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Let (X, %, ¢) be a finite measure space, and denote by
L?(X, K) the Banach space of measurable functions F' defined
on X and taking values in a separable Hilbert space X, such
that || F'(x) ||* is integrable. In this article a characterization
is given of the linear isometries of L?(X, K) onto itself, for
1 =p<oo, p#2. It is shown that T is such an isometry
iff T is of the form (T(F))(x) = U@x)h(x)(@(F))(x), where @ is
a set isomorphism of X onto itself, U is a weakly measurable
operator-valued function such that U(z) is a.e. an isometry
of K onto itself, and % is a scalar function which is related
to @ via a formula involving Radon-Nikodym derivatives.

Throughout this paper the letter K will represent a separable
Hilbert space which may be either real or complex. We denote by
{+, »> the inner product in K, and by S the one-dimensional Hilbert
space which is the scalar field associated with K.

A function F from X to K will be called measurable if the scalar
function {F, ¢) is measurable for each ec K. Then for 1 < p < oo,
we denote by L?(X, K) the Banach space of (equivalence classes of)
measurable functions F from X to K for which the norm

Fl={{IF@Irdn ", <,
1Pl = ess sup | F(@)||

is finite. (Here || - ||, denotes the norm in L*(X, K) and L*(X, S),
and || - || that in K.) If FeL?(X, K), we define the support of F'
to be the set {xe X: F(x) = 0}.

Let {e,, €, - - -} be some orthonormal basis for K. For F e L?(X, K),
we define the measurable coordinate functions f, by f.(x) = (F(x), e,).
Then almost everywhere we have >, |/f.(@)|* < «, and F(x) =
S Sfu(®)e,. Moreover, it is easily seen that each f, belongs to
L*(X, S).

Here we investigate the isometries of L?(X, K), for 1 £ p < oo,
p # 2. For the case in which X is the unit interval, g Lebesgue
measure, and K = S, the isometries were determined by Banach in
[1, p. 178]. In [4], Lamperti obtained a complete description of the
isometries of L?(X, S) for an arbitrary finite measure space (X, 2, ).

Following Lamperti’s terminology, we will call a mapping @ of
2 onto itself, defined modulo null sets, a regular set isomorphism if
it satisfies the properties
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2(4) = [o(A)]',
o(U 4.) = U o4,
and
p@(4)] =0 if, and only if, @4)=0,

for all sets 4, A, in ¥. (Throughout, A’ will denote the complement
of A.) A regular set isomorphism induces a linear transformation,
also denoted by @, on the space of measurable scalar functions defined
on X, which is characterized by @(x,) = Xow)» Where X, is the char-
acteristic function of the measurable set A. This process is described
in [3, pp. 453-454]. The induced transformation, moreover, has the
property that it preserves a.e. convergence:

(1) if limf,(x) = f(z) a.e., then lim (@(f.))(®) = (2(f))(x) a.e.

Now given a regular set isomorphism @ of X onto itself, and
F=>,f.e.€c L?(X, K), we define @(F') by the equation

(2) (@(F))(x) = SA(@(f)(@)e, -

For the case in which K is infinite dimensional, one must, of course,
verify that the series on the right in (2) is indeed convergent in K
for almost all z. But, for all scalar simple functions, we have
@(f1H)() = |2(f) |*(x) and hence, by (1), this identity holds for all
measurable scalar functions. Thus, as ||F(@)|*= .| f.(x) > =
limy >7_, | f.(x) |’, again using (1), we have

0 FI) @) = @(| F )@ = lim (0(3} 17,) @)
= lim 33 | @(£)@ | = 3| @)@ = [ @E)@)F -

n=1

(3)

Moreover, it is readily verified that the definition of @(F’) is inde-
pendent of the choice of orthonormal basis for K.

For the case in which K is one-dimensional, Lamperti has shown
that if T is an isometry of L*(X, S) onto itself, 1< p < o, p# 2,
then there exists a regular set isomorphism @, and a measurable
scalar function A(x) such that for fe L*(X, S)

(4) (T(N(@) = W@)(@())() -

Moreover, if the measure v is defined by v(4) = p[@7'(4)], A2,
then

(5) |h(zx)|? = dv/dye a.e. on X.
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Conversely, given any regular set isomorphism @ of X onto itself,
and a function k(x) satisfying (5), the operator T defined by (4) is
an isometry of L?(X, S) onto itself. Here we establish that the
isometries of L?(X, K), for any separable Hilbert space K, closely
resemble those of L*(X, S), except for the emergence of a measurable
operator-valued funection.

2. The isometries. We begin with a lemma whose proof exactly
parallels that of Lemma 14, [5, p. 381], with the real numbers & and
7 in that lemma replaced by vectors in K.

Lemma 1. Let @ and + be two elements of K. If 1=<p =2,
then

e+l +lle—vlr=2(lell” + v,
and if 2 = p < oo,

e+l +lle—virz2(el”+ ).
If p + 2, equality can hold only if ® or + 1is zero.

By integration, we then obtain the following:

Lemma 2. If 1< p <o and p#* 2, and if F and G are in
L*(X, K), then

(6) WF+GE+ I F—-Gly=2[F|;+2]G];

if and only if F and G have a.e. disjoint supports.

Throughout the remainder of this article we assume that p is
a given real number with 1 < p < o, p # 2. We define ¢ to be that
extended real number such that 1/p + 1/¢g = 1. (The usual conven-
tions are in effect.) 7T will denote a fixed isometry of L?(X, K) onto
itself.

We will repeatedly use the map T*' defined on L‘(X, K) by

S<F (@), (T* (@) x)ydpe = S<(T TEN@), Gr)yde,

for Fe L”(X, K), Ge L(X, K), which is, almost, the Banach space
adjoint of 7. For the dual space of L?(X, K) is L(X, K*), where
K* is the dual of K, [2, p. 282]. And if ¢ is the usual conjugate-
linear isometry of K* onto K, ¢ induces a conjugate-linear isometric
mapping of L!(X, K*) onto L*(X, K), which we shall also denote by
o, and which is determined by (o(G*))(x) = o(G*(x)), G* ¢ L*(X, K*).
Our map 7*°! is then actually ooT#% ‘67!, where T*' is the true
Banach space adjoint.
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For any element ¢ K, we denote by e that element of L?(X, K)
which is constantly equal to e. If e = 0, it is an easy consequence
of (6), and of the fact that T is onto, that the support of T(e) must
be equal to X a.e.

LEMMA 3. Let e be any vector in K. If A is any measurable
subset of X, them T(y.e) ts equal to T(e) on the support of T().e).

Proof. The functions y,¢ and ),e¢ have disjoint supports, and
thus (6) holds if F' and G are replaced, respectively, by y.e and ye.
Since T is isometric, it follows that (6) also holds for T(y.e) and
T(x.e), and hence that these latter two functions have disjoint sup-
ports. Since T(e) = T(x.¢) + T(x.e), the desired conclusion follows.

LEMMA 4. Let ¢ be an element of K with ||e|| =1, and let F' =
T(e). If E s the vector function defined a.e. by E(x) = F(x)/|| F(x) ||,
then T* '(e) is that element of L'(X, K) determined by (T* '(e))(x) =
| F(x)||"*E(x) for almost all xe X.

Proof. We have || F||, = ||e]l, = [#(X)]'*. Moreover, as T* ' is
an isometry of L‘(X, K) onto itself, we also have || T*'(e) ||, = [.(X)]""*,
this latter equality holding even in the limiting case ¢ = <, since
llell. = 1.

Let G = T* '(e), and define the vector function H by H(x) =
G(x)/|| G(z) ]| if x belongs to the support of G, and H(x) = 0 otherwise.
(If ¢ = «, we do not yet know that the support of G is equal to
X a.e., although this fact can readily be established by a separate
argument involving extreme points.) We then have

HX) = | e, e = | (T@)@), (T (@)@
= | F@), c@pdp
(7)
= | I1F@| 1 6@) | <B(@), Hew)dp
= [1F@11116@ 1 de = 11, 161l = #X) -

Hence we must have equality throughout in (7). Thus, by a known
result for scalar functions, [5, p. 1138], for p > 1 the equality

SHF(OG)H |G@) || dge = || Fll, [| G|, implies that
NG@) 1" = [|Gllg (| F@)[I?/I| Fl]; = || F(z) |

a.e., so that ||G@)| = | F)|** a.e. If p=1, the equality
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S | E () ||| G(x) || dpe = (X)) = || F'||, implies that [|G(x)|| =1 = || F(@) |

a.e. in this case too. Finally, the equality
| 1176 111 6@) | B, H@)»dp = [1F@ 1166 | an

yields the fact that H(x) = E(x) a.e., which completes the proof of
the lemma.

LEMMA 5. Let e and @ be two orthogonal elements of K, each
with norm one, and let F, = T(e) and F, = T(p). If E, and E, are
the vector functions defined a.e. by E,(x) = F (x)/|| F.(x)| and E,(r) =
Fo(@)/|| Fe(x)[l, then (E(z), B, (x)) = 0 a.e.

Proof. Let A be any measurable subset of X. Then F, =
Y F, + ¥ F,, and since the two functions on the right have disjoint
supports, (6) holds when F and G are replaced, respectively, by y.F,
and y.F,. Hence (6) also holds for T '(3.F.) and T '(y.F.), and
these latter functions thus have disjoint supports. Since e=
T (. F) + T(xuF.), if we let B denote the support of T'(x.F.),
it follows that T(xze) = y.F..

‘We then have, using Lemma 4,

0 = | Guue, @ = [« TGN, (T @)
= | I F@) | B@), | F.@)17 B @)y
= | IF@ I F.@) P B, @)y

Since || F(x) ||| F.(x)]|>™* is an a.e. positive element of LXX, S), and A
is an arbitrary measurable subset of X, we must have (E.,(x), E.(x)) =
0 a.e. on X.

LEMMA 6. For any element ¢ of K with norm one, let F, and
E, be defined as in the previous lemma. Then for fe L?(X, S),
(T(fe))(x) = f(x)E.(x) for some scalar function f, and the mapping
fx) — {T(fe))(x), Efx)) is an isometry of L?(X, S) onto itself.

Proof. If A is any measurable subset of X, we know from
Lemma 3 that (T(x.e))(x) is equal to || F.(z)|| E(x) on the support of
T(r.e). It thus follows that for any simple function fe L?(X, S),
(T(fe))(x) = f(x)E,(x), where f is a function in L?(X, S) with the
same norm as f. For arbitrary fe L?(X, S), let {f.} be a sequence
of simple functions converging to f in the norm of L?(X, S). Then
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tim|{ || (T(0)@) — (T(7eD@) 7 dpe =0 .

Hence || (T(f.e))(®) — (T(fe))(x)]|* tends to zero in measure, and so a
subsequence tends to zero a.e. That is, (T(f,e))(x) tends to (T(fe))(x)
almost everywhere.

Now, for almost all @, the elements of K given by (T(f:e))(®),
j=12 --. lie in the one-dimensional (hence closed) subspace of K
spanned by E.(r), and thus (T(fe))(x) must lie in this subspace. That
is, (T(fe))(x) = f(@)E.(2), for some feL»(X,S) with [|fll, = [[fll»
and the given mapping is an isometry of L?(X, S) into itself.

It is readily seen that the map is, in fact, onto L”(X, S). For
suppose we are given a function of the form f(x)E.(x), where
fe L7(X, S). Incorporate e¢ into an orthonormal basis for K — say
e = e, where {¢,:n = 1,2, -..} is such a basis. Let F(z) = >, fu(x)e,
be the element of L*(X, K ) which maps onto f(x)E (z) under T.

Now Fyx) = S.... ful@)e, belongs to L?(X, K), where K is the
Hilbert space which is the closed linear span of {e,: n = 2}, and vector-
valued 51mp1e functions of the form G = 33i_, X4,Pi Ps€ K, are dense
in L*(X, K). By Lemmas 3 and 5, for all such G, <(T(G))(oc), E@)>=0
a.e., from which it follows that {(T(F,))z), E.(x)) =0 a.e. Thus as
F@)E(x) = (T(fie))(@) + (T(F))(x), with (T(f.e))(x) pointwise a scalar
multiple of E,(x) and (T(F,))(x) a.e. orthogonal to E,(x), we conclude
that T(F,), and hence F,, are both equal to the zero element of
L*(X, K). It follows that the mapping given by the lemma is indeed
onto L?(X, S).

LEmMMA 7. Let {e,,m=12 ---} be some fized orthonormal
basts for K, and for each n define F,, E, by F,= T(e,), E.(x) =
F.(x)/l| F.(x)||. Then there exists a regular set isomorphism @ and
o fized scalar function h(x) defined on X and satisfying (5), such
that for all n=12 --- and for all feL*X,S), (T(fe.,))(x) =
R(2)(O(S))(@) E,(%).

Proof. By Lemma 6 and Lamperti’s result for scalar functions,
we know that if ¢, and e, are two elements of the given orthonormal
basis and if fe L?(X, S), then (T(fe,))(®) = hn,@)@.(f))(®)E,(x) and
(T(fe))x) = h (2D ())(x)E, (x), where h,(x) and h,(x) are scalar
functions defined on X, and @,, @, are linear transformations induced
by regular set isomorphisms. We wish to show that 4, = &, and
?,. = @, modulo sets of measure zero.

If A is any measurable subset of X, we have

(8) (T(aen))@) = hn(®)Xo,,0)(@) Enl) ,
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and
(9) (T(Aa8))®) = 7W(X)Xo, () B () .

Consider y,(e, +e,)/V 2. If welet F,,, = T[(e. + €,)/V 2], and define
E,. by E,.x)=F,,®)|| F,.)]|, again by using Lemma 6 and
Lamperti’s result, we conclude that there exists a scalar function
P, and a regular set isomorphism @,,, such that

(10) (TTxalem + €)/V 21)(@) = B, n(®) Yo, (@) B, ()
Now, using the linearity of 7, we have

B o(%) = Fopn(@)/|] Fr, (@) ||
11) = (Fu(@) + F.@))/|| Fulx) + Fo(2) ||
= (| Fu@) || En(@) + || Fo(@) || Eu@))/|| Fu(@) + Fu@) || -

And, combining (11) with Lemma 4, we have

(T*(en + eV 2D)(@) = || (Fu(@) + Fu@)/V 2 || Bp,a(®)
(12) = [[(Fu@) + Fu@)/V'2 |7 (|| F(@) || En(®)
+ [ F@) | @)/l Fu(e) + Fa(2) || -

Also, using Lemma 4 and the linearity of T*', we find that

(T*[(en + €V 21)(@) = || Ful@) |77 En(2)/V' 2

13 _
{13) I Fy@) P BV E

Since Lemma 5 shows that E,(r) and E,(x) are a.e. linearly inde-
pendent, we conclude from (12) and (13) that

20D || Fo@) + Fof@) 77 || Ful@) || = || Fa@) [V E , ace.,

from which it follows that || F(x) + F,(x)||=1"2 || F,(x)| a.e. Simi-
larly, ||F.(®) + F,(x)]| =12 || F,(x)] a.e., so that (11) then gives
E, .() = E,()V'2 + E,(x)V'2 .

Thus from (10) we conclude that (T[Yu(en + €.)/V 2])(@) =
hm,a(x)me,ﬂ(A)(x)Em(m)/l/_z—-+ hm,n(a’)X¢m,,,<A)(x)En(w)/1/—2_- But the line-
arity of T, together with (8) and (9), implies that (T[).(en+e.)/V 2 ])(x)=
hal@) Yo, 1y @) En(®)/[V' 2 + ho(@) Lo, 0(®)E,(x)/V 2. Hence, once again
employing the a.e. linear independence of E,.(x) and E, (x), we find
that  7,(@)Xo, ) (®) = Am,n(@) Loy (@) = Bal®)Xs,0(®) a.e. Since this
equality holds for every measurable set A4, we can conclude that
h,=h, and @, = @,, modulo sets of measure zero.

Thus, if we let @ = @, and % = h,, then for all fe L?(X, S) and
all n, we have (T(fe,))(x) = h(@)(@(f))(x)E,(x) a.e., and h = h, satisfies
(5) by Lemma 6. This concludes the proof of lemma.
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A function U defined on X and taking values in the space of
bounded operators on K is called weakly measurable if (U(x)e, @) is
measurable for all ¢, pc K.

THEOREM. Let T be an tsometry of L*(X, K) onto itself, and
let {e,;mn =12 ---} be some fized orthonormal basis for K. Then
there exists a regular set isomorphism @ of the o-algebra 2 of measur-
able sets onto itself (defined modulo null sets), a scalar function h
defined on X satisfying (5), and a weakly wmeasurable operator-
valued function U defined on X, where U(z) is an isometry of K
onto itself for almost all x e X, such that for Fe L (X, K),

(T(F)N(@) = U@ PF))) ,

where O(F) is defined by (2). Conversely, every map T of this
form is an isometry of L*(X, K) onto itself.

Proof. 1f T is of this form, then it follows from (3) and the
fact that U(x) is almost everywhere an isometry, that

| U@)h(@)(@(F) @) || = [h@) | |2(|FI)] (@), for FelX, K),

so that T is norm-preserving by Lamperti’s result for the scalar
case. The fact that 7 maps L?(X, K) onto itself can readily be
established, for example, by noting that since @ is onto, and U(x)
is a.e. an isometry of K onto K, no nonzero element of L‘(X, K)
can annihilate the range of T.

Now suppose that T is any isometry of L?(X, K) onto itself. We
define U(x) on the basis vectors ¢, of K by U(x)e, = E,(x), where
the E, are determined as in Lemma 7, and then extend U(x) linearly
to K. Since by Lemma 5, {E, (x):n =1, 2, ---} is almost everywhere
an orthonormal set in K, U(x) is an isometry of K into itself a.e.,
and if K is of finite dimension, the remaining assertions of the
theorem then follow immediately from Lemma 7.

Thus we may as well assume that K is infinite dimensional. Let
F(x) =Y, fux)e, belong to L?(X, K). Then the sequence {F}, where
Fy(x) = 3V, fu(®)e,, converges a.e. to F' and is dominated by || F'|.
Hence by the dominated convergence theorem, || Fy — F|,—0. We
thus have T(F') = lim, T(Fy) in L?(X, K), and so at least a subse-
quence of the T(F'y) converges a.e. to T(F). But we know from (3)
and the fact that U(z) is almost everywhere norm-preserving that
U@)h(x)(@(F))(x) = limy, U@)h(z)(@(Fy))(x) = lim, (T(Fy))(x) exists in
K for almost all xe X, and thus it follows that (T(F))(x) =
U(x)h(x)(@(F))(x), as claimed. Finally, since the elements of
T(L?(X, K)) take their values a.e. in the range of U(x), and since
T is onto, U(x) must map K onto K for almost all z¢ X.
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3. Remarks and problems. (i) Throughout we have assumed
that the measure space is finite, but the theorem is also valid for
o-finite measure spaces, and the generalization to this latter case is
largely straightforward. We say “largely” only because there are
a few modifications (other than the obvious ones) of statements and
proofs necessary for the o-finite case, whose necessity might easily
be overlooked. For example, if the space is o-finite, a suitable
reformulation of Lemma 4 is the following:

Let A be a measurable subset of X with finite positive measure
and let ¢ be an element of K with [|e]| = 1. If T(y.e) = F, and if
E is that vector function defined by E(x) = F(x)/|| F(x)|| if » belongs
to the support of F, and E(x) = 0 otherwise, then T*7*(y,e) is de-
termined by (T*'(y.e))z) = || F(x)||*"*E(x), for almost all z¢ X.

The proof of this fact is analogous to that given for Lemma 4,
provided p > 1. However, in the case p = 1, additional arguments,
unnecessary if p#(X) is finite, have to be introduced.

(ii) For a certain class of measure spaces, the set isomorphism
¢ may, of course, be repleaced by a measurable point mapping
[5, Chap. 15].

(iii) In [4], Lamperti provides a description of all isometries of
L?(X, S) into itself, not just the surjective ones. One may ask if
such a description is attainable in the vector case. The type of
argument needed would presumably differ substantially from that
used here, since we often rely on the existence of the mapping 7%
from LY(X, K) to itself.

(iv) Can a reasonable description of the isometries be obtained
if the Hilbert space K is replaced by a suitable class of Banach spaces?
In particular, it might be of interest to see if K can be replaced by
an arbitrary finite dimensional Banach space.
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