” similar to normal roots.

REMARK 2. The proof of the theorem can be used to construct
the normal as well as the nonnormal roots of v+(z). Thus we establish
the fact that certain abelian analytic functions have roots. This
is related to work in [4] and [12].

As we stated before the theorem, we may put this result in the
context of the theory of spectral operators on a Hilbert space H.
Our result in this setting then reads: Let T be a root of a locally
nonzero abelian analytic function. There exists mutually orthogonal
projections P, in R(T) so that I = >, P, and T/P,H ts a spectral
operator of finite type.

Before giving an application of this result, we wish to remark
on the roots of abelian polynomial functions vis-a-vis abelian analytic
functions. If f is a locally nonzero complex valued analytic function
defined on a domain containing ¢(T), then f(T) = 0 implies p(T) =0
for some complex valued polynomial. An analogous result holds for
the operator valued analytic functions.

PROPOSITION 2.3. If T is the root of an abelian analytic func-
tion with values in &7 then T is the direct sum of roots of monic
polynomials with coefficients in
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Proof. This follows from the structure theorem if we let (2, M) =
T, (z — 7;,(\)), on the set where N is the number of roots of (z, \)
in o(T) counted to their multiplicities and the Borel functions »,(\)
are the functions given in Theorem 1.3. Thus by equation (2.1)
it follows that p,(Ty) = 0 where T, is defined in the obvious way.

We might point out the importance that a root T of ¥(z) belong to
7" aside from the fact that the proof of Theorem 2.1 would other-
wise fail. In case T is not in .o’ essentially nothing can be deter-
mined, at least along the lines of our results. Let H be a Hilbert
space with orthonormal basis {e,}, n =0, &1, +2, .--. If U is the
bilateral shift of H with respect to this basis and V is the unilateral
shift on {e,},» =10,1,2, ---, and 0 on {e,}, 0= —1, =2, +--, then V
satisfies the abelian polynomial 2* — Uz = +(2).

As a corollary to our main theorem, we shall show that roots of
abelian analytic functions have hyperinvariant subspaces or are multi-
ples of the identity operator. We shall call a closed subspace M in
H hyperinvariant for an unbounded operator A, if MN =2(4) =M
(=7 (A) is the domain of A and will be taken to be dense), and M is
invariant under every bounded operator B which commuted with A
in the following sense: B'<(A) N =2(A) is dense and AB = BA on
B =z (A) N 2(A4).

Let A be an unbounded operator with dense domain and T be a
bounded operator. We say T is quasisimilar to A, if there exist
bounded one-to-one operators X and Y, with dense ranges, so that
XHC 2(A), AX=XT, and TY = YA on <2(A). The following
lemma, extends to the unbounded case a useful tool for proving the
existence of hyperinvariant subspaces.

LEMMA 2.4. Let T be quastisimilar to an unbounded operator
A. If A has nontrivial hyperinvariant subspaces, then T has non-
trivial hyperinvariant subspaces.

Proof. The proof is similar to the usual proof for the bounded
case [13; Theorem 2.1].

Combining this lemma and Theorem 2.1, we have the following
result, the proof of which is straightforward and it omitted.

THEOREM 2.5. Let T be a root of an abelian analytic function.
If T is not a wmultiple of the identity, them T has montrivial
hyperinvariant subspaces.

3. Solutions to f(T) normal. In this section we develop the
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structure of the operator roots 7T of the equation
3.1) f(T)=N,

where f(2) is a complex valued analytic function on a domain &7 > a(T)
and N is a normal operator. Certain results are known as was
mentioned in the introduction; in particular, (3.1) has been studied
with various restrictions on f. If we set (2) = f(2) — N, then ¥ is
a locally nonzero abelian analytic function on a domain & if and
only if f’ is locally nonzero on & (f’ is locally nonzero is also ex-
pressed as f is locally monconstant). Thus we may apply the results
of the previous sections to solutions of equation (3.1) whenever f is
locally nonconstant. The von Neumann algebra generated by {y(2) |z €
=} is abelian and in fact, just R(N), the von Neumann algebra
generated by N and I. Hence, if T has spectrum in = and f(T) = N,
then T commutes with N, so by the Fuglede theorem T<¢ R(N) and
hence T satisfies the condition in the hypothesis of Theorem 2.1.
Moreover, matters are even made simpler in this section if when we
apply our results we let %7 = Z(T) as then we are utilizing the
primary decomposition for 7. Thus in this section, unless otherwise
stated, .&'= Z(T) where T is a solution of (3.1).

To aid in our characterization, we shall use the notion of semi-
similarity, which is motivated by the use of a related concept by A.
Feldzamen for spectral operators [9]. We call A and B semi-similar
if there exists a sequence of mutually orthogonal self-adjoint projec-
tions {P,} commuting with A and B so that I = Y,P, and for each
1, there exists an invertible operator S; on P,H, so that S;j'4S; =
B| P,H. That is, there is a “complete” family of reducing subspaces
for A and B, so that A is similar to B on each of these subspaces.
Let A and B be semi-similar as above. By considering first the
operator X = %, || S;||”'S;P; on H and then Y = %, || S;*||"'S;'P,, we
have that AX = AB and YA = BY, where X and Y are quasiaffinities
[14]. Thus this notion of semi-similarity implies the notion of quasi-
similarity which is used by various authors to describe certain opera-
tors.

THEOREM 3.1. Let f be a locally nonconstant analytic function
on a domain =2 and let N be a normal operator. If T is an operator
with o(T)C = and f(T) = N, then there is a central projection P
of T so that

T = To@Txy

where T,= T|PH and T,=T|(I — P)H, T, is semi-similar to a
normal operator N, d(N,) = d(T,) and N, is a normal solution to
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f() = N| PH. Finally, T, s an algebraic operator with f(T,) = 0.

Proof. Let H :S @ H\)p(dx) be the decomposition of H so
4
that T = gde T(\)(dN) is the primary decomposition of 7. Since

NeZ(T), N = g @D g(V)IN)M(dN), where ge L.(4, ), and moreover

JT(V)) = g(M)I(N) almost everywhere [11].

Let Me F, if and only if f(z) — g(\) has only zeros of multiplicity
one in 6(T). If we let g, be the characteristic function of the set E,,
P = SA @D g. (NI u(dN), then T, = T/P is easily seen to be semi-similar

to a normal operator N, = N/P using Theorem 2.1.

On the complement of E, the function f(2) — g(\) has as least
one multiple root. Since f’ is locally nonzero there are only a finite

number of distinct zeros of f’ in ¢(T). Let z, ---, 2, be the zeros
of f" in 6(T). Now a multiple root of f(z) — g(») must be one of
the numbers z,, ---, 2,. Let F; be the measurable set of » in 4 for

which f(2) — g(\) has the multiple root z;. Then E;, = F; — U;«. F;
are disjoint measurable sets so that 4 = U¢E.. If M, € E;(5 > 0),
then f(z) — g(\,) and f(z) — g(\,) both have the root z;, and therefore,
g is constant on each E;(j > 0). If g(A) = a, on E,(¢ > 0), then T(\)
satisfies the equation f(z) — a, for A in E; and it follows that T(\)
satisfies a complex polynomial p,(2) for xe E.,(¢>1). Thus if P, =
I—Pyand T,=T|PH, p(T) =0 for p=2p, -+ D

From Theorem 2.1 it is clear that o(N,)co(Ty), in fact, z
belongs to the essential range of z,(\) given in (2.4) for some ¢ if
and only if z is in o(N) and such a z is in o(T). Conversely, we
shall show that o(N,) D o(T,). Let N/P,H= N,, then we are considering
f(T) = N, and T, is semi-similar to N,. Let z,€0(T,) and ¢ > 0 be
given. Denote by S, a ball of radius » less than e, centered at z,
with S, 2, and with f(z) — f(2)) = 0 on S, except for z =z, Let
f(z,) = z,, then by the spectral mapping theorem z, € o(N,) and by the
local mapping theorem, there exists a neighborhood S, of 2z, and S, of
z, contained in S,, so that f(gz) =S,

Let E(-) be the spectral measure for N,, then E(S,) is not zero
since z,€ o(N,). Also E(S)e Z(T,) so we denote T, to be T/E(S)H
and similarly N,, and N,.. Thus, f(T,) = N, and N, is the normal
operator semi-similar to T, given by Theorem 2.1. Since o(N,) < S,,
by the spectral mapping and local mapping theorems we have that
S; must contain a component of ¢(T,). By Proposition 2.2 there is
a 2, in o(N,) Co(N,) so that |2, — z,| <e. Since ¢ was arbitrary,
we may conclude that o(T,) C o(N,) and the proof is complete.

Whenever f’ has no zeros on ¢(7) then a theorem of C. Apostol
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has shown that 7T is similar to a normal solution of (3.1) [1]. A
generalization of that result will be given in Proposition 4.5. If,
however, f’ has zeros but (f")"(0) N ¢,(T) is empty, then the operator
T, does not occur need to in the above theorem and we have the
following corollary.

COROLLARY 3.2. Let f be a locally nonzero analytic function
on a domain < and let N be a normal operator. If T is an
operator with o(T)C =, f(T)= N and o,(T) N (f')*(0) = 4, then there
exists a mormal operator N, with o(N,) = o(T), f(N,) = N and T is
semi-similar to N,.

Prior to C. Apostol’s work, it was shown by J. Stampfli that
whenever A" is normal and A is invertible, then A is similar to a
normal operator [18]. It easily follows from Stampfli’s result that
whenever 0¢ 0,(4), then A is semi-similar to an nth root of N. This
result is also an application of the above corollary where, of course,

fz) = 2"

REMARK. That o(T,) = 0(N;) in Theorem 3.1 also follows the
result of C. Apostol, C. Foias, and I. Colojoara when we have first
shown that T, and N, are quasisimilar. For the first author proves
that solutions of (3.1) are generalized scalar operators and the later
authors have shown that quasisimilarity between decomposable opera-
tors preserves the spectrum. Since decomposable operators possess
hyperinvariant subspaces, it follows from C. Apostol’s results that
solutions to (3.1) have hyperinvariant subspaces. However, this fact
is also immediate by applying Theorem 2.5 to solutions of (3.1).

The following theorem and corollary generalize existing theorems
and are obtained by placing some condition on f(z). We shall only
briefly indicate their proofs.

THEOREM 3.3. Let T satisfy (3.1) and let {z;}i-, be the zeros of
J'® in o(T) with multiplicities {n,}s,. Assume that for each 1
there exists a meighborhood N, of z, so that there are at most m
elements in N; N o(T) N f'(z) for each z in o(N). Then there exists
an orthogonal projection P in R(T) so that

T= To@ Txv

where T, = T/PH 1is algebraic and satisfies p(z) = 1%, (z — 2)" and
T, is similar to an operator S, which satisfies a monic abelian
polynomial of degree at most m.

Proof. The proof is similar to the proof of Theorem 3.1 in that
T, is the same operator in each case. Here because of the restriction
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on the spectrum we divide a(To(x)) into at most & distinct pieces so
that each contains at most m points of o(7,(\)) and each is of multi-
plicity one. From such a decomposition the theorem will follow.

COROLLARY 3.4. Let T" be normal where o(T) lies in m sectors
of the plane, each of width at most 2n/n, then T is similar to the
direct sum of a nilpotent operator T, and an operator T,, which
satisfies a polynomial of degree m with coefficients in the center of
the von Neumann algebra generated by T..

4. Operators satisfying an abelian polynomial. In this section,
we give several results in the study of opetators which satisfy

4.1) p(4) =0,

where (z) is a monic polynomial with coefficients which are commuting
normal operators and A commutes with the coefficients. In view of
Proposition 2.3, this problem subsumes the study of roots of abelian
analytic functions. First, we shall discuss in some detail the results
obtained whenever the polynomial is of degree two, and give results
related to Corollary 3.2. As mentioned in the introduction, N. Dunford
has studied »-normal operators from the viwpoint of when they were
spectral operators. We relate our work to those results and to later
works of T. Hoover [13] and H. Radjavi and P. Rosenthal [15, 16].
For example, several authors have shown that whenever A is #-normal,
then A is a scalar multiple of the identity operator or A has non-
trivial hyperinvariant subspaces. These results also follow from
Theorem 2.5.

Recently, H. Radjavi and P. Rosenthal have given a character-
ization of operators satisfying certain polynomials of degree 2.
Specifically, they have studied solutions to 2* + az = N, where N is
a normal operator [16]. The following theorem generalizes their results
and a similar result of H. Behncke [3].

THEOREM 4.1. Let T be a root of p(2) where the degree of p s
less than or equal to 2 and the coefficients of p(2) are in Z(T). Then
there exists a central projection P of T, so that

T=T,D T

where T, = T/PH and T, = TI — P)H, T, is normal, T, is unitarily
equivalent to an operator of the form

s 1)
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on K@ K, where B, C, D are commuting normal operators on K.
Moreover, o(B) ) o(D) = o(T,) and C is positive definite.

The proof of Theorem 4.1 will follow from a direct integral
reduction of T and the next lemma. Recall that an operator is called
primary if the von Neumann algebra it generates is a factor. The
following lemma has a direet elementary proof. However, it does
follow from A. Brown’s nonelementary work [4] and we cite that
as a proof.

LEMMA 4.2. Let A be a primary operator on H (dim H > 2).
If A*+ bA + ¢ = 0 for complex numbers b and ¢, then A is unitarily

equivalent to
[71 BRI }
0 al |’

on K@ K, where {7, a} = 0(4) = {1/2(—b = (B> — 4¢)'»} and B = (0* —
la — 7|2, where p = || A — all).

Proof of Theorem 4.1. Let T = T, T, be the unique central
decomposition of T by projection P so that T, is normal and T) is
completely nonnormal. If T satisfies T* + TN, + N, = 0, then 17 +
T\L, + L, =0 where L, = N,/(I — P)H and L;c Z(T)) (: = 1,2). We
decompose H, = (I — P)H by the primary decomposition of T,. Thus

H = g @ HO\)(d\) and

7= | @ T ,

where T,(\) is a primary operator defined on H,. Moreover, there
exist bounded Borel functions f, and f, on 4 so that for ¢ =1, 2,

L= | @ £MI0u@ -
Therefore, we may conclude that

T\ + L) TN + L(W)I) = 0

almost everywhere. From our proposition, T,()\) is unitarily equivalent
to

g1, h(%)Iz}
[0 kI,

on K, @ K, where I, is the identity operator on K,, where g, h, and
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k are measurable, h(A\) >0 and the projection P(:) onto the sub-
pace K, PO is measurable. We let Q) = I(x) — P(\) and then
POYTMP(Y) = g0)P(), PO TR = 0, PO L@ = h(A)P()
and Q) T\(M)Q(N) = E(W)Q(N) and the result follows.

REMARK 1. That N, N,e Z(A) is not essential to Theorem 4.1.
The same conclusion holds if A is any root of a locally nonzero abelian
polynomial of degree less or equal to 2. We need only decompose 4
as in Theorem 2.1 and thus have g(\)AMW): + ROV)AN) + EQ)IQN) =0
almost everywhere. By Theorem 4.1, there exists a projection Q(\)
measurable with respect to X, so that AMNQN) = r,(MQN),
P)AMN)PO) = r,(M\)Q(\) where P(\) = I(A) — Q(\) and QW) AMN)P(N) =
c(M)Q(\) where ¢(\) is a positive operator on H(\). The more general
result now follows.

REMARK 2. A. Brown called 2-normal operators binormal and
H. Gonsher called them .J, operators [4,12]. Hence, Theorem 4.1
implies that: A is a binormal operator if and only if A is a zero
of a locally nonzero abelian polynomial of degree less than or equal
to 2. For a discussion of the unitary invariant of these operators
we refer the reader to [2].

We can obtain various known theorems as special cases of the
preceeding theorems. For example, we can generalize Theorem 3 in
[16] with the following corollary.

COROLLARY 4.83. Let T" = N, where N is normal and let o(T)
lte in two sectors of the plane each with widih less than 2rn™. Then
there are mutually orthogonal central projections P, P, and P, of
T with I = P, + P, + P, and

T= To@ TI@TZ

where T, = T/P,H is nilpotent of order m, T, = T/P.H is normal
and T, = T/P,H is unitarily equivalent to

B C:l

0 D|’
where B, C, and D are commuting normal operators with C positive
definite.

Proof. Let P, be the central projection so that T/P,H is normal
and T/(I — P,)H is completely nonnormal. If we apply Corollary 3.6
to T/(I — P)H we can obtain P, and P, so that T/P.H is algebraic
and in fact T"/P.H =0 and T/P,H satisfies a monic polynomial of
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degree 2 with coefficients in Z(T/P,H). Using Theorem 4.1 we now
conclude the complete structure of T.

In Theorem 2.1 we see that if the root functions are different
almost everywhere, then the operator zero is semi-similar to a normal
zero. We use this observation in the following result concerning
solutions of an abelian polynomial of degree 2 which will be useful.
It differs from the preceding results in that it utilizes semi-similarity.

PRrROPOSITION 4.4. Let T satisfy an abelian polynomial of degree
2. Then there exists unique central decomposition of T into

TO @ Tl

so that T, is unitarily equivalent to the commuting sum of a normal
operator and a nilpotent operator of index 2. The operator T, has
no reducing subspace on which it is similar to a normal operator
and T, is semi-similar to a mormal operator.

Proof. We let the root functions be {r,(\)}:i., and set M =
(M) = 7N} If g is the characteristic function of M, then

P= SAQBg(?»)I(k);z(dx) is a central projections for 7. We let T, be

the completely nonnormal part of T/P and the proposition follows from
the fact that on the complement of M, r,(\) # »,(\) almost every-
where.

In the case of operators satisfying an abelian analytic function,
we always have by Theorem 2.1 that they are piecewise similar to
spectral operators. The question naturally arises as to when are they
spectral. This has been studied by both N. Dunford and C. Apostol
for the special cases they considered respectively [1, 6]. The following
sufficient condition follows easily from the proof of Theorem 2.1.

PROPOSITION 4.5. Let T be a root of a locally nonzero analytic
abelian function ¥ which has root functions {r,(\)}r, in o(T) satisfying
IMivi |7:(0) — 7;(M) | = 0 > 0 almost everywhere. Then T is similar
to a normal root of .

Proof. The root functions are given by Theorem 1.8 and under
the assumption [l..;|7/2) — r;(A)| > 0 almost everywhere we have
no multiple roots. Furthermore, the projections given by equation
(2.1) are just E,(\) = p(T(\)) where p(2) = II;x (z — r;(\))r:(V) —
r;(A\))"! and are essentially bounded under the hypothesis on {r;(\)}.

In fact, a necessary and sufficient condition can be given in case
iz (r.(0) — 7;(y)) # 0 almost everywhere.
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ProrosiTioN 4.6. If T s a solution of an abelian analytic
Sunction with Il..; (r.(\) — r;(\)) = 0 almost everywhere, then T 1is
a scalar type operator if and only if Tl.e;, (r.,(\) — 7.(0))7 [ T(W) —
r,(\) || ts essentially bounded for 1 < 4, < m.

REMARK. The theorem of J. Stampfli for 7™ normal and T
invertible as well as S. Foguel’s theorem and C. Apostol’s theorem
for »(T) normal and 2'(z) = 0 on ¢(T) and f(T) normal and f'(z) == 0
on o(T) respectively, follow from these propositions.

Unfortunately, these conditions are not sufficient as we shall see
below. In the case of an operator 7T satisfying a second degree monic
polynomial with coefficients in Z(T), we can given necessary and
sufficient for that 7T be similar to a normal solution of the polynomial.

THEOREM 4.7. Let T satisfy a monic second degree polynomial
with coefficients in Z(T). If T:S @ T\)(d\) s the primary
A
decomposition of T, {r,\)}ie, are the root functions of the polynomial
and o(\) = || T) — r.(\) ||, then T is a spectral type operator of
nilpotent index 2 if and only if {o(\) | r.(A) — (V) [T (V) = r(\)}
18 essentially bounded.

Proof. This follows from Propositions 4.4 and 4.6.

We shall give an example which yields some of the results in
N. Dunford’s work. Let H = L)0,1) @ L)0,1) and M, denote the
multiplication operator on L,0, 1) for fe L=(0,1). If

o
A= ,
M, M,

where f, g, h, ke L0, 1), then clearly A satisfies a second degree
monic polynomial 22 — N,z + N, where the coefficients

N, = My 0]
0 My

and

we[Mar 0],
_0 Mfk~gh

Thus, if we take the direct integral decomposition determined by
Lebesgue measure on [0, 1] and H(A) = C?% then N,, N, are obviously

diagonal operators and A decomposes with A(N) = [%&”)) zgﬂ Then

as in Proposition 4.4, there is a Borel set M so that if g is the
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characteristic function on M, then A is decomposed by 5 A g(WIN)pd(N)
4

into A, P A, so that A, is a spectral operator of order 2 and A, is
semi-similar to a normal operator. By Theorem 4.7, A is a spectral
operator iff {|| A(x) — r(N\) || | 7.(\) [7': ve 4 — M} is essentially bounded.
This later condition is equivalent (following the notation in [4]) to

((FO) = B + g0 + RO .« 4 _ 11

o(n)’
being essentially bounded where d(\) = ((f(\) — E(V))* + 4g(NV)A (V)2
Note that 6(A) = 0 on M which parallels the treatment in [4, 6; XI].
Finally, we given an example first introduced by J. Stampfli
[17] to show that sequare roots of normal operators need not be

spectral. Let
4 = M, M,
TTlo M,

on H = L,0,1) €D L0, 1) where f € L*(0,1). Then A% is normal for
each f, however A, is a spectral operator (in fact scalar type operator)
if and only if {t7'f(t)| is essentially bounded. Hence, the example of
J. Stampfli follows. The operator

o
0 M_,

is the square root of a normal operator which is not a spectral
operator.

We close by remarking on several areas of further research
involving these methods and theorems. The theorems in §§1 and 2
can be modified in case +¥(z) takes values in certain commutative
algebras of spectral operators; however, the nilpotent operators become
quasinilpotent and are not necessarily of finite type. Most of the
theorems can be obviously modified if the normal operators are replaced
by commuting scalar type operators whenever similarity or semi-
similarity is involved. Some results in this direction have been obtained
and further work is in progress.
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BEST APPROXIMATION BY A SATURATION
CLASS OF POLYNOMIAL OPERATORS

D. S. GoeEL, A. S. B. HOLLAND,
C. NasmM, AND B. N. SAHNEY

The problem of determining a saturation class has been
considered by Zamanski, Sunouchi and Watari and others.
Zamanski has considered the Cesaro means of order 1 and
Sunouchi and Watari have studied the Riesz means of type
n. The object of the present paper is to extend these results
by considering Norlund means which include the above-men-
tioned results as particular cases.

1. Let {p,} be a sequence of positive constants such that
P,=p,+ -+ +p,—>c as n—> .

A given series >,o,d, with the sequence of partial sums {S,} is said
to summable (N, p,) to d, provided that

=0 k=0
1.1) .
-1 DpeiSy——> A, a8 M —> oo,

P,n =0

and N, are called the Norlund operators.

Let

(1.2) %ao + ki (@, cos kx + b, sin kz) = 3 A,(x)

=1 k=0

be the Fourier series associated with a continuous periodic function
f(x), with period 2z.
We define

(1.3) Ny@) = Ni(f; ) = = 3 Po b Au(@)

1
Pn
and the norm

| f(®) — Nu()]] Eogﬁﬁlf(x) — Ny(%)] .

If there exists positive nonincreasing function ¢(n) and a class of
functions K, with the following properties:

() 11f(@) — Nu(2)l] = o(g(n)) = f(x) is constant,

aD) [If@) — Nu.(@)|| = O(¢(n)) = f(x)e K

149
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and

() f(x)e K = || f(x) — N.(@)|| = O(¢(n)),
then the Norlund operators are saturated with the order ¢(n) and
the class K.

In this paper we prove that the above method of summations is
saturated with the order p,/P, and that the class K consists of all
continuous functions f such that fe Lip 1, where f is the conjugate
function of f. By definition

1
2

1

= tdt,
2

flz) = S:[f(x +t) — flx — t)] cot

if the integral converges absolutely for all z and if
gzlf(x 8 — f@ — ) cot—;-dt
0

is an integrable function.

The problem of determining a saturation class by considering (C,
1) means of the Fourier series of f(x) has been considered by Zamanski
[6]. Sunouchi and Watari [4] have considered the problem by taking
(B, ), k) means of the Fourier series. Some of these results were
later extended by Sunouchi [3] and others [2, 5].

2. We shall prove the following theorem.

THEOREM. Let {p,} be a sequence of positive constants satisfying
the following conditions,

2.1) Pk 1 g5 n—> o for a fixed k=<mn,

n

and

(2.2) 3 [Pas = Pacis| = O(p,) where [p_, =10].

Then the operators N, are saturated witli order p,/P, and the class
of all continuous functions f for which fe Lip 1.

The following lemmas are required for the proof of the theorem.

LemMmaA 2.1. If

Il f(x) — Nu(2)|] = O[%]

n

then f is a constant.
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Proof. From (1.3) we obtain

1 S” N, (x) cos rx dx = 1 Sz i L"‘iA,c(oc) cos 7 dx
T J- T J-ri= P,
=1 fﬂ_‘, S” A, (x) cos rx dx
T k=0 n -z
Ppn a.
Thus,
a, — Lo o, = 1 SI f(x) cos rx do — 1 S” N,(x) cos rx dx
P.,b T J-r T J—=r
- % g cos 7@ [f (%) — Nu(@)ldz ,
hence
P, 1(r _ [m]
— Ao = — e . =0 =& 1.
o ~ Le==a| 170 - M@l 4 | 1do = q 22
Consequently
D + - + Po—rt1 —
@.3) a,{ = } o),

and since p, >0 for all », we have (p, + *++ + Du_rr)/0. =1 for
r=1.

Thus from (2.3) it follows that a, = 0, for each » = 1. Similarly
we can show that b, = 0 for each r = 1. Hence f(z) = 1/2a,, a constant.

LemmA 2.2, If

17@ — M@ = of 2 |
P,

and condition (2.1) is satisfied, then f(x)e Lip 1.

Proof. It can be shown without much difficulty that if

| £@®) — Ny(@)|| = 0[%] ,

then

kﬁ;lp + . p:‘pn-k+1A (x)[l _ ]” o), N<n.

Taking the limit as » — o, and using condition (2.1), we obtain
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(2.4)

B

k=1

IaAk(m)[l — N_’“_H:IH — 0(1).

The left hand side of the above equation represents the (C, 1) mean
of the series

kf; — kA(®) .

Since —kA,(x) = Bj(x), where 3,5, By(®) = 3. (b, cos kx — «a;, sin kx)
is the conjugate series of (1.2), then (2.4) is equivalent to

oD < M

which implies that f(x)e Lip 1, [1].
(05(f) represents the (C, 1) mean of the conjugate series.)

LEMMA 2.3. Assume fe Lip 1. If the sequence {p.) satisfies
condition (2.2), then

1 /@) — No(@)|| = o[_;gﬂ .

Proof. Since, by definition

cos —t— — COS8 [n + —é—]t

8.7, 0 = L 17w, 0 - flw - o) di

2sin —
2

where S,(f, «) denotes the partial sums of the conjugate series asso-
ciated with f(x), we have

N8, 2 = 5= 3, il F, 0)

é‘.p El_g [flx + t) — Flx — t)] cot%tdt

bt
kiz —Zl—glf( x+t)—f (m—t)](jf—s’i—;zjidt.

sin —¢

2
Since the function f(z) € Lip 1, — f + (1/2)a, is identical to f , therefore
@5) @) = N, ) = o= | [Fo+ 0 - o - 9Kt ,

where



A SATURATION CLASS OF POLYNOMIAL OPERATORS 153

K.(t) ———?——1—2 Pa- kcos[k + ;]
P, s1n—2—t

Now by partial summation

K@) = ——— Z (Pa—t — Pusp-s) sin (k + 1)t

= ?};{ i 0(1)} 23 (Puos — Duoyn) sin (b + 1)

i v
P 7t Z (Dot — Pu—s—y) sin (& + 1)t + O[ Pﬂ] ,

by hypothesis. Since f(x) is certainly bounded, the right hand side
of (2.5) becomes

1 (117w + = o = O1L{E, 0o = posc) sin e+ Dtfat

+ 0[%] .

Let us write

171 (e B .
R0 = 3 St—dz—{’;o(p,,_k Dav_y) sin (& + l)u}du.

SinceNf(u)e Lip 1, it 1s an~indeﬁnite i~ntegral of a bounded function,
say f'(u). Further, since f(x + t) — f(x — t) = O(t), as t— 0, while
for fixed n, F,(t) = O(log (1/t)), we can integrate (2.6) by parts to obtain

1+ + 7w - o1Foa + o 2],

noting that the integrated term vanishes at both limits. The absolute
value of this abow{e expression is now,

@.1) O“”]F,,(t)[dt} + 0[_1'1"-] since J* is bounded .
0 P,
Now
12 _ sin (k + Du
n(t) Pn k2=' (pn— Dot i)g "‘———d—_du
1232 _ k0T gin Y
= 53 e = Pkl + D | B gy

However,
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dv =

‘wm sin vy {0(log 1)+ 1)¢) if (k+1Dt<1
O/(k + 13  if A+ 1t=1.

AJTRITI Y

Hence
|1F.®1dt = 0] 2T 5\ [pas = Pacicsl (o + 1) log (110 + 1)0)

+ 3 mlpn_k — Duis | 1/(k + 1)t2]dt

(k+1

T
=N

1/(k+1)

kizo | Dai — pn_k_ll[g (k + 1) log (1/(k + 1)t)dt

0

D=

:o{

n

wr e
+ Si/(k+1)(k + 1)¢* dt } :

b

Further,
1/(k+1) 1 1
S log (1/(k + Lyt)dt = S log <—>du — constant
0 0 U
and
z 1 ’
S”(k+l)mdt < M (constant) ’
therefore
i ~—oll < — = &]
IF.@at = 0{2 35 by = Pl = O 22
from (2.2).

Thus (2.7) and hence (2.6) is O[p,/P,] .
Consequently from (2.5), we have that

| (@) — N.(f, x)|| = o[%ﬂ

which proves the lemma.

The proof of the theorem now follows from Lemmas 2.1, 2.2, and
2.3. )

The authors wish to thank Dr. B. Kuttner of the University of
Birmingham, for his very helpful suggestions.
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PUISEUX SERIES FOR RESONANCES AT AN
EMBEDDED EIGENVALUE

JAMES S. HOWLAND

Let H(x) = T + rB*4 be a self-adjoint perturbation of
the self-adjoint operator T, and suppose that 7 has an eigen-
value 1, of finite multiplicity m embedded in its continuous
spectrum. If the operator

Q@) = A(T —2)7*B*

is bounded and can be continued meromorphically across the
axis at 2,, the asymptotic spectral concentration of the family
H(r) at 2, is determined by the poles of

(1) kA(H(x) —2)7'B* = I — [I + Q)] .

These ‘“‘resonances’’ can be expanded in a series of fractional
powers of «, and therefore have a unitarily invariant signi-
ficance for the family H(x). An example shows that nonanalyt-
ic series may indeed occur; however, if a resonance is an
actual eigenvalue of H(x) for all sufficiently small real «, its
series is analytic. Because the resonances cannot lie on the
first sheet when « is real, these series must have a special
form. In the generic case, they yield, as the lowest order
approximation to the imaginary parts of the resonances, the
famous Fermi’s Golden Rule. The case when 2, is embedded
at a branch point of (1) is studied by means of a simple ex-
ample.

To outline briefly, Puiseux expansions are obtained in §1, and
their special form is noted (c.f. [15, Theorem 4.2]). In §2, a study
of these series for perturbations which remove the degeneracy at \,
leads to Fermi’s Golden Rule. The discussion of spectral concentra-
tion in §3 relies heavily on the arguments of [3], particularly on a
grouping of the resonances into “clusters” which act asymptoticly as
a single simple pole. The examples appear in §4. The appendix
contains a technical result which simplifies not only Theorem 3.1 but
also [3, Theorem 2.1} (c.f. [3, p. 156; Note (1)]). The results proved
here were announced in [4].

Simon [14, 15] has recently discussed a similar problem for N-
body Hamiltonians with dilatation analytic interactions. It is of
particular interest that the Balslev-Combes technique which he em-
ploys reduces the problem to that of an isolated eigenvalue of a
non-self-adjoint operator. This gives an interesting insight into the
occurrence of Puiseux series, and suggests that, in the general case,
resonance series can be viewed as perturbation series for an isolated
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eigenvalue of a suitable non-self-adjoint operator. Simon considers
eigenvalues of arbitrary finite multiplicity, and not, as erroneously
remarked in [4], only simple multiplicity.

Eigenvalues embedded at “thresholds” are not considered by
Simon. Mathematically, a threshold may be variously described as
(i) a branch point of an appropriate function, (ii) a point where the
absolutely continuous part of T changes multiplicity, or (sometimes)
(iii) an end point of the spectrum of 7. The unperturbed eigenvalue
in the second example of §4 is a threshold in all three senses. A
slightly revised Golden Rule is shown to apply to this case.

Let us conclude this introduction with an observation about the
invariant significance of “resonances”. It is tempting, at first glance,
to call a point 4 a resonance of the self-adjoint operator H if the
continuation of some matrix element ((H — {)7'f, f) across the spec-
trum of H has a pole at 4. However, this definition is worthless;
for if H is the multiplication

Hf(x) = xf(x) —oo <& < oo

(which is essentially the general case in which continuation is possible),
then given any point 4 in the lower half-plane, there is a rational
function f(x) for which the continuation of

H=07% 0 = |- 07 f@ P

has a pole at 4. The “resonances” considered by various authors
are always something more than this—poles of an S-matrix [11], of
an integral operator [13], or (as here) of an operator-valued function.
Accordingly, the definition of “resonance” is referred to some struc-
ture in addition to the operator H—such as outgoing subspaces, the
representation of H as a differential operator, or a decomposition
H=T+ AB*.

While something of this sort is necessary in general, in the case
of an analytic perturbation H(x) of an embedded eigenvalue, a uni-
tarily invariant significance can be attached to a Puiseux series 4(x)
of “resonances” in the weak sense which we have scorned above.
There is of course additional structure here, too: the analyticity of
the families H(x) and A(k).

To be precise, suppose that H(k) is an analytic family [6, Chapter
VII] of closed operators, self-adjoint for real &, with essential spec-
trum independent of k. Let )\, be an eigenvalue of H(0) and assume
that for some vector f

((H(k) — O7F, f)
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has a continuation F'({, ¥) to a meromorphic function of (, x£) for
|| <0 and [ — N\| <d. Assume further that

A(E) = N + BEM? 4 - - B #0

is a pole of F((, k) for each k. Since for small x, the term Bx™?
dominates those which follow it, A(k) will be in the upper half-plane
for £ in certain sectors of the complex plane, and will therefore be
an etgenvalue of H(k), because of the assumed invariance of the
essential spectrum. Thus the same analytic family 4(x) represents a
“resonance” for some values of the perturbation parameter, and an
actual eigenvalue of H(x) for others. Put differently, the resonances
are continuations in £ of eigenvalues of H(x), and have, therefore, a
unitarily invariant significance for the family H(k).

1. Puiseux series. The following assumptions will be made
throughout this article. For proofs of the various assertions, see [2,
7, and 10].

Let 57 and 5% be separable Hilbert spaces. Let T be a self-
adjoint operator on £# with resolvent G(z) = (T — 2)™", and let A
and B be closed, densely defined operators from S5# to £#’ such
that 2(T)c 2(4) N 2(B) and

(1.1) (Azx, By) = (Bz, Ay) for every x, ye 2(A) N =(B).

Suppose that for every ze p(T), the operator AG(z)B*, which is
defined on < (B*), has a bounded extension @Q(z) to &', and that
I+ Q(z) is invertible for some z € o(T). Then, for sufficiently small
real £, there is a self-adjoint extension H(k) of T 4 xkB*A the resolv-
ent of which is

(1.2) R(z, £) = G(z) — k[BG@)]* [I + £Q(2)]AG(2)

whenever z € o(T) and I + £Q(z) has a bounded inverse. In particular,
H(0) = T and R(z, 0) = G(z). We shall write H(x) = SxdEx(x). If

A4 (A*) denotes the smallest reducing subspace of T which contains
B(A*), then #Z = _#(A*) N #(B*) reduces both H(x) and T and
H(t) =T on .#*. Only the parts of H(x) and T in .# are of in-
terest in perturbation theory.

Let 2 be a neighborhood of a point A, of the real axis, and 2* =
{zeQ: £Imz > 0}. Assume that Q(z) has a continuation Q*(z) from
0* to 9, which is analytic on 2 except for a simple pole at », with
residue of finite rank m. The part of T in _# is then absolutely
continuous in 2 N R, except for an eigenvalue )\, of finite multiplicity
equal to m. Since @(z) and @ (2) do not in general agree on 2,
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the eigenvalue )\, s in general embedded in the absolutely continuous
spectrum of T.
If we now write

Q*(2) = QF(2) + (v — 2)7'F

where F has finite rank and QZ(z) is analytic at X\, then I 4+ £Q3(z)
can be inverted by a Neumann series for [z — A\,| <0, and [£]| < 0,
if 6, and 4, are sufficiently small. Hence, AR(z, £)B* also has a
bounded extension Q,(z, £) for Im z s 0, which has completely mero-
morphic (meromorphic with finite rank principal parts at all poles
[2]) continuations Qi(z, £) from 2% to |z — \,| < 0, satisfying

I — kQi(z, k) = [I + £Q*(2)]™
={I + &0 — 27 + £QE@]F} I + £Q:()]™ -

The poles of Qi(z, £) need not be real, but for real £ do not lie in
Q%; they are the resonances of this perturbation problem.

(1.3)

THEOREM 1.1. There is an analytic function 4(z, £) on a polydisc
{(z, £): |2 — N | < 0y, |£]| < 0y} such that

(a) For |k| <0, A4d(z, k) has exactly m zeros z,(k), -+, Z,(K)
(repeated according to multiplicity) in |z — N,| < 0,, which are pre-
cisely the poles of Qi (z, k) in |2 — N| <0, For £=0, 2;(0) =\,
(j = 1, Tty m)'

(b) If for some real k, z;(k) is real, then z;(k) is an eigenvalue
of H(k) of multiplicity equal to the multiplicity m;(k) of z;(k) as a
zero of A(z, k).

This result was proved in [2, §5], except for analyticity of
4(z, £) which is clear from the construction of 4(z, £) (see equation
(2.2) below). However, we have omitted the hypothesis of [2] that
Q(z) is compact. This can be done; for in [2] compactness was used
only for two things: (a) to prove that I + £Q*(z) has a completely
meromorphic inverse, and (b) to prove, by references to [10], that
Hi(x) is self-adjoint for real x. However, we have argued above that
(a) holds here, while (b) holds for « sufficiently small [10, p. 59].

Note that [2] F' = AP,[BP,]*.

We shall now show that the resonances can be grouped into
cycles, so that each of the p elements of a cycle is one of the values
of a series expansion in powers of £'?. Such series are known as
Puiseux series [9, p. 130]. For their application to perturbation
theory, see [6; Chapters II and VII].

THEOREM 1.2. The resonances z,(k), ---, z2.(k) may be labeled so
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that each z;(k) has a Puiseux series expansion in k. If
(1.4)  zi(k) =N + @E? + @@ + oo (F=1, 01, p)

18 @ given Puiseux cycle of resonances, where @ is a primitive pth
root of unity, then either the series has the form

(1'5) zi(’f) =N+ QA oot QK™+ aznpﬂw’%z"“/p oo

where Ny, Qp, *++, Apu_1yp are real and Im a,,, <0, or p =1 and all
the coefficients «a, are real.

Moreover, the multiplicity m;(k) is independent of k for £ + 0
and sufficiently small, and is the same for each element z;(k) of a
given Puiseux cycle.

In particular, if z;(k) belongs to a Puiseux cycle with p = 2,
then z;(k) is not real for all sufficiently small real £ = 0. Thus any
actual embedded eigenvalues of H(x) are analytic.

COROLLARY 1.3. For real k= 0 sufficiently small, the multi-
plicity of point eitgenvalues in the interval (N, — 0, N\, + 0,) 18 im-
dependent of k. If for some j, z;,(k) is real for all sufficiently small
K, then z;(k) is analytic in k.

Proof of Theorem 1.2. Since 4(z, 0) = (A, — 2)™, the Weierstrass
Preparation Theorem [1, p. 188] yields that

Az, £) = [(2 = N)™ + gus(K)@Z — N)™ "+« -+ + gy(K)]F(2, £)

where g,, +--, 9., and F are analytic, F(\, 0) = 0 and g,0) = --- =
9n-1(0) = 0. Thus z(x), ---, 2,.(£) are the zeros of a polynomial in 2
with coefficients analytic in £, namely 4(z, £)/F'(z, £). Hence, (c.f. [6,
pp. 63-66}) z,(k), - -, z,.(k) are algebroidal functions having at most
an algebraic singularity at £ = 0, and must therefore have Puiseux
series expansions. The statement about multiplicities is part of this
theory.

Since H(x) is self-adjoint for real k£, R(z, £), and hence Qi (z, k),
is analytic for Imz > 0, so that in the cycle (1.4), one has Im z;(k) <
0 for real x, and each j =1, ..., p. Therefore, the first term of
(1.4) with a nonreal coefficient must have negative imaginary part
for all real £ and j =1, .-+, p. But this can only happen for an
even integer power £** where, moreover, Im «,,, < 0. If all coefficients
a,0™ are real, then because of the factor w, we can only have
p =1or 2. However, if p = 2 and a,0™£"? is the first nonzero term
with n odd, then changing £ into —& introduces a factor %, so that
by proper choice of j, the imaginary part of this term can be made
positive. Since this cannot occur, we must have p = 1.
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REMARK. With perhaps a mild additional hypothesis, stationary
scattering theory [8] shows that, for real £, the absolutely continuous
parts of H(k) and T in (A, — 0, A\ + 0,) are unitarily equivalent.

2. Fermi’s golden rule. In the simple case in which the per-
turbation B*A removes the degeneracy at ), calculation of the reso-
nances up to terms of order £* leads to the venerable Golden Rule
for the line widths I';(x). In order to discuss this, we must recall
the construction of A(z, k) [2, §5].

It was proved in [2, p. 329; Theorem 3.1] that the residue of
Q*(2) at N, is —APJ[BP,]*, where P, is the orthogonal projection
onto ker (T — \,). Hence the operator

2.1 Q:(2) = @7(2) — (» — 2)"AR[BP]*,

which corresponds to the continuous part of T near )\, is analytic
on 2. According to [2, p. 335; Theorem 5.1]

Az, k) = (N — 2)"det [I + [I + £Q/(2)] 'k(\, — 2)'AP[BP]*] .

Using the formula det (I + ST) = det (I + TS) [6, p. 162; Problem
4.17] gives

(2.2) 4z, £) = (N — 2)™det {I + [BPJ*[I + £Q:(2)]'£(\, — 2) APy} .

Now, A and B are one-one on .#(P,) and FZ(|BP)*) = H#(P) [2,
p. 331]. We may therefore write (2.2) as a determinant on ZZ(F,),
and then the factor (A, — 2)™ may be taken inside the m X m deter-
minant to yield

A(, k)

(23) = det {(A, — 2)I. + K[BP]*AP, — £*[BP]*Q:(2)AP, + O(x*)}

uniformly in 2z, where I, is the identity on #(P,) and [I + £Q;(z)]™
has been expanded in a Neumann series.

The operator V, = [BP,)*AP, maps Z(P,) into itself, and is es-
sentially the compression of the perturbation B*A to <#Z(FP,). Using
(1.1), we find that for z, ye &

(V()xy y) = ([BPO]*APOxf y) = (A-Pox; BPoy) = (BPOx; APOy)
= ([APO]*B'Pﬁwy y) = (Vo*x, y)

which means that V, is self-adjoint on <Z(P,). Therefore, with re-
spect to a suitable orthonormal basis ¢, ---, ¢, of Z(P,), V, has a
diagonal matrix
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The perturbation B*A is said to remove the degeneracy at A,
iff the eigenvalues \,, ---, \,, to V, are all distinct. If X(z) denotes
the matrix with entries

Xi(z) = —(QF (2)Ag,, Bg;)
then writing (2.8) with respect to the basis ¢, ---, ¢, yields finally
(2.4) Az, £) = det {0, — &), + £D + £*X(2) + O(£°)}

uniformly in 2z on a neighborhood of X,.

THEOREM 2.1. If B*A removes the degeneracy at N, then z;(k)
s analytic (j =1, +--, m) and

{2.5) 2i(k) = N + £ + £ X;500) 4 O(F)

Taking the imaginary part of (2.5) for real k£, we obtain formally
(k) = —Imz;(k) = —£* Im (Q () Ag;, Bg;) + O(£°)
= —&"Im (B, + 10)V;, Vg,) + O(£?)
= (20) "k ([B.(x — 10) — Bo(ro + 10)]V;, Vi) + O(F)
and hence finally
12.6) I'j(k) = 70T — M) Vs, Vg,) + O(£?)
where V = B*A = A*B, R,(2) = R(z) — (A, — 2)'P,, and
0,(T —\) = @ai)'[R, (N — 10) — R, (\ + 10)} .
Formula (2.6) is Fermt’s Golden Rule.

Proof of Theorem 2.1. We already know that z,(x) = A\, + O(k),
and hence X(z;(k)) = X(\,) + O(r). If we define

L) = 7 (K) — M) -
Then the equation for {;(x) is, by (2.4),

{2.7) det {—kly(k)L, + £D + £*X(\) + O(£°)} = 0.
Expanding and dividing by &™ gives

{2.8) s = L)) -+ (v — Gi(R)) + O(k) = 0.
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Since the polynomial (A, — {) -+ (A, — {) obtained for £ = 0 has dis-
tinet simple zeros, equation (2.8) has m analytic solutions, one asymp-
totic to each root as £k — 0. Thus we may take
Li(k) = Nj + Bix + O(£%) G=1--,m).
Setting j = 1 and substituting into (2.7), we find that
det {£J + £*X(N,) + O(£%)} =0
where

___,CBI
()\'2 - >"1) - ’561

. (A’m - >"1) - ICBL

Expanding (2.7) gives

’CMH()\’z - >‘*1) ce ()’m - >‘*1)(X11(7"o) - 181) + O(’Cm+2) =0
so that, in fact,

,81 = Xu()‘«)) .

3. Spectral concentration. The following theorem extends the
main result of [3] to embedded eigenvalues.

THEOREM 3.1. Assume that there exists a subspace < of 2 (A)N
2(B) such that B < 2(A*), A= C 2(B*), and which is dense
m 2(A) and = (B) in the respective graph norms. Forj=1, <+, m
and k real, choose 8;(k) such that &,(k) = o(1) and Im z;(k) = 0(3;(k))
as £ — 0. Let

S(k) = (;; {t: Re 2,(k) — 8,(k) < t < Re z;(£) + 8,(x)} .
If H(k) = SxdEx(x), then

P, = st — lim S dE.(N) .
S(k)

£—0

As shown in the appendix, the additional hypothesis insures
that, for real k£, the poles of Q;(z, £) are the complex conjugates of
those of Q7 (2, £). Thus we did not need to take into account the
poles of Qi (z, £) when defining S(x), as was done for the corre-
sponding set J, in [3, Theorem 2.1]. In order that & exists, it is
sufficient that either A or B be bounded, or that 4 and B be com-
muting self-adjoint operators.
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Theorem 3.1 has a proof very similar to that of [3, Theorem 2.1],
but cannot be deduced directly from that result because the operator
Q7 (z, k), which corresponds to Q(z, n) of [3], tends to zero as £ —0,
and cannot, therefore, satisfy Hypothesis III (b) of [3]. To avoid
repeating the lengthy arguments of [3], we shall simply carry the
argument along to a point at which the arguments become essentially
identical. A considerable study of [3] is therefore necessary to un-
derstanding the remainder of this section.

In order to surmount the difficulties posed by nonsimple poles,
or poles close together, we shall show that for real £, the resonances
2(k), -+, z,(£) may be grouped into what we shall call clusters in
such a way that, as £— 0, the resonances of a single cluster act
together as a single, simple pole of Q;(z, k), at least insofar as their
asymptotic effect on the spectral measure of H(x) is concerned.

The result of our considerations is a rather detailed description
of the singular part of Q/(z, k).

In the first two lemmas, £ may be complex.

LEMMA 3.2. Let zik)(j =1, ---, N) be the distinct poles of
Qi (2, £). Then Qi(z, k) has the partial fraction expansion

G Qer =320 . BiO) | 16,

= (2 — z4(K)) (2 — zi(k))™
where L(z, £) is analytic in z and £. If z;(k) has a Puiseux series
expansion n powers of £Y?, then BP(k)(k =1, ---, m;) also has an

expansion wn powers of £, and has at most an algebraic pole at
£ =0.

The proof is a simple adaptation of the argument on pp. 69-70
of [6]. Certain additional facts obtained there do not hold here,
since Q(z, ) is not a resolvent. Analyticity of L(z, £) is proved in
the proof of the next lemma.

It follows immediately that for small £ == 0, B{(x) either vanishes
identically or is never zero. Hence, for small £ == 0, the order m;
of the jth pole zi k) of Qi(z, k) is independent of k.

If the terms of the singular part of Qf(z, £) in (3.1) are combined,
we obtain

Qi (e, k) = %EL)) + Lz 1)

where P(z, k) is a polynomial in 2z with coefficients having at most
an algebraic singularity at £ = 0, and 4(z, £) is the analytic function
of z and £ defined in §1.
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LEMMA 3.3. (a) As £—0, Qf(z, £) — Q" (z) uniformly on 0 <
e |z — N| £ 0, for every € > 0.

(b) P(z, k), 4(z, k), and L(z, k) are all analytic in z and k.
Moreover,

(3.2) lim P(z, £) = (z — M) AP,[BP,]* .

Proof. From (1.3) and (2.1) one obtains
(8.3) I —kQf (2 k) =I[I+ k(N — 2)'I'(2, K)AP,[BP]*] 'I'(z, k)
where
I'(z, £) = [I + £Q/(2)]™*

is analytic in z and &, for £ and z — A, small. Expanding the right
side, canceling I on both sides and dividing by £ yields the result.
Analyticity of L(z, £) and the coefficients of P(z, £), as well as (3.2)
follow from the formulas between equations (2.7) and (2.8) of [3],
where the discrete parameter % must be replaced by «.

Assume now that £ is real, and write

2,(£) = Ny(£) — iL75(k) (G=1--,N)

where (k) is real and I";(k) = 0. We shall now describe the group-
ing of the z;(£)’s into clusters. To begin with, we specify that if
I's(k) = 0, then z,(k) is to form a cluster by itself. Otherwise, I";(x) >
0 for small £ = 0, and we shall assume now for convenience that

I'(k) >0 (4=1,---,N).
Then I'j(k) has a Puiseux series, so that
(3-4) Ii(k) = a4 -

where a; > 0 and p(j) is an integer (j =1, ---, m). (If £ is complex
in (3.4), I';() is defined, but no longer the imaginary part of —z;(x).)
For £ = 0, choose d;(k) > 0 such that

9,(k) = o(£?7) (G=1---,m)
while
B0 = 0(3,(x)) (G =1, -+, m)
as £— 0, and consider the intervals
Ji(k£) = (N(K) — 85(K), Ni(£) + 0,(K)) .

If £ is small, the number of component intervals of
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(3.5) Ju(&) U - U (k)

is independent of £, and each component is the union of the intervals
J;(k) corresponding to a certain set of resonances. For the distance
between \;(£) and M\,(k) is of the order of some integral power of &,
and is therefore either much greater or much less than the length
of Ji(x). These sets are the clusters; they are independent of £. We
shall denote the components of (3.5) by

(¢s(£) — 0i(£), ¢i(k) + 0,(K)) G=1L - N)

where N is the number of clusters. We shall refer to ¢;(£) and 0;(k)
as the center and radius of the jth cluster.
It is easily seen that if {2,(k), - - -, 2,(k)} is the first cluster, then

3.6) Vi) — ei(k) = o(0.(x)) G=1 - m).

For if N;(£) and \.(x) belong to the first cluster, the distance between
them is much less than either d;(k) or 0,(x), neither of which can
exceed p,(k). Similarly

3.7 PAK) = o(| ei(k) — cx(K)]) (1=1,2)

because ¢,(k) — c,(k), being determined by the \;(k)’s, is of integral
power order, while 0;(x), being determined by the 6;(£)’s is not.

Similar statements hold for other clusters. The interpretation
of (3.6) is that the resonances of a cluster are asymptotically very
close to the center of the corresponding interval (¢, — 0a, ¢, + 0.),
while (3.7) says that distinct components of (3.5) are asymptotically
very small compared to their distance apart.

LEMMA 3.4. For Imz > 0, and |z — N\ | =< 0,

| P(z, £) || = Cl 4z, £) | (Im 2)™*

where C ts independent of k.

Proof. For each k, the coefficients of P(z, £) are of finite rank,
since they are residues of functions with singular parts of finite rank,
and are also analytic in £. The lemma therefore follows by a proof
similar to that of equation (2.8) of [3].

The procedures of [3] could now be applied to yield an asymptotic
expansion for the singular part P(z, £)/4(z, £) of Q{(z, k). However,
we shall be content to remark that for any sequence k,— 0, the
quantities P(z, £,), 4(z, k,), ete. have precisely the properties of P,(z),
4.(2) ete. which are used in the proof of [3, Theorem 2.1] from
equation (2.10) of [3] onward. The remainder of the proof of Theorem
3.1 follows [3] with essentially no change.
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4. Examples. We shall now consider some simple examples
which illustrate certain phenomena.

ExampLE 1. We shall first give an example in which ¢ nonana-
lytic Puiseux series occurs. Let 57 = Ly(—oco, +c)@ L% and let
e,, ¢, be the usual orthonormal basis of 2. Define

u(t)) (t 0) (u(t) (tu(t))

H, = -

3 0 ¢ 3 cé

where % € Ly(— o0, +), £€? and ¢ is a fixed real number. H, =T
has absolutely continuous spectrum of simple multiplicity, except for
an embedded eigenvalue ¢ of multiplicity m = 2. Let f.(¢), fut) be

an orthonormal pair of functions in L,(— o, + ), and define an
operator Y from €2 into L,(— oo, +co) by

Y(éier + &) = E.11(8) + & 13(2) -

The operator Y* from L,(— o, -+ o) back into £? is then

Yiu = (Su(t)ﬂ(t)dt)el + (Su(t)ﬂ(t)dt)ez .

We shall consider the perturbed operator

H(k) = H, + £V

V= 0 Y)
B (Y* T
and ), > 0. The perturbation V is self-adjoint of rank 4, and its

range has the orthonormal basis {f, f,, €, €.}. If we choose the fac-
torization

where

V=VP=PV

where P is the orthogonal projection onto the range of V, then the
matrix of

Q) = V(H, — 2)7'P
with respect to the orthonormal basis fi, f,, €, e, of the range of V is

0 (c—2)'L
(F () (c— z)_1>"112)

where
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@) F ﬁ(t)fz(t)> Qe
SO 1)

and I, is the 2 x 2 identity matrix.

If we now assume that F'(z) has a meromorphic continuation from
the upper half-plane across the axis in a neighborhood of ¢, then
the equation

P =\ - z)l(

(e —zydet( + £Q(r)) =0
for the resonances reduces to
£ D(z) — B*T()}c + kN, —2) + (¢ + kN, — 2)P = 0

where T(z) and D(z) are the trace and determinant of F'(z). Solving
for (¢ + &n, — 2)* by the quadratic formula yields

z=c¢+ NME+ Eg(2)

where

9(z) = ~~f1z~(T(z) 1V Tz) — 4D(2)) -

For simplicity, let us now take ¢ = 0. Then, if the function
H(z) = T%(z) — 4D(z)

has a simple zero at z = 0, the function g¢(z) has a Puiseux series
expansion

gRR) = a, + @R + ag + .-
where a, = 0. It then follows easily from
2= ME + B (@ + a2+ a4 - )
that
2= ME A+ ak® + a NP 4 OkY)

which means that z{(£) has a nonanalytic Puiseux series in r. We
shall therefore have obtained the desired example, if we can find
Fi(t) and fy(¢) such that H(z) has a simple zero at z = 0.

To this end, let
2\? 1
() = (£
70 <7z:) P+ 1

and

fot) = (2 — 2e) M2ggnt 0<e<t|<1
=0 otherwise .
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Then f, and f, are an orthonormal pair, and since they are real,
F(z) = Fo(z) .
The values of F,,(0) and F/,(0) may be computed from
FL,R) = —(z + 20)(z + 7)™ Imz>0

while due to the fact that f,(¢) vanishes near the origin, the integrals
for F,(0) and F,(0), as well as those obtained for F/,(0) and F'5,(0)
by differentiation under the integral sign are absolutely convergent.
In fact, one has

Fi0) = (2 — 25)—1§ dat _

e<lti<t §
and
Fi0) =2~ 25)‘1S LA
e<lti<t {2
Similarly,
et 1 dt
F(0) = 2(r — e 1’28————-—
W(0) = 2z —zey | 2o
and

Fl,(0)=0.
Hence, one computes that
H(0) = (F,(0) — Fy(0))* + 4F0)

= —4 + 16(x — ”8)_1{81 e i 1 %}

and

H’(O) = 2(F11(O) - Fzz(o))(Fxll(O) - Fzrz(o)) + 8F12(O)F1’2(0)
= —4iB+e) = 0.

It therefore remains to choose e such that H(0) = 0; that is, such
that

TN\ et 1 dE
(3) -9 5y F=00.

But since @(e) is decreasingon 0 < e <1, ®(0+) = + o, and ¢(1—) =
0, there is a unique ¢ in the interval 0 < ¢ < 1 satisfying this equation.

Finally, note that the Puiseux series appears here as a degenerate
case, since in the usual case when H(z) does not vanish at the origin,
g(2) and hence z(x), have two distinct analytic branches.
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ExAMPLE 2. An example will now be given of an eigenvalue of
multiplicity one embedded at an end point of the continuous spectrum,
and perturbed by an operator of rank two, which gives rise to a
resonance or an eigenvalue which cannot be represented as a Puiseux
series. The endpoint appears as a branch point of @*(z). Branch
points of continued quantities occur in Simon’s articles [14, 15] as
“thresholds” for certain processes (that is, the minimum energies at
which the processes can occur). His theory excludes eigenvalues
embedded at thresholds—with good reason, as this example shows.
Most of the thresholds in [14, 15] are embedded in a continuous
spectrum, rather than at an end point. An example of this along
the present lines would be easily constructed. The example is similar
to Example 8.3 of [5, p. 581]. The operator H, = T on L,0, )
¢ defined by

H[u(?), €] = [tu(?), 0]

has absolutely continuous spectrum [0, «) and an eigenvalue at », = 0
with eigenvector

¢ = [0, 1] .
Let H(k) = H, + £V where
Viu(), &1 = [6(), (u, f) + MéE] .
We assume that x, > 0 and

|ir@rar 1.

The perturbation V has rank 2, so the resonances are to be sought
as poles of an analytic continuation of the inverse of the matrix
W(z, £) of the restriction of I + £V(H, — 2)™* to the range (V) of
V. Computing Wi(z, ¥) with respect to the orthonormal basis ¢, f
of .Z2(V), one obtains [5; eq. (8.9), p. 581]

W (1 — k27!
(&, 1) = (/cF(z) 1- l:)»lz”)

where
F) = | 17@) ¢~ 2)de

If we assume that F(z) has a continuation F',(z) from the upper half-
plane across the positive real axis, then the resonances satisfy the
equation

(4.1) Z2=KN — KPFL(R) .



172 JAMES S. HOWLAND

(See [5, p. 581], the third equation from the bottom of the page—in
which there is an error of sign.)
Now choose

1

(4.2) FOF = —7 T

CRIN

so that

2t — (2/r)logz — 2
14 2

F(z) =

where 0 < argz < 2r. The solution of (4.1) then has the asymptotic
expansion

(4.3) 2(£) = £ + (2/7)k% log (k0 — 26k + O(£Y)

which is not of Puiseux type. For £ < 0, z(x) lies in the region 0 <
arg z < 2z, and is therefore a negative eigenvalue (k) of H(x), with
the expansion

ME) = BN + (2/7)E log (—&N,) + Ok < 0.

For £ > 0, the continuation F,(z) of F(z) leads to the solution z,(k)
with argz,(x) = 0, while if F,(z) is replaced in (4.1) by the con-
tinuation F'_(2) of F'(z) from the lower half-plane, one obtains the
solution z_(x) with arg z_(x) = 27. These numbers are complex con-
jugates. If £ is complex, the first situation essentially prevails, in
the sense that the non-self-adjoint operator H(x) has an eigenvalue
at z(k) for all sufficiently small £ in any given sector |argr — x| <
T —0,0>0.
If instead of (4.2), one chooses

(1.4 FOF = 2 cos mayz)

where —1 < «¢ < 1, then one obtains, for a = 0,

F(z) — cot (71'6(/2) — (isi(zg/z)zae—im — 2

where 0 < argz < 27. The solution of (4.2) then has the expansion
(4.5)  2(k) = ), — K cot (ma/2) + £*eem " o\g ese (Ta/2) + O(£°) .

This has the same general behavior: for £ > 0, there is an eigenvalue
ME) with expansion

ME) = N, — E?cot (ma/2) + (—k)*PA{ ese (mar/2) 4 O(k?)

while for £ > 0, there is a resonance. A notable feature, however,
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is that one may obtain a Puiseux series by taking, for example, a =
+1/2, in which case W(z, £) has only an algebraic singularity at z =
0. In fact there are only two sheets, and it is interesting to note

that for £ < 0, these is a pole on the second sheet directly below the
eigenvalue \(k).

Let us see what becomes of Fermi’s Golden Rule in this case.
One has

OH, — NV, Voo = fV].

(See [5, eq. (8.7)]. Note that, in the notation of [5], the V, term
contributes nothing.) Hence, Fermi’s Rule gives

I'(k) = we| f (M) [P -

Applied to the case )\, = 0 with f(¢) given by (4.4), this gives the
following results: (a) for @ = 0

I'(k) = 2%°
which agrees with (4.3); (b) for & > 0
Ir'g)=0

which agrees with (4.5), to order £%, but is not informative; (¢) for
a < 0, I'(k) is infinite, which is not surprising because according to
(4.5), I'() is not O(k?). The Gold from which the Rule is made is
apparently mixed with Brass.

If, however, ), is replaced in the Rule by \, + £\, the resulting
formula

(4.6) (k) = 7nk*0(Hy — Ny — EN) Vo, Vdoy
is an unalloyed success; for one then obtains

(k) = k] f(£N) |2 = 20K cos (ma/2)
which agrees with (4.5).

ArPENDIX. Let T be self-adjoint and suppose that for some
pair of vectors f, g the function

r(2) = (T —2)7'f, 9)

has meromorphic continuations r.(z) across some interval of the real
axis. That the poles of 7_(z) need not be the complex conjugates of
the poles of r.(2) may be seen by taking Tu(t) = tu(t) on Ly(— o, + o)
and choosing f(t) = (¢ + 7)™ and g(¢) = (¢ — ¢)™*. Then ».(2) has a
pole at 2 = —<¢, while r_(z) vanishes identically.
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Similarly, the poles of Q;(z) and Qr(z) are not always conjugate.
For A= (-, f)f and B = (-, g)g are bounded and self-adjoint, and
AB = BA =0 because f and ¢ are orthogonal. Hence, H = T +
B*A = T, and

Q.(z) = Qz) = (G, 9)(-, 9)g = r(2)(-, f)g

so that Q;(z) has a pole at z = —4 while @7 (2) vanishes identically.

We shall give sufficient conditions that @;(z) and Q;(2) have
conjugate poles. Let 7, A, and B satisfy the hypotheses of §1, and
assume that Qi (z) defined by

I—Qf(x) =1+ Q)"

is meromorphic, and has finite rank principal parts at all its poles.
This is true, for example, if £ is small in §1, or if Q*(z) is compact.
Formula (1.2) (with # = 1) then defines the resolvent R(z) of an ex-
tension H of T + B*A, and @,(2) is the extension of AR(z)B*. (It
18 not clear whether or not H is self-adjoint in this generality, but
this is not at issue.) By taking adjoints, [7, eq. (2.2)] one also finds
that BG(2)A* has the compact extension

Q) = [QE)]*
which has the continuations
(1) Q*(2) = [Q*(2)]*
defined on . Similarly, BR(z)A* leads to Q.(z) and Q(z).
THEOREM. In addition to the hypotheses above, suppose that
there exists a subspace &7 of 2(A) N Z(B) such that By < Z(4%),
A C 2(B*), and <7 is dense in Z(A) and Z(B) respectively, in

the graph norms. If Q*(z) is analytic at z, then Qf(2) is analytic
at z, 1ff Qi () is analytic at z,.

Proof. Let P, and P, be the orthogonal projections oﬁto the
closures of the ranges of 4 and B. Then I — P, projects onto ker
B*, so that

P,Q() = Q) and QR)I— P;] =0
for Imz > 0, and hence by continuation
(2) P,Q*(2) = Q7(2)
and

(3) RY(2) Pz = Q%(2) .
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Observe next that by (1.1),
B*Ax = A*Bx xE T .
Hence, for z, g€ =, and Imz > 0, one has

(Q.(2) Bz, Ay) = (BR(2)A*Bx, Ay)
= (BR(2)B* Az, Ay) = (AR(z)B* Ax, By)
= (QL(Z)AOC, By)

where (1.1) was used in the equality next to last. Using that & is
dense in the graphs, and passing to a continuation shows that ana-
lyticity of P,Q;(2)P, at z, is equivalent to analyticity of P;Qi(2)P.,
at z,.

If we now assume that Q*(z) and @/ (z) are analytic at z, then
since (1), together with (2) and (3), implies that

QI (2) = Q@*(2) — [T + QT(R)Q (2)Q7(2)
= Q%) — [T’ + Q' (PR (2)P.Q"(2)

it follows that Q;(z) is also analytic at z,. The other implication is
proved similarly.

It is evident from the proof that if the ranges of A and B are
dense, the assumption that Q*(z) is analytic at z, may be dropped.

However, the example above shows that it cannot be dropped in
general.

COROLLARY. If all poles of Q'(z) are real, then the nonreal
poles of Qf(z) and Qr(2) are complex conjugates.

This follows from (1).

PROPOSITION. Efither of the following conditions suffices for the
existence of 2.

(a) Either A or B is bounded.

(b) A and B are commuting self-adjoint operators.

Proof. If A is bounded, it follows from (1.1) that A=(B)C
7(B*). Hence, one may take &7 = <7(B). Similarly if B is bounded.
Sufficiency of (b) follows easily from [12, p. 358].
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LINEAR GCD EQUATIONS

DAVID JACOBSON

Let R be a GCD domain. Let A be an m X n matrix
and B an m X 1 matrix with entries in R. Let ¢#0, deR.
We consider the linear GCD equation GCD(AX + B, ¢) = d.
Let S denote its set of solutions. We prove necessary and
sufficient conditions that S be nonempty. An element ¢ in
R is called a solution modulus if X +{R* S S whenever
XeS. We show that if ¢/d is a product of prime elements
of R, then the ideal of solution moduli is a principal ideal
of R and its generator t, is determined. When R/{,R is a
finite ring, we derive an explicit formula for the number of
distinet solutions (mod ¢,) of GCD (AX + B, ¢) =d.

1. Introduction. Let R be a GCD domain. As usual GCD
(ay, ---, a,) will denote a greatest common divisor of the finite sequence
of elements a, ---, a, of R.

Let A be an m X n matrix with entries a,; in R and let B be an
m X 1 matrix with entries b, in R for i =1, -+, m; j=1, -+, n.
Let ¢ # 0, d be elements of R. In this paper we consider the “linear
GCD equation”

GCD(a, @, + «++ + a2, + by, -+,

(L.1)
Cpy®y + o0+ Ay + b'my C) =d.

Letting X denote the column of unknows «,, ---, #, in (1.1), we shall
find it convenient to abbreviate the equation (1.1) in matrix notation
by

(1.2) GCD(AX + B, ¢) = d .

Of course we allow a slight ambiguity in viewing (1.1) as an equation,
since the GCD is unique only up to a unit.

Let R™ denote the set of n X 1 matrices with entries in B. We
let S = S(A4, B, ¢, d) denote the set of all solutions of (1.1), that is

S ={XeR'|GCD(AX + B, ¢) = d} .

If S is nonempty, we say that (1.1) or (1.2) is solvable. Note that
X satisfies GCD(AX + B, d) = d if and only if X is a solution of the
linear congruence system AX + B = 0(mod d).

We show in Proposition 1 that if (1.1) is solvable, thend |¢, AX +
B = 0(mod d) has a solution and GCD(A4, d) = GCD(A, B, ¢). Here
GCD(A, d) = GCD(ay, *++, Gy ***y Cmay ***y Cua, ) and GCD(A, B, ¢) =
GCD(4, b, +++, b,, ¢). Conversely we show in Proposition 3 that if

177
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the above conditions hold and e = ¢/d is atomic, that is ¢ is a product
of prime elements of R, then (1.1) is solvable. (Also see Proposition 4).

Let the solution set S of (1.1) be nonempty. We say that ¢ in
R is a solution modulus of (1.1) if given X in S and X = X’(mod ¢),
then X" is in S. We let M = M(A, B, ¢, d) denote the set of all
solution moduli of (1.1). We show in Theorem 2 that M is an ideal
of R and if e = ¢/d is atomic, then M is actually a principal ideal
generated by d/g(p, --- p;), where g = GCD(A4, d) and {p, ---, Di}
is a maximal set of nonassociated prime divisors of ¢ such that for
each p,, the system AX + B = 0(mod dp,) is solvable. This generator
a/g(p, - -+ p,) denoted by ¢, is called the minimum modulus of (1.1).

In §4 we assume that R/t,R is a finite ring and we derive an
explicit formula for the number of distinct equivalence classes of
R"(mod t,) comprising S. We denote this number by N, =N, (4, B, ¢, d).
Let A’=AJ/g and d’' =d/g. Let L ={X+ d'R"| A’X = 0(mod d')}
and L, = {X + d'R"| A’X = 0(mod d'p,)} for s =1, -+, k. In Theorem
3 we show that

(1.3) N, =|L| ii[l (| R/p.R|* — | R/p,R|*ritd)

where 7, is rank A’(mod p;) and s; is the dimension of the R/p.R
vector space L/L,.
The formula (1.3) is applied in some important cases. For example
in Corollary 6 we determine N, when R is a principal ideal domain.
This paper is an extension and generalization to GCD domains,
of the results obtained over the ring of integers Z in [2].

2. Solvability of GCD (AX + B, ¢) = d.

PropoOSITION 1. If GCD (AX + B, ¢) = d s solvable, then the
following conditions hold.
21 (i) dle
(ii) AX + B = 0(mod d) is solvable,
(iliy GCD(A4, d) = GCD(A, B, c).

Proof. Let X satisfy GCD(AX + B, ¢) = d. Thenclearly (i) d|¢
and (i) AX+ B=0(modd). Let AX + B =dU where U is an
m X 1 matrix with entries u, for ¢ =1, ---, m. Then GCD(dU, ¢) =
GCD(duy, +++, du,, ¢) = d. Let ¢ = GCD(A, d) and h = GCD(A, B, c).
Then B = 0(mod g) as AX — dU = B and g|c¢ as d|¢, which shows
that g |h. Also dU = 0(mod &), so that h|GCD(dU, ¢), that is & |d.
Thus h|g, which proves (iii).

PROPOSITION 2. Let e tn R have the following property
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(I) GCD(AX + B, ¢) = 1 is solvable whenever GCD(A, B, ¢) = 1.
Suppose that ¢ = de, AX + B = 0(mod d) is solvable and GCD(A, d) =
GCD(A, B, ¢). Then GCD(AX + B, ¢) = d is solvable.

Proof. There exist X’ in R*and Vin R™ such that AX’' + B=dV.
Let ¢ = GCD(A, d) and let A’ denote the matrix with entries a.j/g
and B’ the matrix with entries b,/9 for 1 =1, ---, m; j =1, ---, n.
Then A’X’ + B'=d'V whered =d/g. Weclaim that GCD(4’, V, e) = 1.
For let » be any divisor of GCD(A’, V, ¢). Then B’ = O(mod k) and
h|GCD(A', B', ¢') where ¢ = d'e. However, GCD(A', B',¢) =1 as
9 = GCD(A, B, ¢). Hence h is a unit, that is GCD(A4’, V,¢) = 1. So
by property (I), there is a Y in R” such that GCD(A'Y + V,e) = 1.
Thus GCD(A(d'Y) + dV, de) = d and if we set X = X’ + d'Y, then
GCD(AX + B, ¢) = d, establishing the proposition.

We show in Proposition 3 that if ¢ is atomic, then e satisfies
property (I).

We require the following useful lemmas.

LEMMA 1. Let e = p, --- p, be a product of nonassociated prime
clements p, +--, p, in R. If GCD(A, B,e¢) =1, then GCD(AX +
B, e) =1 1s solvable.

Proof. Let GCD(A, B,e) =1. We use induction on k. Let
k=1. If GCD(B, p,) = 1, then X = 0 satisfies GCD(AX + B, p,) = 1.
Suppose that B = 0(mod p,). Then GCD(A4, p,) = 1. Hence there is
a j such that GCD(a,, ---, @,;, ) =1. Let X’ in R™ have a 1 in
the jth position and o’s elsewhere. Then GCD(AX’ + B, p) =
‘GCD(AX?, p,) = 1. Thus GCD(AX + B, p,) = 1is solvable. Now let
k>1and let ¢ = p, --- p,_,. By the induction assumption there is
X' in R" such that GCD(AX' + B,¢’) =1. Let B = AX' + B. We
claim that GCD(A¢, B, p,) = 1. If GCD(A, p,) = 1, then GCD(A¢,
B, p,) =1. Suppose that A4 = 0(mod p,). If B’ = 0(mod p,), then
B = O(mod p,), contradicting the hypothesis that GCD(A, B, ¢) = 1.
Hence GCD(B’, p,) = 1, establishing the claim. So there exists a Y
in R* such that GCD((A¢)Y + B, p,) = 1. Let X = X’ + €Y. Then
X = X'(mod ¢’) yields that AX + B = B'(mode¢’). Thus GCD(AX +
B, ¢') =1 since GCD(B’, ¢’) = 1. Also

GCD(AX + B, p,) = GCD((4¢)Y + B, p) = 1,

s0 that GCD(AX + B, ¢'p,) = 1, completing the proof.

LEMMA 2. Suppose that e is an atomic element of R.
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Let {p, -+, .} be a maximal set of mnonassociated
(*) prime divisors of e such that for each p,, the system
AX 4+ B = 0(mod dp,) ts solvable .

Then X s a solution of GCD(AX + B, ¢) =d if and only 1f GCD(AX +
B, deo) = d, where ¢ = de and e, = p, *++ p,.

Proof. Since e is atomic, it is clear that we may select a set
{p, ---, »} as defined in (*). If this set is empty, we let ¢, = 1.
Suppose that X satisfies GCD(AX + B, ¢) = d. Then there is U in
R™ such that AX + B=dU and GCD(U,e¢) =1. Since ¢ ]e,
GCD(U, ¢;) =1 and thus GCD(dU, de¢)) = d, that is, GCD(AX +
B, de,)) = d.

Conversely let X satisfy GCD(AX + B, de,) =d. Then AX +
B =dU and GCD(U, ¢) = 1. Suppose there is a prime p|e and
U = 0(mod p). Then AX + B = 0(mod dp) and the maximal property
of the set {p, ---, p,} shows that p is an associate of some p,. So
U = 0(mod p,), contradicting that GCD(U, ¢,) = 1. Hence GCD(U, p) =1
for all primes p | e and thus GCD(U, ¢) =1, thatis GCD(AX + B, ¢) =d.

PRrOPOSITION 3. Suppose that ¢ = de, AX + B = 0(mod d) s solvable
and GCD(A, d) = GCD(A, B, c¢). If e is atomic, then GCD(AX +
B, ¢) = d is solvable.

Proof. Let e be atomic. By Proposition 2 it suffices to show
that e satisfies property (I). Thus let GCD(A,, B, ¢) =1 where 4,
is an m X » matrix and B, is an m X 1 matrix. By Lemma 2,
GCD(A,X + B,, ¢) = 1 is solvable if and only if GCD(A4,X + B,, ¢,) =1
is solvable where ¢, = p, --- p, is a product of nonassociated prime
divisors of e. However by Lemma 1, GCD(4,X + B,, ¢) = 1 is solva-
ble since GCD(4,, B,, ¢,) = 1. Thus (I) holds and GCD(AX + B, ¢c) =d
is solvable.

THEOREM 1. Let R be a GCD domain. Consider the following
condition

(II) GCD(ax + by, +++, @& + b,, ¢) = 1 is solvable if
GCD(ay, *++, Qp, by, +++, by, ¢) =13

(1) If R satisfies (II), then GCD(AX + B, ¢) =1 is solvable when-
ever GCD(A, B, ¢) = 1.

(ii) If R is a Bezout domain such that GCD(ax + b, ¢) =1 1is
solvable whenever GCD(a, b, ¢) = 1, then R satisfies (II).

Proof. (i) Let R satisfy (II). Let GCD(A, B, ¢) =1 where A
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is an m x » matrix. We prove that GCD(AX + B, ¢) = 1 is solvable
by induction of ». For = = 1, solvability is granted by the suppo-
sition (II). Let % > 1 and let A’ denote the m x (n — 1) matrix with
entries a; ;. fori =1, -+ m; =1, ---, n—1. If ¢ = GCD(ay, -,
., ¢), then GCD(A’, B, ¢') = 1. Hence by the induction assumption,
there exist «, ---,2, in R such that GCD(a,x, + -+ + G2, +
by« Qs+ oot F Q@ + by, ) =10 If b} = @y + =0 + Qs + b;
for =1, ---, m, then GCD(ay, +++, @,y b}, -++, b, ©) = 1. Thus by
(II), there exists x, in R such that GCD(a,&, + b}, +++, @, + by, ¢) = 1.
So if X in R" has entries z, %, ---, 2,, then GCD(AX + B, ¢) =1,
completing the proof of (i).

(ii) Let R be a Bezout domain, that is a domain in which every
finitely generated ideal is principal. Suppose that R has the property
that GCD(ax + b, ¢) = 1 is solvable if GCD(a, b, ¢c) = 1. Let

GCD(a,, +-+, @p, by, +++, b, ¢) =1.

Let A and B denote the m x 1 matrices with entries a,, ---, @, and
b, ---, b, respectively. Then by [3, Theorem 3.5], there exists an in-
vertible m x m matrix P such that PA has entries @, 0, ---, 0. Also
it is clear that GCD(PA, PB, ¢)=1. Let PB have entries b, b}, - -+, b,.
Thus by hypothesis, GCD(ax + b, ¢’) =1 is solvable where ¢ =
GCD(b}, + -, b}, ¢). Hence GCD(Ax + B, ¢) = 1 is solvable, that is B
satisfies (II).

As an immediate consequence of the preceding propositions and
Theorem 1, we state

PRrROPOSITION 4. Let R be a UFD or o Bezout domain such that
GCD(ax + b, ¢) = 1 is solvable if GCD(a, b, ¢) = 1. Then GCD(AX +
B, ¢) = d is solvable if and only if d|c, AX + B = 0(mod d) is solvable
and GCD(A, d) = GCD(A, B, c).

We remark that we do not know whether there exists a GCD
domain in which (II) is not valid. Any Bezout domain satisfying (II)
is an elementary divisor domain [3, Theorem 5.2].

We conclude this section with the following result.

PROPOSITION 5. Let R be a Bezout domain. Suppose that (0)
GCD(ax + b, ¢) = 1 is solvable whenever GCD(a, b) =1 and a |c. Then
GCD(ax + b, ¢) = 1 is solvable whenever GCD(a, b, ¢) = 1.

Proof. Let GCD(a,b,c)=1. If a’=GCD(a, c), then GCD(a’,b) =1
and a'|c. By the assumption (0), there is 2’ in R such that
GCD(a's" +b,¢) =1. If uw = a2’ + b, then o’ | (v — b) and since R is
a Bezout domain, there is an z in R such that ax + b = u(mod ¢).
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Thus GCD(ax + b, ¢) = 1 since GCD(u, ¢) = 1.

Let a|¢ and let v: R/cR— R/aR be the epimorphism given by
Y(r + ¢R) = r + aR for all r in R. Let G(resp.G’) denote the group
of units of R/cR(resp. R/aR). If v:G— G is the induced homo-
morphism, then note that (0) is equivalent to the condition that
V(@) = G'. (See [5].)

3. The minimum modulus. Let the solution set S of
GCD(AX + B, ¢) = d be nonempty. Then

M={eR|X+tR"< S for all XeS}

is the set of solution moduli of GCD(AX + B, ¢) = d.

Note that ce M for if Xe S and X = X'(mod ¢), then AX + B =
AX' 4+ B(mod ¢), so that d = GCD(AX' + B, ¢).

It is obvious that M = R, that is S = R if and only if d =
GCD(4, d) = GCD(A, B, ¢) and GCD(A/d(X) + B/d, ¢/d) =1 for all X
in R".

THEOREM 2. Let R be a GCD domain. Let GCD(AX + B, c¢)=d
be solvable. Let ¢ =c¢/d = [[i.e;. Let é, =e, ++-¢,_1€., - €, for
1=1, -+ k.

(1) M is an ideal of R,

(2) M2NEt, M, where M, is the ideal of solution moduli for
GCD(AX + B, de,) = d.

(3) If each é, satisfies property (I) of Proposition 2, then
M= N, M; and M is a principal ideal if each M, is principal.

(4) If e is atomic, then M is a principal ideal generated by
d/g(p, - -+ p.) where g = GCD(A, d) and {p,, ---, p.} 18 defined in (*)
of Lemma 2.

Proof.

(1) As Sis nonempty, the set M is well-defined and o, ¢ belong
to M. Let ¢, t,bein M and let re R. Let Xe S andlet Ye R*. Then
X+t YeSand hence (X+t,Y)+t(—Y)eS, thatis X+ (¢, —¢)Ye S
which shows that ¢, —t,e M. Also X + ¢,(rY)eS, that is X +
(tr)YeS. So treM and thus M is an ideal of R.

(2) As d|c we let ¢ = de. Let S; denote the solution set of
GCD(AX + B, de,) = d where ¢ = [[%_,e;. Then clearly S =i, S..
Let teNf, M,. Let XeS and let Ye R*. Then X +tYe N, S;
since XeN.S,. So X +tYeS, that is te M, which proves that
M2 N M,.

(3) Assume that each &, satisfies property (I). We prove that
Mc M, for i=1--- k. As g = GCD(A, d) = GCD(A, B, ¢), let
A" = Alg, B = Bfg, and d = d/g. Let ¢ be fixed and let X, e S,.
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Then A'X,+ B’ =d'U where GCD(U,e¢;) =1. We claim that
GCD(e;A’, U, é;) =1. For let h be a divisor of GCD(e;A', U, é;). Then
A’ = 0(mod k) since GCD(h, e;) =1. Thus h|GCD(A', B, d’e), that
is h|1. So by assumption there exists X’ in R" such that

GCD((e,ANX' + U, é,)=1.
Let X=X, + d'e;,X’. Then for j =1, ...k,

GCD(A'X + B, d'e;)
= d' GCD((e,ANX' + U, ;) = d’ .

Hence X e i, S;, thatis Xe S. Now let te M and let Ye R*. Then
X+tYeSandso X+ tYeS,. However, X +tY = X, + tY(mod d’e;)
and thus X, +tYeS,, that is te M,, which proves that M & M,.
So by (2), M = ., M,. Moreover, if each M, is a principal ideal,
say M, =t,R, then M., M, is a principal ideal generated by the
LCM(t,, -+, t,).

(4) Let ¢t be any element of M. We show that d/g |t where
g = GCD(4, d). First note that S is the solution set of GCD(A'X +
B, d¢) = d where A’ = A/g, B’ = Blg, and d’ = d/g. Let XeS and
let A’X + B =d'U. Then GCD(A(X +tY) + B, de) =d for all Y
in R*. So GCD((A't)Y + d'U, d’e¢) = d’ and thus (A't)Y = 0(mod d’)
for all Yin R*. Hence At = O(mod d’) and since GCD(4’, d') =1, it
follows that d’|¢.

Now suppose that e is atomic. By Lemma 2, S is also the so-
lution set of GCD(A’X + B, d'e)) =d where ¢ =p,---p, and
{p,, ---, ps} is defined in (*). Thus M is also the ideal of solution
moduli of GCD(A’X + B’, d'e¢,) = d’. Let M; denote the ideal of
solution moduli of GCD(A'X + B',d'p;) =d’ for t =1, --- k. Then
Lemma 1 shows that (8) can be applied to yield that M = Ni, M.
We prove that each M/ is a principal ideal generated by d’p,. Clearly
d'p,e M{ fort =1, --- k. Let 1 be fixed and let ¢ be any element in
M;. Then as shown earlier, d’' |t say ¢ = d't’. By (*) there exists X
in B* such that A’X + B’ = 0(mod d'p;). Thus GCD(A/, p;) = 1 since
GCD(A', B', d'¢) = 1. So there is a j for which GCD(A'E;, p;) =1
where E; is the » x 1 matrix with 1 in the jth position and o’s
elsewhere.

Now assume that GCD(', p;) =1. Let X' = X + tE;. Then
GCD(A'(X'—X), d'p,)=d GCD{'A’E;, p;)=d’ since GCD(t'A’E;, p;)=1.
So GCD(A'X' — A'X, d'p;) = d’ and thus GCD(A'X' + B, d'p,) = d’
as B= —A'X(mod d'p;). Hence GCD(A (X’ + t(—E;)) + B, d'p)=4d
since te M;. That is GCD(A'X + B, d'p;) = d’ and thus d'p,|d,
which contradicts that p, is a nonunit. So the assumption that
GCD(t', p;) = 1 is untenable, that is p,|t’. Thus d'p, |t proving that
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M; = d'p,R. However M = ‘., M!, so that M is a principal ideal
generated by the LCM(d'p, ---, d’'p,), that is M is generated by
A'p, -+ py.

The generator d'p, --- p, of M is called the minimum modulus
of GCD(AX + B, de) = d.

4. The number of solutions with respect to a modulus. Let
GCD(AX + B, ¢) = d be solvable where ¢ = ¢/d is atomic. If ¢ in R
is a solution modulus of GCD(AX + B, ¢) = d, then S consists of
equivalence classes of R*(modt). If R/tR is also a finite ring, we let
N, = Ny(A, B, ¢, d) denote the number of distinct equivalence classes
of R*(mod t) comprising S.

For R/tR finite, let |t| = | R/tR| denote the number of elements
in R/tR. Note that if ¢,|¢, then each equivalence class of R"(mod t,)
consists of |t/t,|" = ([t |/|t, )" classes of R"(modt). Thus if ¢ is a
solution modulus and ¢, denotes the mininum modulus of GCD(AX +
B, ¢) = d, then N, = |t/t,[* N;. In Theorem 3, we explicitly deter-
mine N,

The following lemma is also of independent interest.

LEMMA 3. Let R be a GCD domain and suppose that R/AR 1is
a finite ring. Let p, ---, D, be nonassociated elements such that B/p.R
18 a finite field for © =1, --- k. Let A be an m X n matriz and let
r, denote the rank of A(modp,) for t=1 ---, k. Let ¥ ={Xe
R"|AX = O(mod d)} and L ={X + dR"|Xe ). Let ¢ = 1t 2;
and let &' = {XeR"| AX = 0(mod de,)} and L' = {X + de,R"| X € &'}.
Let &, = {XeR"| AX = 0(mod dp,)} and L, = {X + dR" | X e &£} for
1=1 - k. Lt H={X+ ¢R"| Xe &'} and H,= {X + p,R"| X € &}
Jor v =1, --- k. Then

(1) IL'|=|L|IH]
and
(= =1 H].

L/L, is an R/p,R wvector space of dimension s, and
|H,| = | R/p,R|""*% for 5 =1, «++, k.

s, = o if and only tf for each X im & there exists X’
i &, such that X' = X(mod d) .

(4) If GCDW, p;) =1, then s, = o .

|L| =1 i and only if n = rank A(mod p) for each
prime pld .

(2)

(3)

(5)
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Proof.

(1) In the obvious way, L, L', and H are R-modules. Let
0. L' — H denote the R-homomorphism defined by o(X + deR") =
X + ¢,R" for all X in &¥’. Then clearly Ker o = {¢,Y + de¢,R"| Y € &~}
so that L = Ker 0 under the R-isomorphism 7: L — Ker ¢ defined by
(Y + dR") = ¢,Y + de,R* for all Y in & Thus |L'|=|L||H]
since Imo = H. We now show that H is isomorphic to @, H,, the
direct sum of the R-modules H,. Let v: H— @, H, denote the
R-homomorphism defined by v(X + ¢,R") = (X + p,R*, ---, X + p.R")
for all X in &¥'. If X+ ¢R"ecKerv, then X = O(mod p;) for
1=1, ---, k, that is X = O(mod ¢,), which shows that vis 1 —1. To
show that Im~v = @}, H,, let X, e &, for ¢ =1, .-+, k. Since R/dR
is finite, it is easy to verify that d is atomic. Thus let d = d, [Jt., pr
where m; = 0 and GCD(d,, »;) = 1. By the Chinese remainder theorem
there exists X in R™ such that X = 0(mod d,) and X = X,(mod p*)
for =1, ..., k. However, AX, = O(mod p?*') for 1 =1 -+, k, so
that AX = 0 mod (d, [T¢-, p1*"), that is AX = 0(mod de,). Thus X +
¢, R*e H and (X + ¢,R") = (X, + p,R", ---, X, + p,R"). Hence 7 is
an isomorphism and | H| = It | H)|.

(2) Let Li={X+dp,R"|XeF)} for i =1, ---, k. Let 7 be
fixed. Let v:L;— L, denote the R-homomorphism defined by
(X + dp;R*) = X + dR™ for all X in <. Then clearly Ker v =
{dY + dp,R"| AY = O(mod p,)} and it follows that

[Kery|=|R/p,R["" = |p, """

where r; = rank A(mod p,). Thus |L;| = |p,|" " | L, | since Imy = L,.
However by (1), | L;| = |L|| H;|. Also since L, is an R-submodule
of L, the quotient module L/L, is defined and |L|=|L,||L/L,]|.
Thus we obtain that | H;| | L/L;| = |p;|" ™. We now show that L/L,
is an R/p,R vector space. Let (X) = X+ dR" for X in R*. Then
L/L; = {{X>+ L;| Xe<}. Forrin R, let #=7r + p,R in R/p,R.
We define #((X) + L;,) = (rX) + L; for all » in R and X in &~
We claim that this is a well-defined R/p,R multiplication on L/L,.
For let #¥=# and (X)+ L,=<X')+ L;,, where r,ve¢R and
X X'e” Then r— 1" =o(modp,) and (X) — (X’'>e L,, that is
(X — X">e L,. Thus there exists Y in &, such that (X — X") =
<Y). We must show that X))+ L, ={'X') + L;, that is
rX—7rX>eL,. We write »X—7X =(@r— )X+ rX-X).
However, X — X’ = Y(mod d) and thus »(X — X’) = rY(mod d). So
rX —rX =@ —r)X+ rY(modd) and (r — )X + rY e &,. Hence
(rX — r"X") € L,;, which establishes the claim. It follows immediately
that L/L; is an R/p,R vector space since L/L, is an R-module.

Let s; denote the dimension of the R/p,R vector space L/L,.
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Then |L/L;| =|p,|* and as | H,||L/L;| = |p;|*"", we obtain that
|H||p: "% = |p;|"%. Thus o<s,=mn—r, and |H|=|p, """+,
which completes the proof of (2).

(3) As|L|=|L,||p % it is immediate that s, = 0 if and only
if L = L;, that is if and only if for each X in & there exists X’
in & such that X’ = X(mod d).

(4) Suppose that GCD(d, p;) = 1. Let Xe & By the Chinese
remainder theorem there exists X’ in R"™ such that X’ = X(mod d)
and X’ = O(mod p,). Thus AX' = 0(mod dp,), so that s, = o by (3).

(5) Let » be a prime dividing d and let d = dp. Then L =
{X + dpR"| Xe &¥}. However as shown in the proof of (2), |L| =
|p[* | L,| where r, = rank A(mod p) and L, ={X + d,R"| X e &¥}.
Thus if |L| =1, then n = rank A(mod p) for any prime p|d. The
converse is trivial.

THEOREM 3. Let R be a GCD domain. Let GCD(AX + B, ¢)=4d
be solvable and suppose that e = c/d is atomic. Let A’ = Alg and
d' = d/g where g = GCD(A4, d). Lett, = d' [I%, p, denote the minimum
modulus of GCD(AX + B, ¢) = d where {p,, ---, p,} is defined in (*)
of Lemma 2. Suppose that R[t,R is a finite ring. Let L =
{(X+ dR"| A’X = 0(mod d')} and L, = {X + d’'R"| A’X = 0(mod d'p,)}
for i =1, «-< k. Then

(4.1) Ny = | LITL (o] = o)

where r, denotes rank A’'(mod p,) and s, denotes the dimension of the
R/p,R vector space L|L,.

Proof. Let S denote the solution set of GCD(AX + B, ¢) = d.
As g = GCD(A, B, ¢), let B = B/g. Then by Lemma 2, S is also the
solution set of GCD(A’X + B, d’e,) = d’ where ¢, = [[{..p,. Let &7
denote the set of X in R" such that A’X + B’ = O(mod d’). Let &4
denote the set of X in R" such that A’X + B’ = O(mod d’p,) for
1=1 .- k. It is clear that S=.\Ui, & Let T,={X+
t,R*| XeS}. Then | T,| is what we have denoted by N,. Also let
T={X+tR"|Xe}and T, = {X+ t,R" | Xe &} fori=1, --- k.
Hence T, = T\U:. T, and by the method of inclusion and exclusion

(4.2) Nto = | T,| = ;(_1)‘1' | T, |

where the summation is over all subsets I of

I={, -,k and Tr = T..

Now let &4 = Nie: & and d} = d' [1.c; p; for each subset I of
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I.. Then it is easy to see that .94 is the set of X in R™ such that
AX+ B =0modd)) and T, = {X + t,R"| Xe &4}, Let T/ ={X+
diR*| Xe %4} and let I' = I,\I. Then | T;| = | T;|ILicr | p:|", since
X + d;R" consists of |t,/d}|" = TI.cr | p:|" distinct classes of R"(mod ¢,).

Let &4 denote the set of X in R" such that A’X = 0(mod d}).
Let L) = {X + d)R*"| Xe &4}. As &4 is nonempty for i1 =1, .-+, k,
an argument involving the Chinese remainder theorem shows that
each &7 is nonempty. Hence it follows that | T';| = | L}|. Let L =
X+ dR"|Xe) and L, ={X+ dR"| XeH,} for i =1, -+, k.
Then (1) and (2) of Lemma 3 yield that |L}| = | L| [I;e; | 0" "%
where 7, = rank A’(mod p,) and s, = dimension of the R/p,R vector
space L/L,.

Hence by (4.2),

N, = LIS (=" I 2. T | p, |

where the summation is over all subsets I of I, and I’ = I,\I. Thus
we may write

k
Ny = | LITL [ S (— 17 I | o]

where the summation is over all subsets I of I,. However,
k
Lt (1 — | p [Trite) = ; (——1)"' ile_II | D4 |T(rited |

2

which yields the formula (4.1) for N,. This completes the proof of
the theorem.

We remark that if p is the highest power of p, dividing d',
then s; is also the dimension of the R/p,R vector space K}/K, where
K} ={X + pi“R*| A’X = 0(mod p7)} and

K, = {X + pi"R" | A’X = 0(mod p7*)} .

Also note that »,=1 for 1 =1, ---, k.
In Corollaries 1 and 2, the notation is the same as in Theorem 3.

COROLLARY 1. Let GCD(AX + B, ¢) = d be solvable and suppose
that ¢ = ¢/d is atomic. Let R[t,R be finite where t, = d' [[i., p, is
the minimum modulus of GCD(AX + B, ¢) = d.

(i) If GCD(d, e) =1, then

(43) N, = LI (ol = |l -

(it) If |L| =1, then
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(.4 N, =TT (p.l = 2.7,

where r, =n if p,|d.
(iii) If »' = rank A’'(mod p,) for ¢ =1, ---, k, where n' denotes
the smaller of m and n, then

*.5) Ny = LI (o0 = [2.") .

(iv) N, =1 f and only if (a) | L| = 1 and there exists no prime
ple such that AX + B = 0(mod dp) is solvable, or (b) n =1 and
[p| = 2 for any prime p|e such that AX + B = 0(mod dp) s solvable.

Proof.

(i) If GCD(d, p;) =1, then (4) of Lemma 3 shows that s, = o
in (4.1). Hence if GCD(d’,¢) =1, then s, =0 for ¢t =1, ---, k, which
yields (4.3).

(ii) Suppose that |L|=1. If p,|d’, then » =», by (5) of
Lemma 3 and thus s, = o since s, < n—r,. However if GCD(d', p,) =1,
then s, = o, so that (4.4) is immediate from (4.1).

In particular if d =1, then N, is given by (4.4). If A’ is in-
vertible (mod d’), then (4.4) also applies.

(iii) If » = r,, then s; = o. If m = r,, then the criterion in (3)
shows that s, = o. Thus (4.5) follows from (4.1).

(iv) Suppose that N, =1. Then by (4.1), |L| =1 and thus
s;=o0 for ¢=1 --- k. If p, is a prime dividing ¢ such that
AX + B = 0(mod dp,) is solvable, then |p;|" — |p;|" " =1, so that
n=7r,=1and |p;|] =2. Thus either (a) or (b) holds. Conversely
if (a) holds, then N, =1. If n =1, then clearly | L| =1 and hence
(b) implies that N, = 1.

COROLLARY 2. Let GCD(AX + B,c¢) =d be solvable and let
e = c/d. Suppose that R/cR is a finite ring. Then

(4.6) N.=|Ll]gel T (L = |p.] ") .

Proof. Since R/cR is finite, e is atomic. Thus ¢, = d' []5, p; is
the minimum modulus of GCD(AX + B, ¢) = d. Also R/t,R is finite
since ¢, |c, so that N, is given by (4.1). However N, = [c/t,|" N,,

which yields the result (4.6).

COROLLARY 3. Suppose that R/cR 1s a finite ring. Then
GCD(ax, + -+ + a,x, + b, ¢) = d s solvable tf and only if d|c and
GCD(a,, -+, a,,d)=GCD(a,, -+, a,, b, ¢). Leta;,=aj/gforj=1, ---, n
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where g = GCD(a,, -, a,, d). Let {p, -+, i} be a maximal set of
nonassociated prime divisors of e = ¢/d such that GCD(ay, -+ -, ai, ;) =1
for v =1, --- k. Then

(@) No=lellgel T = 1p.]7) .

Proof. Suppose that ¢ = de and g = GCD(a,, -+, a,, b, ¢). Since
R/cR is finite, d is atomic and R/pR is a finite field for any prime
p|d. Hence as ¢g|b, a standard argument shows that ax, + -+ +
a2, + b = o(mod d) is solvable and has |g||d|*" distinct solutions
(mod d). Thus GCD(ax, + --- + a,x, + b, ¢) = d is solvable since e
is atomic. Let d’ = d/g and b’ = b/g. Since GCD(a;, ---, a,, d'p,) =1
and R/d'p,R is finite, ax, + -+ + a,x, + b = 0(mod d’p,) is solvable

fori=1, .-+ k. It follows that t,=d’' [[%, »; is the minimum modulus
of GCD(ax, + -+« + a,x, + b, ¢) = d. Let A’ denote the 1 x » matrix
(@, -+, a;). Then rank A'(modp,)=1 for ¢=1 --- k. Also

%, + +++ + a,x, = o(mod d’) has |d'|*™* distinct solutions (mod d’).
Thus by (iii) of Corollary 1,

N, =@ T (p 0 = 12,77,

which yields (4.7).

COROLLARY 4. Suppose that R/cR is a finite ring where ¢ = de.
Let g =GCD(a, -+, a,, d) and a;=a,/9 for 1 =1 -+, m. Then
GCD(a,@ + by, +++, @4ux + by, ¢) = d ts solvable if and only if

(1) GCD(a,, d)|b, for i =1, ---, m,

(2) ab; = ab(modd) for 1=t < j=m,

(3) 9=GCD(a, -+, ap, b, +--, b,, ©).

Let {p, ---, v} be a maximal set of nonassociated prime divisors of
e such that for each p,, GCD(a,;, dp,)|b; for i1 =1 ..., m and
a; = ajb(mod dp,) for 1<i < j=<m. Then

N.=lgel [T (L= pa]) .

Proof. Let A and B denote the m x 1 matrices with entries
ay +++, @, and b, -+, b, respectively. Since R/dR is finite, the reader
may easily verify that the system Az + B = 0(mod d) is solvable if
and only if (1) and (2) hold. Thus as ¢ is atomic, GCD(Ax + B,¢) =d
is solvable if and only if (1), (2), and (3) hold. Let GCD(Ax + B,c¢) =d
be solvable and let d’ = d/g. Then it follows that ¢, = d' [I}-, ps is
the minimum modulus of GCD(Axz + B,c¢) = d. Let A’ denote the
m X 1 matrix with entries ai, ---, a},. Then rank A’(mod p,) =1 for
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1 =1, +--, k. Also the system A’x = O(mod d’) has only the solution
@ = o(mod d’). Thus by (ili) of Corollary 1, N, = II¢=.(ps| — 1).
Hence N, = |ge| [T, (1 — | psu|7H).

COROLLARY 5. Let ¢ = de where e is atomic. Let g = GCD(a,,
oo, @, d) and d' = djg. Suppose that R/d'R is a finite ring. Then
GCD(ax, + b, ++-, @, X, + b,, ) =d 1s solvable if and only if
GCD(a;, d) | b; for j=1,---, m and g = GCD(a,, ---, a,, b, -+, b,, ¢).
Suppose that R/(I1i-, p,)R is finite where {p, ---, D} is @ maximal
set of momassociated prime divisors of e such that for each 9,
GCD(a;, dp,) | b; for 7 =1, -+, m. Then t,= d' [[5.p; is the minimum
modulus of GCD(ax, + b,, -+, a,x, + b,, ¢) = d. Let d; = GCD(a;, d)
and d; = d;/g for =1, ---, n. Then

(4.8) N, =& TT (2 = 2P

where t, denotes the number of j in {1, ---, n} for which

GCD(Z,pi)—_-l.

Proof. Suppose that d;|b; for j =1, ---, n. Let a; = a,;/g and
b = bj/g for j =1, ---, n. Let A and A’ denote the » x n diagonal
matrices with entries a,, ---, a, and ai, ---, a, respectively. Let B
and B’ denote the #» X 1 matrices with entries b, ---, b, and b}, ---, b,
respectively. Then the system A’X 4+ B’ = 0(mod d’) is solvable since
GCD(a}, d') | b} for j =1, .-+, n and R/d'R is finite. Thus the system
AX+ B=0(mod d) is solvable. Henceif g=GCD(a,,+++,ay, by, +++, b, ¢),
then GCD(AX + B, ¢) = d is solvable.

Assume that GCD(AX + B, ¢) = d is solvable. It follows that
to = d’' [T%., p, is the minimum modulus of GCD(AX + B, ¢) = d. Let
L={X+dR"|A'X = 0(mod d')}. Let

& ={XeR"| A'X = 0(mod d'p,)}
and L, = {(X +dR"| Xe )} for 1 =1, ---, k. Then by (4.1),

k
Niy = [LITL (2" — [ pa[*7757)

where 7, = rank A’(mod p,) and s, is the dimension of the RE/p R
vector space L/L,. Clearly |L| = [[’.|d}| since d;= GCD(a;, d')
for j=1 ..-,n. Let Li={X+ dp,R"| Xe} and H,={X+
2R | Xe &£} for i =1, .-+, k. Then (1) and (2) of Lemma 3 show
that |L}| =|L||H,| where |H,|=|p;|"""*? for ¢=1,--: k.
However, GCD(a}, d'p;) = d; GCD(a;/d;, p;) and thus
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wwﬂugpw@?@]

for 1 =1, .-+, k. Hence |p, """t = [[*., | GCD(a;/d;, p;)| and thus
|p; [P~ "i%e) = | p, "%, since ¢, is the number of 7 in {1, ..., n} for
which GCD(e;/d;, p,) =1. So t,=r,+ s, for 1 =1, --- k, which
yields (4.8).

Note that if R/cR is finite, then

n k
N.=T1ldel I (= 2.7 -

COROLLARY 6. Let R be a principal ideal domain. Let A be
an m X n matrixz of rank r and let «, ---, a, be the invariant
Sfactors of A. Let B be an m X 1 matriz and let (A: B) have rank
r" and tnvariant factors B, -+, B,. Then GCD(AX + B, c)=d 1is
solvable if and only if (1) d|e¢, () GCD(a, d) = GCD(B, ¢), (3)
GCD(a;, d) = GCD(B;, d) for j=1 --- r and g, =o(modd) if
r=r+ 1.

Let {p,, -« -, p.} be a maximal set of nonassoctated prime divisors
of e = c/d such that each p, satisfies (3') GCD(a;, dp,;) = GCD(B;, dp;)
forj=1, --- rand B, =o(mod dp,) if ' =r +1. Let d; = GCD(a;, d)
for j=1 «-- r and d' = d/d,. Then t,= d' [[ ., p; is the mintmum
modulus of GCD(AX + B, ¢) = d. Suppose that R/t,R is finite. Then

(4.9) Ny =12 {2l — 2.0

where d; = d;/d, and t, denotes the largest j in {1, ---, v} for which
GCD(a;/dj, p;) = 1.

Proof. Since R is a principal ideal domain, it is well-known that
there exist invertible matrices P and @ such that PAQ = A, where
A, is an m X » matrix in “diagonal form”, with nonzero entries
a, ---,a, and ;| a; if 7 < j'. The elements «, ---, @, are called
the invariant factors of A and «; = D,;/D;_, where D, denotes the
GCD of the determinants of all the 7 x 7 submatrices of A. Clearly
GCD(4, d) = GCD(«,, ---, a,, d), that is GCD(A4, d) = GCD(a,, d) since
a,la; for 5 =1, --- r. Similarly GCD(A4, B, ¢) = GCD(B,, ¢). How-
ever, it is also well-known that the system AX + B = 0(mod d) is
solvable if and only if condition (3) holds (see [4]). Thus GCD(AX +
B, ¢) = d is solvable if and only if (1), (2), and (3) hold.

Let GCD(AX + B,¢) =d be solvable and let ¢ =de. Then
to = d' 1%, », is the minimum modulus of GCD(AX + B, c¢) =d.
Suppose that R/t,R is finite. Let S denote the set of X in R" such
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that GCD(AX + B, ¢) = d. Let PB = B, and let S’ denote the set
of Y in R" such that GCD(4,Y + B, ¢) = d. Then clearly Xe S if
and only if Y=Q'XeS’. Thus GCD(AX + B, ¢)=d and GCD(A,Y +
B, ¢) = d have the same ideal of solution moduli. Let T, = {X +
t,R"| XeS}tand T; = {Y + t,R"| Ye S’}. Then the mapping f: T,— T\
is a bijection, where f(X + t,R") = Q'X + t,R" for all X in S. Hence
| To| = | T¢ |, that is N, =|T7|. Let B, have entries b, ---, b, and
let ¢, = GCD®°,,, ---, b, ¢). Then S’ is the set of solutions of the
linear GCD equation

GCD(%% + b?, cee, LY, + bg, 0 Yris + o0,

(4.10)
) O'yn+0y c0) =d.

Thus ¢, = d' I] L. p, is also the minimum modulus of (4.10) and hence
by (4.8) of Corollary 5,

.Nto = |d [”_"JII; | d;[}‘:[l (" — | D )

where d; = d;/d, and ¢, is the largest j in {1, ---,r} for which
GCD(a;/d;, p;) = 1 sinee a;/d; | ae;/d; if 5 < 5.
If R/cR is finite, then

N.= (el T1del 1@~ .79

Finally we remark that the formula for N, in (4.1) applies to
the class & of GCD domains R which contain at least one element
p such that R/pR is a finite field. Some immediate examples are the
integers Z, the localizations Z,, at primes p in Z and F[X] where
F' ig a finite field.

However, an example of such a ring R in <r which is not a PID
is the subring R of Q[X] consisting of all polynomials whose constant
term is in Z. Indeed R is a Bezout domain which cannot be expressed
as an ascending union of PID’s [1]. Clearly if p is a prime in Z, then
R/pR is isomorphic to the finite field Z/pZ.

We are also indebted to Professor W. Heinzer for the following
construction of a ring R in & which is a UFD but not a PID. Let
F be a finite field. Let Y be an element of the formal power series
ring F[[X]] such that X and Y are algebraically independent over
F. Let Vdenote the rank one diserete valuation ring F[[X]]N F(X, Y)
and let B = F[X, Y][1/X]N V. Then R/XR is isomorphic to F' and
R is a UFD.
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A NOTE ON COMPACT SEMIRINGS WHICH ARE
MULTIPLICATIVE SEMILATTICES

P. H. KARVELLAS

The topic of this note is the structure of a topological
semiring in which a semilattice (commutative, idempotent
and associative) multiplication, with identity and connected
upper sets, has been postulated. Assuming the topology to
be compact, additions compatible with the multiplication can
be characterized for certain canonical subsets of the semiring.
In particular instances the characterization of addition can
be extended to the entire semiring itself.

Certain subintervals, arising naturally from the analysis when
the underlying space is the interval [0, 1], are generalized to con-
tinuum subsemirings of an arbitrary semiring possessing a semilattice
multiplication with identity. The addition in the minimal additive
ideal can be specified precisely and each additive subgroup is a single
element. If the minimal additive ideal and the set of additive
idempotents coincide, a complete description of the semiring addition
is possible in terms of homomorphisms of the multiplicative semigroup.
The same procedure can be employed when the space is an interval
on the real line.

A topological semiring (S, +, -) is a Hausdorff space S on which
are defined topological semigroups (S, +) and (S, -), for addition and
multiplication, such that a(y + 2) = 2y + xz and (¥ + )z = 22 + Yz
for all z, ¥, and z in S. This structure will be investigated under
the restrictions that (S, -) is a topological semilattice, with identity
1 and multiplicative zero element 0, the set S is compact and upper
sets M(x) = {y: xy = x} are connected for each x in S. Such a semi-
ring will be called a semilattice semiring or SL-semiring. Multiplica-
tion is therefore commutative and idempotent in a semilattice semiring
and an induced partial order, with closed graph, results from defining
r vy if x = ay.

Unless specifically altered, both (S, +, -) and S shall refer to
semilattice semirings in the analysis which follows.

Particular examples of SL-semirings appear in [5], where S is
the real number interval [0, 1]. The characterization of such interval
SL-semirings is given in Example 1 and employs two continuous
functions satisfying certain required conditions on subsets of [0, 1].
A more general space and analysis will, of course, be subject to
rather more exaggerated ambiguities.

Ideals will be semigroup ideals in the sense of [1] and kernels
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(minimal ideals) with be written as K[+] and K[-]. In the compact
case kernels are nonvoid and closed [7], as are the idempotent sets
E[+] ={x:x =2 + 2z} and E[-] = {z: 2 = 2?}. The union of all addi-
tive subgroups will be written as H[+] and for ¢ in E[+] the maxi-
mal additive subgroup with identity element ¢ is H[+](¢). For a
positive integer n and element x, mx denotes the m-fold sum of .
Equivalently nx is the product of two elements of the semiring.
The element (1 + 1) will be written as .

For an element z let L(x) = {y: 2y = y} and M(z) = {y: 2y = x}.
If <y, that is if « = 2y, then define C(x, y) = {z:2 <2<y} =
M(z) N L(y) = y - M(z). In any SL-semiring, M(x) is connected, im-
plying the connectivity of C(x, y) for « < y. It is trivial to verify
that C(x, y) is a subsemiring if and only if xe E[+]. Lastly, from
S=E[],z+y=(@€+y)?=2x+ plxy) +y for all z,yeS.

2. Connected subsemirings of a semilattice semiring. In Ex-
ample 1 is given the characterization, obtained in [5], of all SL-
semirings on the interval [0, 1]. The resulting subintervals [0, ¢],
le, £1, [f, »], and [p, 1] have obvious generalizations to an arbitrary
SL-semiring defined on a general topological space.

ExamMPLE 1. Let S = [0,1] with multiplication zy = min (z, ¥)-
Any compatible semiring addition, with « + ¥ =y in K[+], can be
characterized as follows. Pick arbitrary elements e, f, and » in [0, 1],
where 0 <e<f<p=<1. Let F: [0, p] —[e, 1] and G: [0, p] — [f, 1]
be continuous functions such that

(1) F is the identity on [e, p];

(2) F decreases on [0, ¢] and G decreases on [0, f];

(3) for x€][0, p], pG(x) = max (f, pF(x)).

The addition on S is defined by

r+Yy=9 Y=
=x2F(y) y=x,y<p
= yG(x) r<y,z<p.

The subintervals [0, €], [e, f], [f, 2], and [p, 1] are connected subsemi-
rings with the additions below.

x+y=max(,y) x,9ycl[0,e] s+k=k kele fl,seS
T+ y=uay v,yelf,p] v+y=p xyelp1].

The additive kernel K[+] is the subinterval [e, f], while E[+] = [0, p].
In any SL-semiring (S, -) is commutative and the kernel K][-]

must reduce to a singleton, denoted hereafter by 0 [4]. It is easy
to verify that 2x = 4« for each z in S and from [3] both E[+] and
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H[+] are multiplicative ideals, requiring 0€ E[+]. Because (S, )
has an identity, F[+] is closed under addition [3], and both E[+]
and H[+] are connected [8]. Alternatively p=1+1=p*=p+p
and pr =z + x for each x in S. The mapx — px is continuous and
M(0) = S is connected. Hence E[+] = »S is connected. As will be
proven subsequently, E[+] = H[+]. Noting that S = M(0) and is
connected, we have the result below.

THEOREM 1. Let (S, +, +) be a semilattice semiring.

(1) K[ ]={0}< E[+] and S is a connected set.

(2) E[+]={x + z:2eS} and is an additive subsemigroup.
(3) E[+] and H[+] are connected multiplicative ideals.

The next result characterizes the operations in the minimal ad-
ditive ideal K[+].

THEOREM 2. Let (S, +, -) be a semilattice semiring. Then:

(1) K[+] is a subsemiring of S contained in E[+].

(2) There exist elements e and f in S such that K[+] = C(e, f)
and f=14k + 1 for each element ke K[+].

(83) K[+]=(S+e¢e)+ (e6+S8), with each element z in K[+]
uniquely of the form z, + z,, where z,€¢ S + ¢ and z,ce + S. More-
over, for elements x, x, in S+ e and Yy, Y, tn e+ S, the kernel
operations are given by

(@, + Y + @, + ¥2) = 2, + Y,
(@, + 1) - (@ + ¥2) = 2.2 + YY2
e+ S)N(S+e) ={e}.

Proof. Because S*N K[+] is nonvoid, the additive kernel is a
subsemiring using a result from [6]. From S = E[-] and Theorem 1
of [7] each additive subgroup is totally disconnected. However,
K[+] is the union of the connected maximal subgroups H[+](t) =
t+ S+t for ¢ in K[+] N E[+] [8]: hence H[+]1(t) = {t} for each
te K[+] N E[+] and thus K[+] & E[+]. The compact, commutative
subsemigroup (K[+], -) has a multiplicative kernel which is a single
point. Let {e} denote this kernel. Then f=1+e¢+ 1 is in K[+]
and, for each element k in K[+], e < k while

fek=k+e+kek+ S+ k=H[+]Fk) = {k}
1+k+1=fA+Ek+)=Ff+k+ feH[+I)={f}

proving that 1 + K[+] + 1 = {f} and K[+] & C(e, f). For any ele-
ment xe€Cle, f), x=zf=21+e+1) =2 +e¢+2ecCle )N K[+]
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and hence K[+] = C(e, f). The characterization of addition in K[-+]
follows directly from Theorem 1.3.10 of [4] and the triviality of
maximal additive subgroups in K[+]. For 2, @, in S+ ¢ and y,, v,
in e+ S we have that z, =x, +e¢, ¥y,=e¢+ v, and H[+](e) = ¢ +
S + e = {¢}, implying therefore that (¢ + S) N (S + ¢) & H[+](e) and
that

(@, + yy) - (@ + ¥s) = 2.2 + Y2, + .Y, + YUY
= a2, + (e + Yo, + (2, + €)Y: + Y:Ye
=22, + €+ Y&, + XY, + €+ YY.
= X2 + e+ Y.Y,
= X% + Y:1¥Y: .

The subsets of interest are the following: E[+] = »S, K[+] =
Cle, f), M(p) = {x: px = p}, L(e) = eSand 1 + S + 1. Both E[+] and
K[+] have been shown to be connected subsemirings from the preced-
ing arguments. As proven in Theorem 4, the requirement that M(x)
be connected for each 2 in S results in p = p + 1 and implies trivi-
ality of addition in M(p). If the restriction on upper sets is removed,
partial results can still be obtained.

THEOREM 3. Let (T, +, ) be a compact semiring, with E[+] =
{q}, such that (T, -) is a semilattice with identity 1. Then:

(1) 14a2=x+1land q=1+1=2+q + x for all x in T.

(2) (T, +) is commutative.

(83) T+ T is the additive kermnel.

Proof. Since T=E[-],1+1=0Q1+1P=Q0+1)+@1+1)ecE[+]
and thus ¢ =1+ 1. Moreover, K[-] S E[+] = {q}. Hence q =gz
for each z in T. It iseasilyshownthatl +x=(Q1+2))=14 3z =
q + 1+ « for each element # of T. Analogously 2 +1=2+1+ q.
As a result one obtains the equations

@+)-QA+)=2+2)+QL+2)=¢+1+ax=1+2
=@+D+@+l)x=x+1+qg=2+1.

Moreover, ¢ +q +2 =2« + qv + 2 = ©(2¢) = q. In a similar manner
it can be proven that x + ¥y = (* + ) - (y + ) = y + « for all z and
y in T. Addition in T is therefore commutative.

Lastly, because (T, +) is a compact semigroup with a single
idempotent element, K[+] = H[+](q) = T + ¢ + T [8]. Thus, for x
and ¥y in TLo+y=@+yl=x+qy)+y=2+q+ycK[+].
Therefore T+ T< T + q + T = K[+], implying that K[+] = T + T.

THEOREM 4. Let (S, +, -) be a semilattice semiring, p =1 + 1.
Then:
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(1) (M(p), +, ) is a subsemiring with trivial addition.
(2) L(e) = eS is a distributive topological lattice.

Proof. From M(p) = {x: px = p} it is clear that M(p) is a con-
tinuum subsemiring with a single additive idempotent. Theorem 3
applies and it is now only necessary to note that the additive kernel
of the subsemiring M(p) is the connected additive group M(p) + » +
M(p). However, M(p) & E[-] and from [7] this group must also be
totally disconnected. Consequently M(p) + M(p) = {p} and p =1 +
l=p+1=1+ p.

Recall that K[+] = C(e, f) where {e} is the multiplicative kernel
of the subsemiring K[+]. The subcontinuum eS = L(e) is a subsemi-
ring with identity ¢ and ¢ =e¢ +x =2 + ¢ for each z =ex in eS.
Thus for elements ¥ and y of ¢S we obtain

@+y)r=xe+ay=z+y)=xe==2
@+yy=aytey=@+ey=ey=1y.

Therefore,  + y € M(x) N M(y) and for any te M(x) N M(y) it follows
that t(x +y) =tx +ty =« + y. That is, = + y is the least upper
bound of 2 and y in the partial order defined by the semilattice
multiplication and consequently (eS, +, -) is a lattice. Since multipli-
cation distributes over addition, both lattice distributive laws hold.

COROLLARY 5. Let (S, +, ) be a semilattice semiring. If
E[+] = {0} then S + S = {0}.

THEOREM 6. Let (S, +, -) be a semilattice semiring and let f
denote the maximal element of the additive kernel, while p =1 + 1.
Then:

(1) These are equivalent statements.

(@) (E[+], +) ts commutative.
(b) =+ p=9p+ 2 for all x in E[+].
() x4+ p=p+2a for all x in S.

(2) If (E[+], +) is commutative, then (E[+], +, ) is a top-

ological lattice if and only if f = p.

Proof. Recall that E[+] is a connected subsemiring. For any
z in S we have that x + p = (@ + p)*=(p + D)o + p and (p + Dz e
E[+]. Thus if « + p = p + = for x in E[+], the same result holds
in S, and vice versa.

Clearly, (a) — (b). Assume that elements of S commute with p
under addition. Forz,ye E[+], 2 =2 + o = px, 2y = pxy, ¥y =Y +
y = py and thus the equations below are obtained.
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z+y=@+y=ct+ay+y=a2@+y)+y=2y+ @+ y)
=+ @+py=@+y +oy

yt+toe=@Wt+aey=y+taoy+r=ay+ @+
=W+2)+ay.

It follows that

@+ - W+o)=2w+2)+yy+2z)y=ay + @+ y)+ 2y
=@+yYy+@@+yr=xzy+ W+2)+zy

which implies that (E[+], +) is commutative.

Assume now that addition in E[+] is commutative. Because
distinct idempotents in K[+] do not commute in the compact case
[4], we obtain K[+] = {f}. If f= p then, from Theorem 4, E[+]
is a distributive topological lattice. Conversely, if E[+] is a lattice
then, since one distributive law holds, E[+] is a distributive lattice.
Therefore, because ¢ = a(a + b) = a + (ab) for all @ and b in the
lattice E[+], we obtain

p=p+of=p+pf=p+ f)=0f=Ff.

The following example illustrates the general idempotent semi-
lattice semiring with commutative addition which can be constructed
on an interval.

ExAMPLE 2. Let S = [z, p] be an interval of real numbers with
min multiplication. Fix an element fin S and denote the subintervals
[2, f] by A and [f, p] by B respectively. If {f}is the additive kernel
of an idempotent and commutative addition semiring on [z, p], then
B=p+ Band # + ¥ = min (2, y) in B, while z + y = max (z, ¥) in
A. The map f:S— B defined by f(x) =1 + = is continuous and is
the identity on B. Moreover, f reverses order on A (xzy =« in A
implies f(x) - f(y) = f(y¥) in B). Any such addition on S is therefore
given by the characterization

r+y=2aFy) y=u
= yF(x) r <y

where F: S— B is continuous, the identity on B and order-reversing
on A.

The existence of the three elements p( =1 + 1), ¢ and f, where
K[+] = C(e, f), has allowed the characterization of addition in M(p),
K[+] and L(¢). The next result completes the description of con-
nected subsemirings which are analogues of the subintervals appearing
in Example 1.
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THEOREM 7. Let (S, +, -) be a semilattice semiring, p =1+ 1
and K[+] = Cle, f) for elements ¢ < f in E[+]. Then:

(1) H[+] = E[+] and each additive subgroup s a single point.

(2) 1+8S+1=14+E[+]+1% M(f)NE[+] with addition
given by x +y =xy =y + «.

(8) For zel+ S+1, yeMp), x+y=x=y + .

(4) M)+ K[+] + M(f) = {f}

(5) e+1l=e+sand 1 +e=s+e for all s mn S.

(6) S+ v+ S< E[+].

(7) The boundary B of E[+] is connected.

Proof. For te E[+] the maximal additive subgroup H[+](t) is
a subsemiring since ¢ = t* [2]. Moreover, H[+](t) & M(t) since for
each ze€ H[+](¢), txe E[+] N H[+]() = {t}. Consequently z + = =
px = t and therefore x =2 + ¢t = (1 + p)x = t for each «x in H[+](¢).
Hence H[+] & E[+] and each additive subgroup is a single element.
Clearly 1 + E[+] S 1+ Sand, becausel + c =1 + 2)* =1+ pz
for each element x, the reverse inclusion also holds. Similarly S +
1= E[+] + 1 and for each element « of S we have that
l1+2+1=0Q0+2+1)Y=QL+xc+1)+3x+Q+z+1)
=p1 + z) + p(x + 1)
=p(l +x+ 1)ecE[+].
In addition it follows that f = f+ « + f = f(1 + = + 1), implying that
1+ S+ 1< M(f)N E[+]. For any two elements z and ¥ of 1 +
S+1, px = px + 1 and py =1 + py and hence

r+y=@+y)P=x+p@y) +y =201+ py)+y
= p(xy) + ¥y = p(zy) = 2y

and in a similar manner y + x = 2y. Moreover, for xcl + S+ 1
and y € M(p) we obtain

r+y=xyt+y=@+Dy=axy==x.
For elements k€ K[+], and m, n € M(f), we have that
E+n=fk+n)=k+m=k+f
m+k+n=(F+k+n=Frf+k+f=r.

Consequently M(f) + K[+] + M(f) = {f}.
For any element se S it follows that (¢ + s) < (e + 1) since

e+1)e+s)=e+es+e+s=e+s

and similarly (s + ¢) < (1 + ¢). In addition, for elements x and y of
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S,pe+1=2+1,1+y =1+ py and therefore x + »p + ¥y = p(x +
1+ y)e E[+], implying S+ » + S& E[+].

Lastly, consider the set T = S\E[+], which is connected since
for each ¢ in T the interval C(¢, 1) & T. Consequently »T is also
connected and pT & E[+]. For 2 in T let R(x) = {y: px = py}. Then
R(z) N E[+] = {px}, € R(x) and it is easily verified that R(x) is a
compact subsemiring of S. Moreover, C(pz, y) & R(x) for each y in
R(x), implying that R(x) is connected. Suppose now that pz is con-
tained in the interior of E[+]. There then exists an open set U,
containing pxz, and contained in E[+]. However, U N R(x) = {px} is
an open and closed subset of the connected set R(x). Consequently
pT is contained in the boundary B of E[+]. It is now only necess-
ary to note that if re B, then for any open set W containing »r
there exists an open set V, containing 7, such that pV & W. Thus,
since VN T is nonempty, r is a limit point of the connected set pT
and B is connected.

Identification of the various connected subsemirings of a general
semilattice semiring with the subintervals obtained in Example 1 yields
the correspondences: L(e) with [0, ¢]; M(p) with [p,1]; and, 1 + S + 1
with [f, »]. The addition in the additive kernel K[+] of a general
SL-semiring is that of a rectangular band [1], while the existence
of a cutpoint in the Example 1 case produces either a left- or right-
trivial addition [4].

The construction of “characterizing functions”, as given in Ex-
ample 1, is apparently futile for a general semilattice semiring.
However, as demonstrated below, the situation K[+] = E[+] is
amenable to this approach.

3. Semilattice semirings with K[+] = E[+]. In the case of
SL-semiring with K[+] = E[+] it is possible to obtain a complete
characterization of the addition in terms of semilattice homomor-
phisms on the multiplicative semigroup. The following lemma estab-
lishes some preliminary results.

LEMMA 8. Let S be a semilattice semiring with K[+] = E[+].
Then:

(1) S+ S E[+].

(2) For z,yeS, t+yl=2+S+y, 0+2=0+1=Z2+1
and x4+ 0=1+0=1+z.

(3) For ke K[+], k + M(f) = {(k + 1}, {f} = M(f) + k + M(f).

(4) The maps x £, 1+ 2) and « &, (x + 1) are semiring
homomorphisms with F(x + y) = F(y) and G(x + y) = G(x). Addi-
tion in S is given by



A NOTE ON COMPACT SEMIRINGS 203

z+y=Gx) - Fy).

(5) For xz,yeS, M(x + 0)N MO + x) = M(px) and M(f) =
MA+ )N My +1) = Mx + 1) N MQ + y).

Proof. Noting that p = f and that E[+](= K[+]) is both an
additive and multiplicative ideal, we have the result

z+y=@@+y)r=2+ ply) + ye K[+]

for each # and y in S. Recall that H[+](px) =« + S + © = {px}
and therefore, using both distributive laws, we obtain

@+ @+0+)=@+2)+0+@+1)=2+1
=pr+@+0+1)=2+0+1.

Analogously 1+ =1+0+2. Using {p(xy)} =2y + S+ 2y the
following equations hold.

r+fty=p+f+y)=pac+1l+y)=ac+1+y
=@+ fet+ay)+ @ +F+yf)+ @Y+ fy+v)
= fu + flxy) + fy
=z+p@y)+y=2+19y-.

Therefore, for any «# and v in S, it follows that

t+S+y=fle+S+y)=@+98) +(S+y)
=@+1+8)+E+1+19)
=x+f+y=c+y.
For each z in S, 0 +2 =20 + 1) <0+ 1. Similarly we have
that(+1)- 0 +1)=04+2+0+1=0+1=<z+1. Forkin K[+]
and m in M(f)( = M(p)), k + m = p(k + m) = k + 1. Analogously

M(f) + k ={1 + k}, thereby establishing (8) as a special case of
Theorem 7 (4).

Consider the maps F, G: S— K[+] defined by F(z) = 1 + 2, G(») =
xz + 1. Both are semiring homomorphisms and addition in S is given
by

c+y=2+1l+ocy+y=+1)-Q+9y)=Gx): Fly).

Lastly,  + 0, 0 + 2 < px. And, if ¢t € M(z + 0) N M(0 + ), then

te +0=2+0, 0+ 2 = 0 + tx, implying the result
tpr) =te +0+txe=2c+0+2cx+ S+ = {px}.

Similarly, M1 + ) N M(y + 1) = M(x + 1) N M1 + y) = M(f).
The next example describes a general semilattice semiring under
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the restriction that the additive kernel K[+] is the set E[+] of
additive idempotents.

ExampLE 3. Let (S, -) be a compact topological semilattice, with
identity element 1 and connected upper sets. Let » be any fixed
element of S. If F and G are continuous semilattice homomorphisms
from S into pS such that

(@) (FoF)x) = F(x), (GoG)(x) = G(x) for all z in S;

(b) F(x)G(x) = px for all x in S;

(¢) (FoG)x)=(GoF)=x)=p for all z in S:

(where “o” denotes composition) and an addition is defined on S by

x +y = G@)F(y)

for all z and y in S, then (S, +, ) is a semilattice semiring with
additive kernel K[+] = E[+] = »S.

THEOREM 9. Let (S, -) be a compact topological semilattice, with
identity element 1 and connected upper sets.

(a) For any fixed element p of S, and homomorphisms F and
G into pS defining an addition (+) as in Example 3, (S, +, -) s
a semilattice semiring with K[+] = E[+] = »pS.

(b) Conversely, if (+) s the addition of a semilattice semiring
on the set S, with K[+] = E[+] and addition compatible with the
given semilattice multiplication, then the maps F, G: S—E[+] defined
by F(x) =1+ 2, G(zx) =z + 1 satisfy the properties of Example 3
when p ts taken to be the element (1 + 1) of S.

Proof. The verification of part (a) is trivial, albeit tedious. If,
on the other hand, (S, +, -) is a semilattice semiring with E[+] =
K[+], and the maps F and G are as defined, then both are con-
tinuous multiplicative homomorphisms, as proven in Lemma 8. Clearly
FF(x))=1+F@x)=p+x=1+ 2= F(x) and G(G()) = G(x) for
all x in S. Analogously F(z) - Gx) =L +2)- @ +1)=c+1+2z=
px. Moreover, (FoG)(x)=1+G&)=1+ 2+ 1=p. Lastly, as
shown in Lemma 8, addition satisfies the definition given in Example 3.

The final two results, presented without proof, describe a SL-
semiring in which E[+] = K[+] and S\E[+] & M1 + 0) U M(0 + 1).
Note that the latter condition is not sufficient to describe the char-
acterization on the interval given in Example 1.

LEMMA 10. Let S be a semilattice semiring with E[+] = K[+].
Then these are equivalent statements for an element x of S.

(1) 1+a=Fflz+1=f]

(2) 2eMO + 1) [xe M1 + 0)]:
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(3) pr=2+1[px =1+ z].
THEOREM 11. Let (S, +, -) be a semilattice semiring, with

E[+] = K[+], in which S\E[+] & M(1 + 0) U M(0 + 1). Then addi-
tion in S is given by:

c+y =0y x, y€ M1 + 0)
= px x, ye MO + 1)
=f xe M1+ 0), ye M0 + 1)

= p(xy) xre MO + 1), ye M(L + 0)
=G@x)-y xeE[+], ye M1 + 0)
= F(y) zxe M@l + 0), y e E[+]
= G(x) xe E[+], ye M + 1)
=x-F(y) xeMO + 1), ye E[+]

where F, G: S— E[+] are defined by F(x) =1+ z, G(x) =2 + 1.

The author would like to express his appreciation to Professor
Michael Friedberg for his suggestions and criticism.
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STIELTJES DIFFERENTIAL-BOUNDARY
OPERATORS, II

ALpAN M. KrRALL

The differential boundary system

Ly = (y + HICy(©0) + Dy(W)] + H¥) + Py,
Ay ©) + By + { dK@e) =0,

[ axowe =0,

and its adjoint system are written as Stieltjes integral equa-
tion systems with end point boundary conditions. Fundamental
matrices are exhibited and, from these, a spectral analysis
and a Green’s matrix are produced. These are used to achieve
spectral resolutions in both self-adjoint and nonself-adjoint
situations.

1. Introduction. This article is a continuation of [2] and [6]
which showed the density of the domain of L in <£7[0, 1], 1 £ p < oo,
when the boundary functionals satisfied certain conditions, and which
derived the dual operator in <570, 1], 1/p + 1/¢ = 1, in those circum-
stances. Rather than repeat those results, we prefer to refer the
reader to the articles mentioned. For our purposes here it is suf-
ficient to state that ¥ is an = dimensional vector in .£7[0, 1]; A and

B are m X m matrices, m < 2n, such that rank (A: B) = m; C and

D are (2n — m) X » matrices such that (‘é lB;) is nonsingular; K is

an m X n matrix valued function of bounded variation such that the
measure it generates satisfies dK(0) = 4, dK(1) = B; K, isan r X n
matrix valued function of bounded variation which is not absolutely
continuous, satisfying dK,(0) = 0, dK,(1) = 0; H and H, are, respec-
tively, n x (2n — m) and » X s matrix valued functions of bounded
variation, H, not absolutely continuous; P is a continuous % X »
matrix; and, finally, 7 is an s dimensional constant vector.

Because we wish to exhibit the contributions of K, K,, H, H, at
0 and 1 separately, integrals involving their resulting measures will
not include contributions at 0 or 1. At all other points, however, we
do assume that these functions are regular as defined by Hildebrandt
[4]. This results in considerable simplification throughout. Of course,
all integrals are Lebesgue or Lebesgue-Stieltjes integrals.

It is convenient to note that the adjoint system has the form

L*z = —(z + K*[A2(0) + Be(D)] + Kr¢) + P*z,

207



208 ALLAN M. KRALL
G2(0) + Dz(1) + S‘dﬂ*(t)z(t) —0,
0

Ydfﬁama)=o,

where ¢ is an r dimensional constant vector, and A4, B, C, D satisfy

A B\(-A* —C* —Ax —C*\ (A B)_I
¢ D]\ Bx f)*)_ B« D*J\c¢ p) ™"
2. Integral equation representation. Let us make the follow-
ing definitions. Let

L=y,

&= Ay(O) + | K@@ ,
&= Cy(0) + DyQ) ,

&= S:de(w)y(x) ,
&E=T.

Then the equation Ly = 0, together with the boundary conditions is
equivalent to the system

&, &, —Q 0 —H O —H\ [&

, , Ko 00 o] |a

&l =6 (0)+S:d 00 00 0 |@Wal®,
£, &, KO0 00 0] |&

& e, 00 00 0 ,

where Q(t) = S:P(x)dx ,

A—I 0 00\/¢ 00 0 00\ /&

0 0 0 00|¢& BI 0 00|¢

C 0 —3I00(|&|©0 +|D 0 —3I00]|&|1)=0.
0o o0 o I0|le 00 0 00| &

o 0 o0 00)ls 00 o0 r0/lg

If M(t) represents the Stieltjes measure in the integral equation,
then Hildebrandt’s 4M*=(t) has zero entries along the diagonal. Hence
I+ 4M* is always nonsingular.

The adjoint system L*z = 0, together with the boundary condi-
tions is
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AN ~Q* K* 0Kr 0 (7,
72 7 0 00 0 0 |7
7@ =| 7.0 = |[a[—H* 0 0 0 o|@| n|@.
Ns Ms 0 0 0 0O N4
s s —H* 0 0 0 0 Vs
IA* C* 00\/n 0 0 —C* 00\/7
0 0 —D* 00]| % I —-B* D* 00(|7
00 I 00|70 +[0 0 I 00| 7nl®)=0.
0 0 0 O Ifln 0 0 0 00( 7
00 0 00/\7 0 0 0 01\

These representations should be compared to those found in [5]
which they generalize under certain conditions.

In addition we note that the problem Ly = Ay has a similar
representation. The only change necessary is to replace Q(f) =

StP(x)dm by Q(t) — At. The nonhomogeneous problem Ly = f has a
0

representation as a nonhomogeneous integral equation with an addi-
tional term

: (@)dw

F(t) = S

O O O o

on the right side.

3. Fundamental matrices. We can express the homogeneous
integral problem generated by (L — M)y = 0 together with the bo-
undary conditions in a more compact way by the expressions

() = €0 + | Ao,
R:(0) + S6(1) =0
likewise the adjoint system by
t
7(t) = 7(0) — | dMF@n(e) ,

Bno) + Syp) =o0.

We shall assume in addition that M;(¢) is regular:
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M) = 12[M,(¢+) + M(t—-)],
M) = MO+), MQA)=MQ1-).

Hildebrandt [4] and Vejvoda and Tvrdy [8] have shown that under
these conditions the first integral equation has a solution given by
&(t) = Ux(0, t)&(0), where U,(s, t) is the uniform limit of Picard-like
approximations beginning with I (hence U, is analytic in \) satisfying

Ugs, t) = I+ Sthz(x) Uys, @) -

U, has the additional properties U,(t, t) = I, and U,(r, t)U,(s, ) =
U,(s, t). U, is therefore a fundamental matrix when M, is absolutely
continuous.

Similarly the adjoint equation has a solution given by 7(t) =
V0, t)n(0), where V,.(s, t) satisfies

Vils, t) = T — g‘dM;(x) Vals, @) ,

Vit 0) = 1, Viulr, ) Vadls, 7) = Vs, ?).

Since M, is regular, it is possible to show that U, and V.. are
related through the formula

Uys, t) = Vit s) .

Hence U,(s, t)™ = Vi(s,t). Regularity, however, is not inherited
from M; unless (4*M;)* =0. This occurs only when 4*K4*H =0,
ATKA4TH =0, 4TK4¥H, = 0, 47K, 4"H, = 0, and will not be necessary.

The fundamental matrices U, and V, may be easily calculated
in the same way as was done in [5]. If Y(¢) is a fundamental
matrix for Y’ + PY = 0 satisfying Y(0) = I, and

A1) = S = Y(t) Y(2)'dH(z) ,

SA(t) = S =Y () Yt dHy () ,

(@) = g AK()e" Y(z) ,

SF(t) = S AK (2)e" Y (@) ,

Z) = § dK(z)g 019 Y(2) V()" dH() ,
Z®) = | 4K | ¢ Y@ Yo dH@ ,
Zlt) = S dK,(2) S ¢ Y(2) Y(o)"'d H(z) ,
Fat) = S iK (z)s 9 Y(2) Y(z)~d H(x) ,
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and Z(t), #u(t), At), #.(t) are defined by the same formulae
as L), L), L), F.(t) with only the limits of integration
with respect to & changed to from z to ¢, then

Y () 0 —et () 0 —eMIA()
22t I —LE) 0 —A)
v@©t=| 0 0 I 0 0 ,
%(t) 0 - %o(t) I - 11(t)
0 0 0 0 I
and
e Y () 0 Y@ '2£@) 0 Y()SAQ)
- % e *Yt) I —_#Z({) 0 — _#Zyt)
V0, t) = 0 0 I 0 0
—Z@Be YO 0 — A) I — 2.
0 0 0 0 I

By applying the boundary condition of U, the following theorem
immediately follows.

THEOREM 3.1. If Y(t) is a fundamental matriz for Y’ + PY =
0 satisfying Y(0) = I, then the system

Ly =My,
4y(0) + By + | dK@w®) = 0,

S:dKl(t)y(t) ~0

18 compatible if and only if the rank of

A ~I 0 0 0
BeY(l) + (1) I —Be's#(1) — (1) 0 —BeSA(L) — Zu(l)
DelY(1) + C 0 —DeisF(l) — I 0 —Der27(1)

0 0 0 I 0

(1) 0 ~Z(1) I —u(1)

s less than 3n + r + s. If m = n, the system is compatible if and
only if the determinant of the matrixz above is zero.

We shall assume throughout the remainder of this article that
m =7 in order to derive eigenfunction expansions under various
conditions.
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4. The Green’s matrix. Whenever the homogeneous problem
is not comparable, the nonhomogeneous problem possesses a unique
solution generated by a Green’s matrix, just as is the case for the
regular Sturm-Liouville problem. Hildebrandt [4] shows that the
solution to

&) = S:dMl(s)s(s) + .70,

£(0) = & (0)
is given by

) = U0, 0.5°0) + | Ui, 9d577)

whenever 4% = 0. Since in our situation . (t) = F(t) + &(0), where
F(t) is absolutely continuous, F'(t) = f,(t) = (f(¢),0---0)", we find
that the solution can be expressed by

¢ = Ut, 0w + || Uits, 0/i0)ds .

If (1) is calculated and R%(0) + S&(1) is set equal to 0, £(0) is de-
termined, and the solution takes the form

¢ = | #6607 (0)ds

where the Green’s function & is given by

Z,(s, t) = U, Y[R + SU,0, D] 'RUL(O0, )™, s < ¢t ,
= — U0, )[R + SULO, ]*STL0, 1) U,0, s)™, s > ¢ .

This is the same formula as that encountered in the regular Sturm-
Liouville problem. The Green’s function & possesses the properties,
including the adjoint properties, usually attributed to Green’s func-
tions.

We note in particular that )\ is in the spectrum of the operator
L if and only if

det[R + SUL0, 1)] = 0.

Since [R + SU,0, 1)] is analytic in A\, this implies that either the
entire complex plane is in the point spectrum of L, or else the
spectrum of L consists only of isolated eigenvalues, accumulating
only at co.

5. Self-adjoint Stieltjes differential-boundary expansions. It
was shown earlier in [6] that the operator T = ¢L is self-adjoint in
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<0, 1] if and only if

1. P*=-P

2. m=mn, r=s.

3. = [BD* — AC*]H* a.e.

4. AA* = BB*

5. H[CC* — DD*] =0 a.e.

6. K, = MHY¥, where M is a nonsingular » X » matrix.

This being the case, then the spectrum of 7 is contained in the real
axis. Every point with nonzero imaginary part lies in the resolvent.
This implies that det [R + U,(0, 1)S] = 0 only at isolated real points
with oo their only limit. An application of the spectral resolution
theorem for self-adjoint operators on a Hilbert space results in the
following.

THEOREM 5.1. If T is self-adjoint, then

1. The spectrum of T consists of o denumerable set of real
etgenvalues, accumulating only at oo

2. FEach etgenvalue corresponds to at most n eigenfunctions.
Eigenfunctions corresponding to different eigenvalues are orthogonal.

3. For each complex number N\, not an eigenvalue, (T — NI)™*
exists and can be represented by a unique linear integral operator

(T = AD"f() = | Gils, D7) .

4. The Green’s function Gi(s,t) satisfies
a. As a function of t, s #+ ¢,

(T — M)Gy(s, t) = 0 .

b.  AGi(s, 0) + BGi(s, 1) + gldK(t)Gz(s, £) =0
a.e. 10 S.
c. SldKl(t)Gx(s, £) =0 a.e. in s

d. G, s) = Gi(s, t) a.e. in s and t.

e. The eigenfunctions of T are complete in <0, 1].
If those corresponding to the same eigemvalue have been made or-
thonormal (denote them by {y.})7), then for all f in <570, 1]

f=30 v .

Operators self-adjoint under a transformation are substantially
more complex and will be discussed in a subsequent paper. At this
point the existence of such a transformation except in trivial cases
is doubtful.
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6. Nonself-adjoint Stieltjes differential-boundary expansions.
Expansions for nonself-adjoint systems have been derived in certain
earlier circumstances. First, for the case where H=0, H =0,
K, =0 or when H=0, H =0, K =0 (the adjoint of the former),
an expansion was derived in [2] using familiar techniques. Second,
when H, =0, K, =0 (so » =0, s =0) and H and K are absolutely
continuous, an expansion was derived in [5].

In the present situation troubles arise. The bottom terms in
the matrix of Theorem 3.1 do not all asymptotically have nice
limits as Re () — oo, a necessary sort of condition previously. For
example, when

Kj,o(t)=0,0§t<%,

A

=1,i t<1,
6<

the system
Ly = (4 + Kip[y(0) — y(D] + K )
1
9O + 9 + | dKy =0,
1
[ Ky + Kuely = 0,

has eigenvalues which are zeros of the determinant of

r 1 -1 0 0 0
et - e 1 —fMB_grls () gtlis__ phis
et + 1 0 —edHs_g2tls — gt
0 0 0 1 0
giilo L gBale 0 —eBB_gtlls 1 __ 26 p31/6

These are N = (2k + 1)6mi; k = 0, =1, ---. As Re A — — oo, however,
the matrix has a singular limit.
However, the system

L?/ = (y + Ka/sw)’
y(0) +y1) =0,

Sﬂ&w=0,

has as its eigenvalue determining matrix
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1 1 0 0 0
-t 1 0 —e
1+¢ 0 -1 0 eM®

0 0 1 0
—2e'? 0 01 -1

The eigenvalues are easily seen to be M\ = 2kwi, <=0, £1, ---.
The limit of the matrix above as Re \ — — o is nonsingular. Frankly,
the author does not entirely understand what is going on.

It is possible to extend the results of [5] under some rather
severe restrictions. Let us assume that H, = 0 and K, = 0 so that
a 3 dimensional vector representation (with & =0 and &, =0) is
possible. In addition assume that H is continuous (or by considering
the adjoint problem that K is continuous). One system has the form

Ly = (y + H[Cy(0) + Dy(1)])’ + Py
Ay(0) + By(l) + ﬁ:de ~0.

If y is replaced by % under the invertable transformation y = Y¥
(Y + PY =0), then we find the equations Ly = f, Ly = Ay are
equivalent to

(g + [Y—lﬂ— Y Y-lpdm][CY(O)g(O) + DY(l)g](l)])’ — YUf or =27 .
The new equations are of the same form as the old, with the same
assumptions, with the absence in the second set of the term Py.
This results in an equivalent system in which the terms Y and Y
are missing, a considerable simplification in calculation. We shall
henceforth assume that P = 0.

The following lemma is the analog of Lemmas 6.4-6.8 of [5].

LEMMA 6.1. (a) limge;y-.. S£°() = 0 a.e.
In particular limge; ... S#(1) = 0.
(b) limg,.;)-.e*[S7 (1) — SZ(t)] = 0 a.e.
(¢) limge-we ™ 2°(t) = 0 a.e.
In particular limg,;.e 2% (1) = 0.
(@) limgepyoe [Z7@) - 22 (1) — ZL ()] =0 a.e.
(e) limge ;e #Z () =0 a.e.
In particular limg,; ... #Z (1) = 0.

Proof. Let V! stand for the total variation from «a to g.
(a) If 0 <a <t, then for an appropriate norm
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122 = ||| e a7 @)|

< [[aswo] s [
s Wzl + eVl .

The first can be made less than half of any preassingned ¢ if a
is sufficiently close to 0. The second is less than ¢/2 if Re(\) is
sufficiently large.

®) ez W) ~ 201 = o | edsz @)

<

I e

whent <t + 6 < 1. The second term is less than Vi%|| 5# ||. This
can be made less than any ¢/2 by choosing 6 small. The first is
bounded by e % V(|| 5# || which becomes small as Re (\) — .

(¢) This is shown by the same technique as was used in (a).

@ I oen - 2ol =||dre | ez
s [faorof il

z+
+ HS:(JZ%(Z) S:He“’”’dé"/(x)” .

The second term is bounded by Vi .22 || -sup, Vi*|| S# ||. Since
&7 is continuous on [0, 1] this can be made uniformly small if o is
sufficiently close to 0. The first term is then bounded by e=* V{|| 2 ||
Vil &# || which has zero limit as Re (\) — co.

(e) This is shown by the same technique as was used in (d).

It is now possible to determine the location of the eigenvalues
of L.

THEOREM 6.2. The eigenvalues of L are the zeros of the deter-
minant of

A -1 0
4, = | Be* + 2 (1) I —Bés#(l) - Q).
De* + C 0 —Deézx()—1

If A is nonsingular, they are bounded on the left in the complex
plane. If B is nonsingular, they are bounded on the right in the
complex plane. Hence when both A and B are monsingular, the
etgenvalues of L be in a vertical strip.

Since det 4, is almost periodic in Im (\), when A and B are
nonsingular, the number of zeros lying in a vertical strip |[Re (V)| <
h also satisfying <« <Im(\) < £+ 1 is bounded by some number
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independent of <. For any 6 > 0 there is a corresponding m(0) >
0 such that

| det 4, > m(0)

for \ lying in the strip |Re (V)| < h and outside circles of radius o0
with centers at the zeros of det 4,.

Proof. An elementary calculation shows, when A is nonsingular,
that as Re (\) — — o, det 4, = (det A + o(1)), which ultimately can-
not be zero. Similarly, using Lemma 6.1, when B is nonsingular, as
Re (\) — o, det 4, = —é’(det B + o(1)), which is also ultimately non-
zero. The final statements follow from [7, pp. 264-269].

We are now in a position to quote directly the results in §6 of
[5]. Please note that the phrases “uniformly in --.” appearing there
should be replaced by “for all z, & in (0, 1)”. Actually a.e. will do
fine. Such is our present situation. Assuming A and B are non-
singular, we quote:

THEOREM 6.3. Let \, be in the resolvent set for L. Let {\}7 be
the eigenvalues of L (which for convenience we assume to be simple).
Let {Y,}¢ and {Z}7 be the associated eigenfunctions and adjoint

1
etgenfunctions, assuming that S Z¥Y,de = 1. Then the Green’s func-

tion for L, Gy(s, t) = Lu(s, t) soztisﬁes

a.e.

The proof is by contour integration using the asymptotic esti-
mates established in this section as well as that in [5, §6], suitably
avoiding the zeros of det 4, as we know is possible.

By integrating G, (s, t) - f(s) with respect to s before the contour
approaches c and appealing to the Lebesgue dominated convergence
theorem, we find:

THEOREM 6.4. Let f in £F[0, 1] be in the domain of L, then
r®) = 370 | 26/ 6)ds .

COROLLARY 6.5. If f im £7[0, 1] is in the domain if L and g
m £00,1] is in the domain of L*, then (Parseval’s Equality)

lorerod =51 oo v 26560 .

i=

The problem of expansions in the general case remains open.
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ON THE INNER APERTURE AND INTERSECTIONS
OF CONVEX SETS

D. G. LARMAN

It C,---,C, are n convex surfaces or sets in d-dimensional
Euclidean space E¢, then it is of some interest to study the invariance
properties of M, (C; + a,) for all choices of vectors a, in E¢ Such
considerations occur naturally in identifying an object irrespective of
the direction in which it approaches the observer.

For example, Melzak [2] and Lewis [1] have investigated the
conditions under which the intersection N%.,; (C, + a,) of certain convex
surfaces always is a single point. These surfaces arise from the work
of Ratcliff and Hartline [3] concerning varying light intensities upon
different visual elements of the eye.

In this article we study such intersections and in Theorem 1, we
show that the result of Melzak [1] has an associated Helly number in
E? but not in E® In Theorem 2 we give a necessary and sufficient
condition for N, C; + a, to be nonempty, whenever C, .-+, C, are
convex sets, in terms of the outward normals. This condition is not
easy to apply in that it involves the outward normals to intersections
of d-membered subsets. So in Theorem 3 we give a sufficient condition
in terms of inner and outer apertures which is widely applicable.
Finally, in Theorem 4, we give a characterization of the sets which
can arise as inner apertures. I am indebted to Z. A. Melzak for
suggesting these problems to me.

To define the inner and outer aperture, let D be a convex subset
of E¢. If | = I(u,v),

= {u+ %= 0)
is a typical ray in E¢ u, ve E% v # o, define
6(\, D) = dist. {u + v, E4\D}
and

(D) = sup o(\)

where

dist. {A, B} = inf ||a — b]
ac 4

beB

when A, B are nonempty subsets of E¢ The inner aperture .7 (D)
of D is the union of those rays l(u, v) — u emanating from the origin

219
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o such that 6(l(u, v), D) = + . So, if D contains o, .Z (D) is the
union of those rays ! = l(o, u) in D such that Au can be made an
arbitrarily large distance from the boundary of D for A sufficiently
large. The outer cone O(D) of D is what is usually known as the
characteristic cone namely the set of all rays i(u, v) — u emanating
from o with I(u, v) contained in D. Both O(D) and .# (D) are convex
cones and O(D) is closed whenever D is closed. In general, of course,
O(D) can be any convex cone in E* but this is not the case for .# (D).
It will follow from Theorem 4 that .# (D) is a G,-convex cone with
the property that whenever a rayl € cl. {_#(D)}\-# (D) then the smallest
exposed face F(I) of cl.{ #(D)} containing ! also is contained in
{cl. A (D)\~ (D).

THEOREM 1. Let C¥, ---,C¥ be n convex sets in E® whose d-
dimensional interiors are nonempty and do not contain a line. Let C,,
«+«, C, be the convex surfaces bounding C¥, -+ -, C¥ respectively. Then
N;-. (C; + a;) is at most a single point for all choices a,, ++-, a, of
points in E* if and only if there does not exist n parallel lines of
support 1, +--, 1, to CF, ---, C¥ respectively. In E* this is true if

and only if some four membered subset C}, ---, C} do not have parallel
lines of support. However, in E* and for every n = 3 there exist
convex sets C¥, --., C¥, whose relative interiors do not contain a line,

such that every n — 1 membered subset have parallel lines of support
but this is not so for C¥, ..., C¥.

LeMMA 1. Let A, ---, A, be spherically convex subsets (possibly
open, half-open or closed semicircles) of the unit circle S* such that

fJ(A,.yU —A)* 2,15, =n,v=1 -+ 4.
Then

é(AiU —A)= 2.

Proof. We parametrise S* in terms of the angle ¢ made with
some fixed line through the origin and consider the semicircular
interval [0, 7]. The intersection A4, U — A, with [0, 7] is either

(i) an interval {¢,;, d,> not containing either 0 or =,

or (ii) [0, «],

or (iii) two intervals [0, a, >, < b, 7], the first containing 0 and
the second containing .

The classification yields a corresponding subdivision I,, I,, I, of
{1, -+, n}. Let
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[0, ai1> = 1@ [0, a;
by, 7] = N <by, 7]«

iely

If {¢, d.) and <{c;, d;), %, j€ I, both meet [0, ;> and

(1) {eo dy N<ejy dd N[0, 00 = @

then at least one of these intervals is contained in [0, ;). But then
(AU —A)n4; U —4A)Nn A4, U —4)n4,U —4,)

is contained in [0, a,> U — [0, a,> and consequently, by (1), is empty,
which is contradiction. So, if

I'= {’LG Il: <Cu dz> N [0; a'i1> * @}
we have, from Helly’s theorem, that

(2) [0, a.> NN, diy = D -

iel i
Similarly, if

I! = {ie I: <e;, di) N <by, T] # @}
<bi27 7Z'] ﬂ nz<ci, d1.> # @ .

iely

If there exists 4,¢ I\I! and %,e IL\I? then

(3)

OA%U _Aiy: @7
so either I} = I, or I? = I, and, using (2) and (3),

REMARK. This is the best possible result for if A, = [0, 7/2], A, =
[7/4, 3n/4], A, = [7/2, 7], A, = [874, 57/4] then

3
nAi,,U ——Aiyi @,1§7:1<7;2<7:3§4
v=1

but

AAU-A=0.

LEMMA 2. There exist n closed spherically convex two dimensional
subsets D,, ---, D, on S? mome of which contain antipodal points,
such that for every m — 1 membered subset D,, ---, D, _ there exists

Tp—1
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a great circle of S* which meets each D,, but there does mot exist a
great circle meeting each of D,, -+-, D,.

Proof. In [4], Santalo constructs, for each n = 3, a family of
n compact convex two dimensional sets F), --., F, in E*® so that each
n — 1 members of the family admit a common transversal but the
entire family does not have a common transversal. We mention that
such an example is the family of # circular discs whose centers have
polar coordinates o =1 and 6 = 2kn/n, k =1, ---, n and whose radii
are all equal to cos®w/n or cos’w/n + cos®w/2n — 1 according as whether
n is even or odd.

Now, if we place the configuration F), .-, F, into a plane tangent
to S?% let D, ---, D, be the corresponding closed spherically convex
subsets of S? obtained by the projection of F, ..., F, into S* from
the origin. Clearly D, ---, D, satisfy the requirements of the lemma.

Proof of Theorem 1. The proof of the first part is essentially
due to Melzak [1] but as he makes the restriction that d =n we
repeat the details.

If there exist n parallel lines of support I, ---, 1, to Cf, -+, C}
respectively then by translating the line [; into the relative interior
of C; if necessary, j =1, ---, n we obtain » nondegenerate similarly
orientated chords [p;, g;] of C} parallel to [; such that

”p1 - Q1” = e = Hpn = qn” .

Hence, if a;=p, —p;,7=1, -, m
NC + a2 p, a)
i=

and so contains at least two points.

On the other hand, if there exist vectors a; j =1, -+, n such
that 7., C¥ + a; contains at least two points say p, q then, by
considering two dimensional sections of C;, C; has a line of support
I; parallel to [p, q] and hence [, ---, [, are parallel lines of support
to C, ---, C, respectively which completes the proof of the first part.

In E* we may select a set A, of unit tangent vectors u to C}
by ensuring that the outward normal lies on the left hand side of
u when viewed from the point of contact on C; in a clockwise direction.
Then A, is a spherically convex subset of S* which is either S* or is
contained in semicircle according to whether or not C; is bounded.
Now C¥, --+, C¥ do not have parallel lines of support if and only if

é(A,-U—Ai)=@.
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This, by Lemma 1, is true if and only if there exists some four
membered subset of C¥, ..., C¥ which do not possess parallel lines of
support which completes the proof of the second part of the theorem.

In E® and for each n = 2 consider the » closed spherically convex
subsets D, ---, D, of S? afforded by Lemma 2. If {,) denotes scalar
product consider the set of closed half-spaces 57 such that H™ € 57 if

H = {x:<{x,u) <1} for some uecD,.
Let
C:=NH, 1=1,,n.
Then D, is the set of outward normals to Cf and so as D, is two

dimensional, C§ does not contain a line,7 =1, ---, n. Also for every
n — 1 membered subset C%, ---, C¥ _ of C,, -+, C, the corresponding

Yp—1
set of outward normals D,, ---, D,  all meet some great sphere S =
S(i, +++, ta—s). Consequently, if ! is a line perpendicular to aff. S,

Ci, +++, C;,_, each possess lines of support parallel to I.

On the other hand, if C, ---, C, possess parallel lines of support
then there would exist a great sphers S* of S* which meets each of
D, ---, D, which, by Lemma 2, is not so. Hence C, ---, C, do not
possess parallel lines of support, which completes the proof of
Theorem 1.

We observe the following lemma which is easily established by

separating two disjoint convex sets by a hyperplane.
LEMMA 3. Two convex sets C,, C, in E?¢ cannot be separated by

translation if and only if N(C) N (—N(C,) = o, where N(C,) is the
convex cone of outward normals to C,, i =1, 2.

Using Helly’s theorem we readily verify the following lemma.

LemMA 4. If C, ---,C, are convex sets in E?, then (i (C; +
a;) = @ for all points a,, -+, a, in E*if and only if N (C,, + a;) #
@ for all points a,, ---,a, in E* and for every d + 1 membered
subset {C.}*1 of {CJtu.

Using Lemmas 3 and 4 we obtain

THEOREM 2. If C, ---,C, are convex sets in E° then (. (C; +
a) #* @ for all points a,, ---a, in E* if and only if

-neynNUc,) =2
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Jor all d + 1 membered subcollections {C;}i%t of {Ci}i-..

However, this condition is not completely satisfactory in that
N(U!:C,) is a function of [Ui2;C, rather than a combination of
functions of each C,. We shall resolve this problem to a certain
extent in Theorem 3 by giving a widely applicable sufficient condition.

THEOREM 3. Let C, ---,C, be n convexr sets in E*. Then
(4) iﬂ:l(Cﬁai);&@
Sfor all choices of a,, ---, a, if there exists j such that
0. )N N #(C.) # @

SJor all d + 1 membered subcollections {C,}it; of {C)i-.. Further, if
y

at least of cl. C, ---, cl. C, does not contain a line, each is unbounded
and C, ---, C, cannot be separated by translation, i.e., (4) holds for
all a, «--, a, then

éO(cl. C)= o .

Proof. Let I be a ray of O(cl. C;) N M=, -~ (C;) which, by Helly’s
theorem, is nonempty. We may suppose, without loss of generality,
that oeC,N --- N C,. Then, if a, ---, a, are points of E?,

l+acC, +a,, 1=1 v, 0.

If 1 = {\u, » = 0}, then, as I = _#(C,), © + J, there exists A, such that
A+ a; is in G, A =\,
SO, if M* = max;<;<q. Ny

Mu + a;€ M C; as required .
4=1

To prove the second part, let C; denote the closure of C;, 7 = 1,
«++,n. We may assume that C, and C} do not contain a line and
that for some n», M2=! Cf is unbounded, which is certainly true for
n = 2. As 2! C¥ is convex closed and unbounded it follows that
O(N:=! Cf) is nonempty. Further, as (=} C¥ is contained in C},
Nz CF and O(N=! C¥) do not contain a line. Let I be a ray of
O(Ni=! CF), say L = P, A= 0}, If O(N, CY) is empty then, in par-
ticular, M, C¥ must be a compact convex set.

If x>0,

m—1 m—1

7\,u+DCiCDCi,
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and consequently,
(5) (w+Nc)nc =(m+nc)n(Ac).

If no matter how large X\ is taken, (Au + N&:'C;) N C, contains a
point z(\) say then, by (5), z(\) is confined to a compact set M, C;
and z(\) — aMee N C,, A= 0. It follows that —1is a ray of O(N* C¥)
which is a contradiction to C* not containing a line. So N, Cf is
an unbounded closed convex set and hence O(N\», C¥) is nonempty. So
repeating this process for m =1, 2, ---, n we conclude that O(N}-, C¥)
is nonempty as required.

DEFINITION. We say that a collection 5 of closed half-spaces
in E? is closed if whenever {H;}z, is a sequence of closed half-spaces
in 57, where

H; = {x:{x, u,y £ ;}, u, a unit vector,
and u,— u, a,— a as ©1— o« then the closed half-space
H = {x:{x,u) £ a}

is in &~ We say that a collection 57 of closed half-spaces is F,
if it is the countable union of closed collections.

If 27 is a closed collection of closed half-spaces notice that the
set Uuy-<» H, where H is the bounding hyperplane of H-, is a closed
set and consequently (Ny-.. int H- is a relatively open subset of

nH'e.V H_-

THEOREM 4. A set C in E? is the inner aperture of some convex
subset of E°¢ if and only if

C=o0oUNint. H-
P

where 57 is an F,-collection of closed half-spaces and o€ H, the
bounding hyperplane of H-, for all H € 5#.

REMARK. So, in particular, C has to be a G;-convex cone with
apex the origin such that if xe{cl. C}\C then the smallest exposed
face F(x) of cl. C that contains x is also contained in {cl. C)\C. In
E® the converse is also true.

Proof. We shall assume that the theorem is true in d — 1 dimen-
sions, the theorem being trivial for d = 1.

(i) Necessity. Let C be the inner aperture of some convex set
D in E* where, since (D) = “(cl. D) we may suppose that D is
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closed. If D = E* then C = E? and, by convention,
C=Nint. H = E*

2

where 57 is the empty set of closed half-spaces.

Otherwise D = E°* and so possesses at least one hyperplane of
support M say with D contained in the closed half-space M~. We
may suppose, without loss of generality, that eoc M. If D contains

a (maximal) linear subspace L of dimension at least one then Lc M
and

D=F+ L

where F'is a closed convex subset of L'. By the inductive assumption
the inner aperture . #(F') of F' can be written

F#(F) = o U int. H*"

where S7°* is a closed subset of the closed half-spaces in L. Then
C=o0oUNint. H-
where 57 is the closed collection of closed half-spaces in E¢ formed
by taking H™ in 5~ if
H =L+ H*

where H* ¢ 5#7*.
If D does not contain a line then the set of rays in D is a closed
convex cone K which has a hyperplane of support say {z, = 0} with

Kn{w,=0=o.

Let 7, denote the hyperplane z; = v, v = 0. Let [ be a typical ray
of K,

a,(l) = dist. {(Ix,), = (E\D)} ,
and

a(l) = sup a,d) .

By considering two dimensional sections through [ it is easily verified
that «a,(l) increases with v. Also

lcC if and only if a(l) = + « .
So, if
C,={l:1is a ray in K, a(l) > 1},
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then

(6) c=NCc,
Now CK,i=1,2, --- and

(7) K =oU()int. H"

where 57 is the collection of closed half-spaces, whose bounding
hyperplanes contain o, such that K\oecint. H-. If K= Kn S,
let 2#;* denote the closed set of the closed half-spaces H,

H = {x:{x,u) <0}
where
(~u, k)= —-27, for all keK.
Then 57 = Ui, &7;* and so, using (6), (7) it is enough to show that
C.,=KnNint. H

where 57, is a closed collection of closed half-spaces of E?¢ whose
bounding hyperplanes goes through o.
Suppose now that ! is a ray of K\C,. Then

al) 1.
For j=1,2, ---, there exist points a,, a, ---, with a;ex; N bdy. D
such that
(8) lla; —{m; N =1

Let H; denote a hyperplane of support to D at a;, with Dc H;. As
we may suppose that K == o, H; is not parallel to the hyperplane x,.
So H;N «, is a line in «,. If we consider the two plane o; through
and a; then H; meets ¢, in a line l;. As l; supports ¢; N D, it follows,
using (8), that

(9) HWinm —Iinm|=7.

Consequently the (d — 2) affine space 7, N H; lies within a distance %
of INm. So we may suppose, by picking subsequences if necessary,
that 7, N H; —n, N\ H, as j— < and [; N 7, tends to a point which,
with a view to later developments, we denote by /, N 7,. Let the line
through the points a; and I, N7, bel},j=1,2 ---. As(8),(9) hold,
l¥ converges to a line [, through [, N 7, and parallel to !. Consequently
H;,— H, as j— c. So Dc H; and
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(10) lz.nlb—mNnll=B=1, if v=o0,
B a constant. We claim that

Hy + {ml — nl} = H]” say,
contains K and H; supports K and passes through o. Certainly
11 lc H;

and so H] passes through o. If there exists a ray I* in K\H;", then
l* meets H, which contradicts Dc Hj.

Now let 2% denote those closed half-spaces H- such that the
bounding hyperplane H supports K and there exists a closed half-
space H*~ containing H~- such that H* supports D; H* is parallel to
H and a distance, in the hyperplane 7, at most ¢ from H.

By (11),

12) C.oKn ﬂ int. H,
where 57, is a closed set of closed half-spaces.
Conversely, if [ is a ray of
K\{(Kn Nint. H}
g
then there exists H~ in 5% such that ! < H. Then there exists a

closed half-space H*~ which contains D such that H* is parallel to
H and the distance between H and H* is at most 7. Consequently

al)=1,v=0

and so Il ¢ C,. Hence
(13) C;cKnMint. H™ .
Combining (12) and (3),

C,=KnNint. H-
which completes the proof of the necessity of the conditions.

(ii) Sufficiency. Suppose now that
C=o0UNint. H-

where 57 is an F,-collection of closed half-spaces and oec H for all
H e 27 So we may write 57 = Uz, &4, where the &7, form an
increasing sequence of closed collections.

Consider the closed convex cone
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Co=clC=NH .
s

If C,= E°¢ then C = E? and C is its own inner aperture. Otherwise
C, possesses one hyperplane of support M through o with C, contained
in the closed half-space M~. If M C, contains a maximal linear
subspace L of dimension at least 1 then we may write C,= F + L
where F' is a proper closed convex cone in L. Notice that L — H for
each H ¢ 257 and consequently we may write

H =L + H* for each H €27,

where H*™ is a closed half-space in L whose bounding hyperplane H*
passes through o. Consequently

C=oU{{Nint. H*7} + L} .
By the inductive assumption, there exists a closed convex set D* in
L such that
oU[)int. H*~

is the inner aperture of D* in L. Let
D=D*+ L

and then C is the inner aperture of D.

Henceforth therefore we may suppose that C, is a proper closed
convex cone in K¢ i.e., C, does not contain a line and we can also
suppose that the ray

X}— - {(07 ) 0; xd)y Lq z 0}

is in C, and that the hyperplane 7, = {#; = 0} supports C, with 7, N C, =
0. Then, as for K in the proof of necessity,

C,=o0oUfNint. H

)

where 57 is a closed set of closed half-spaces whose bounding hyper-
planes pass through o. We may suppose that

GG, T
and let
C,=oUNint. H, 1=0,1,2 ---.
iy

We shall produce inductively a nested sequence of closed convex sets
{C¥}%, such that C, is the inner aperture of C; and indeed
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(14) =CNNH",120
g

where, if H™ e 57, then H*™ is that closed half-space containing H-
such that H* and H are parallel and at a distance ¢ apart in the
hyperplane =,.

We begin the induction by taking

Cy={x=(x, -+, 2),2, =0 and dist. (x,C,Nr,,)=2.

Clearly C¥ is closed and it is convex since, from above, C¥ N7, is
convex, ¥ = 0 and so Cf cannot possess a point of concavity. We
shall show that

(15) A(C) = C,.

First notice that if u = (4, ---, u;) is a unit vector in C, then u; >
0. So, if I = {vu: ) = 0} is the corresponding ray in C,

01 = C(Md(l) g V)\zud > 0 .
So, if m is a positive number

provided m?u, < \. It is an almost immediate consequence of (16)
that [ < ~#(C{) and hence C, < #(C).
Suppose next that the ray

U'={w, » =0}

is not in C,. If v, <0 then 2w CF for all » > 0 and then certainly
!¢ 7(C¥). If v,>0 then I’ N7, is a single point for each v = 0
and there exists 7 > 0 such that

dist. (v, CoN m,) > 7.
So
amn dist. (w, Cty,,) > A7 .
But, if I’ © 7 (C{) then, in particular, A e Cf for each A = 0. So
(18) dist. (W, Ci3,,) = (Wv)' 5, M = 0.

However, provided )\ > v,/%* it follows from (17) that (18) is false.
Consequently ' ¢ _#(C}) which establishes (15).

Suppose inductively that for some m = 1 we have constructed m
closed convex sets C¥, ---, Ck_, in E? with C, being the inner aperture
of C¥,i=0,---,m — 1. Indeed,
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(19) C?‘H:Cfﬂﬂﬂ*", '5=0,1,---,m—2,
S+

where, if H € 57, then H* is that closed half-space containing H~
such that H* and H are parallel and at a distance 7 + 1 apart in
the plane =,.

For each H e 5%, let H*  be that closed half-space containing
H- such that H* and H are parallel and at a distance m apart in
the plane 7,. Define

(20) Cr=Cr.nN H* .

We claim that the inner aperture of C} is C, i.e.,
(21) F(Cr) =0C, .

If 1 is a ray of C, not in C, then [ is in some hyperplane H where
H-e 57,. Consequently, by considering the corresponding closed half-
space H*", we deduce that a(l) < m, and so I & - #(C}). Hence
Z(C¥) cC,.

On the other hand, suppose that [cC,. That the set
%LJ'LH * = H, say
is a closed set and does not meet the ray l\o. As each hyperplane
H, with H™ e 57, passes through o, it follows that
(22) dist.(Nx, H,)—> + © as y—> + oo,
Also le .~ (C}_) and so
(23) dist. (n=m, E\Ci_))— + © as yv—> + oo,
Consequently using (20), (22), (23),
dist. (N w,, ENCE)— + o0 as y—> + oo,

Therefore, | ©.#(C}) and so C, c #(C%) which completes the verifica-
tion of (21).
The results (20), (21) verify (19) for m and we can now suppose

that the C; have been defined so that (20), (21) hold for m =0, 1, 2,
Define

and we shall show that .~ (C*) = C.

Suppose that [ is a ray of C, not in .#(C*). Then there exists
m such that a,(l) <m,v=0. So !l is not in _#(C%,) = Cp;,. Con-
sequently [ is not in C. So Cc #(C*).
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On the other hand, suppose that ! is a ray of C, which is not in
C. Then [ is not in C, for some m = 0. So

lg A(Cr)> ~A(C).
Hence #(C*) c C and this finally establishes that
Z(C*) =C
which completes the proof of Theorem 4.
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ON THE REGULARITY OF THE P INTEGRAL
AND ITS APPLICATION TO SUMMABLE
TRIGONOMETRIC SERIES

S. N. MUKHOPADHYAY

The symmetric P?"-integral (and P?"*!-integral) as defined
by R. D. James in ‘““Generalized nth primitives’’, Trans. Amer.
Math. Soc., 76 (1954), is useful to solve problems relating to
trigonometric series (see R. D. James: Summable trigonometric
series, Pacific J. Math., 6 (1956)). But the definition of the
integral is not valid, since Lemma 5.1 of the former paper
of James, which is the basis of the whole theory, is incom-
plete due to the fact that the difference of two functions
having property B,,._, may not have this property. Therefore,
all the subsequent results of James also remain incomplete
and a complete systematic definition of the integral is needed.

In the present paper a definition of the P?™-integral (and
P*m*lintegral) is given and it is shown that all the results
of the later paper of James remain valid with this integral.

1. Definitions and Notations. Most of the definitions and
notations of [8] will be used with essential modifications. The gener-
alized symmetric derivative [8] (also called symmetric de La Vallée
Poussin derivative [18]) of even and odd orders and the generalized
unsymmetric derivative [8] (also called Peano derivative [13] or
unsymmetric de La Vallée Poussin derivative [11]) of a function f at
z, will be denoted by D"f(x,) and f(,,(x,) respectively, where r denotes
the order of the respective derivatives. If D¥*f(x,) exists, 0 <k <
m — 1, define 8,,(f; 2, k) by

h* : _1 L g
@m)] Oun(f3 @y ) = —-AF (@ + 1) + f(o — B} %‘(2;070 £ () -

The upper generalized symmetric derivate of f at x, of order 2m is
defined as

D f(x,) = lim sup Oun(f; %, 1) -
h—0

Replacing ‘lim sup’ by ‘liminf’ one gets the definition of D*"f(x,).
The function f is said to satisfy the property .54, at x, written
as fe (), if

lim Sup h02m(f; xO) h’) 2 O ’
h—0

and fe %, (x,) if —fe.Z.(x,). The function f is said to be smooth

233
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at x, of order 2m if

Lim A8 (f; @, 1) = 0 .
-0

Clearly smoothness of order 2m implies smoothness of order 2m — 2
and if f is smooth at x, of order 2m then fe .. (%) N Fn(®x,). For
symmetric derivatives of odd order, ,,..(f; @, h), D*""'f(x,), D*"*'f (x,),
Foms (@), Fomir(,) are defined analogously.

If fi,(x,) exists, 0 <r <n — 1, 7,(f; 2, h) is defined as

i ) = Fo+ 1)~ 5 g @
n. =0 7.

The upper generalized unsymmetric derivate of f at z, of order = is
defined as

f(n)(mo) = lhlg;l sup A/n(f’ xo; h)

with a similar definition for f,(x,). By restricting 4 suitably one can
define one-sided derivates which are denoted by fi(x), ete. For
convenience, the first order derivates £, (2,), f(®,), etc., will be denoted
simply by f(x,), f*(x,), etc. The ordinary wmth derivative of f at x,
will be denoted by f™(x,).

A function f is said to satisfy the property .2 in an interval I,
written fe & in I, if for every perfect set Pc I, there is a portion
of P in which f restricted to P is continuous (see [17]). A function
fis said to satisfy the property .7~ in (a, b), written f€.7 in (a,b),
if there exists a function F' continuous in [a, b] such that F',, = fin
(@, b) for some n. The class of all Darboux functions will be denoted
by <. From the properties of Darboux functions it follows that if
D*fe <7 and if g is continuous then D*f + ge <. This fact will
be used in the sequel. For the definition of n-convex functions we
refer to [8, 1].

We now come to the definition of major and minor functions. Let
S be defined in (@, b) andleta = a, < a, < -++ < @y, = b. A function
Q is said to be a P*"-major function or simply a major function of f
over (a;1 <1 < 2m) if

(i) @ is continuous in [a, b],

(ii) D*™*Q exists and D¥e # N7 in (a,0), 0=k =m — 1,

(iii) Q@) =0,1=1=2m,

(iv) DQ = f a.e. in (a, b),

(v) D™Q > — o, except on an enumerable set E C (a, b),

(vi) @ is smooth of order 2m on E.

The function ¢ is a minor function of f if —gq is a major function of
—f. The P*™"-major functions and P***'-minor functions are defined
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similarly.

This definition of major and minor functions differs from that of
James [8] in allowing certain exceptional sets in (iv) and (v). But
this is standard and is also noted by James in his modified definition
of the P*"-integral [9]. Another difference is in condition (ii) where
we are assuming D*Qe.2? .7 instead of James’ [8] requirement
that @ has properties A,, and B,,_,. (The property .&# is weaker
than A,, by Lemma 3.2 of [8] and the property .7 is stronger than
B,, . by Lemma 8.1 of [8] or by Theorem 2 of [13].) But this is
necessary since the difference of two functions in .# N7 1is in
Z# N7 which is not true with the property B,,_.. We shall prove
in the sequel that this is a proper definition of major and minor func-
tions and the P*-integral defined by these major and minor functions
is capable of handling trigonometric series.

2. Preliminary lemmas.

LEMMA 2.1. If f is smooth of order 2m + 1, as well as of order
2m + 2, at x, then fo.(x,) exists. If fi..(x,) exists then f is smooth
of order m + 1.  More generally, iff&ﬂ)(xo), f@ﬂ)(wo), f—‘(tb—m(xo)v Saen(®)
are all finite, then

HH}}E}D RO, (5 @, B) = " ;_ 2 {f_(rzq‘—n(xo) = Sao(@o)}

lim inf b6, o(f; @, ) = -’%;—2 @) — @) -

h—0

Procf. The first part is clear. For the last part, since f, ()
exists, D"f(x,) exists, 0 < » < n, and

@D i, D)+ Yalfi @ ) = Opn(F 0 1)

1 ) . __hk
(2.2) E{“/W(f, Loy ) — Voir(f5 2oy —h)) = po

2 0n+2(.f; xOy h’) °

From (2.1)
lim k0,..(f; x, h) = 0,

h—0

and from (2.2)

R f @) = Facsf@)) S liminf 10, (3 2 B) -

The other relation follows similarly.
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LEMMA 2.2. If Gu_y»(x,) and D"G(x) exist and if Ge ., (x,)
then the function w,,.(G; x, h) defined by

hn+1 . _ _ n—1 hr _ ZL_Z "
(2.3) mwn+1(G, %o, h) = G(x, + h) %}TG(M(%) o D"G(x,)

satisfies the relation

lim sup @,,..(G; 2, k) = lim inf @, (G; x,, k) .
h—0+ h—0—

Proof. Since

@G5 2oy B) — 0,,,(G5 @y —) = nzf S 00lGi 0 1)

and since G e ., 4(x,), the proof is immediate.

LEMMA 2.83. If fi., exists wn (a, b) and x,< (a, b) then
(2.9) ) @) = Finn(®o), Fm@o) = (F) (@), ete.
(2.5) (fu)@o) < DVf (@), D" f () = (Fim)(0)

Proof. If m = 0 this is immediate. Suppose » = 1. Then f is
continuous in (a, b). Let x,¢[a, 8] < (a, b). Then each f, is C-
continuous in [, 8], 0 £k < n, by Lemma 11.1 of [8]. From the
definition of Cesaro derivative (see [4]) we have C,D*fi.,(%) = fiin(®@0),
where C,D*f..(x,) is the right hand upper nth Cesaro derivate of f,,
at x,. Since C,D'f. (%) is the first order derivate (fu)(®.), (2.4)
follows from Theorem 2.1 of [4]. Lastly, from (2.1), D"*"'f(x,) =

fuwsn(®,) and hence (2.5) follows from (2.4).

LEMMA 2.4. Let g be continuous in [a, b] and D¢ = 0 in (a, b),
except on an enumerable set E < (a, b) and let g € F(x) for x ¢ E. Then
g s convex in [a, b].

This is proved in [19, I, p. 328], which sharpens a result of de La
Vallée Poussin (see [16, Lemma 3]).

3. 2m-convex functions. In this section and in §4, the results
are stated in a more general form than is necessary for P*™-major
and P*"*'-major functions. Since every member in .9~ possesses
Darboux property [13], we have .9~ N &2 < &7 N .2 and hence these
results are applicable in §§ 5 and 6.-

THEOREM 3.1, 2m. Suppose that
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(i) f vs continuous in [a, b],
(ii) D**f exists and D*fe 27 N.# in (a,b), 0=k =m—1,
(iili) D*f= 0 in (a, b), except on an enumerable set E C (a, b),
(iv) fe . F.(x) for xcE.
Then D*™*f is convex in (a, b) and it is the continuous derivative
e in (a, b).

The above theorem is true for m =1 by Lemma 2.4. So, we
assume that the theorem is true for m = m, i.e., Theorem 3.1, 2m,
is true and we prove that Theorem 3.1, 2 (m, + 1) is also true and
so the theorem will be proved to be true for all m by induction on
m. We require the following auxiliary lemmas:

LEmMA 3.1, 2m,. Suppose that
(i) G is continuous in [a, b],
(ii) D*™G exists in (a, b) and is F-integrable in [a, b],
(iii) D*GeznN.Z in (a,b), 0=k < m, — 1.
Then ¥ — G is a polynomial of degree at most 2m, — 1 in [a, b], where

— 1 i - 2mo—2
mx)_mga(x tymrg(t)dt

M@:YDWﬂMt
and GP™™V exists and is continuous in (@, b).

Proof. As in [10, Theorem 18], one can construct a sequence of
continuous functions {4,} which converges uniformly to ¢ in [a, b] as
i— o and for all ¢

(A)@) > D*™G(z), xe(a,bd).

For each 7, define

1 e 2mp—2
mw:ﬁ%ﬁiﬁ&“‘” Adt, wela,b].

Then {U,} converges uniformly to ¥ in [a, b] as ©— . Since 4, is
continuous, taking (2m, — 1)th derivative

UPm(x) = A(z) , ze(a,bd).
So, by (2.5) we have
@.1 (4)(@) = (U™ ) (@) < D™U(x), xe(a,b).
Since by construction (4,)(x) > D*™G(x) for z ¢ (a, b),
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(3.2) D*™[U, — Gl(x) > D*™U,(x) — (A)(x) , xe(a, d).
Hence from (3.1) and (3.2)
D*™[U, — Gl(x) > 0, ze(a, d) .

Since D*Ge 22 N < and D*U, is continuous in (e, b) for 0 < k <
m, — 1, D*[U;, — Gle 2 N . in (a, b) for 0 < k < m, — 1. Hence by
Theorem 3.1, 2m,, D*™* U, — G] is convex in (a, b) and so U, — G is
2m,-convex in (a, b) and by the continuity, U, — G is 2m,-convex in
[a, b]. Since U, — G converges uniformly to ¥ — G in [a, b], ¥ — G
is 2m,-convex in [a, b]. It can be similarly shown that ¥ — G is 2m,-
concave in [a, b]. Hence ¥ — G is a polynomial of degree at most
2m, — 1. Since ¥*™~1 exists and is continuous, G*®™™ also exists and
is continuous in (e, b).

LEMMA 3.2, 2m,. Let G be continuous in [a,b] and let D*™G
exist in (a, b) and be F-integrable in [a, b]. Let G*™™" exist and
be continuous in (a, b). If D*™G attains a maximum at < (a, b)
then

lim Sup @,p,1(G; @, b) < 0 < lim inf @, ,,(G; @, &) ,
h—0+ h—0—

where @ is the function defined in (2.3) with n = 2m,.

Proof. Let
J(w) = S:Dz’"OG(t)dt, zela, b] .

Then by Lemma 3.1, 2m, J — G®™™V is constant. Since G®*™™" ig
continuous in (a, b), by mean value property, for any h, 0 < h < b — x,,
there is 7, 0 < 7 < 1, such that

(5 0, ) = 2 (0, 4 78) = G (a) = DG

= 2 e — D

Therefore, since D*™(G is maximum at «,,

Iim Sup w2m0+1(G; xo, h) é 0 M
h—0+

The other part follows similarly.

LEMMA 3.3, 2m,. Suppose that
(i) F 1s continuous in [a, b],
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(ii) D*™*F exists and D¥*Fe o N.# in (e, b),0=k < m, — 1,
(ili) D*™F =0 in (a, b), except on an enumerable set E C (a, b),
(iv) Fe %, (x) for xcE.

Then

Orm(F5 2, h) =20, for all 2, h, a <x—h<ax+h<b.

LEMMA 3.4, 2m,. Suppose that
(i) G s continuous in [a, b],
(ii) D*™G exists and D¥*Ge o N.# in (a,d), 0 <k < my,
(iii) D*™G attains a maximum at x,€ (a, b).
Then

Dot G(ay) < 0 .

The proof of Lemma 3.3, 2m, is similar to that of Lemma 4.1, 2m,
of [8]. Lemma 3.4, 2m, can be proved by using Lemma 8.3, 2m, in
the same manner as in Lemma 4.2, 2m, of [8].

LEMmA 3.5 2m,. Suppose that

(i) f is continuous in |a, 0],

(ii) D*mof exists and D¥fe o7 N.Z in (a,b), 0 <k < m,,

(iii) D™**f =0 in (a, b), except on an enumerable set E C (a, b),

(iv)  fe Fpul@) for xeE,

(v) D*™f 4s upper semicontinuous in (a, b) and F-integrable
wn la, b].
Then D*™f is convex in (a, b).

Proof. We first consider the special case when the inequality in
(iii) is strict inequality. Suppose that D*mf is not convex in (a, b).
Then there is a subinterval [a, B8] < (a, b) such that

o) = D*™f (z) — 79—%7;{(6 — z)D*of(a) + (@ — a)D*™f(B)}

= D*™f(x) — px — q

takes positive values somewhere in («, 8). Since o is upper semi-
continuous in [a, 8] and p(a) = p(B) = 0, p attains maximum in (@, B).
So, if p is sufficiently near to p then the function D*™(G, where

x2m0+1 meo

Gm+ D1 L @my)!

’

G(@) = f(@) — 1

also attains its maximum in (a, 8), say, at z.. Hence by Lemma
3.4, 2m,
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DzmﬁzG(x#) — D2m°+2f(x#) <0.

Hence z.€¢ E. Now G satisfies the hypotheses of Lemma 3.1, 2m, and
hence G®*™ " exists and is continuous in (a, b). Also since fe §;MO+2(x)
for ze B, Ge 9%, .(z.). Hence by Lemma 2.2

lim sup @, +.(G; 2., h) = lim inf @,,,,,(G; 24, h)
h—0+ h—0—

where @ is the function as defined in (2.3) with # = 2m,, ©, = x.. But

by Lemma 3.2, 2m,, since D*™G is maximum at z,,

lim sup @;,,4.(G; %4, h) = 0 < lim inf @,,,..(G; @4, h)
h—0+ h—0—

and hence

lim inf @, (G; @, h) = 0
h—0—

i.e.,

lir,fioiflf @y i3 Ty ) = 2.
Thus for each g sufficiently near to p there exists z,€ E and for
different ¢ the points x, are also different. This contradicts the fact
that E is enumerable.
To complete the proof, consider, for arbitrary ¢ > 0, the function
g. Where

x2m0+2

9:(x) = f(x) + 5'm .

Then by the above special case, D*™yg, is convex in (a, b) and since ¢
is arbitrary, D*™f is convex in (a, b), completing the proof.

Proof of Theorem 3.1, 2 (m,+1). To prove the theorem we remark
that under the hypotheses, if D?*™f is continuous in an interval (a, g) C
(@, b), then by Lemma 3.1, 2m, f®™ " exists and is continuous in («, B)
and so by Lemma 7 of [18], D*™f is the continuous ordinary deriva-
tive f¢™ in («, 8). Hence applying the mean value property it can
be shown that D¥(f®™) > D*™**f and that @™ ¢ .S%(z) if fe& T, :(@)
for points in («, B) and so by Lemma 2.4, f®™ ig convex in (a, B).

Let U be the set of all points « in (a, b) such that there is a
neighborhood of 2 in which D?of is continuous. Then U is open.
Let (o, B) be any component interval of U. Then D*™f is continuous
in (a, B) and so by the above remark D*™f is convex in (@, 8). Hence
lim, .., D*™f(x) and lim,.,_ D*™f(x) exist and by the property =,
D*™f is continuous in [a, Bl N (a, b). Let P=(a, b)) — U. Then P is
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closed in (a, b). Since D*™f is continuous in the closure (relative to
(@, b)) of each component interval of U, P is perfect in (e, b). If
possible, suppose that P == 0. Then there is [¢, d] C(a, b) such that
[e, d] N Pis a nonvoid perfect set. Since D*fe.&Z in (a, b), there is
a portion of [¢, d] N P, say, H = [a, b)) N P on which D*f/H is con-
tinuous for each %k, 0 £k < m,. It can be shown, as in Theorem
4.1, 2(m, + 1) of [8] that D*™f is upper semicontinuous in [a,, b,].
Hence there is M such that D*mof(x) £ M for ze]a, b)]. Since the
theorem is true for m = m,, the function F'(x) = Mx*/2 — D*™*f(x)
is convex in (a, b,). Choose a, b,, such that a, < a, < b, < b, and
Pn(a, b) 0. Then by Lemma 3.16 of [19, I, p. 328], D*F exists
almost everywhere in (a, b,) and is &~ -integrable in [a,, b,]. Since F'
is continuous, D*F' = M — D*™of holds whenever D®*F exists and hence
D*™f is “P-integrable in [a, b]. So, by Lemma 3.5, 2m,, D*™f is
convex in (a,, b,)). Hence D*™f is continuous in (a,, b,). This contra-
dicts the fact that (a, b)N P+ 0. Hence P=0 and so D™f is
continuous in (a, b). Hence by our earlier remark D®*™f is convex in
(a, b). The rest follows from Lemma 3.1, 2m, and Lemma 7 of [18].
This completes the proof of the theorem for m = m, -+ 1.

Thus the theorem is true for all m and so henceforth we shall
omit 2m in refering to this theorem. The usual extension of the
above theorem is the following

THEOREM 3.2. Suppose that

(i) f is continuous in [a, b],

(i) D™ *f exists and D*fe 2 N.# in (a,b), 0=k =<m—1,

(iii) D*f =0 a.e. in (a, b),

(iv) D*™f > —oo, except on an enumerable set E C (a, b),

(v) fe (%), for xe E.
Then D*™%f is convex in (a, b) and D*™*f is the continuous deriva-
tiwe f? in (a, b).

This can be proved from Theorem 3.1 by using standard argument
used to prove Theorem 1.1 of [5] or Theorem 16 of [1] and so we
omit it.

REMARK 3.1. The property D*fe & for 0 =k < m — 1, in the
above theorem plays an important role. For, consider the function f
where »

2, =0

Fl@) = —x% x<0.

Then D*f exists everywhere but D*f ¢ &r. Also f satisfies all the other
conditions of the above theorem and D‘f = 0 everywhere; but D*f is
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neither convex nor concave in any interval including 0.

REMARK 3.2. The above example shows that if D*™f replaces
Df in the hypotheses (iii) and (iv) of the above theorem and if in
(v) smoothness of f of order 2m is assumed everywhere, then even
under this stronger conditions the theorem is false without the property
D¥fe .

4. (2m + 1)-convex functions. Now it is natural to ask whether
the analogous results hold for odd order derivatives. In [8], it is
indicated that the proof of Theorem 4.1, 3 of [8] was similar to that
of a theorem of Saks [14]. But Saks used the lower derivate D*f and
not D°f and so the induction on m in [8] ensures the validity of
Theorem 4.1, 2m + 1 of [8], provided D*"*'f is replaced by D*™*'f in
its hypotheses. But if in the hypotheses of Theorem 4.1, 2m + 1 of
[8], D**if is replaced by D*"*'f then this new theorem is only a
consequence of Theorem 4.1, 2(m + 1) of [8] for the integrated func-
tion. The proof of Theorem 4.1, 2m + 1 of [8] is thus incomplete.
We complete the proof in the following more general theorem.

THEOREM 4.1. Suppose that
(i) f is continuous n [a, b},
(ii) D*™'f ewists and D*"'fe 2 N.F in(a,b),0Zk=m—1,
(iliy D™ f =0 in (a, b), except on an enumerable set E < (a, b),
(iv) fe.Fpulx) for xzc K.
Then D*™'f is convex in (a, b) and it is the continuous derivative
fem1 4n (a, b).

The proof is similar to that of Theorem 38.1. It is necessary to
prove this theorem for m = 1 and to do this, Lemmas 4.1, 1, 4.2, 1,
4.4, 1, 4.5, 1, which are analogous to Lemmas 3.1, 2m,, 3.2, 2m,, 3.4, 2m,,
3.5, 2m,, will be needed. The proofs of Lemmas 4.2, 1 and 4.5, 1 are
similar to those of Lemmas 3.2, 2m, and 3.5, 2m, respectively. In
proving Lemma 4.1, 1 one is to appeal to a result of [12] instead of
assuming Theorem 3.1, 2m, as it was done in Lemma 3.1, 2m, and in
proving Lemma 4.4, 1 one is to notice that since D'Ge =, by the
same result of [12], D'G has mean value property and hence for any
h there is &, x, — h < & <, + h, such that

B204(G; @, h) = 3! {D'G(E) — D'G(xy)} < 0

giving D°G(x,) < 0. The proof of Theorem 4.1 for m = 1 will now
follow the same line of argument as in Theorem 3.1, 2(m, + 1). The
F-integrability of D'f will follow from the fact that F(x) = Mz —
f(x) is nondecreasing in [a,, b,], [12] and M — D'fis the derivative of
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F where it exists. Proving the above theorem for m = 1 and sup-
posing it to be true for m = m,, all the lemmas beginning 4.1, 2m, + 1
through 4.5, 2m, + 1 can be proved and the proof of the theorem
for m = m, + 1 can be completed. We remark that an analogue of
Theorem 3.2 is also true in this case.

5. The P?".integral. We now come to the definition of the
integral. We must show that the definition of major and minor func-
tions, as introduced earlier, actually helps to obtain a proper definition
of the integral. For, because of the presence of the exceptional set
E in condition (v) and (vi) of the definition of major function we
cannot apply directly Theorem 3.2 to prove that @ — ¢ is a 2m-convex
funection for arbitrary major and minor functions @ and ¢ respectively.
(As the definition of the P*"-integral in [9] and that of the P*integral
in [7] are also affected by the exceptional sets S and E, respectively,
(see [9] and [7]) they would also need this clarification; but the
definition of the P*integral in [6] is not affected since the smoothness
of major and minor functions is assumed everywhere). We shall
follow the method adopted in [15].

LEMMA 5.1. Given ¢, > 0 and x,<(a, b) there is a major fumnc-
tion @ for the function t(x) = 0 such that

(i) Q¥ {s continuous in [a, b],

(ii) D*Q®*~» =0 in (a, b),

(iii) ling hO,(Q®™?; x,, h) > 0, I}Ln% hO,(QP™ %5 x, h) = 0, for x #

(iv) [Q" ™| = ¢ in (a,b),
(V) [hOQ*™ ;2 h)| <&, for x +* x, and x, x = he(a,d).

Proof. Let g be the function such that
o) =0, gla) = 5 min- e — o) = |,

o) = g min- (b — ), o |,

and g is linear and continuous in each of the interval [a, 2,] and [, b]
and let G be the (2m — 2)th indefinite integral of ¢ in [a, b]. Then
the function @ defined by

Q@) = G@) — 30w 2)G(@)
satisfies the requirements, where

(5.1) M a,) = Hﬁ:_%, @ =0, < Q< o <@y =b.
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LEMMA 5.2. If Q is a major function of f and € > 0, then there
18 a major function Q. such that

IDzm—zQe _ D2m~2QI <e, I_)WQE > —o0, in (@, b) .

Proof. Letx, x, +--, @, --- be an enumeration of the exceptional
set £ C (a, b), where D*"Q = — holds. For each positive integer %,
let F', be the major function obtained from Lemma 5.1 with ¢, and
x, replaced by ¢/2F and z, respectively. Set

V@) = S F@),  F@) = SF0).

k=1

The first series being uniformly and absolutely convergent, ¥ is
continuous and ¥ = F'®"®, By the mean value property there is %,
0 <7 <1, such that

O.(F5 2, b)) = 0,W; x, ) = §3 O(F ™ 1, 7h)

and since by (i), (ii) of Lemma 5.1 and by Theorem 3.1, each F{@™»
is convex in (a, b), D*F =0 in (@, b). Also, for x,€ E, the series
St hO(FE™%; 2, ) is uniformly and absolutely convergent with
respect to % and hence

lim h0,,(F; @, h) = lim hO,(F; x, h)
h—0 h—0

= lim 3% h(FEm2; w, 1)
= Lim ROLFE""; @, h)
>0.
Now set
Q:(x) = Qx) + F(=) .
Then if x, ¢ E,

lim 40,,(Q.; x;, h) = lim ko, (F; x,, k) > 0
h—0 h—0

and hence D*"Q.(x;) = <. Clearly @, is a major function of f and by
construction | D**%Q), — D*™*Q| < e.

LEMMA 5.3. If Q and q are any major and minor functions
then Q — q 1is 2m-conver.

Proof. By Lemma 5.2, for each positive integer n there is a
major function @, and a minor function ¢, such that
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(6.2) |D™Q,— D™Q| <L D™Q,> —o, in (a,b)
%

and a similar relation for ¢, holds. Hence D*"[@Q, — ¢,] = 0 a.e. in
(e, b) and D*"[@, — ¢q,] > — o in (a, b). Since D*Q,c 7, and D*q, €
.7, we have D¥*[Q, — q,] € .7~ and hence D*[Q, — q,] ¢ &, for each
kE,O<k<m-—1,[13]. So, by Theorem 8.2 D**[Q, — ¢,] is convex
in (a, b) and hence by (5.2) and a relation for ¢,, D™ %@ — q] is
convex in (@, b) and so the result follows.

Lemma 5.3 gives the analogue of Lemma 5.1 of [8]. Once this
lemma is proved all the subsequent results of [8] can be deduced with
this definition of major and minor functions. The definition of P*™-
integral thus obtained remains valid and all the results of [8] except
Theorem 5.4 of [8] are true. We state Theorem 5.4 of [8] in our
setting whose proof is similar to that in [8].

THEOREM b.1. If G is such that

(i) G is continuous in [a, b],

(ii) D*™°G ewists and D*Ge# N9 in(a, b), 0 =<k=m—1,

(iii) D*"G ewists a.e. in (a, b),

(iv) —oo < D™G £ D™G < oo, except on an enumerable set E C
(a, b),

(v) G is smooth of order 2m on K,
then D*™G is P™™-integrable over (a;;x), where a < a, < a, < -+ <
A Z b, and if a, Zx < a,,,, then

1 || FOdat = 6@) — 3@ 0)6(@)
where N 1s the function defined in (5.1).

6. The P*™'.integral. The definition of P?"*-integral can be
obtained from the P**'-major and minor functions in the same manner
as in the case of P?™-integral. The P'-integral i.e., P*™™-integral for
m = 0 is not defined in [8]. Theorem 3 of [12] shows that the defini-
tion of P-integral is also valid and so the definition of symmetric
Printegral is valid for all » = 1.

7. The unsymmetric P"integral. The unsymmetric P*-integral
as defined in [8] is not affected by Lemma 5.1 of [8]. We state here
the conditions to be satisfied by an unsymmetric P*-major function @
of the function f in our improved setting:

(i) @ is continuous in [a, b],

(ii) Q.. exists in (a, b),

(ii) Q@) =0,1=7=mn,

(iv) Qu = f a.e. in (a, b),
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(v) @Qu > —eco, except on an enumerable set E C (a, b).
It is easy to verify that for any major and minor function, @ and ¢,
the difference @ — q is n-convex. The definition of the unsymmetric
Pr-integral now follows that of the symmetric P -integral. For differ-
ent approach we refer to [2, 3].

8. Application to trigonometric series. Now we shall show that
the results of [9] remain true with this definition of the P*™-integral.
For the notations Al(x), Bi(x) and the upper and the lower (C, k) sums
S*(x) and s*(x), which we shall use here, we refer to [9] (see also [19,
I, pp. 74-77)).

THEOREM 8.1. (Cf. Theorem 6.2 of [9].) Suppose that the series

(8.1 %ao + i (a, cos nx + b, sin nx)

ts summable (C, k) almost everywhere to a finite function f on [0, 27]
and let

(8.2) —oo <sM) = SH@) < =,
except on an enumerable set in [0, 2r). If for xe]0, 2]
(8.3) Al x) = o(n¥) , Bi(x) = o(n*),

as n— >, then f(x), f(x)cosrx, f(x)sinrx, are P*-integrable over
(a;; x) and the coefficients of (8.1) are given by

5 0
(8.4) a, = 2"“71;:’”2 S(%) f(x)cosra d,..x
) 0 .
(8.5) b, = 2k+17’;k+2 Smi) f(x)sinre d, .z
where
Bk:—(lﬁjz—)!—z if k is even ,
(Gl
2
(k + 2)! if & is odd .

TESSYIEEN
)
Proof. Since (8.1) is summable (C, k), the series obtained by

integrating (8.1) term by term % + 2 times converges uniformly to a
continuous function F' and

a, = o(n¥), b, = o(n*),
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as n— <, (see [18]) and hence F' is smooth of order k + 2 (see [9,
Theorem 3.1]). Since the once-integrated series of (8.1) is also sum-
mable (C, k — 1) a.e. in [0, 2] (see [11]), F' is smooth of order k& + 1;
hence by Lemma 2.1, F, exists and by Lemma 6 of [18], F; € &
in (0, 27) for 0 <7 < k. By [18, Theorem B] we get from (8.2)

—co < 1_)’°+2F(ﬂ7) < Ek+2F(DC) < oo

except on an enumerable set and D*"F(x) = f(x) a.e. in (0, 27). So,
by Theorem 5.1, f is P**%-integrable over («,; x). The proofs that
f(x)cosrx and f(x) sinrx are also P*'*integrable and that the coeffi-
cients of (8.1) are given by (8.4) and (8.5) are similar to those given
in [9, Theorem 4.2 and its corollary].
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ON (/, M, m)-EXTENSIONS OF BOOLEAN
ALGEBRAS

DwicHT W. READ

The class 2 of all (J, M, m)-extensions of a Boolean
algebra % can be partially ordered and always contains a
maximum and a minimal element, with respect to this partial
ordering. However, it need not contain a smallest element.
Should %~ contain a smallest element, then 2" has the struc-
ture of a complete lattice. Necessary and sufficient conditions
under which 27" does contain a smallest element are derived.
A Boolean algebra %7 ig constructed for each cardinal m such
that the class of all m-extensions of % does not contain a
smallest element. One implication of this construction is that
if a Boolean algebra .~ is the Boolean product of a least
countably many Boolean algebras, each of which has more
than one m-extension, then the class of all m-extensions of
7 does not contain a smallest element. The construction
also has as implication that neither the class of all (m, 0)-
products nor the class of all (m, n)-products of an indexed
set {%},c, of Boolean algebras need contain a smallest
element.

1. Sikorski [2] has investigated the question of imbedding a
given Boolean algebra .o~ into a complete or m-complete Boolean
algebra <Z and has shown that in the case where the imbedding map
is not a complete isomorphism, the imbedding need not be unique up
to isomorphism. He further has shown that if .2 is the class of all
(J, M, m)-extensions of a Boolean algebra .o/ then .2 has a naturally
defined partial ordering on it and always contains a maximum and a
minimal element. He has left as an open question whether it always
contains a smallest element. La Grange [1] has given an example
which implies that .2 need not always contain a smallest element.
However, the question of when does 27 in fact contain a smallest
element is of interest as it turns out that should .2 contain a
smallest element, it has the structure of a complete lattice.

In § 2, necessary and sufficient conditions are given for % to
contain a smallest element. In addition, the principle behind La
Grange’s example is generalized in Proposition 2.10 to show that if
& is not m-representable then the class 2% of all (J, M, m')-exten-
sion of .7 where J=, M < o and m’ > M, will not contain a smallest
element.

Since the proof of this result requires that J and M have cardi-
nality < o, it is of interest to ask if the class of all m-extensions
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contain a smallest element in general, and the answer is no.

In §38, a Boolean algebra .7 is constructed for each cardinal m
such that the class 9% of all m-extensions of .% does not contain
a smallest element. The construction has as implication (Theorems 3.1
and 3.2; Corollary 3.1) that for each algebra in a rather broad group
of Boolean algebras, the class of all m-extensions will not contain a
smallest element. In particular, this group includes all Boolean
algebras which are the Boolean product of at least countably many
Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski’s result that there is an
equivalence between the class & of all (m, 0)-products of an indexed
set {.94},.r of Boolean algebras and the class of all (J, M, m)-exten-
sions of the Boolean product .97 of {.%%},.,, for suitably defined J
and M, is generalized to show there is an equivalence between the
class/\g”n of all (m, n)-products of {94},., and all (J, M, m)-extensions
of &, where & is the field of sets generated by a certain set &
for suitably defined J and M. Then the above results imply that
neither .2 nor .27, need contain a smallest element.

The notation throughout follows that of Sikorski [2].

2. Let n be the cardinality of a set of generators for the
Boolean algebra .o let .57, , be a free Boolean m-algebra with a
set of n free m-generators, let .94, be the free Boolean algebra
generated by this set of n free m-generators and let g be a homo-
morphism from .94, to .97 Let 4, be the kernel of this homo-
morphism and let I be the set of all m-ideals 4 in .97, , such that:

a. 4dN.~, =4,

b. 4 contains all the elements

A,— U 4, A— A,
A€, A€

Ao - n A ’ A~ Ao ’
Ae Sy Ae Sy

where A e .27, and &4, .54 are any subsets of .94, of cardinality
< m such that:

g(“Ned,  g(A) =AU g(A)

ey

g(A)eM, g(A) =Aﬂ g(4) .

For each deI let
S = A, ,]4
and
94[Al)) = 9(4), for all Ae.of,.

Set 4, = g7'. We need the following results due to Sikorski.
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PropoSITION 2.1. The ordered pair {is;, ¥} is a (J, M, m)-
extension of the Boolean algebra & and if {i, Z} is a (J, M, m)-
extension of &7 there is a Ade I such that {t., 7} is tsomorphic to
{i, &}. Further, if 4, 4 €l then

{14 7} < {240, 7} if, and only if, 424" .

LEMMA 2.1. If S s a set of elements in 5% then the least upper
bound (lub) of S exists in 7.

Now let .9#(J, M, m) denote the class of all (J, M, m)-extensions
of o~

THEOREM 2.1. Let 5 be the class of all (J, M, m)-extensions of
a Boolean algebra 7 The following are equivalent:

1. 22 contains a smallest element;

2. % is a lattice;

3. 2 1s a complete lattice.

Proaof.

1.=3. It suffices to show that if S is a set of (J, M, m)-
extensions of .o~ then the greatest lower bound (glb) of S exists in
%, which follows from noting that if L is the set of all lower bounds
for the set S then L = 0 and by Lemma 2.1 the lub of L exists in
2%, hence is in L.

3. = 2. By definition.

2. =1. If {i, <&} is an m-completion of .7 {j, ¥} e 2%, and %~
a lattice, then there is an element {j’, €'} € %" such that

i,z =1, <} .

Thus

{0, =i, Z},
)

i, et =, &},
implying

(v, Z} = U, =} .
Hence {i, <%’} is a smallest element in 277
COorROLLARY 2.1. If J' 2 J and M' 2 M then the following are

equivalent:
1. 27(J, M, m) contains a smallest element;
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2. 22(J', M', m) is a sublattice of 2£(J, M, m);
3. ZF(J, M, m) is a complete sublattice of Z£(J, M, m).

Proof.

1. =3. Since #(J', M’, m) contains a smallest element, so does
ZZ(J, M, m) hence S£(J, M’, m) and ¢(J, M, m) are complete
lattices. If {{i, B}}ier = S is a set of elements in Z(J', M', m),
{i, &} is the lub of S in .2#(J, M, m) and {¢', €’} is the lub of S in
ZE(J, M', m), then there is an m-homomorphism # mapping Z~ onto
% such that ki’ = 4. Hence ¢ is a (J’, M’, m)-isomorphism. Thus
{1, e 2£(J', M', m), implying

i, 2} =1, €7} .

If {4, ¥} is the glb of S in Z#(J, M, m) and {¢/, €’} €S, then
by a similar argument, ¢ is a (J’, M’, m)-isomorphism, which implies
{7, #} is the glb of S in 22(J', M’, m).

3. =2. By definition.

2.=1. The proof is the same as that for showing 2. =1, in
Theorem 2.1.

Thus it is of particular interest to know whether 22(J, M, m)
contains a smallest element, in general. Although, as it turns out,
Z(J, M, m) need not contain a smallest element in general, a minimal
(J, M, m)-extension is always an m-completion, hence there is always
a unique minimal (J, M, m)-extension in 5" (J, M, m).

PROPOSITION 2.2. An m-completion {1, <&} of the Boolean algebra
7 18 a unique minimal element in 7

Proof. That a minimal element in .9 is an m-completion is
clear.

If (¢, <Z’} is another minimal element in .°¢; there are 4, £/
such that

{1, Z'} = {14 A}
and
(v, 2" = {in, A} .

Now {i, &'} and {¢, <&’} minimal in .9 imply 4 and 4’ are maximal
m-ideals in I, but if 4 is a maximal m-ideal in I then g:(.5%,) is
dense in .o7;. The ideal 4" = (4, A) in .%7,, is an m-ideal and
d'el, contradicting the maximality of 4. So {/, <"} is an m-com-
pletion of .o/ hence isomorphic to {i, <&}, implying
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(", Z" = i, Z} .

ProposITION 2.3. If &7 1s a Boolean m-algebra that satisfies
the m-chain condition and

U 4.

teT

s the join of an indexed set {A}ier tn 5, then there is an indexed
set {Al}icr of disjoint elements of .7 such that

1. Udi=UA4;
teT teT
2. AlS A, for all teT.

Proof. Let & be the collection of all sets S of disjoint elements
in .o such that for each se S there is a t€ T with s & A4,. If

ngszg"‘gsic::'--

is a chain of sets in .&” indexed by I and ordered by set theoretical
inclusion, then

iel

By Zorn’s lemma there is a maximal set in .54 say S’ = {4,},.r, and
it immediately follows that

UAd.+ 4.

TER

Now let
P S'— T
be a mapping such that if 4,¢ S’ then
A'r g A(P(A,) .
For each ¢t € T define
Al =U{4.eS: 94, =t}
if there is an A,e S’ such that @(4,) = ¢, otherwise define
A= A .
Then
{A:}teT
is the desired set.

PROPOSITION 2.4. Let . be a Boolean algebra. The following
are equivalent:
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1. &7 satisfies the m-chain condition:
2. for all sets S in 7 such that ,.ss exists,

Us=Us

ses se8’
for some set S’ = Swith S" < m; and dually for meets.
Proof.

1. =2. Suppose &7 satisfies the m-chain condition. It suffices
to show that if

S={A}erand V=UA4,, T=m'>m,
teT

then there is a set "= T, T' < m, such that

UAt=V-

tel’

Let {i, <&} be an m'-completion of .o, Then .<# satisfies the m-chain
condition and

Vo =1u4V.)
= U i(4,) .

teT

By Proposition 2.3, there is a set {<Z}.., of disjoint elements in
<% such that

B, &4, and U® B, =U"i(4,).
teT

tel

Since this set contains at most m-distinct elements,

U~” B, Ztg,ﬂ B, ,

teT
T"<Tand T < m. Thus

\/ﬁ ==k4%”ﬁfiﬂ
or

Vo.=U"4,.

teT’

2.=1. Suppose {A,};., is an m’-indexed set of disjoint elements
of %7 m' > m. It may be assumed that {4.},.r is a maximal set of
disjoint elements of o< Then for some T" < T, T' < m,

Vy :tg,y At .

Since T' = T, there is a t,€ T — T' such that
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A e{A}ier — {Addier and A, # A
Thus

U A+ Ve,

a contradiction. Hence T < m.

This gives, as an immediate corollary, the following result due
to Sikorski [2].

COROLLARY 2.2. If . 1s a Boolean m-algebra and satisfies the
m-chain condition, it is a complete Boolean algebra.

PrOPOSITION 2.5. The class 227(J, M, m') contains a smallest
element if 22(J, M, m) contains a smallest element, m’ < m.

Proof. Let {i, <&} be the smallest element in .Z7(J, M, m). If
', €'Ye 22(J, M, m'), let {k, €} be an m-completion of &’. Then
{kj, ©€}e Z(J, M, m).

By the fact that {¢, <&} is the smallest element in 2%7J, M, m),
there is an m-homomorphism % such that

h:——F and hkj=1.

Also {t, &} an m-completion of .& implies that there is an m/'-
completion {i, &'} of .o such that <&’ < <& Thus hk(Z') is an
m-subalgebra of <%, hence <&’ = hk(%”’) and is an m-subalgebra of
&.

Now kj(&) m-generates k(%¥’) in & and kj(¥) & (),
hence

B 2 &) ,

or
Mh™(Z")) 2 hK(Z) .
But
Mh(Z") = FZ',

thus

F' 2 h(F) ,
S0

F' = () .

Since hkj = 1,
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{1, £} = {ki, (")} .
But k& a complete isomorphism implies that
{kg, W(Z")} = {1, €7},
and since isomorphic elements in 2£7(J, M, m) have been identified,
i, Z'} ={j, €7} .
LEmMA 2.2. If J<o and M <o then there is a (J, M, m)-

isomorphism i of a Boolean algebra .7 into the field Z of all
subsets of a space.

PROPOSITION 2.6. If the Boolean algebra .7 is m-representable
but not m*-representable, m* the smallest cardinal greater than m,
then Z£(J, M, m™) does not contain a smallest element if

2, M, m*) = @ .
0, M £ 0 then 7(J, M, m*) = Q.

G
IIA

Iy

Proof. Suppose {j, €}t e 2%.(J, M, m™). Then & is m-represen-
table and if an m*-completion {¢, &} of .97 is a smallest element in
2 (J, M, m™), there is a surjective m*-homomorphism

h € — &,

which implies <# is m*'-representable, hence .5 is m™-representable,
a contradiction. Thus 2¢7(J, M, m*) does not contain a smallest
element if 27 (J, M, m*) = @.

If J<o and M <o then .& is (J, M, m*)-representable by
Lemma 2.2, hence 27,(J, M, m*) = &.

The next proposition is an easy generalization of Sikorski’s [2]
Proposition 25.2 and will be needed for the last theorem in this section.

ProproOSITION 2.7. A Boolean algebra .57 is completely distribu-
tive, if, and only tf, it is atomic.

COROLLARY 2.3. A Boolean algebra &7 is completely distributive,
if, and only if, 7 is m-distributive, m = &7

The following proposition is due to Sikorski [2] and will be given
without proof.

ProproSITION 2.8. If the Boolean algebra .7 is m-distributive,
then 22(J, M, m) contains a smallest element for arbitrary J and M.
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LEMMA 2.3. If {i, &} is an m-extension of the Boolean algebra
& and & is m-representable, then 7 is m-representable.

Proof. This follows immediately from the fact that &7 is
m-regular in <Z.

Now to prove the main theorem of this section.

THEOREM 2.2. Let . be a Boolean algebra. Then the following
are equivalent:
1. 2 contains a smallest element for arbitrary J, M, and m;

2. &7 is m-representadble for all m;

3. &7 s completely distributive;

4. &7 1s atomic;

5. an m-completion of &7 is atomic for all m;

6. an m-completion of 7 is in 22 (J, M, m) for arbitrary J, M,
and m;

7. %, M, 2™) contains a smallest element, where J =M = @
and 7= m*.

Proof.

1.=2. If .&7 is m-representable but not m*-representable, then
Proposition 2.6 implies .7Z7(J, M, m*) does not contain a smallest element
it J, M<oa.

2. =3. This follows from the fact that if a Boolean algebra
&7 is 2™-representable, it is m-distributive.

3. <= 4. This follows from Proposition 2.7.

3.=1. This follows from Proposition 2.8.

4.=5. If {i, &} is an m-completion of .o~ then i(.%7) is dense
in &, so & is atomie, and conversely.

2. = 6. This follows from noting that 2. = 3. and . completely
distributive implies an m-completion of .o~ is completely distributive,
hence m-representable for all cardinals m.

6. = 2. This follows from Lemma 2.3.

3.=7. If J=M=@ and 27(J, M, 2™) contains a smallest
element, then by Proposition 2.6, & is 2™-representable, hence

m*-distributive. Since m* = .,Q/,= 7 is completely distributive, by
Corollary 2.3. The converse is clear.
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3. The example in §2 of a Boolean algebra & such that the
class of all (J, M, m)-extensions of .57 does not contain a smallest
element depends on the assumption that f, M < 0. Thus it is of
interest to know whether an example can be found showing that the
class of all m-extensions of .o~ does not contain a smallest element,
since this corresponds to the case where J and M are as large as
possible. As it turns out, there are Boolean algebras .97 such that
the class of all m-extensions 57 does not contain a smallest element.
In this section such an example will be constructed for each infinite
cardinal m and several general types of Boolean algebras such that
2% does not contain a smallest element will be given.

Throughout this section .~ will denote the class of all m-
extensions of a Boolean algebra .o~ and 22°(J, M, m) the class of all
(J, M, m)-extensions.

If o7 is a Boolean algebra and {i, &} ¢ 2¢(J, M, m), let

Kz)={Cez:if (A)=C, Ac.% then A= A.},
and
K (2)={Ce%: if P={Ac.o7:i(A) 2 C} then ADP“A = At
Note that K,(%") & K(%).

LEMMA 3.1. The set K (%) is an ideal and K(%) = Kx(%), if,
and only if, K(¥) is an ideal.

Proof. It follows easily that K.(%") is an ideal.
If K(%) is an ideal and &c K(%") let

P={Aec.:94A)2C}.

If A’c.ov and A’ < A for all Ae P, then

(A" — Ce K(%) .
Now #(4") N Ce K(%), hence

(A" = (¢(4) — CO)U (4N C)e K(Z) ,
which implies ©#(A") = A~ or A’ = A.. Thus
N7A=Aes

so Ce K (%), and

K, (%)= K(%) .

Since K.(%") is an ideal, the converse is true.
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ProrosiTiON 3.1. If .o is a Boolean algebra the following are
equivalent:

1. 2(J, M, m) contains a smallest element;

2. K(%) = Kp(%) for all {1, &} e 2%(J, M, m);

3. K(¥)=Kp(¥) if {t, €} is the maximum element in
e, M, m).

Proof.
1. = 2. Suppose 277(J, M, m) contains a smallest element {7, &'},

and there is an element
1, e Z(J, M, m)
with the property that
K(%) = Kp(%) .

Let h be the unique m-homomorphism mapping & onto <% such that
hj = 1. Let ker & be the kernel of this mapping. Then

K (w)skerh & K(%),
and
ker 1 = K(%) .
Pick v ¢ K(%) — ker I and let
4 = {xy,
80 4 is a complete ideal. Thus
i, €4t e Z2°(J, M, m) ,
where
'L.A: & — g/d
is defined by
14(4) = [i(4)]; .

Consequently, there are unique homomorphisms A, and A’ mapping
% onto &/4, /4 onto <z, and satisfying h,j = ¢, h'i, = 4, respec-
tively. Hence

Why = Wi, =1
and by the uniqueness of #,
h - k,hd .

This implies
M) = Whix) = N>,
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a contradiction. Thus

K@) = Kp(%¥) .
2. = 3. Obvious.

3.=1. To show that .9¢7(J, M, m) contains a smallest element,
let {j, &’} be the largest element in .2#(J, M, m) and suppose {j’, '} €
FJ, M, m). Let {i, &} be an m-completion of .o Then there is
an m-homomorphism »' mapping & onto &’ such that h’j = j and
an m-homomorphism h mapping & onto & such that khj = ¢. Thus

K, (%) S kerh & K(%),
which implies, by assumption, that
K.(%¥)=kerh = K(¥),
so K,(%') and K(%) are m-ideals in &. Further,
W(Kx(Z)) & Ko(T') & K(T) & W(K(?D)) -
This implies that
W(K(Z)) = Ko(Z") = K(€") = W(K(Z)) ,
hence K(%’) is an m-ideal. Let
4 =K(z") .
Then &’/4 is an m-algebra and
JU() = {[7'(A)]s Ae 7}

m-generates ’/4. Finally, j4(.o7) is dense in &’/4. Thus {j', €'/4}
is an m-completion of .o4 hence is equal to {7, &#}, as isomorphic
elements of 9¢7(J, M, m) have been identified. The m-homomorphism

hy: @' —— &4
defined by
hAC") = [C']4
has the property that
hg =173, for all Aec. o7,
implying that
(i, 14 = {7, &'} .
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Hence 27(J, M, m) contains a smallest element.

This, then, gives a way to construct a Boolean algebra .7 such
that 2" does not contain a smallest element. Namely, by finding a
Boolean algebra .o~ with an m-extension {i, €’} such that K,(%¥) %=
K(%). The next task is to construct such a Boolean algebra.

If T=m and = .o/ for all te T, the Boolean product of
{}er Will be called the m-fold product of & Note that if .o is
a subalgebra of the Boolean algebra .o7’, & is the m-fold product
of &7 and &' is the m-fold product of &7/, then & < . &',

LEMMA 8.2. If &7 s an m-regular subalgebra of the Boolean
algebra 7' then the Boolean m-fold product F of &7 is isomorphic
to an m-regular subalgebra of the Boolean m-~-fold product &' of &7".

Proof. Since .o~ is a subalgebra of .&7', < F#'. Let A
be the set of all ¢,(4), Ae. v and te T(Ae .~ and te T). Then
Fe AFes”) implies —Fe &(—Fe.s”) and (5”') are sets of
generators for .# (). For elements Fe. &' of the form

define
N(F) = {n,(x): . eé Fi} .

Note that if Feo” and teT is such that N(F)== V.  then
.\ (F)) = F.

In order to show .&# is m-regular in &', it suffices to prove
that if {F}..r is an m-indexed set of elements of & such that

eQFt = Af
then
th: /\f .

teT

Now F,e. % so F, may be rewritten as

Py Q¢

thnUFp,q,c,

p=1 q=1

where P, Q, are finite numbers and F,,.c ., for all pe P, qe @,
and te T. Thus
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s Pt @
Aﬁ" = n Fp,q,t
teT p=1g¢=1
z Qs
=N UF.,

®
®
(]
1|
-

q

after a suitable re-indexing, where S < m and F,, = F, ,, for suitable
peP,teT. Without loss of generality, assume that for each
se S, M(FL) = As implies N(F,,) = V. for all te T and ¢ = g,
and that F,,# V. for all ¢, 1 <q¢<Q,, and all s€S. Suppose
F'e #7 and F' S F, for all teT. Then

M

=0NAF.., F..es",

m=1n~=1
80
N , @s
NF..sUF.,,
n=1 g=1

for 1 <m < M, and all seS. Thus to show F'= A, it suffices to
prove that if

N Qs
NF,cUF.,,
for all se S, where F')c . &, then
N
Ql FJL = Aﬁ’" .

It may be assumed that for each n, 1 <n < N, M(F,) # A implies
M(F.) = V. for all te T and »n’ + n, and that F, # VY~ for all
n,1<n<N.

Now

n

N , Qs
Nr.sUF,,
n=1 q=1

implies
N Qs
gFén’H—Fs,q = A;” )

and as each F, and —F,, is of the form ¢,(4) for some Ae .7’
and te T, the independence of the indexed set {P,(.%7")}:er of sub-
algebras of & implies that for some 7, 1<n,< N, and some

qS, 1 é qs é QS’
F»,:s N “‘Fs,qs - Af' ’

which implies F, & F,,. This argument may be repeated for each
seS.
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The set {n.,:seS} is finite so let {n,:seS}={n:1=1< N'}.
Let S, ={seS: F,, & F,,}. If t,e T is such that

Ne(Foo) # Vo for all seS
then N, (F%.,q,) €. and
g
.Q_MS(Fe,q,) # N -

Thus

!
N Fu) = A

or

7
SQ'M,(Fs,qS) # Ao s
hence there is an A4,e .97 A, # AL, with
A, & N (F,,,) for all ses;.

Let A, be the set of all x e X such that m,(x)e A,. Thus 4,,€ .5
and this argument may be repeated for each 4,1 <7< N'. Now

.
A # ) Au

and

D

$

At,i g Fq,s

1 q=1

5%

Il

1t

for all se S. But then
N’ 7 Qs
nAmgn UF.,,=As,
i=1 seS q=1

a contradiction. Thus & is m-regular in & .

The next lemma assumes there is a Boolean algebra .27 such that
an m-extension is not an m-completion. Sikorski [2] cites an example
due to Katétov of such a Boolean algebra for the case m = 0. As
Lemmas 3.5 and 3.6 imply, there is such an .97 for all infinite cardinal
numbers m.

Assume for the moment that .o is a Boolean algebra such that
%" contains more than one element and {i, <&’} € .97 is an m-extension
that is not an m-completion. Thus there is a Be€ <& such that
#(A) € B, Ac %7 implies A = A.. Let &' be the Boolean m-fold
product of £Z, h, an isomorphism of <& onto the Stone space & of
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z, X the Cartesian product of & with itself m times and indexed

by T, and
te T.

B, = ¢,h(B) for all

Let
= UBt7

terl’

where 71" is a fixed, but arbitrary subset of T such that I"= ¢

and define

Fo=(F", By .

Since T’ > o, . F,+ F .
Lemma 3.3. If & is the Boolean m-fold product of & then
S 18 wsomorphic to an m-regular subalgebra of F,.

Proof. It may be assumed, without loss of generality, that
e . Thus & F. Let S7(&”) be a generating set for & (7).

Let
%:y,U{BO}!

so %4 is a generating set for #,. As in the previous lemma, to
prove & 1is m-regular in &, it suffices to show that if

N Qs
NrsUyUFr.,
n=1 q=1

for all seS, S < m; and

ol
A

h Fs,q:/\f;
sefS ¢g=1
F.,es” forallseSand 12¢=Q, F,e %, 1<n =N, then
Al I
NFi=A-.

Since F, e %%, there is an n, 1 < n < N, such that F,= B, or F, =
— B,, otherwise there is nothing to prove. This may be reduced to

two cases:

Case 1.
Qs

NFNB S Ur

for all se S, where F,c .o’ and F,,€.%%
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Case 2.
N Qs
(—Bo)m an:_g. UFs,q
n=1 g=1
for all se S, where F,ec & and F,,€ X

Proof of Case 1. If for each se S there is an %,, 1 <n, < N,
such that there is a ¢, 1 < ¢, £ Q., with F, & F,,, then

N , Qs
nanqu,q
q=

n=1

for all se S, and

N
NF,es"
n=1

implies
N ,
Fi= A

Thus it may be assumed there is an s, such that

Qsq

N
NFZUFo-
Hence for all », F, & F,,, for some g, is false. If

NF.NB, # Asr »

n=1

let xe X be defined as follows. Let ¢, ---, t,€ T be such that
M, (F{) # Vs, 1 =1 < N. Choose an v € X such that it satisfies the
following conditions:

(a)

N (FY) if A (Fo0) = Vo for all ¢, 1 ¢ = Q,,
7\’t,'(ﬁ"i’) - )\'ti(Fso'qo) if xti(Fao,qo) +* vg

for 1<t < N;

(b) m(s)e =N\ (Fy,q) for each t,e T such that \, (F, ) # V.,
12g9g=@Qqand ¢, #¢,1 <1< m

(¢) mi(x)ehy(B) for all t #¢;1<i<N,1=<q=Q,,.

Now x is well defined,

i(x) e

N
xeB, and xze N F,,
n=1

by its definition. But xz¢ F, , for all ¢q,1 < ¢ < Q,,, hence
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Qsp

ze U Fso,q ’
q=1
a contradiction.
Proof of Case 2. If
N
and A\, (F,) #* Vs, t,eT, let 4, =9, (—B,),1<n<N. Then

AFN(=B) = A(F:n4)n(~B)

and
N
NFE.NA)eF".
As before, an s,€ S may be found such that
g Qs
NFEN4)ZUF,,.

Define ¢, --+, ty as before so that N (FiNA)# Vs 1<i<N.
Choose z € X satisfying the following conditions:

(a)
)‘Jti(Fi’ N4, if M(Foo) = Va1 =g = Qso

T, (x) e .
(%) Ne(FL 0V A) = Ne(Faa) i Nef(Flpo)# Vs

for 1<+ < N.

(b) m (x)e — N (Fy,0) for each t,¢ T such that N, (Fy,0) # V=
1=¢=Q.,, and ¢, #¢,1 <1< N.

(¢) m@erx(—B)if t#t,t51=1=n1=q=0Q,
Now « is well defined and

ze(~B)N N (FinA)=—BnF,

SO

Qs

xé UFs,q s
¢=1

a contradiction.
Consequently, in either case

N
NFi= A
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LEMMA 3.4. If j is the identity isomorphism of F into F,
and {t, €} s an m-completion of F,, then {tj, €} is an m-extension

of F.

Proof. All that needs to be shown is that 4j(% ) m-generates
&. But this follows immediately from the fact that .o m-generates
% and the definition of & and .#,.

THEOREM 3.1. If .o m-generates <& then (5 ) does mot
contain a smallest element.

Proof. Fe. and F 2 B, then F =V .-, by definition of B,.
Thus if j and {i, &} are defined as in Lemma 3.4, {ij, €} is an
m-extension of & and j(B,) € K(¥). By Proposition 3.1, Z(F)
does not contain a smallest element.

The results of this theorem may be generalized as follows. Let
{7 };cr be an infinite indexed set of Boolean algebras and {{¢}icr, &}
be the Boolean product of {.o4},.r. Let T' be the set of all te T
such that 27(.o4) contains more than one element.

THEOREM 3.2. The class of m-extensions (<) does not contain
a smallest element if T" = o.

Proof. Define &’ to be the Boolean product of {{j, Zi}}icrs
where {j;, &} € 22(.574) for all te T and {j, <&} is not an m-com-
pletion of o7 for all te T". For each Z%, te T’, there is a B,€ .7,
such that j(4) & B, Ac .o, implies A = A.,. Let @, map <, into
Z and set

Bo = tg’ QDt(Bt)

and
Fo= (57, B -

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and
3.4, and Theorem 3.1, .7¥(<%) does not contain a smallest element.

COROLLARY 3.1. If .o7=.%7 for all t, t' € T then 22 (Z) contains
o smallest element if, and only if, an m-extension of & 1is an
m~-completion.

Proof. 1f 2¢(<Z) contains an m-extension which is not an m-
completion, let <Z play the role of . in Lemmas 3.2, 3.3, and 3.4.
By Theorem 3.1, 2#(% ) does not contain a smallest element. As
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the m-fold product &# of <Z is isomorphic to B, 72(<Z) does not
contain a smallest element. The converse is clear.
Now to prove the assumption on which these results are based.

LEMMA 8.5. For each infinite cardinal number m there is a
Boolean algebra &7 such that an m-completion {i, &'} of &7 contains
an element B with

=

B=U N A,

wel veV

Jor all m-indexed sets {A, }ucyver M

Proof. The proof will be by constructing such an .& for each
m. Let S be an indexing set of cardinality m. Let =, be the
Cartesian product of S with itself m times and indexed by 7. Define

D,,={de Z,: n(d) = s} .
Fix s], s;€S, si # s, and set S =8 — {s], s3}. Let D= Uier(D,,s; U

D). Thus D=2" and de &, — D implies 7w (d) + s, &k = 1, 2, for

all te T.
Let

F={d):de 2} UD, :teT,se8}.

Let .o be generated by .&¥ in &2, and let <% be the m-field of sets
m-generated by &7 in &,. Then .o is dense in £# and m-generates
&, so if 1 is the identity map of . into &, {1, &'} is an m-comple-
tion of .o/

Let
B=2,—-D.
Suppose
B=UNA.,.,
W vel

{A, Juevver an m-indexed set in .o This can be written in the form

UnNn U 4uows

wel veV meMuﬂ,

Ay pmor —A, ,.€S ﬁ < 0.

Let B ={deZ,:{d} = A,.,n for some ueU,veV, and me M, .}
Then B' < m, so if

M,,={meM,,A,,., is not of the form {d}, de =,}, it follows
that



ON (J, M, m)-EXTENSIONS OF BOOLEAN ALGEBRAS 269

B—Un U Au,v,mém-

- , ,
uel veV me.ﬂlu’w

It will now be shown that in fact

B — U n U Au,v,m>7n!
uel veV ms-:ﬂ[;/',v
a contradiction. Hence it may be assumed that 4,,, is not of the
form {d}, de &, for all uec U,ve V, and me M,,,.
If Auym = —{d}, de =, for some m € M, ,, then either

(1) meLMJ Au,v,m = _{d}
or
o Y AV

If (1) occurs, it may be assumed that M,, = {1} and A, = —{d}.

If (2) occurs, the term U,.. 4,0 Au,o,m may be dropped. Thus for all

ue U, V may be written as V,U V., where (1) V.nN V.= @; (2

Avom = —{du}, due 2, for all veV,; and (8) A,,. is either of

the form —D,, or D,, for all ve V. Consequently, for all ue U,
N U A4..=N-{.JnN U 4.

VeV meMy 4 vEV, VEV] meMy ,

Let

Cu = n U Au,v,m .

vevV MEMy o

Suppose U is the set of all or@inals u < &, where a = U. Let
D ={de 2, w(d) =s/,s}). Now D, =2 implies there is a d,e D
such that

Since d, ¢ B, this implies
dl e Al,v,m ’

veV] meM ,

hence for some v, ¢ V/,

dl % U Al,'ul,m .

med;, v

Also, D, & —D,, for all te T and sc S, hence

Am%mz:-D

t,mr 881, m

forsome t,,€ Tands, €&, forall meM,,. Let T.={t ,:meM,,}
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and pick s, €S such that s, # 8, , for all meM,,. Define
@(t) =8

for all te T,. Let B, = @ and define B, = {d € Z,: 7 (d) = ®(t) for
all te Ty}.

Note that B,NC, = @.

Suppose ¢ >1 and a finite set 7T, has been defined for each
<14 so that T, NT, =@ if 7,4 <14, #1";s,€S has been
chosen; @ has been defined on each T, i < ¢, so that ¢(t) = s, for
all te T,; and if

B, = {d e =9,: 7 (d) = (t) for all te L<J T:}

then
B,; ﬂ 'Lz,-Ct' = @ .

Let

ol

and note that 7, < m. Let

D, = {de Z,: n(d) = p(t) for all te T,
and 7(d) =s, k=12, if te T— T}.

Then D, = D and Jj = 2™, hence there is a d,€ D, such that
d;e N — {di} .

veV;

Since d;¢ B, this implies

hence for some v,e V!,

dz‘ e U Ai,v,,;,m .

meM,;,,,i

If BNC, =@ set T,=@. If not, there is a die B, such that
d:eC,, so

d; e U Ai,vi,m

Note that 7,(d;) = 7,(d,) for all te Ti.
It immediately follows that if
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d‘: e U Ai,vi,m

meXy
then

Ao =Dy sy
where ¢, ¢ T, and

Tig (@) = 50,
for some m e M;,,,.
Let
T, = {tynecT— T: Aoy = D,i,m,sti,m for some me M, }
and pick s, €S’ such that if ¢,, € T, then
8; + S,'.,m ,
for all me M,,,. Now define
o(t) =s, for all teT,.
Thus T, N T, = @ which implies T, N T, = @ for all @ < i. If
B, = {de ,: w(d) = @(¢t) for all te T,u T}

then it is clear that

B‘H—ln U_Ci: o .

1<%
Now let T = Ui<. T; and set

B={de g,:w(d) = p(t) for all te T
and 7, (d) = s, s, if te T — T}.

Then B+ ¢ and BS B. But BN U..r C. = @ which implies

uel

If B = B — Uu.ey C. then for each be B,
b= thDt’st’b ’

for some m-indexed set {s;};.r in S’. Thus

B=UN U 4...0U ND,,,,,

uelU veV meMy, 4 beB' teT

but the above construction shows that

271
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B — (U U Auw,m UbeLzJ;' tg, Dtvsz,b) # 0

wel veV mely,,

if B < m. Hence

B—-—UC,>m.
uel
LeEMMA 3.6. If {t, <&} is an m-completion of the Boolean algebra
& and there is a Be€ <& such that

B+ U Ni4.)
Jor all m-indexed sets {A,.}icr.ses i 7 then there is an m-ideal
4 im Z such that {j, B} is an m-extension of 1,(.7) but not an
m-completion, where i,(A4A) = [1(A)]s for all Ae ] F) = F4 and
J 1s the identity map of 1,.) into Z.

Proof. Let

4 ={BeF: B <Band B =id),

tel

for some m-indexed set {Aj}ier in &}

and let 4 = {4'),. Then if e 4,6 <= B, so Bgd. If Ae. sy and
[(4)], & [B], then 4(A) — Be4 so i(A) — BS B which implies
(A) & B, hence i(A)e 4 and [i(4A)], = A, implying () is not
dense in Z.

It only remains to show that 7,.%) is m-regular in <z, If

1.45(.57)

0 AL = A,
then (A) & i(4,) for all te T implies i(A)e 4, so (A)S B. If
tg (A) <L B,

then there is an 4 #+ A . in .% such that

i(4) S N i4) — B,

te

N

contradicting the above statement. Thus

]

D

(4,) & B

t

m

T

50

N iA)ed

teT
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and
As, = QA = Q1A

Thus if &7 is the Boolean algebra constructed in Lemua 3.5,
14.57) is a Boolean algebra such that .2£7(i4(.%7)) contains more than
one element. Hence it is justified to assume that for each infinite
cardinal m there is a Boolean algebra .~ such that .o has an m-
extension which is not an m-completion.

4. Let {54}, be a (fixed) indexed set of Boolean algebras.
Let %, be an isomorphism of .o/ onto the field .#; of all open-closed
subsets of the Stone space X, of .. Let X denote the Cartesian
product of all the spaces X,. Let 7, be the projection of X onto #;
and define

P Fy— X
by:
if Fe #; then o(F) = {xe X: n(x)e F} .

Let .# be the Boolean product of {.%4},c;. Define hf = got_}_bt and
let .~ be the set of all sets Mirhi(4d); die.g, 'S T, T < n.
Define % to be the field of sets generated by &2 Let J be the set
of all sets S& & such that

1. S<m;

2. there is a te T such that S & hf(.2%);

3. the join Uj.s A exists.
Let M’ be the set of all sets S < 7 such that

1. S =m;

2. there is a te T such that S & ¥ (.8%);

3. the meet ﬂ;ﬁsA exists.
Let M” be the set of all sets S < 7 such that

1. S<m;

2. if AeS then Aehf () for some te T,

3. if A, BeS, A+ B, then Ach}(.%%) implies B¢ hf(.27). Let
M=MuUM". :

The following lemma is due to La Grange [1] and will be given
without proof.

LemMA 4.1. If {{i}icr, P} e F, /t\hen there is one and only one
(J, M, m)-isomorphism h mapping F into & such that

hhf =1, for all teT.
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']A‘HEOREM 4.1. If {{#}ier, F} e F, then there is a mapp}'\ng h
of F imto <& such that {h, &) ts a (J, M, m)-extension of F#. If
{h, Z} 18 a (J, M, m)-extension of & then the ordered paty
{hhtYier, ZY e P,

Proof. Let h be the (J, M, m)-isomorphism from " into <7
such that ik = 4, for all te 7. Then {k, <#} is a (J, M, m)-extension
of L?/\‘

Conversely, if {h, <7} is a (J, M, m)-extension of ﬁ% it follows
immediately that {{hh}},cr, 2} is an (m, n)-product of {7 },cr.

THEOREM 4.2. If {{t}icr, 2}, {Ti}ier, SB'} are two (m, n)-products
of { . }ier then

{{it}tCT’ FY = {{ié}teT, By
if, and only if,
i, Z} < (', &}

where (i, Z} and {i', 2"} are the (J, M, m)-extensions of  induced
A\

by the (J, M, m)-isomorphisms i and i of F into &' and B,

respectively, given by Lemma 4.1.

Proof. Now
{ishier, ) = {il)ier, 227}
if, and only if, there is an m-homomorphism % such that
h: B —— 7
and A1, = 1, for all te 7. Similarly,
(o, Z} = V', 2"}
if, and only if, there is an m-homomorphism
he B — Z

such that A'? = 4. Thus it suffices to show that ki =4, if, and
only if, hi, = 4,. Let h¥ be defined as above. Then ¢k} = i, and
vhi = 1), so if W' = 1,

hi, = hi'hf = th = 1, ,
and if A1, = 1,, then

hi' = hithf™ = ,hi™ = 1.
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La Grange [1] has given an example of an (m, 0)-product for
which & does not contain a smallest element and an example of an
(m, n)-product for which .2, does not contain a smallest element.
Theorem 4.2 extends this result by showing that the question whether
P or &7, contains a smallest element reduces to asking whether the
class of all (J, M, m)-extensions of .94 or ﬁ contains a smallest
element for J and M defined appropriately in each case, where %7
and & are defined as above. Now the class of all (J, M, m)-exten-
sions of .97 contains a smallest element only if the class of all m-
extensions of .07 contains a smallest element and Theorem 3.2 shows
that the class of all m-extensions of .57 need not contain a smallest
element, which implies the same is true for .27 Since Theorem 3.2
may be extended to Boolean algebras of the form ﬂ/‘? it follows that
2, need not contain a smallest element.
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MULTIPLICATIVITY-PRESERVING ARITHMETIC
POWER SERIES

DAvIiD REARICK

In the Dirichlet algebra of arithmetic functions let the
operator A be represented by an arithmetic power series
Af = Ja(F)ff. A condition on the coefficients a(F’') is derived
which is necessary and sufficient for Af to be multiplicative
whenever f is multiplicative.

1. Introduction. In [2] a factorization F was defined to be a
nonnegative integer-valued arithmetic function having F(1) = 0 and
F(n) # 0 for at most finitely ». The index of F was defined by
W(F) = [I5 579, If fis any arithmetic function, we defined f* =
Iz [fOD)F? with the understanding that 0°=1. If a(F) is a
mapping from factorizations into the real or complex numbers, we
wrote

(1) Af = S a(F) S

as an abbreviation for the arithmetic function Af whose value on =
is equal to > pm-.a(F)f". In [2] a series of the form (1) was
called an arithmetic power series. Since for each n» the series is
terminating, there is never any question of convergence. Such a
series defines an operator A on the Dirichlet algebra of arithmetic
functions, and the theory of these operators has been investigated
in [1] and [2].

In particular, if » is a real number, the Dirichlet rth power of
an arithmetic function f is represented, when f(1) = 1, by an arithme-

tic power series Z(?) f¥. The symbol (;,) was defined in [2]. It
is known [1, Theorem 5] that f" is multiplicative whenever f is, and
therefore the series Z(;,) f¥ is an example of a multiplicativity-

preserving arithmetic power series. The present paper is devoted
to determining a necessary and sufficient condition on the coefficients
a(F') in order that the general series (1) preserve multiplicativity.
The method, and the statement of the result (Theorem 1), depend
on a certain equivalence relation between factorizations, to be intro-
duced below.

2. Equivalent factorizations.

DEFINITION 1. If F and F’ are two factorizations, we say F is

277
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equivalent to F’, written F' ~ F’, if f7 = f7 for every multiplica-
tive arithmetic function f.

It is obvious that this is an equivalence relation. An example
of a pair of nonequal but equivalent factorizations may be con-
structed by taking F(2) = F(8) = F'(6) =1, with all other values
being zero. Then f7 = f(2)f(3) = f(6) = f7 for every multiplicative
f- Two equivalent factorizations F' and F" necessarily have the
same index, for if we choose the particular multiplicative function
f(n) = n, we have o(F') = f¥ = f7 = i(F").

DEFINITION 2. We shall use the letter C to denote an equivalence
class of factorizations. The index ©(C) of an equivalence class C is
defined to be the index of the factorizations F' belonging to C. If f
is multiplicative, we denote by f¢ the common value of f* for all
FeC. If F.eC, and F,cC,, we define C, + C, to be the equivalence
class containing the factorization F, + F.

It is obvious that the definition of C, + C, is unambiguous.

If the operator (1) is applied to a multiplicative f, the sum
over all factorizations F of index m reduces to a sum over all
classes C of index 7, thus:

Aftm) = i:rE,;:w. )" = iuZ:n r r; o(F) .

Therefore, insofar as its action on multiplicative functions is con-
cerned, an arithmetic power series is determined by the sums of its
coefficients over equivalence classes of factorizations, and it is
natural to make the following definition:

DEFINITION 3. a*(C) = Direc a(F) .
Thus, when f is multiplicative, we may write

(2) Afm) = 3 a*(C)f .

The main theorem may now be stated as follows.

THEOREM 1. The arithmetic function Af = 3, a(F)f" is multi-
plicative whenever f is, if and only if the following pair of con-
aitions holds:

(3) a*(C. + C) = a*(Cla*(Cy)
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for every pair of equivalence classes C, and C, having relatively
prime tndices, and

(4) a*(0) = 1

where 0 is the class containing the zero factorization.

3. Lemmas. Let those positive integers which are prime powers
be arranged in increasing order. Let x, ., --- be an arbitrary
sequence of complex numbers. We may construct a multiplicative
function f by setting f(1) =1 and, it p* is the kth prime power,
defining

(5) J) =@ .

The requirement that f be multiplicative then defines f(n) for all
positive integers n. Furthermore, every multiplicative f arises from
exactly one particular choice of the sequence {x,}. (Following the
usual convention, we do not consider the identically zero function
to be multiplicative.)

These observations establish a one-to-one correspondence between
the set of all multiplicative functions and the set of all sequences of
variables {z,}. Under this correspondence we may associate, with
each factorization F, an expression f” which is a monomial (with
coefficient 1) in certain of the variables z,. We note that a given
variable x, cannot appear in this monomial if it does not correspond,
in (5), to a prime power divisor of 4(F'), since, by definition of
index F'(j) = 0 if j does not divide #(F").

LEMMA 1. Two factorizations F and F' are equivalent if and
only if the two corresponding monomials f¥ and f¥ are identical.

Proof. It is familiar from algebra [3, Chapter 4] that if two
polynomials always agree in value while each variable z, is assigned
infinitely many different values, holding the others fixed, then the
two polynomials are identical. The converse part of the assertion is
trivial.

Lemma 1 shows that equivalence classes of factorizations may
be identified with monomials in an arbitrary finite number of
variables. Also, it is clear that each equivalence class of prime
power index p* consists of a single factorization.

LEMMA 2. Let F, ---, F, be mnonequivalent factorizations.
Suppose that, for every multiplicative f, the limear combination
S b;fTi s equal to zero. Then each of the coefficients b; is zero.
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Proof. The linear combination referred to in the lemma is a
polynomial in certain of the variables x,, and the numbers b; are
precisely its coefficients, since by Lemma 1 no two of the monomials
f¥i are identical. As in the proof of Lemma 1, each of these
coefficients must be zero.

LEMMA 3. Let F, F', G, and G’ be factorizations, with +(F) =
WF") =m and i(G) = «(G') = n, and assume m and n are relatively
prime. Suppose F+ G~ F' + G. Then F~ F and G~ G

Proof. As observed earlier, each variable x, appearing in the
monomial f* corresponds, in (5), to a prime power divisor of m.
Similarly, f¢ contains only variables corresponding to prime power
divisors of n. Since (m, n) =1, these two sets of variables are
disjoint. Applying the same reasoning to F’ and G’, we see that no
variable appearing in either f7 or f¥ can appear in either f¢or f¢,
and conversely. By hypothesis we have f7f¢= fF+¢ = f#'+¢ =
ST f¢ for all multiplicative f, or equivalently f7/f* = f¢/f¢. Since
opposite sides of this identity are rational functions in disjoint sets
of independent variables, both sides must be equal to a constant B.
In the identity f7 = Bf"’, putting f(k) = 1 for all k, we obtain B =
1. Therefore f7 = f* and f¢ = f¢, meaning FF~ F’ and G ~ .

LEMMA 4. Let F, ---, F, be mnonequivalent factorizations of
index m. Let G, ---, G, be nonequivalent factorizations of index
n. Assume (m,n) =1. Suppose that, for every multiplicative f,
the linear combination >, Sii-, b f7i7% 4s equal to zero. Then
each of the coefficients b;, is zero.

Proof. By Lemma 3 the factorizations F; + G, are all non-
equivalent, and the result then follows from Lemma 2.

LEMMA 5. Let F be a factorization of index mmn, where
(m, n) = 1. Then there exist factorizations F, and F, of indices
m and n respectively, such that F ~ F, + F,. Furthermore, if F|
and Fj also satisfy these conditions, then F, ~ F| and F, ~ F;. In
other words, if (m,n) =1, then each equivalence class of index
mn is the sum of a unique pair of classes of indices m and n
respectively.

Proof. The uniqueness part follows immediately from Lemma 3.
As regards the existence of F, and F, we claim that the pair
defined as follows will satisfy the requirements:
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Fk)=0 if k=1

=(ZkF(j) if k>1
im)=

Fyk) =0 if k=1
Jm)=

To check this, choose any multiplicative f. Then

fF1+F2 — fFlsz — ﬁ [f(k)]F"(k) ﬁ [f(k)]thk)

(£, m)I7? H [£ (@, m)I7?

Il

e s s ==

[ [f((, m))f (@, m)I™?

| [f(G, m)@, )"
LA, me))]"? = II Vore =rr,

I

where in the last step we use the fact that F(j) = 0 if 7 does not
divide mn. Therefore FF ~ F, + F,. To find the indices of F, and
F,, we first observe that #(F)i(F,) = i(F, + F,) = i(F) = mn. Also,
if we choose for f the identity function f(k) =k, we have i(F)) =
ff=T1Ix (g, m)*?, and each factor in the product is relatively
prime to m, so i(F,) is relatively prime to ». Similarly, i(F;) is
relatively prime to m. Therefore i(F)) = m and i(F;) = n.

4. Proof of Theorem 1. First assume conditions (3) and (4)
hold. Choose any multiplicative f, and let m and » be relatively
prime. We are to show that Af(mn) = Af(m)Af(n) and Af(1) = 1.
By Lemma 5, each equivalence class C of index mmn is the sum of a
unique pair of classes C, + C, where #(C)) = m and i(C,) =n. Re-
membering (2), we may evaluate Af(mn) as follows:

Afmn) = 3. a*(CO)f° = 3 3 a*(C + C)foree

“C)=mn Wp=m i(Cq=
=, o et G 3 a*(Cz)fCZ = Af(m)Af(n) .

Also, Af(1) = a*(0)f0 = 1.

To prove the converse, assume the operator A preserves multi-
plicativity. Choose m and = relatively prime, and let f be any
multiplicative function. Proceeding as in the last computation above,
we have

0 = Af(mn) — Af(m)Af(n)
= 3> 3 forep(C + C) — a*(Cla*(Cy)] -

WC)=m i(Cy)=n
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This double sum is a linear combination of the type considered in
Lemma 4, and therefore, by the result of that lemma, the expres-
sion in square brackets is equal to zero for all C, and C, in the sum.
That is, equation (3) is satisfied. Also, (4) is satisfied because 1 =
Af(1) = a*(0)f0 = a*(0). This completes the proof of Theorem 1.

5. Further consequences. We wish to show how to construct
all solutions a*(C) of (3) which also satisfy (4) (and which we shall
refer to as nontrivial solutions of (3)). Given a nontrivial solution
a*(C) of (3), we can recover (nonuniquely) by Definition 3 the coeffi-
cients a(F') of an arithmetic power series (1) which preserves multi-
plicativity, and the class of such series will then be completely
characterized.

LEMMA 6. Let C be an equivalence class whose index s greater
than 1 and has prime factorization i(C) = p}, «--, pir. Then there
are unique classes C,, «--, C,, of indices pu, -+ -, pir respectively, such
that C = C, + +-+ + C,.

Proof. Apply Lemma 5 repeatedly to the » maximal prime
power divisors p:, ---, pi of 7(C).

LemmA 7. a*(C) ts a nontrivial solution of (3) if and only if
a*(0) =1 and

(6) a*(€) = I1 a*(Cy)

whenever ©(C) > 1, where the classes C,, ---, C, are related to C as
in Lemma 6.

Proof. Equation (6) is obtained from (3) by applying the latter
repeatedly to the maximal prime power divisors of ¢(C). Conversely,
(8) is obtained from (6) by applying (6) to the prime decomposition
of mn, separating the maximal prime power divisors of m from those
of n.

Lemma 7 gives us a process for constructing all nontrivial solu-
tions of (3). The method is analogous to that used at the beginning
of §3 to construct all multiplicative functions, namely:

THEOREM 2. The nontrivial solutions a*(C) of (3) are exactly
those which take the value 1 on the zero class and are defined arbi-
trarily on classes of prime power index, the definition then being
extended to all C by the product formula (6).
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Finally, we shall determine the number of equivalence classes of
index nm. Let this number be denoted by E(n). It follows from
Lemma 5 that FE(n), as an arithmetic function, is multiplicative.
Therefore, it suffices to evaluate this function on prime powers p.
Since each class of index p* contains only one factorization, E(p*) is
equal to the number of factorizations of index p*, and this is
evidently just the number of unrestricted partitions of v. These
observations yield the following explicit formula for E(n):

THEOREM 3.

EQ) =1
Bm) = TL () if n>1,

where p(Y) is the partition function, and the product is extended
over all maximal prime power divisors p* of n.

REFERENCES

1. D. Rearick, Operators on algebras of arithmetic functions, Duke Math J., 35
(1968), 761-766.

2. , The trigonometry of numbers, Duke Math. J., 35 (1968), 767-776.

3. B. L. Van der Waerden, Modern Algebra, Vol. I, 2nd ed., New York, 1953.

Received March 20, 1973.

UNIVERSITY OF COLORADO






PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 1, 1974

CHARACTERISTIC IDEALS IN GROUP ALGEBRAS

I. SINHA

If G is the group-algebra of a group G over a field &,
and A is any subgroup of the automorphism group of the
F-algebra ¥FG, then an ideal I of G, is called 2A-characteristic
if I*< 1, VeeA. If A is the whele automorphism group
itself, then we merely say that I is characteristic. Then D.S.
Passman has proved the following result:

“Let H<1G such that G/H is ¥-complete. Then for each
characteristic ideal I of ¥G, I = UNFH)FG.”

The main concern in this paper is to consider the converse
of this result.

2. Some preliminaries. For a given ideal I <IFG, let Z(I) be
the set of all H < G such that I = (I N FH)FG. Let C(I) be the set
of all H in G such that if for some right §H-module M, INTFH &
Ann M, then I < Ann % the induced FG-module. We first of all
have:

THEOREM 1. (i) For any I <<FG, CI) & H).
(i) If H4G, then He (1) if and only iof He C(I).

Proof. (i) Let INFH S Ann M imply that I < Ann M Let
2. v, el with p, e 3H, where G = U Hwx, is a coset-decomposition.
We have (3 M @ z)S pa,) =0 if INTHS Ann M. In particular
(m Q@D px)=0,Yme M, ie., Ssmp, Rz, =0, vyme M. SoM-p, =0
for each ¢. Thus p, ¢ Ann . Since M is arbitrary with the property
that INSH S Ann M, so we may take M = FH/INFH, and conclude
that each p,e Ann M = INFH. Thus 3 p.x, e (I NFHFG.

(i) Suppose [ = FJGUINFH) and TNFH S Ann M, for some FH-
module M. Note that H<IG implies that FGUINFH) = (INFH)IG.
Let @ = 3 #;p, € I where p, e INFH. So a® = (3, 2,0,) 2, QM) =
Dex; Qpi = 0 since pieINFH S AnnIN. Thus a M =0 and
IS Ann IR°,

Theorem 17.4 of [1] then gives us:

COROLLARY 1. Let H<1G such that G/H is F-complete. Then
He C(I) for every characteristic ideal I of BG.

Also Theorem 17. 7 of [1] implies:

COROLLARY 2. If H<IG>G/H 1is abelian and has no elements
of order p = Char. &, then He C(J(GR)), where J denotes the

285
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Jacobson-radical of FG.
3. Main result. We will prove:

THEOREM 2. For I =[G, FG], the commutator ideal and jfor
J = J(G), if H= G such that He Z(I) and He FH(J) then H<IQG,
G/H 1is abelian with no elements of order p. In particular, F(G/H)
is semi-simple.

Further,if ¥ is algebraically closed then G/H is F-complete.

We observe that the last two statements in the theorem follows
from 17.8 and 17.1 (i) respectively of [1]. The rest of the theorem
will be proved by a series of results proved below.

LEMMA 1. Let HZG, I 23G and He H(I). Then H2U (1) =
{g9eGlg — 1elIl.

Proof. Let G = U Hz, be a coset-decomposition, and g€ A ()
such that g¢ H. Then g = hx, for some ¢, where z, = 1, and k€ H;
and ha,—1e(INFH)FG = X (I N FH)x,. Since {x,} are linearly inde-
pendent over FH, he INHH, and x, %= 1, so ge I which implies that
1lel, a contradiction.

LemMaA 2. If I =[3G, FG), and He 2 (I) then HG and G/H
18 abelian.

Proof. Observe that I is a proper ideal in §G, since (L) = 0.
Also by Lemma 1, H2 U '(I). Since (ghg™'h™* — L)hg = gh — hge I,
forall g, he G, so (ghg™'h™*—1)e I. Hence ghg'heUA'(I) & H; i.e.,
@', the commutator-subgroup is in H. Hence H<1G and G/H is
abelian.

Now let H satisfy the hypothesis of Lemma 2. Then we have:

LEeMMA 3. Let I =J(G) and He Z(I). Then F(G/H) is semi-
simple and G/H has no elements of order p = Char. §.

Proof. J(G) = (J(G)NFH)FG = J(H)-FG by 16.9 of [1]. Now
SH[UL(H) = F where U, (H) is the ideal of FH, generated by
{h —1|he H}. So Uy(H)=J(H). Hence U, (H)FG=UA(H)=2
J(H)-JG 2 J(G), where UA,(H) is the ideal in PG, generated by
{h —1|he H}. Now %,(H) is the kernel of the natural map of FG
onto F(G/H); {see for example proof of Theorem 1 in [2]}. Thus
B(G/H) = FG/A(H) is semi-simple. Since G/H is abelian by Lemma
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2, so it is clear that it has no elements of order p, as F(G/H) is
semi-simple.

This also completes the proof of Theorem 2.

REFERENCES

1. D. S. Passman, Infinite Group Rings, Marcel Dekkar Inc., N.Y., 1971.
2. 1. Sinha, On the augmentation-maps of subgroups of a group, Math. Zeitschs.,
94 (1966), 193-206.

Received April 18, 1973.

MICHIGAN STATE UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 1. 1974

HOMOMORPHISMS OF RIESZ SPACES

C. T. TUCKER

If L is a Riesz space (lattice ordered vector space), a Riesz
homomorphism of L is an order preserving linear map which
preserves the finite operations “V’’ and “A”’. It is shown
here that if L is one of a large class of spaces and ¢ is a
Riesz homomorphism from L onto an Archimedean Riesz space,
then ¢ preserves the order limits of sequences.

The symbol 6 will be used to denote the zero element of any vector
space. Suppose L is a Riesz space (lattice ordered vector space). If
feLthen |f| =7V 08— (fA06). If Misalinear subspace of L then
M is said to be an ideal of L if, whenever |g| =< !f]| and fe M, then
ge M. If each of I, and L, is a Riesz space, a Riesz homomorphism
@ from L, to L, is a linear map from L, to L, which preserves order
and the finite operations “Y” and “A”. A sequence f, f, f5 -+ of

peints is said to order converge to the point f if there exists a sequence

Uy = Uy = U; = -+ and a sequence v, < v, < vy, =< --- of points such
that Vv, =f, Au, =f, and v, < f, < u,. Order convergence for
nets is defined analogously. A sequence f, f3, /5 -+ of elements of

the Riesz space L is said to converge relatively uniformly to the
element f of L if there exists an element g of L (called the regulator)
such that if ¢ > 0, there exists a number N. such that if »n is a
positive integer greater than N,, then |f — f.| =<<cg. A Riesz space
L is said to be Archimedear if, whenever f and ¢ are two points of
L such that ¢ < nf < g for all positive integers », then f = 0. Also
L is said to be o-complete if each countable set of positive elements
has a greatest lower bound and complete if each set of positive ele-
ments has a greatest lower bound. If @ is a Riesz homomorphism
which preserves the order limits of sequences then ¢ is said to be a
Riesz o-homomorphism. If @ preserves the order limits of nets it is
said to be a normal Riesz homomorphism. A one-to-one onto map
which is a Riesz homomorphism is a Riesz isomorphism. If H is a
subset of L, H* will denote the set of all points f of H such that
f=z6. If fe L then f* denotes fV 6.

Suppose L is a Riesz space, M is an ideal of L, and the algebraic
quotient L/M is partially ordered as follows: If each of H and K
belongs to L/M and there is an element 2 of H and % of K such that
h =k, then H= K. It follows that L/M is a Riesz space and the
normal map x: L — L/M is a Riesz homomorphism (Luxemburg and
Zaanen [3], p. 102). The coset of L/M containing f will be denoted
[f]. Further, if M is the kernel of a Riesz homomorphism @ defined

289
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on a Riesz space L then the image of @ is Riesz isomorphic to L/M.
(Luxemburg and Zaanen [3], p. 102).

If M is a subset of a Riesz space L with the property that when-
ever m,, m, m, --+ is a sequence of points of M which converges
relatively uniformly to a point b of L, b is in M, then M is said to
be uniformly closed.

In many instances properties of Riesz homomorphisms can be
related to properties of their kernels. The following four theorems
which are examples of this are listed for future reference.

THEOREM A. If L is a Riesz space and @ is a Riesz homomor-
phism defined on L then @(L) is Archimedean if and only tf the
kernel of @ is uniformly closed. (See Veksler [8] or Luxemburg and
Zaanen [3], Theorem 60.2.)

An ideal M of L is called a o-ideal if, whenever {m; is a count-
able subset of M and b = V m,, then be M.

THEOREM B. Suppose L is a Riesz space and @ is a Riesz homo-
morphism from L onto the Riesz space K. Then @ is a Riesz o-homo-
morphism if and only if the kernel of ® is a o-ideal. (See Luxem-
burg and Zaanen [3], Theorem 18.11.)

THEOREM C. Suppose L is a o-complete Riesz space and @ is a
Riesz o-homomorphism defined on L. Then @(L) is o-complete.
(See Veksler [7] or Luxemburg and Zaanen [3], Theorem 59.3.)

An ideal M of L is called a band if, whenever {m,}, e, is a
subset of M and b = V m,, then be M.

THEOREM D. Suppose L is a Rtesz space and @ is a Riesz
homomorphism from L onto the Riesz space K. Then @ is a normal
Riesz homomorphism if and only if the kernel of ® is a band. (See
Luxemburg and Zaanen [3], Theorem 18.13.)

A question of interest is when can properties of L imply properties
of a class of Riesz homomorphisms defined on L. By combining some
known results it can be noted that to place requirements on all the
Riesz homomorphisms on L is quite strong.

The sequence f,, fi, [+ +++ is called a uniform Cauchy sequence
(with regulator g) if, for each ¢ > 0, there is a number N such that
if » and m are positive integers and n, m > N, then |f, — f.| = €g.
The Riesz space is uniformly complete whenever every uniform
Cauchy sequence (with regulator g) converges uniformly (with regulator
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¢) to a point of L.

PROPOSITION 1. Suppose L is a uniformly complete Archimedean
Riesz space. Each two of the following four statements are equivalent:

(1) For each Riesz homomorphism @ defined on L, (L) 1s
Archimedean,

(2) For each Riesz homomorphism @ from L onto a Riesz space
K, ¢ is a Riesz g-homomorphism,

(3) For each Riesz homomorphism @ from L onto a Riesz space
K, ¢ is a normal Riesz homomorphism, and

(4) There is a nonempty set X such that L is Riesz isomorphic
to the space of all real functions which are zero except on some finite
subset of X.

Proof. By a theorem of Luxemburg and Moore [2], (1) — (4).
By Theorems A, B, and D, (4)— (3) — (2) — (1).

On the other hand, if requirements are placed on only a sub-
collection of the collection of all Riesz homomorphisms on L, results
of wider applicability can be obtained. In particular, in the following
theorems, it is shown that for a large class of Riesz spaces every
Riesz homomorphism onto an Archimedean Riesz space is a Riesz o-
homomorphism.

If w is a subset of L, w? denotes the set of all elements g such
that |g| A | f] = 8 for each point f of w. If M is a band in L it is
said to be a projection band if L = M @ M2

A principal band is a band generated by a single element. The
Riesz space L is said to have the principal projection property if
every principal band is a projection band. The Riesz space L has the
principal projection property if and only if for each pair of points f
and g of L*, Vo, (nf A g) exists. (See Luxemburg and Zaanan [3],
Theorem 24.7.)

Order convergence in L is said to be stable if whenever f,, f,, f5 - -
is a sequence order converging to € there is an unbounded, non-
decreasing sequence of positive numbers ¢, ¢, ¢, --- such that ¢ f,
C.fy Csifs +++ order converges to 4. Order convergence in the spaces
L,y 1< p<ceo; lyy 1 <9< oo; and C, is stable,

If order convergence in L is stable then every uniformly closed
ideal in L is a o-ideal. Thus if @ is a Riesz homomorphism from L
onto an Archimedean Riesz space K, then @ is a Riesz o-homomor-
phism.

For certain sets X order convergence in R* is not stable. This
can be seen as follows: Let X be the set to which z belongs only if
x is an unbounded, nondecreasing sequence of positive numbers. Let
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fx be the function defined on X such that if ¢, ¢, ¢, --- is a point of
X then f.(c, ¢, ¢ +++) is 1/c,. Then fi, f3, fs, -+ order converges to
6, but if ¢, ¢, ¢, -+ is an unbounded, nondecreasing sequence of
positive numbers then ¢, fi, ¢,/ ¢:f: -+ does not order converge to 4
since ¢, fu(C, € €5 --+) =1 for each positive integer n. If X is made
of larger cardinality then clearly order convergence in R* still fails
to be stable.

The author, in a paper concerned with the order properties of
convergence of Baire functions [6], defined a positive element x of a
Riesz space L to have property c¢ if for each sequence %, < h, <
hy =< - -+ of elements of L such that x = VY h,, there exists an element
b of L such that for each positive integer n, b < S, ;.

ExAMPLE 2. The constant function 1 in R® has property c.

The constant function 1 in B[0, 1] (the space of all Baire functions
on the interval [0, 1]) has property c.

Let @ be the set of all functions defined on the interval [0, 1]
whose ranges are a subset of the rational numbers and let @ be the
vector space generated by w. Then Q is a Riesz space with the
principal projection property but is not uniformly complete. This can
be seen as follows: If fis in w, H is a subset of the interval [0, 1],
and f is the function obtained by setting f to zero on H and leaving
it unchanged off H, then f is in w. For Q to be a Riesz space it is
sufficient that f Vv 6 exists for each point f of Q. Thus, if fisin @
it is of the form 3., ¢,f; where the f,’s are in w. Let H be the set
of numbers x for which f(x) < 0. Then fV 0 =371, cifi and fVv @
is in Q. Clearly @ has the principal projection property. Each point
of @ has as range a countable number set, but a function which fails
to have this property, say g(x) = « on the interval [0, 1], is the uniform
limit of a sequence of points of @. Further the constant function 1
in @ has property c.

Let L be a Riesz space and x a positive element of L which has
property ¢ and M be a sub Riesz space of L containing x with the
property that if f belongs to L then there is a point g to M such
that ¢ = f. Then x has property ¢ in M.

THEOREM 3. Suppose L is an Archimedean Riesz space contain-
mg a point x which has property c. Then each Riesz homomor-
phism @ of L into an Archimedean Riesz space K is a Riesz
o-homomorphism.

Proof. If it can be shown that , < f,<f, < -.-<fand V f, =0
implies VY ®(f,) = 4, then the theorem is proved.
Now
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o V(=) + o A=) =fr —x

P(fo V (=) + P(fr A (=) = P(f5) — Pw)

P(fr N (—x)) + P(x) = P(fe) — P(S» V (=)
= @(fo N\ (=) + ) = P((f> + @) A 0)

SIAs F @) A0 = B - @(f V()
AE 0 A 0) = Soh) - 2l v (—a)

As z has property ¢ there exists an element b such that b <
S (fo + ) A 0 for each positive integer n. Thus,

PO = P+ 0) A 0) = S9(f) = PF V (—a) -
Suppose that u < 6 is an upper bound for {®(f,)}. Then
() = 33— 2fs V (—a)) = 3 (= #(—0) = n(w — P(—2) -

Thus, u — o(—x) = ¢ as K is Archimedean and u = ¢(—=x).

But if « has property ¢, (1/n)x has property ¢ for each positive
integer n. Therefore, u = (1/n)p(—x) and u = 0 as K is Archimedean.
So V @(f,) = 6 and @ is a Riesz o-homomorphism.

Frequently inclusion maps do not preserve the order limits of
sequences. For instance the inclusion map of the space of continuous
functions on the interval [0, 1] into the space of all functions on the
interval [0, 1] fails to preserve the order limits of sequences. For this
reason most theorems which guarantee that a Riesz homomorphism
is a Riesz o-homomorphism require that the mappings be onto. Theorem
B would not be true if @ was not specified to be an onto map because
of the example just noted. However in view of Theorem 3, no such
problem can arise in a space that contains an element with property
¢. Any embedding of such a space into an Archimedean space must
preserve the order limits of sequences.

If in Theorem 3, x is assumed to be a strong unit (a point with
the property that if fe L there is a number # such that »x = | f))
rather than have property ¢, then the statement is no longer true.
For instance, let L consist of the set of all bounded sequences and M
be the set of all sequences s, s, s, --- with the property that if
€ > 0 there is only a finite number of positive integers n such that
|s,| >e. Then M is a uniformly closed ideal but not a o-ideal.

The Riesz space L is o-complete if and only if it is uniformly
complete and has the principal projection property (Luxemburg and
Zaanan [3], Theorem 42.5). If L is uniformly complete and @ is a
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Riesz homomorphism defined on L then @(L) is uniformly complete
(Luxemburg and Moore [2]).

Thus the question of when the operation of taking a quotient
preserves the property of og-completeness can be included in the question
of when this operation preserves the principal projection property.

The Riesz space L has the quasi principal projection property
if for each point f of L, L = {f}* P {f}*. Then L has the principal
projection property if and only if it has the quasi principal projection
property and is Archimedean. If L has the quasi principal projection
property then for each point f of L and g of L there is a unique
element g, of {f}* and a unique element g, of {f}% such that g =
g, + 9. Denote g, by P(g).

THEOREM 4. Suppose L is a Riesz space with the quasi principal
projection property, M is an ideal of L, and m is the natural map
of L onto L/M. Then the following two conditions are equivalent:

(1) If m is a point of M, P,L is a subset of M and

(2) (a) L/M has the quast principal projection property and

(b) wP; = P, for each point f of L.

Proof. Suppose Condition 1 is true and each of H and K belongs
to (L/M)". We wish to show that there exist points H, and H,
belonging to K¢ and K% respectively such that H = H, + H,. There
exist points # and k in L* such that H = [r] and K = [k]. As L has
the guasi principal projection property there exist points h, and h, of
{k}? and {k}? respectively such that 2 = h, + h,. Now H = [h] + [h]
and [h] A [hy] = 6. Since h, is in {k}% h, A k=20, so [h] A [k] =
[h. A k] = 6 and [h,] belongs to {K}¢. Suppose J =6 is in {K}?, i.e.,
JA K =86. There is a point 7 of L* such that [j] = J. There isa
point m of M such that 7 A k = m. By hypothesis there exists a
point m, of M such that P,(j) = m,. Thus there is a point j, = ¢
and a point m, = # such that j, + m, = 4, 7, is in {j A k}¢, and m, is
in {7 A k}*. Since j,+m, =4 and m, =6, 5, < and j, A j = Jj.
Therefore, 0 = j ANGAR) =G ANNDANE=4 Nkor(J—m)ANEk=
6. So j— m, isin {k}¢ and hence (j — m;) A\ h, = 6. It follows that
[71 A [h,] = @ and [Ak,] is in {K}%.

Also TPyh) = w(hy) = [hs] = Pr(H) = Prz(h).

Suppose Condition 2 is true. If m is a point of M and % is a
point of L

6 = P;r(h) = P,,w(h) = wP,(h) .
Thus P,(k) belongs to M.

COROLLARY 5. Suppose L 1is a Riesz space with the quasi
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principal projection property, M is an ideal of L, and m s the
natural map of L onto L/M. Then the following two conditions are
equivalent:
(1) (@) If m is a point of M, P,L is a subset of M and
(b) M is relatively uniformly closed, and
(2) (a) L/M has the principal projection property and
(b) 7P, = P for each point f of L.

Proof. For L/M to have the principal projection property it is
equivalent that L/M have the quasi principal projection property and
be Archimedean. By Theorem A it is necessary and sufficient for L/M
to be Archimedean that M be uniformly closed.

THEOREM 6. Suppose L is a Riesz space with the quasi principal
projection property and M is an ideal of L. Constider the following
two properties:

(1) @) If m is a point of M, P,L is a subset of M and

(b) M s relatively uniformly closed, and

(2) M is a o-ideal.

Then properties 1 and 2 are independent. If L is assumed to have
the principal projection property then property 2 implies property
1 but property 1 does not mnecessarily imply property 2. If L 1s
assumed to be uniformly complete then property 1 implies property
2, but property 2 does mot necessarily imply property 1.

Proof. Suppose L is assumed to have the principal projection
property and property 2. For each positive integer » and point m
of M, nm A h belongs to M as M is an ideal. Now P,k = VY (nm A h),
P,h belongs to M since M is a o-ideal, and property 1(a) holds.
Property 1 (b) is clearly true.

An example of a space with the principal projection property in
which property 1 does not imply property 2 is the following: Let L
be the subspace of the space of all sequences generated by the collec-
tion of all constant sequences and all sequences which are zero except
for a finite number of terms. Let M be the ideal consisting of the
collection of all sequences which are zero except for a finite number
of terms. Then M satisfies property 1 but not property 2.

Assume L is uniformly complete and property 1 is true. Suppose
{m,, m,, ms, ---}is a subset of M*and h = Vg, m;. Letr, = VL m,
Then 0 r =r=<r=<--- and V2,7, =h. Let j be a positive
integer, f, = P,, b, fo=h—f,, 9. = P,;h, g = h — g, and d; = f, — 9.
Note that d; is in M. Since f,+ . =9, + 93 d; = 9. — fo. As each
of g, and f,isin {r;}¢, d; isin {r;}¢and d; A g, = 0. Thusd; V g, = fi.

Therefore, there exists a countable pairwise disjoint subset {d,, d,,
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ds, +++} of M such that » = V2, d,. Now the sequence d,, d, + (1/2)d,,
d, + 1/2)d, + (1/3)d,, d, + (1/2)d, + 1/3)d; + (1/4)d,, --- converges rela-
tively uniformly to a point m of M. Then % belongs to the band
generated by m, P,h = h, and it follows that % is in M.

An example of a uniformly complete space with the quasi principal
projection property in which property 2 does not imply property 1 is
the lexiographically ordered plane. The vertical axis is a o-ideal but
does not have property 1 (a).

Suppose L is a Riesz space and ¢ = 6 is a point of L. Then e
will be called a weak unit if e A |f| = 6 only in case f = 0.

When necessary, it will be assumed that L is a subspace of the
set of all almost finite extended real valued continuous functions on
an extremally disconnected compact Hausdorff space S. Further if
L has a weak unit e, this subspace may be chosen so that e is the
funection identically to 1.

Suppose ¢ is a weak unit of the Riesz space L. The pair (L, e)
will be said to be a Vulikh algebra if a multiplication can be defined
on L which makes it an associative, commutative algebra with multi-
plicative unit ¢ which is positive in the sense that if /=6 and g = @
then fg = 0. For some properties of Vulikh algebras see Rice [4],
Tucker [5], or Vulikh [9], [10].

Suppose that it is assumed that L is a subspace of the set of all
almost finite extended real valued continuous functions on an extrem-
ally disconnected compact Hausdorff space S and that ¢ is the function
identically equal to 1. If each of f and g belong to L their pointwise
product will be defined as follows: Both fand g are finite on a dense
subset @ of S. Their pointwise product on Q is a continuous function
on @ and can be extended uniquely to a continuous function on S,
since S is extremally disconnected.

There is at most one multiplication which makes (L, ¢) a Vulikh
algebra (Kantorovitch, Vulikh, and Pinsker [1]). If (L, ¢) is a Vulikh
algebra and it is represented as a Riesz space as a subspace of the
set of all almost finite extended real valued continuous functions on
an extremally disconnected compact Hausdorff space with ¢ the constant
function 1, then the Vulikh algebra multiplication will be the same
as the pointwise multiplication described above.

THEOREM 7. Suppose L 1s a Riesz space with the principal
projection property, M is a uniformly closed ideal of L, w is the
natural map of L onto L/M and for each m in M*, if K 1is the
principal band generated by m, (K, m) is a Vulikh algebra. Then
L/M has the principal projection property and wP; = P, for each
point f of L.
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Proof. By Theorem 4 it is sufficient to show that for each point
m of M* and fof L* that YV (nm A f) belongs to M. Let K be the
principal band generated by m.

By the representation theorem for Riesz spaces K can be assumed
to consist of almost finite continuous extended real valued functions
on a compact Hausdorff space S, where m is the constant function
with value 1 everywhere.

Let h =V (mm A f). The point % belongs to K. By hypothesis
(K, m) is a Vulikh algebra. Thus %2* belongs to K.

Suppose « is a point of S. If h(x) = n, then

(h — (wm A () < h(z) < %h?(oc) .
If h(x) < m, then
(h — (em A )z) = 0 < %m(x) :

Thus m A f, 2m A f, 3m A f, --- converges relatively uniformly to
h with regulator A*. As M is uniformly closed, & is in M.

If a is a subset of L™ with the property that for each two points
fand g of @, f A g = 0, then « is said to be orthogonal.

THEOREM 8. Suppose L is a Riesz space with the principal
projection property, M is a uniformly closed ideal of L with the
property that if {fy, fo fo <=} ts a bounded countabdle orthogonal
subset of M* there is an unbounded nondecreasing positive number
sequence ¢, C, Cs, + -+ such that {c.f, c.fs ¢sfs +++} is bounded, and «
15 the natural map of L onto L/M. Then L/M has the principal
projection property and wP; = P, for each point f of L.

Proof. By Theorem 4 it is sufficient to show that for each point
m of M* and f of L™ that V (nm A f) belongs to M.

Let K be the principal band generated by m. By hypothesis K
is a projection band, let A = VY (wm A f). The point & belongs to K.
Also YV (nm N f) = VY (nm A k).

If b isin K7, let y(k) = V (nk A m). This supremum exists as
K has the principal projection property. Let

d, = x((mm N b — (n— 1)m)*) — x(((n + Dm N h — nm)7).

By the representation theorem for Riesz spaces K can be assumed
to consist of almost finite continuous extended real valued functions
on a compact Hausdorff space S, where m is the constant function
with value 1 everywhere.

Suppose x is a point of S. If A(x) >mn, then d,(x) =0, if
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% = h(x) >n — 1, then d,(x) = 1, and if A(x) < n — 1, then d,(x) = 0.
Let h, = (nm A b — (n—1)m)* — (b — nm)*) + (n—1)d,. If h(x)>n,
then h,(x) =0, if n = h(zx) > n — 1, then &, (x) = i(z), and if A(z) <
7 — 1, then h,(x) = 0.

Therefore {h,, h,, ks ---} is an orthogonal subset of M* bounded
above by h. By hypothesis there is an unbounded nondecreasing
positive number sequence c,, ¢, ¢, --- such that {c,k, ¢h,, Cshs -} is
bounded above by a point b of L. Then if ¢ is a positive integer,
h—(hy+ hy+ --+ + &) < (1/c;.)b, and the sequence Ay, by + hy, by +
hy + hs, - -+ converges relatively uniformly to k. As M is uniformly
closed, & is in M.

COROLLARY 9. Suppose L 1is a Riesz space which is o-complete
and with the property that if {f,, fo fs -} is @ bounded countable
orthogonal subset of L™ there is an unbounded nondecreasing positive
number sequence ¢, ¢,, ¢, --+ such that {c,.f,, ¢.fs, ¢:.fs <} 15 bounded
then every Riesz homomorphism @ from L onto an Archimedean
Riesz space is a Riesz o-homomorphism.

ExaMPLE 10. Suppose L is one of the space L,, 1 < p < oo; Iy,
1< p < o; or C, in which order convergence is stable or L is one of
the spaces R* or B0, 1] which has a point with property ¢ as described
in Example 2. Then L satisfies the conditions of Corollary 9. On
the other hand, let L be the space of all functions defined on the 2-
axis with compact support. In this case L satisfies the hypothesis of
Corollary 9, while L neither contains a point with property ¢ nor is
order convergence stable in L.

By what has just been shown, if L is a o-complete Riesz space
with the property that if {f,, /5, /3 ---} is a bounded countable orthog-
onal subset of L* then there is an unbounded nondecreasing positive
number sequence ¢, ¢, ¢, --- such that {c.f}, ¢.f,, ¢:fs - -} is bounded
is sufficient to imply that every uniformly closed ideal is a o-ideal,
but this condition is not necessary, as the following example shows.

ExaMPLE 11. Let S be the set of all ordered pairs of positive
integers. Let L be the collection to which f belongs only in case f
is a real valued function on S with the property that there is a set
® which includes all but at most a finite number of positive integers
such that if k is a positive integer in w, f(1, k), f(2 k), f(3, k), ---
is a bounded number sequence.

The space L is a complete Riesz space.

Suppose M is an ideal which is uniformly closed. Let f be the
l.u.b. of a countable subset & of M. Let 8 be the collection to which



HOMOMORPHISMS OF RIESZ SPACES 299

g belongs only in case there is a positive integer & and a member A
of a such that g(k, p) = h(k, p) for each positive integer p and if ¢
is a positive integer not & then g(¢, p) = 0 for each positive integer p.
Then f is the l.u.b. of 8. For each positive integer k, let f, be the
function such that fi(k, p) = f(k, p) for each positive integer p and
if 7 is a positive integer not % then f.(¢, ») = 0 for each positive
integer p.

The function which is equal to f(¢, 7) at (¢, 7) and zero elsewhere
is in M. Then since the function which is pf.(¢, ) at (4, p) is in L,
fie is in M. Since the function which is (4, 7) at (¢, 5) is in L, fis
in M.

Thus each uniformly closed ideal of M is a o-ideal. For each
positive integer 7 let g, be the function such that g,(p,¢) =1if p =71
and g,(p,q) =0 if ¢ = p. Then {9, 9, g, ---} is an orthogonal subset
of L which is bounded above by the constant function 1 but there is
no nondecreasing unbounded positive number sequence ¢, ¢, ¢, - -+ such
that {c,g9,, ¢.9,, €95 -+ -} is bounded above.

The Riesz space L has the projection property if every band in
L is a projection band. Suppose L has the projection property, w is
a subset of L, H is the band generated by w, and f is a point of L.
There is a unique point f, of H? and a unique point f, of H such that
f=n+ f:- Denote f, by Pw(f)

The analogous question of when can the projection property be
preserved in a natural manner can be answered easily.

THEOREM 12. Suppose L s a Riesz space with the projection
property, M is an ideal of L, and w is the natural map of L onto
L/M. Then the following two properties are equivalent:

(1) 7 s a normal Riesz homomorphism, and

(2) (@) L/M has the projection property, and

(b) =P, = P.,& for each subset w of L.

Proof. If (1) is true then the kernel of 7, M, is a projection band
and 2 (a) and (b) clearly hold. If (2) is true and w is a subset of M
with the point f as least upper bound, then nP,f = nf, but P,,nf =
P@?Tf = 4.

Also, several answers to the question of when is every Riesz o-
homomorphism from an Archimedean Riesz space L onto a Riesz space
K a normal Riesz homomorphism are given in Theorem 29.3 of
Luxemburg and Zaanen [3].
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THE EXCHANGE PROPERTY AND DIRECT SUMS
OF INDECOMPOSABLE INJECTIVE MODULES

KUNIO YAMAGATA

This paper contains two main results. The first gives a
necessary and sufficient condition for a direct sum of inde-
composable injective modules to have the exchange property.
It is seen that the class of these modules satisfying the con-
dition is a new one of modules having the exchange property.
The second gives a necessary and sufficient condition on a
ring for all direct sums of indecomposable injective modules
to have the exchange property.

Throughout this paper R will be an associative ring with identity
and all modules will be right R-modules.
A module M has the exchange property [5] if for any module A
and any two direct sum decompositions
A=M@EN=> DA,

with M’ = M, there exist submodules A; & A, such that
A=M@D>DA:.

1€l
The module M has the finite exchange property if this holds whenever
the index set I is finite. As examples of modules which have the
exchange property, we know quasi-injective modules and modules
whose endomorphism rings are local (see [16], [7], [15] and for the
other ones [5]).

It is well known that a finite direct sum M = @7, M, has the
exchange property if and only if each of the modules M, has the
same property ([5, Lemma 3.10]). In general, however, an infinite
direct sum M = @,.; M, has not the exchange property even if each
of M;’s has the same property. On the other hand, Fuller [8] has
recently proved that every module over a generalized uniserial ring
has the exchange property (c.f., see [9, Theorem 9 and corollary to
Lemma 12]).

Therefore, two interesting questions arise:

(1) When does the infinite direct sum M = @,.; M; of modules
M, (i€ I) with the exchange property have the same property?

(2) What ring R has the property that every module M has
the exchange property?

In this paper we consider these two problems for the class of
modules M which are direct sums of indecomposable injectives and

301
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completely make answers to them for such a class of modules. In
§1 we show a sufficient condition for a direct sum of modules with
local endomorphism rings to have the finite exchange property. In
§2 we prove the following results (1') and (2').

(1’) A module M which is a direct sum of indecomposable in-
jective modules has the exchange property if and only if it has the
finite exchange property, and moreover any of these assertions is
equivalent to that the Jacobson radical of the endomorphism ring
End; (M) of M is {f e End, (M)|Ker f is essential in M}.

(2") A ring R satisfies the ascending chain condition for (meet-)
irreducible right ideals if and only if every direct sum of indecom-
posable injective modules has the exchange property.

It is not known whether the exchange and finite exchange properties
coincide, so the first equivalence in (1) is meaningful. Since any direct
summand of a module with the exchange property has also the same
property as mentioned above, the second equivalence in (1) trivially
includes [2, Corollaire 5] concerning a problem on an indecomposable
decomposition of a direct summand of the module which is a direct
sum of indecomposable injectives (this is a problem of Matlis). (2')
is a strengthening of [19, Theorem 1] and, as seen in it, such a ring
in (2') has interesting properties concerning the Krull-Remak-Schmidt-
Azumaya’s theorem and a problem of Matlis. If a module M is
quasi-injective, all properties in (1’) are also valid for M, but con-
versely neither of them implies the quasi-injectivity of M. In §3 we
show this fact with an example which means that the class of all
modules with the exchange property which are direct sums of in-
decomposable injectives is a new one of modules with the same
property. In §4 we generalize the results of Chamard [3, Théoréme
3] and Yamagata [17, Theorem 4] which are obtained from the point
of view of a problem of Matlis.

The author wishes to express hearty thanks to Prof. Tachikawa
for his advices.

1. A semi-T-nilpotent system. We will recall some definitions
and elementary results from [9] and [10]. A family {M},.,, with an
infinite index set I, which consists of modules M, whose endomorphism
rings are local is called (resp. semi-) T-wnilpotent system if for any
family of nonisomorphisms {f; : M, — M, , |n = 1} (resp. %, # %, for
n # n') and any element x, € M,, there is an integer m depending
on x;, such that f, f,  ---f,(x,)=0. If & is the full subcategory
of the category of all right modules whose objects are isomorphic to
direct sums of M,’s, then it is said to be the induced category from
{M}:.; and we denote by _#& the class of all morphisms f in .%7 such
that for two objects X = @;., X; and ¥ = @.x Y, of &% with f: X —
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Y and indecomposable modules X; and Y,, each 7,fk; is a noniso-
morphism where k; is the canonical injection of X; to X and w, the
projection of Y to Y,. In [9] we then know the quotient category
&7 = o7|_FZ is Cycompletely reducible abelian.

For a morphism f: M — N and a submodule M, of M, f|M,: M, —
N denotes the restriction of f to M,. We denote by End. (M) an
endomorphism ring of a right module M, over a ring R.

Now we write the proposition, without proof, which will play an
important role in our proofs.

ProrosITION 1.1 ([12], [13]). Let {M},.; be an infinite family of
modules with local endomorphism rings and M = @,.; M,. Then the
Sfollowing conditions are equivalent.

(i) {M},c; is a semi-T-nilpotent system.

() _Z N End, (M) is the Jacobson radical of End, (M).

In this case, each direct summand of M is also a direct sum
of indecomposadble modules which are isomorphic to some M,.

LEMMA 1.2. For two modules M, and M,, let
M= ML @ Mz

and o a projection of M to M,. Then for a monzero submodule N
of M with NN M, = 0 the restriction p|N is a monomorphism. If,
Surther, o(N) is o dirvect summand of M, then there exists a sub-
module N, of M, such that M = N@ N, P M,.

Proof. The first assertion is clear. For the rest let o(N) be a
direct summand of M, M = o(N) @ M' and p a monomorphism on N.
By the modular law, we then have

M, = o(N) DN,

with a projection = of M, to o(IN) where N, = M, N M'. We con-
sider the decomposition

M= o(N)D N, D M. .

It is then easy to see that the projection of M to o(IN) be wpo and
the restriction 7o | N of wp to N is an isomorphism by the first part
of this lemma. As a consequence, we obtain the desired decomposi-
tion

M=NONDM,.

The following corollaries are essentially proved in [9] but we
include proofs for completeness. In them, without proofs, we will
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use some properties for completely reducible objects in .7 but they
are easily proved in the same way as for completely reducible modules
(see [9, p. 331-332]).

COROLLARY 1.3. Let M be a direct sum of indecomposable mod-
ules M, (te 1), where each M, has a local endomorphism ring, and
{N}ics an independent set of indecomposable submodules of M with
local endomorphism rings such that it is a semi-T-nilpotent system.
Then, if Xicr @ N; is a direct summand of M for every finite sub-
set F'C J, there exists o subset K I such that

M=SONSS S M.

REMARK. If J is finite, the finite direct sum 3., N; has the
exchange property by [15, Proposition 1] and [5, Lemma 3.10] and
is a direct summand of M by hypothesis. Hence there exists a sub-
set K I such that M = >;c; D N; D Dex D M,

Proof. We assume J is infinite. Let.%” and _Z be as above and
£E:N =3, N;— M an inclusion map. For a morphism f in .o
we denote by f the induced morphism of f in the quotient category
& = .7/ 7 Since N; @ ---@PN,, is a direct summand for any
finite subset {j,, ---, 7.} of J by assumption, the restriction of £ to
N, @ --- @ N,, is then an injection in .07 This will imply that £
is an injection in .7

To show this we suppose that the kernel K = Ker £ is not zero.
Then there is a finite subset {j, ---, j.jcJ such that Kn
(N, --+- B N;,) # 0, because .o is a C,-abelian category and N =
@;.s N; in .o~ ([9, Theorem 7]). Hence #(KN X P N;)#0 by
the fact that £| 3., @ N;, is injective in &7 a contradiction.

Then, since the category . is C,-completely reducible abelian,
the morphism &£: N— M splits and by the note just before this corol-
lary there is a subset K I such that

(1) M=3 M3 OM,
and

(2) M=N&® 3 &,

(3) =3 ONOS OH,.

Let the projection of M to >;c;—x € M; be p. Then in (3) the pro-
jection of M to 3., x M, is clearly p and so 0o £ is a bijection of N
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onto .., x @D M, in view of (2) and (3). This means that there is a
morphism ¢ of >,.,_x D M, to Nsuch that o ok =1yand o ko =
1y,., .e7;- Hence we obtain that ¢c(0ck) — 1 and (0o k)¢ — 1 be-
long to _Z(End, (N)) = 7 NEnd,;(N)and #(End, (.., xD M) =
2 NEnd; (Clier-x @ M,) respectively. We will show that oo« is an
isomorphism of N to 3, , ccx P M..

First, go(0ok) — 1e & (End, (N)) implies that go(0ok) is in-
vertible, because ¢ (Endj (N)) is the Jacobson radical by Proposition
1.1. The morphism p o £ is hence a monomorphism.

Secondly, to show that oo« is an epimorphism it suffices to show
that the family {M]},.; x is a semi-T-nilpotent system by the same
reason in the first part. Now since N = ;., @ N, is isomorphic to
Sierox @ M, there is a bijection o:J— I — K such that N; = M,
for every je. because .o is a completely reducible C;-abelian cate-
gory (see the note before this corollary). It is therefore easy to see
that N; is isomorphic to M, for every je. on account of the facts
that 7 N End,(N,) and # N End,(},,) are the Jacobson radicals
of End, (NV,;) and End, (M, ;) respectively. Hence the assumption that
{N,};c; is a semi-T-nilpotent system implies that the family {M.},., &
is also semi-T-nilpotent, as desired.

Now then, since (0o £)(N) = o(N) = 3\..;_x €@ M, is a direct sum-
mand of M, we can apply Lemma 1.2 to our case and have that

M=ND 2> ©M,,

ke kK

which completes the proof of the corollary.

COROLLARY 1.4. Let M be an infinite direct sum of indecom-
posable modules M, (i€ I) with local endomorphism rings. Assume
the family {M.},.; is a semi-T-nilpotent system and let {N,},=, be a
Jamily of direct summands of M such that N, < N, for all in-
tegers w = 1. Then the union U,z N, of the family {N,}.». is also
a direct summand of M.

Proof. Since, according to Proposition 1.1, the union U,z N, is
also a direct sum of indecomposable modules with local endomorphism
rings, it is an immediate consequence of Corollary 1.3.

For two modules M = @,.; M, and N = @;., N; we can represent
every homomorphism f of M to N as a column summable matrix
(f;), that is, for the injections &, of M, to M and projections 7; of
NtoN;(vel jeld), f;, = w;fk,: M,— N; and, for any xc¢ M and iel
Jio,(x)) = 0 for almost all jeJ where o, is the projection of M onto
M,. Hence, in this case we may denote that f(x) = 3, 7;f(x) =
Sifi(o () for any xe M and f, = 3., f5 (see [9], p. 332).
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A submodule N of M is essential in M (NE&'M) if NN L #0
for all nonzero submodules L of M and M is uniform if every non-
zero submodule is essential in M. In the following we will denote
the kernel of a morphism f by Ker f.

LEvMmA 1.5. Let M be a direct sum of uniform modules M, (i€ I)
and = (f;,) € Endg (M). Then Kerf is essential tn M if and only
if each Ker f;; is essential in M, for all 1, jeI.

Proof. Suppose that Ker f;, is essential in M, for all ¢, jel.
Then to show that Ker f &’ M it suffices to show that Ker fN M, &’
M, for all 7¢I. Now contrary to it, suppose that for some ¢ I,
Ker f N M, is not essential in M, or equivalently Ker fN M, =0 by
reason of the uniformity of M,. Then for 0 = x, € M, there exists a
finite subset {7, ---, 7,} &I such that 0= fi(x,) = 2. fi.(®) and
filz) = 0 for all j # 7, where f, = 3.,;., fi;- Because the restriction
fi=F M:M,— M is a monomorphism. On the other hand, by hy-
pothesis, (Mi-, Ker f;,) N @B # 0 and f.((Ni-. Ker f5,,) N 2.R) =
(e fi,)(NE= Ker f;,,) N a2, R) = 0, a contradiction. Thus Ker /N M,
is essential in M, for every 71¢l.

Conversely, we assume that Ker f &’ M. Clearly this implies
that Ker fN M, &’ M, by the uniformity of M, (:€I). On the other
hand, since f,(z) = S.jc; fi(®) and fi.(x;) e M; for every z, € M,, that
fix,) = 0 implies that f;,(x,) = 0 for all jeI. Therefore, Ker f;, # 0
for all 7, je I, because Ker f, = Ker f N M, = 0. As a consequence,
Ker f;, &' M, for 1, jel.

LemMA 1.6 ([9], [10]). Let {M},.;, be a family of a semi-T-
wilpotent system of modules with local endomorphism rings and
M=@,..,M,. Then S/J is a regular ring in the sense of wvon
Neumann and an tdempotent of S/J can be lifted to S, where S s
an endomorphism ring of M and J its Jacobson radical.

This follows from Proposition 1.1, [9, Theorem 7] and [10, Theo-
rem 3J.

ProprosiTiON 1.7. Let {M.},.; be a family of a semi-T-nilpotent
system of modules with local endomorphism rings. Then M =
PB..: M, has the finite exchange property.

Proof. Let S = End; (M) and J the Jacobson radical of S. Then
S/J is a regular ring and every idempotent is lifted to S by Lemma
1.6. Hence, for every element s¢ S there exists an idempotent ¢ S
such that sS4+ J=¢S + J. This shows that S has the exchange
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property as a S-module and so M, has the finite exchange property
by [17, Theorems 3 and 4].

2. The exchange property. In this section we prove our main
theorems being concerned with modules which are direct sums of
indecomposable injectives.

First we will continue to consider a general case of modules with
local endomorphism rings instead of indecomposable injectives.

LEMMA 2.1. Let M, N, and A, (ie€l) be submodules of a module
A such that

A=3 DA =MODN
i€l
and, furthermore, let M be a direct sum of indecomposable submodules
M; (5 € J) with local endomorphism rings. If MNP A =0 for
some finite subset F of I, then there exist elements i, F and j,€J
such that
A=M,04,8 3 OA

iel—{%g}

for a suitable submodule Al of A,.

Proof. First we remark that, since each M, (j€J) has a local
endomorphism ring, it has the exchange property by [15, Proposition
1], so that any finite direct sum of M;’s has also the exchange prop-
erty ([5, Lemma 3.10j).

Now by hypothesis there exists a finite subset J, of J such that
Diier, DM;N Der D A, # 0. Hence applying the exchange property
of 3cs,© M; to the given decomposition A =3 .., D A,, we have
decompositions such that

A, =B .®C (icl),

(1) A=SOBBTDC
and
(2) =S OMBEBC .

Here there exists at least one element ¢, of F' such that B, # 0.
For, if the contrary were true, >,.»P B, =0 and hence >,., D
Aw = ZieF @ Cz So ZieJo @ MJ’ N ZieF @ Cz = ZieJO @ M; N ZiEF EB
A, # 0 by the definition of J,, which contradicts the decomposition (2).
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Now it is clear that M’ = 3., @ M; is isomorphic to >;.;D B,
via the restriction 7 | M’ of = to M’, where 7 is the projection of A
onto >, @ B, in the formula (1). It follows that
(3) ") = 3, 7(M) = B,® 3 SB..
Jjedg iel—{3
Since each w(M;) for jeJ, is isomorphic to M;, it has a local endomor-
phism ring. We can thus apply the Krull-Remak-Schmidt-Azumaya’s
theorem [1, Theorem 1] to this module w(M’) and the projection & of
w(M') onto B, in the formula (3). As a consequence, there exists an
element j,€J, such that the restriction &|n(};) is a monomorphism
and én(M;) is a direct summand of 7(M’) and hence of B,. On the
other hand, a simple computation shows that the projection of A to
B,, in the decomposition (1) is éx. Thus from these facts and Lemma
1.2 there is a submodule D, of B, such that
A=MDD,D IZ;.}GBR-@Z‘;GBC&
1e€I—{1p %€
because the restriction ém|M; is clearly a monomorphism. Setting
Al = C, @ D,, we finally have a desired decomposition

A=M, Q4,0 5 ®A.

ie (gl

From now on we will consider indecomposable injectives.

LEMMA 2.2. Ewvery indecomposable injective module is uniform
and has a local endomorphism ring.

This is well known (c.f., see [6, §5 Proposition 8]).

Assume M, and M, are indecomposable injectives and f a mor-
phism of M, to M,. If f is a nonmonomorphism, then its kernel
Ker fis essential in M, by Lemma 2.2 and the converse is, of course,
true. This shows that f is a nonisomorphism if and only if Ker f
is essential in M,. Under this observation we have

PROPOSITION 2.3. Let {M;},.; be an infinite family of indecom-
posable injective modules and M = @;.; M;. Let S be an endomor-
phism ring of M, and J the Jacobson radical of S. Then J =
{feS|Ker f&' M} if and only if the family {M}..; s a semi-T-
nilpotent system.

Proof. We will represent every endomorphism f of M as a
column summable matrix: f = (f;;), where f;; = z;fk, for the projec-
tions 7; of M onto M; and injections &, of M, into M(s, j€I). Then,
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in accordance with our earlier notations (see § 1), by the above remark
we have

f NS = {f = (fh)GSiKeI‘fji &' M}
and by Lemma 1.5
(f =(fi)eS|Kerf;, & M} = {feS|Kerf<' M} .

On the other hand, we know by Proposition 1.1 that the family {M,},.;
is a semi-T-nilpotent system if and only if J= _# NS. It follows
from them that {M,},.; is a semi-T-nilpotent system if and only if
J={feS|Ker f<’ M}, which proves the proposition.

We need more lemmas for the main theorems.

LEMMA 2.4. A module M has the exchange property if for any
modules A;(i € I) which are isomorphic to submodules of M and any
decomposition A = @..; A, = M' D N where M’ = M, there exist sub-
modules A} S A, such that A = M' @ >,..,P Al

This is well known in [5, Theorem 8.2] and its proof will be
omitted.

LEMMA 2.5. Let G=M&P N for submodules M and N of a
given module G. We moreover assume M = > ;.; B M;, where {M;};.;
is an infinite family of indecomposable injective submodules of G
and a semi-T-nilpotent system. Then if a module A is isomorphic
to a submodule of M and contains an injective submodule, there
exists a maximal submodule A, of A with the property that A, is a
direct sum of indecomposable injective submodules. In this case
such ¢ module A, is a direct summand of A.

Proof. Let the monomorphism of A to M be f and E an injective
submodule of A. Then by [1, Theorem 1] and Lemma 2.2, f(E) con-
tains an indecomposable injective submodule isomorphic to some M,
in view of that f(&) is a direct summand of M. This implies that
A contains a submodule isomorphic to some M,. Now then we can
take a family {4,},, of submodules of A such that each A4, is a
direct sum of indecomposable injectives and A, & A,,, for any » = 1.
Then, by Zorn’s lemma, we will be done if we can show that the
union 4, =, A, is also a direct sum of indecomposable injectives
and, furthermore, a direct summand of A.

Since f is a monomorphism, the image f(A4,) of 4, by f is also
a direct sum of indecomposable injectives and hence f(4,) is a direct
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summand of M for any jeJ by Corollary 1.3 and Lemma 2.2. Thus
the union U, f(4,) is also a direct summand of M and a direct sum
of indecomposable injectives by Corollary 1.4. Taking account of
S(4) = U. f(4,), we have M = f(A,) @ N for a submodule N of M
and 4, is a direct sum of indecomposable injectives since 4, = f(4,).
By the modular law, f(4) = f(4,) D f(A)N N. We therefore have
A=A4,Df'(f(A) N N), where f(f(A)N N) is the inverse image
of f(A)N N by f, which proves the lemma.

It is clear that the exchange property implies the finite exchange
property, but it is not known whether the converse is true in general.
However, in our case that modules are direct sums of indecomposable
injectives we can conclude this question affirmatively.

THEOREM 2.6. Let M be a module which is a direct sum of
tndecomposable injective modules and let S be an endomorphism
ring of Mp. Then the following assertions are equivalent.

(i) M has the exchange property.

(i) M has the finite exchange property.

(iili) The Jacobson radical of S is {f € S|Ker f S’ M}.

Proof. Let M= >,.;P M,, where every submodule M, is in-
decomposable injective. If the index set I is finite, then M is clearly
injective, so all of the above assertions (i), (ii), and (iii) are true. It
therefore suffices to show the theorem for only the case with the
infinite index set I.

Now let I be an infinite index set. By Proposition 2.3 the asser-
tion (iii) is then equivalent to

(iii")y The family {M};.; ts a semi-T-nilpotent system.

Thus we will consider (iii’) instead of (iii) in the following.

The implication (i) = (ii) is trivial.

(ii) = (iii). The idea of the proof is due to [9, Lemma 9]. As-
sume that M has the finite exchange property. Take an arbitrary
countable subfamily of {M},.;, say {M,}.»,, and nonisomorphisms
faM,— M, . (n=1). For every xe M, we will find an integer n(x)
depending on x such that f, . fuw - - fil@) = 0.

For this put M, = {z + f,(x) |z e M,}. It is then clear that M, @
M,, =M, DM, for n=1. Since each M, is indecomposable in-
jective, every nonisomorphism f, is only nonmonomorphism, i.e.,
Ker f, = 0. This implies that M, N M, = 0 for every n = 1.

It is clear that
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(1) >OM=MOM.OMOM D O Mo DM, D -
(2) =MOMOMOMSD: DM . DM D -+

and we put
N=MOMD--- DM .D---.

Then, applying the fact that N has also the finite exchange property
([5, Lemma 3.10]) to the decomposition (2), we have that 3.2, P M, =
NG XPY for some submodules X and Y of X, P M,,_, and
S D M, respectively. Here, in fact, it will hold X = 0.

To show this, suppose that X = 0 contrary. Then by Lemma 2.1
there exists M,, ., such that

>OM=NOM, &X' DY

for some submodule X’ of X.
This however contradicts that 0 = M,, ., N M)._. & M,,_. N N.
Thus it holds

g@MizN@ Y.

Now we take an arbitrary nonzero element xe¢ M, and we let
=1y + 2 with ye N and 2z¢ Y. Considering these ¥ and z in the
decompositions N = 3.2, @ M;,_, and 3.2, P M;, respectively, we have

Y = @Z:,l (@i + frims(®ai1))

and
? = ;_S;‘l (w2 + fas(®:1))

and substituting these expressions for ¥ and z, we have

2= 3 @+ S ) + 3 @+ Ful@a)

= @+ 3 () + 20  fulan) -

Therefore, @ = x,, fi(x,) + .., =0(1 =< 7 < 25 — 1) and fu(2,,) = 0, that
is, x, = @, T, = —fi(®), +++, Xss = fro(®ss_,) and fo,_,(2,,) = 0. By successive
substitutions, we obtain x,,=(—1)*"f,,_, - - - £i(x) and, finally, fi,fos_, - -
fil@) = 0. Thus we can put n(x) = 2s, which completes the proof of
(i) = (iii").
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(iii") = (i). We assume the family {M,},., is a semi-T-nilpotent
system. Suppose A = 3., D A; = M' D N, where M’ = M and each
A; is isomorphic to a submodule of M’. Then, taking account of
Lemma 2.4, we will be done if we can find submodules A} of A4;
(jedJ) such that A = M' P >;., D A}

For this, we will first refine the given decomposition A = 3;., D
A;. We should note that M’ is also a direct sum of indecomposable
injective submodules Mi(¢eI). By Lemma 2.1 there exists at least
one element j,€J such that 4; has a nonzero submodule isomorphic
to some M]. Let the subset of J of such elements j,¢J be J,. By
Lemma 2.5 there exist maximal submodules B; of A4;(jeJ;) such
that each B; is a direct sum of indecomposable injective submodules
of 4;, in which case every B; is a direct summand of A;, say A4; =
B; @ C; for a submodule C;c 4; for jeJ,. Consequently, we have
such a refinement of A = 3;., P A; that

(1) A= JeZ EBBEBZGBCEBJGZJJ 4;,
where J — J, is the complement of J, in J and if J— J, is empty,
we put A; in the formula (1) to be zero submodule of A for con-
venience.

Next we will have that

(2) M’ﬂ(ﬁEGBCEB Z EBA)—O
For this we suppose that M' N (3jes, B C; P Dijess, D A4)) # 0. Then
by Lemma 2.1 and the choice of J, there exists M; such that for a

submodule X; & C;,

A=MOX,®B,® 3 ©4.
This implies there exists an injective submodule C; of C; which is
isomorphic to M;. However, in this case we have that B; P C; is a
direct summand of A; and a direct sum of indecomposable injective
submodules, which contradicts the maximality of B;,.

Now we can exchange the complement N of M’ for a direct sum
of submodules of A;(jeJ). For this let the projection of 4 onto
Siicsr, ®B; in (1) be p. The family {M;},., is semi-T-nilpotent by
hypothesis, and so is {o(M})},.; because the restriction po| M’ of p to
M’ is a monomorphism by (2) and Lemma 1.2. Using Corollary 1.3
the image ©(M’) therefore is a direct summand of 3};.;, D B; and
there is a subset K J, such that Y., D B; = o(M) D 3icx P B,
and, consequently we have A = o(M') D Dcx DB D Dics, DC;i D
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Siies—s, B A;. Computing the projection of A to o(M’) and by Lemma
1.2, we therefore have a decomposition

A=NOSOBDTOCO 5 S4

which completes the proof of the implication (iii’) = (i). Thus we
conclude the theorem.

The original definition of the exchange property given in the in-
troduction is due to Crawly and Jonsson [5]. However, we will con-
sider the following weaker exchange property, too ([10]).

DEFINITION. A direct summand M of a module A has the ex-
change property in A if for any direct sum decomposition 4 = >,c; P
A;, there exist submodules A & A, such that A = M > Al

We recall that for a ring R a right ideal I is (meet-) irreducible
provided I = R and I = I,N I, implies I = I, or I = I, for all right
ideals I, and I, or R.

THEOREM 2.7. The following conditions are equivalent.

(i) A ring R satisfies the ascending chain condition for irre-
ducible right ideals.

(ii) Any direct sum of indecomposable injective modules has
the exchange property.

(i) Any direct sum of indecomposable injective modules has
the finite exchange property.

(iv) Any direct summand of the module M which is a direct
sum of indecomposable injective modules has the exchange property
mn M.

(v) For any direct sum M of indecomposable injective mod-
ules, the Jacobson radical of the endomorphism ring Endg (M) is
{f € Endy (M) |Ker f =’ M}.

Proof. The equivalences (ii) < (iii) < (v) are trivial from Theorem
2.6, and (ii) = (iv) follows from [5, Lemma 3.10]. The implication
(iv) = (i) is contained in [19, Theorem 1].

(i)=(i): Let M= 3,.;P M,, where M, is indecomposable in-
jective for any ¢e I. If I is finite, then M is clearly injective, so it
has the exchange property ([16, Lemma 2]). If I is infinite, the
family {M;},.; is a semi-T-nilpotent system by [19, Theorem 1 and
Lemma 2]. Therefore, M has the exchange property by Proposition
2.3 and Theorem 2.6.

3. Example. Here we show the existence of modules which are
not quasi-injective but isomorphic to direct sums of indecomposable
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injectives and have the exchange property.

We first note that a quasi-injective module M over a ring R is
injective by the criterion of Fuchs [7, Lemma 2] provided that M has
the property that some finite direct sum of copies of M contains an
element with a zero annihilator right ideal or, equivalently, contains
a submodule isomorphic to the ring R.

The ring R regarded as a right (left) module over itself will be
written Rz(pR).

LEMMA 3.1. For a ring R the following conditions are equivalent.

(i) R is right perfect and its injective hull E(R;) s projective,
2-(quasi-) injective.

(i) R is left perfect and its injective hull E(RR) is projective,
X-(quasi-) injective.

REMARK. By the above note the “X-quasi-injective” and “3-in-
Jective” are coincident in Lemma 3.1.

Proof. We will only prove that (i) implies (ii) as the converse
follows by symmetry.

Assume (i). Since R is right perfect, E(Ry) has an indecomposable
direct sum decomposition, E(R;) = 3., P,, where each P, is in-
jective projective right module. Let R = ¢, R@P --- Pe,R for primi-
tive idempotents ¢,. Then there is an integer £(¢) such that P, = ¢, ,R
for any 1 <7 < m. Let {P;}:-, be a subclass of mutually nonisomorphic
projective modules of {P;}~, such that each P,(1 < ¢ < m) is isomorphic
to some Pj(1 < j < s) (here, if need, the indecies are renumbered)
and we put M= P,H--- P P,, then a right ideal I=¢,, RP -~
P e, R is isomorphic to M. Since M is clearly X-injective and faith-
ful, so is then also I. Thus, by [4, Theorem 1.3], E(zR) is projective,
and R is left perfect and contains faithful, X-injective left ideal

L, B E(S;), where {S.}i_; is the representative class of simple left
ideals which are nonisomorphic mutually and E(S;) an injective hull
contained in R. As a consequence, E(zR) is X-injective because E(zR)
is isomorphic to a submodule of a finite direct sum of copies of

L, @ E(S;). This completes the proof.

Now then, we suppose R is a (left and right) perfect ring such
that E(R;) is projective and F(pR) is not projective (for the existence
of such a ring, see Miiller [14] and Colby and Rutter [4]). Then,
E(R;) = 3", @ P,, where each P, is indecomposable injective for 1 <
2 < m and, since the radical of every projective right module over
a right perfect ring is small, any infinite family of modules each of
which is isomorphic to some P, is a T-nilpotent system ([12, Theorem
3]). On the other hand, an infinite direct sum M= @,., M, with
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M, = E(R;) is not quasi-injective by Lemma 3.1. Thus M is the
desirable module having the exchange property by Proposition 2.3
and Theorem 2.6.

4. Applications. We will generalize the theorems of Chamard
[3, Théoréme 3] and Yamagata [18, Theorem 4].

We recall definitions. A submodule N of a module M is said to
be closed if it has no proper essential extension in M, thatis, if N&’
X for any submodule X of M, then N= X. A module M is said
to be well-complemented in case any finite intersection of closed sub-
modules of M is also closed.

LEMMA 4.1. Let M be a direct sum of indecomposable injective
modules M (ielI) and N a direct summand of M. If N is well
complemented, then N 1is also a direct sum of indecomposable in-
jective submodules.

Proof. By [1, Theorem 1] it is clear N has a nonzero indecom-
posable injective submodule, so we can choose a maximal independent
set {N,};c; of indecomposable injective submodules of N. Put N, =
Diies  Nij.

We will show N = N,. To show this take an arbitrary nonzero
element # € N. Then there exists an injective hull E(xR) of 2R in N
by [18, Lemma 2] and it is a finite direct sum of indecomposable
injectives by [1, Theorem 1], say E(@xR)= E, @ --- P E,. By the
maximality of {N};.;, it is evident that N,N E, # 0 for 1 < i < n.
Then, since N is well-complemented by hypothesis, this will imply
E, & N, for 1£4+=<n and so x¢ E(zR) & N,, which means N = N,.

Because there exists a finite subset {4, ---, 7.} &J such that
SO N;,NE; #0 for 1<4%=mn. Since X7, N;, and E, are in-
jective, they are closed in N and so is 3\, @ N;, N E; by hypothesis
of N for any 1 <% < n. Then, since E, is an essential extension of
> @ N;, N E; by Lemma 2.2, it must be that E, = 37, @ N, N E,
and therefore K, & 31, @ N;, for any i. Consequently z¢ E(xR) &
> @ N;, & N, which concludes the lemma.

Under the same assumptions as in Lemma 4.1, we remark that
N has no proper essential submodule which is a direct sum of in-
decomposable injectives from the proof of Lemma 4.1. This is first
shown by Chamard [3, Lemma 4.1].

PROPOSITION 4.2. Let M be a direct sum of indecomposable in-
Jective modules M (ieI) and N a direct summand of M; M= N@
N'. If N is well-complemented, then N has the exchange property
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and N and N’ are also direct sums of indecomposable injective
submodules.

Proof. By Lemma 4.1, N is a direct sum of indecomposable in-
jective submodules N;(jeJ). To show that N has the exchange
property we will check the property (iii) in Theorem 2.6.

Let S be an endomorphism ring of N, and J its Jacobson radical.
We must show that J= {feS|Ker f <’ N}. The inclusion J &
{feS|Ker f &’ N} is known in [2, p. 564]. Conversely take an ar-
bitrary element fe S with Ker f &’ N. To show that feJ, it is enough
to show that 1 — f is an isomorphism.

First we will prove that 1 — fis a monomorphism. If Ker(1— f)#
0, xRN Kerf+ 0 for any nonzero element xeXKer (1 — f) since
Ker f <’ N. There is hence a nonzero element y of xR with f(y) = 0
and so ¥y = (1 — f)(y) which must imply ¥ = 0, because y € Ker (1 — f),
a contradiction.

Next we will prove that 1 — f is an epimorphism. Since 1 — f
is a monomorphism, (1 — f)(N) is also a direct sum of indecomposable
injectives. Take an arbitrary nonzero element z e N. Then zRN
Ker f ++ 0, that is, there is a nonzero element ycxRN Ker f. We
therefore have xRN (1 — f)(N)# 0, because y = (1 — f)y)exzRN
(I — f)(N). This shows that (1 — f)(N) is essential in N, so that
N= (1 — f)N). Because N has no proper essential submodule which
is a direct sum of indecomposable injectives by the remark just
before this proposition.

Thus we have shown that NN has the exchange property. We
can then exchange N’ for >,.x @D M, for some subset K I, M =
NDScx @D M,. This implies that N’ = 3, .x B M,, which completes
the proof of the proposition.

Let M, be any monsingular module over a ring R, that is, M +
0 and if «I = 0 for x e M and essential right ideal I of R, then a =
0. It is then well known that the lattice of all closed submodules of
M is complete and so M is clearly well-complemented (c.f., see [6,
Corollary 8, p. 61]). Thus we can sharpen [18, Theorem 4] and [11,
Proposition 4].

COROLLARY 4.3. Let M, N, and N' be as above. If N is non-
stngular, then it has the exchange property and so N and N’ are
also direct sums of indecomposable injective submodules.
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