BEST APPROXIMATION BY A SATURATION CLASS OF POLYNOMIAL OPERATORS

D. S. Goel, A. S. B. Holland, Cyril Nasim and B. N. Sahney
BEST APPROXIMATION BY A SATURATION CLASS OF POLYNOMIAL OPERATORS

D. S. GOEL, A. S. B. HOLLAND,
C. NASIM, AND B. N. SAHNEY

The problem of determining a saturation class has been considered by Zamanski, Sunouchi and Watari and others. Zamanski has considered the Cesaro means of order 1 and Sunouchi and Watari have studied the Riesz means of type \(n \). The object of the present paper is to extend these results by considering Nörlund means which include the above-mentioned results as particular cases.

1. Let \(\{p_n\} \) be a sequence of positive constants such that

\[
P_n = p_0 + \cdots + p_n \to \infty \quad \text{as} \quad n \to \infty .
\]

A given series \(\sum_{n=0}^{\infty} d_n \) with the sequence of partial sums \(\{S_n\} \) is said to summable (\(N, p_n \)) to \(d \), provided that

\[
N_n \left[\sum_{i=0}^{\infty} d_i \right] = \frac{1}{P_n} \sum_{k=0}^{n} P_{n-k} d_k
\]

\[
= \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} S_k \to d, \quad \text{as} \quad n \to \infty ,
\]

and \(N_n \) are called the Nörlund operators.

Let

\[
\frac{1}{2} a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) = \sum_{k=0}^{\infty} A_k(x)
\]

be the Fourier series associated with a continuous periodic function \(f(x) \), with period \(2\pi \).

We define

\[
N_n(x) \equiv N_n(f; x) = \frac{1}{P_n} \sum_{k=0}^{n} P_{n-k} A_k(x)
\]

and the norm

\[
\| f(x) - N_n(x) \| = \max_{0 \leq x \leq 2\pi} | f(x) - N_n(x) | .
\]

If there exists positive nonincreasing function \(\phi(n) \) and a class of functions \(K \), with the following properties:

(I) \(\| f(x) - N_n(x) \| = o(\phi(n)) \Rightarrow f(x) \) is constant,

(II) \(\| f(x) - N_n(x) \| = O(\phi(n)) \Rightarrow f(x) \in K \).
and

\[(\text{III}) \quad f(x) \in K \quad \Rightarrow \quad ||f(x) - N_n(x)|| = O(\phi(n)),\]

then the Nörlund operators are saturated with the order \(\phi(n)\) and the class \(K\).

In this paper we prove that the above method of summations is saturated with the order \(p_n/P_n\) and that the class \(K\) consists of all continuous functions \(f\) such that \(\tilde{f} \in \text{Lip 1}\), where \(\tilde{f}\) is the conjugate function of \(f\). By definition

\[\tilde{f}(x) = \frac{1}{2\pi} \int_0^\pi [f(x + t) - f(x - t)] \cot \frac{t}{2} dt,\]

if the integral converges absolutely for all \(x\) and if

\[\int_0^\pi |f(x + t) - f(x - t)| \cot \frac{t}{2} dt\]

is an integrable function.

The problem of determining a saturation class by considering \((C, 1)\) means of the Fourier series of \(f(x)\) has been considered by Zamanski [6]. Sunouchi and Watari [4] have considered the problem by taking \((R, \lambda, k)\) means of the Fourier series. Some of these results were later extended by Sunouchi [3] and others [2, 5].

2. We shall prove the following theorem.

THEOREM. Let \(\{p_n\}\) be a sequence of positive constants satisfying the following conditions,

\[(2.1) \quad \frac{p_{n-k}}{p_n} \rightarrow 1 \quad \text{as} \quad n \rightarrow \infty \quad \text{for a fixed} \quad k \leq n,\]

and

\[(2.2) \quad \sum_{k=0}^{n} |p_{n-k} - p_{n-k-1}| = O(p_n) \quad \text{where} \quad [p_{-1} = 0].\]

Then the operators \(N_n\) are saturated with order \(p_n/P_n\) and the class of all continuous functions \(f\) for which \(\tilde{f} \in \text{Lip 1}\).

The following lemmas are required for the proof of the theorem.

LEMMA 2.1. If

\[||f(x) - N_n(x)|| = o\left[\frac{p_n}{P_n}\right]\]

then \(f\) is a constant.
Proof. From (1.3) we obtain

\[
\frac{1}{\pi} \int_{-\pi}^{\pi} N_n(x) \cos rx \, dx = \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{P_{n-k}}{P_n} A_k(x) \cos rx \, dx
\]

\[
= \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{P_{n-k}}{P_n} \int_{-\pi}^{\pi} A_k(x) \cos rx \, dx
\]

\[
= \frac{P_{n-r} a_r}{P_n}.
\]

Thus,

\[
a_r - \frac{P_{n-r} a_r}{P_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos rx \, dx - \frac{1}{\pi} \int_{-\pi}^{\pi} N_n(x) \cos rx \, dx
\]

\[
= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos rx [f(x) - N_n(x)] \, dx,
\]

hence

\[
\left| a_r - \frac{P_{n-r} a_r}{P_n} \right| \leq \| f(x) - N_n(x) \| \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \, dx = o\left(\frac{P_n}{P_{n-r}} \right).
\]

Consequently

(2.3)

\[
a_r \left\{ \frac{P_n + \cdots + P_{n-r+1}}{P_n} \right\} = o(1),
\]

and since \(p_r > 0 \) for all \(r \), we have \((p_n + \cdots + p_{n-r+1})/p_n \geq 1 \) for \(r \geq 1 \).

Thus from (2.3) it follows that \(a_r = 0 \), for each \(r \geq 1 \). Similarly we can show that \(b_r = 0 \) for each \(r \geq 1 \). Hence \(f(x) = 1/2a_0 \), a constant.

Lemma 2.2. If

\[
\| f(x) - N_n(x) \| = O\left(\frac{p_n}{P_n} \right)
\]

and condition (2.1) is satisfied, then \(\tilde{f}(x) \in Lip 1 \).

Proof. It can be shown without much difficulty that if

\[
\| f(x) - N_n(x) \| = O\left(\frac{p_n}{P_n} \right),
\]

then

\[
\left\| \sum_{k=1}^{N} \frac{p_n + \cdots + p_{n-k+1}}{p_n} A_k(x) \left[1 - \frac{k}{N+1} \right] \right\| = O(1), \quad N \leq n.
\]

Taking the limit as \(n \to \infty \), and using condition (2.1), we obtain
(2.4) \[\left\| \sum_{k=1}^{N} kA_k(x) \left[1 - \frac{k}{N+1} \right] \right\| = O(1). \]

The left hand side of the above equation represents the \((C, 1)\) mean of the series
\[\sum_{k=1}^{\infty} -kA_k(x). \]

Since \(-kA_k(x) = B_k(x)\), where \(\sum_{k=1}^{\infty} B_k(x) = \sum_{k=1}^{\infty} (b_k \cos kx - \alpha_k \sin kx)\) is the conjugate series of (1.2), then (2.4) is equivalent to
\[\| \tilde{\sigma}_n(f) \| < M \]

which implies that \(\tilde{f}(x) \in \text{Lip} 1\), [1].

(\(\tilde{\sigma}_n(f)\) represents the \((C, 1)\) mean of the conjugate series.)

Lemma 2.3. Assume \(\tilde{f} \in \text{Lip} 1\). If the sequence \(\{p_n\}\) satisfies condition (2.2), then
\[\| f(x) - N_n(x) \| = O\left[\frac{p_n}{P_n} \right]. \]

Proof. Since, by definition
\[\tilde{S}_n(f, x) = \frac{1}{\pi} \int_0^\pi [\tilde{f}(x, t) - \tilde{f}(x - t)] \frac{\cos \frac{t}{2} - \cos \left[n + \frac{1}{2} \right] t}{2 \sin \frac{t}{2}} dt, \]

where \(\tilde{S}_n(f, x)\) denotes the partial sums of the conjugate series associated with \(\tilde{f}(x)\), we have
\[N_n(\tilde{S}_n(f, x)) = \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} \tilde{S}_k(\tilde{f}, x) \]
\[= \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} \frac{1}{2\pi} \int_0^\pi [\tilde{f}(x + t) - \tilde{f}(x - t)] \cot \frac{1}{2} t dt \]
\[- \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} \frac{1}{2\pi} \int_0^\pi [\tilde{f}(x + t) - \tilde{f}(x - t)] \frac{\cos \left[k + \frac{1}{2} \right] t}{\sin \frac{1}{2} t} dt. \]

Since the function \(\tilde{f}(x) \in \text{Lip} 1\), \(-f + (1/2)a_0\) is identical to \(\tilde{f}\), therefore
\[f(x) - N_n(f, x) = \frac{1}{2\pi} \int_0^\pi [\tilde{f}(x + t) - \tilde{f}(x - t)] K_n(t) dt, \]

where
Now by partial summation
\[K_n(t) = \frac{1}{P_n \sin \frac{1}{2} t} \sum_{k=0}^{n} (p_{n-k} - p_{n-k-1}) \sin (k + 1)t \]

by hypothesis. Since \(f(x) \) is certainly bounded, the right hand side of (2.5) becomes

\[\frac{1}{P_n} \int_0^\pi \left[\tilde{f}(x + t) - \tilde{f}(x - t) \right] \frac{1}{t^2} \left\{ \sum_{k=0}^{n} (p_{n-k} - p_{n-k-1}) \sin (k + 1)u \right\} du + O\left[\frac{P_n}{P_{n-1}} \right]. \]

Let us write
\[F_n(t) = \frac{1}{P_n} \int_0^\pi \frac{1}{u^2} \left\{ \sum_{k=0}^{n} (p_{n-k} - p_{n-k-1}) \sin (k + 1)u \right\} du. \]

Since \(\tilde{f}(u) \in Lip 1 \), it is an indefinite integral of a bounded function, say \(\tilde{f}'(u) \). Further, since \(\tilde{f}(x + t) - \tilde{f}(x - t) = O(t) \), as \(t \to 0 \), while for fixed \(n \), \(F_n(t) = O(\log (1/t)) \), we can integrate (2.6) by parts to obtain

\[\frac{1}{P_n} \int_0^\pi \left[\tilde{f}'(x + t) + \tilde{f}'(x - t) \right] F_n(t) dt + O\left[\frac{P_n}{P_{n-1}} \right], \]

noting that the integrated term vanishes at both limits. The absolute value of this above expression is now,

\[O\left\{ \int_0^\pi |F_n(t)| dt \right\} + O\left[\frac{P_n}{P_{n-1}} \right] \text{ since } \tilde{f}' \text{ is bounded}. \]

Now
\[F_n(t) = \frac{1}{P_n} \sum_{k=0}^{n} (p_{n-k} - p_{n-k-1}) \int_t^\pi \frac{\sin (k + 1)u}{u^2} du \]

\[= \frac{1}{P_n} \sum_{k=0}^{n} (p_{n-k} - p_{n-k-1})(k + 1) \int_{(k+1)t}^{(k+1)\pi} \frac{\sin \nu}{\nu^2} d\nu. \]

However,
\[\int_0^{(k+1)\pi} \frac{\sin \nu}{\nu^2} \, d\nu = \begin{cases} O(\log 1/(k+1)t) & \text{if } (k+1)t < 1 \\ O(1/(k+1)t^2) & \text{if } (1(k+1)t \geq 1 . \]

Hence
\[\int_0^1 |F_n(t)| \, dt = O\left\{ \frac{1}{P_n} \int_0^1 \sum_{k=0}^{(k+1)/t} |p_{n-k} - p_{n-k-1}| (k+1) \log (1/(k+1)t) \right. \\
+ \sum_{k=0}^{(k+1)/t} |p_{n-k} - p_{n-k-1}| \frac{1}{(k+1)t^2} \left. \right\} dt \\
= O\left\{ \frac{1}{P_n} \sum_{k=0}^{(k+1)/t} |p_{n-k} - p_{n-k-1}| \left[\int_0^{1/(k+1)} (k+1) \log (1/(k+1)t) dt \right. \\
+ \int_0^{1/(k+1)} \frac{1}{(k+1)t^2} dt \right\} . \]

Further,
\[\int_0^{1/(k+1)} \log (1/(k+1)t) dt = \int_0^1 \log \left(\frac{1}{u} \right) du = \text{constant} \]
and
\[\int_0^{1/(k+1)} \frac{1}{(k+1)t^2} dt < M \text{ (constant)} , \]
therefore
\[\int_0^1 |F_n(t)| \, dt = O\left\{ \frac{1}{P_n} \sum_{k=0}^{(k+1)/t} |p_{n-k} - p_{n-k-1}| \right\} = O\left[\frac{P_n}{P_n} \right] \]
from (2.2).

Thus (2.7) and hence (2.6) is \(O[p_n/P_n] \).

Consequently from (2.5), we have that
\[||f(x) - N_n(f, x)|| = O\left[\frac{P_n}{P_n} \right] \]
which proves the lemma.

The proof of the theorem now follows from Lemmas 2.1, 2.2, and 2.3.

The authors wish to thank Dr. B. Kuttner of the University of Birmingham, for his very helpful suggestions.

REFERENCES

Received March 2, 1973.

THE UNIVERSITY OF CALGARY
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Lee Anderson, Continuous spectra of a singular symmetric</td>
<td>1</td>
</tr>
<tr>
<td>differential operator on a Hilbert space of vector-valued functions</td>
<td></td>
</tr>
<tr>
<td>Michael James Cambern, The isometries of $L^p (X, K)$</td>
<td>9</td>
</tr>
<tr>
<td>R. H. Cameron and David Arne Storvick, Two related integrals over</td>
<td>19</td>
</tr>
<tr>
<td>spaces of continuous functions</td>
<td></td>
</tr>
<tr>
<td>Gary Theodore Chartrand and Albert David Polimeni, Ramsey theory</td>
<td>39</td>
</tr>
<tr>
<td>and chromatic numbers</td>
<td></td>
</tr>
<tr>
<td>John Deryck De Pree and Harry Scott Klein, Characterization of</td>
<td>45</td>
</tr>
<tr>
<td>collectively compact sets of linear operators</td>
<td></td>
</tr>
<tr>
<td>John Deryck De Pree and Harry Scott Klein, Semi-groups and</td>
<td>55</td>
</tr>
<tr>
<td>collectively compact sets of linear operators</td>
<td></td>
</tr>
<tr>
<td>George Epstein and Alfred Horn, Chain based lattices</td>
<td>65</td>
</tr>
<tr>
<td>Paul Erdős and Ernst Gabor Straus, On the irrationality of certain</td>
<td>85</td>
</tr>
<tr>
<td>series</td>
<td></td>
</tr>
<tr>
<td>Zdeněk Frolík, Measurable uniform spaces</td>
<td>93</td>
</tr>
<tr>
<td>Stephen Michael Gagola, Jr., Characters fully ramified over a normal</td>
<td>107</td>
</tr>
<tr>
<td>subgroup</td>
<td></td>
</tr>
<tr>
<td>Frank Larkin Gilfeather, Operator valued roots of abelian analytic</td>
<td>127</td>
</tr>
<tr>
<td>functions</td>
<td></td>
</tr>
<tr>
<td>D. S. Goel, A. S. B. Holland, Cyril Nasim and B. N. Sahney, Best</td>
<td>149</td>
</tr>
<tr>
<td>approximation by a saturation class of polynomial operators</td>
<td></td>
</tr>
<tr>
<td>James Secord Howland, Puiseux series for resonances at an embedded</td>
<td>157</td>
</tr>
<tr>
<td>eigenvalue</td>
<td></td>
</tr>
<tr>
<td>David Jacobson, Linear GCD equations</td>
<td>177</td>
</tr>
<tr>
<td>P. H. Karvellas, A note on compact semirings which are multiplicative</td>
<td>195</td>
</tr>
<tr>
<td>semilattices</td>
<td></td>
</tr>
<tr>
<td>Allan Morton Krall, Stieltjes differential-boundary operators, II</td>
<td>207</td>
</tr>
<tr>
<td>D. G. Larman, On the inner aperture and intersections of convex sets</td>
<td>219</td>
</tr>
<tr>
<td>S. N. Mukhopadhyay, On the regularity of the P^n-integral and its</td>
<td>233</td>
</tr>
<tr>
<td>application to summable trigonometric series</td>
<td></td>
</tr>
<tr>
<td>Dwight Webster Read, On (J, M, m)-extensions of Boolean algebras</td>
<td>249</td>
</tr>
<tr>
<td>David Francis Rearick, Multiplicativity-preserving arithmetic power</td>
<td>277</td>
</tr>
<tr>
<td>series</td>
<td></td>
</tr>
<tr>
<td>Indranand Sinha, Characteristic ideals in group algebras</td>
<td>285</td>
</tr>
<tr>
<td>Charles Thomas Tucker, II, Homomorphisms of Riesz spaces</td>
<td>289</td>
</tr>
<tr>
<td>Kunio Yamagata, The exchange property and direct sums of indecomposable injective modules</td>
<td>301</td>
</tr>
</tbody>
</table>