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Let H(x) = T + xB*4 be a self-adjoint perturbation of
the self-adjoint operator T, and suppose that T has an eigen-
value 4, of finite multiplicity m embedded in its continuous
spectrum. If the operator

Q) = A(T — 2)"'B*
is bounded and can be continued meromorphically across the

axis at 2,, the asymptotic spectral concentration of the family
H(x) at 2, is determined by the poles of

(1) kAHK) —2)B* =T — [I + Q)] .

These ‘“resonances’’ can be expanded in a series of fractional
powers of «, and therefore have a unitarily invariant signi-
ficance for the family H(x). An example shows that nonanalyt-
ic series may indeed occur; however, if a resonance is an
actual eigenvalue of H(x) for all sufficiently small real &, its
series is analytic. Because the resonances cannot lie on the
first sheet when « is real, these series must have a special
form. In the generic case, they yield, as the lowest order
approximation to the imaginary parts of the resonances, the
famous Fermi’s Golden Rule. The case when 1, is embedded
at a branch point of (1) is studied by means of a simple ex-
ample.

To outline briefly, Puiseux expansions are obtained in §1, and
their special form is noted (c.f. [15, Theorem 4.2]). In §2, a study
of these series for perturbations which remove the degeneracy at X,
leads to Fermi’s Golden Rule. The discussion of spectral concentra-
tion in §3 relies heavily on the arguments of [3], particularly on a
grouping of the resonances into “clusters” which act asymptoticly as
a single simple pole. The examples appear in §4. The appendix
contains a technical result which simplifies not only Theorem 3.1 but
also [3, Theorem 2.1] (c.f. [3, p. 156; Note (1)]). The results proved
here were announced in [4].

Simon [14, 15] has recently discussed a similar problem for N-
body Hamiltonians with dilatation analytic interactions. It is of
particular interest that the Balslev-Combes technique which he em-
ploys reduces the problem to that of an 4solated eigenvalue of a
non-self-adjoint operator. This gives an interesting insight into the
occurrence of Puiseux series, and suggests that, in the general case,
resonance series can be viewed as perturbation series for an isolated
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eigenvalue of a suitable non-self-adjoint operator. Simon considers
eigenvalues of arbitrary finite multiplicity, and not, as erroneously
remarked in [4], only simple multiplicity.

Eigenvalues embedded at “thresholds” are not considered by
Simon. Mathematically, a threshold may be variously described as
(i) a branch point of an appropriate function, (ii) a point where the
absolutely continuous part of T changes multiplicity, or (sometimes)
(iii) an end point of the spectrum of 7. The unperturbed eigenvalue
in the second example of §4 is a threshold in all three senses. A
slightly revised Golden Rule is shown to apply to this case.

Let us conclude this introduction with an observation about the
invariant significance of “resonances”. It is tempting, at first glance,
to call a point 4 a resonance of the self-adjoint operator H if the
continuation of some matrix element ((H — {)™'f, f) across the spec-
trum of H has a pole at 4. However, this definition is worthless;
for if H is the multiplication

Hf(x) = zf(x) —oo Lo < oo

(which is essentially the general case in which continuation is possible),
then given any point 4 in the lower half-plane, there is a rational
function f(x) for which the continuation of

(#H =07, 0 =@ - 071 7@ rde

has a pole at 4. The “resonances” considered by various authors
are always something more than this—poles of an S-matrix [11], of
an integral operator [13], or (as here) of an operator-valued function.
Accordingly, the definition of “resonance” is referred to some struc-
ture in addition to the operator H—such as outgoing subspaces, the
representation of H as a differential operator, or a decomposition
H= T+ AB*.

While something of this sort is necessary in general, in the case
of an analytic perturbation H(k) of an embedded eigenvalue, a uni-
tarily invariant significance can be attached to a Puiseux series /A(k)
of “resonances” in the weak sense which we have scorned above.
There is of course additional structure here, too: the analyticity of
the families H(x) and A(k).

To be precise, suppose that H(x) is an analytic family [6, Chapter
VII] of closed operators, self-adjoint for real k, with essential spec-
trum independent of £. Let )\, be an eigenvalue of H(0) and assume
that for some vector f

(Hx) — O, f)
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has a continuation F'({, k) to a meromorphic function of ({ £) for
[k] <0 and [ — N\ | < 6. Assume further that

A(K) = Ny + BEMP £ - B#0

is a pole of F({ k) for each k. Since for small k£, the term B«"?
dominates those which follow it, A(x) will be in the upper half-plane
for £ in certain sectors of the complex plane, and will therefore be
an eigenvalue of H(k), because of the assumed invariance of the
essential spectrum. Thus the same analytic family 4(x) represents a
“resonance” for some values of the perturbation parameter, and an
actual eigenvalue of H(x) for others. Put differently, the resonances
are continuations in £ of eigenvalues of H(k), and have, therefore, a
unitarily invariant significance for the family H(x).

1. Puiseux series. The following assumptions will be made
throughout this article. For proofs of the various assertions, see [2,
7, and 10].

Let 57 and 27 be separable Hilbert spaces. Let T be a self-
adjoint operator on £# with resolvent G(z) = (T — 2)™", and let 4
and B be closed, densely defined operators from £# to 57’ such
that 2(T)c =2(4) N 2(B) and

(1.1) (Az, By) = (Bz, Ay) for every x, ye (A) N =(B) .

Suppose that for every ze o(T), the operator AG(z)B*, which is
defined on =(B*), has a bounded extension @Q(z) to &#’, and that
I+ Q(z) is invertible for some z € o(7T). Then, for sufficiently small
real £, there is a self-adjoint extension H(k) of T 4 £B*A the resolv-
ent of which is

(1.2) R(z, £) = G(z) — £[BG@)]* [I + £Q(z)]AG(z)

whenever z € 0(T) and I + £Q(z) has a bounded inverse. In particular,
H(0) = T and R(z, 0) = G(z). We shall write H(k) = SthE(N). If

A (A*) denotes the smallest reducing subspace of T which contains
FB(A*), then #Z = #Z(A*) N #(B*) reduces both H(x) and T and
H) =T on .#Z*. Only the parts of H(x) and T in .# are of in-
terest in perturbation theory.

Let 2 be a neighborhood of a point ), of the real axis, and 2* =
{zeQ: £Imz > 0}. Assume that Q(z) has a continuation Q*(2) from
2% to 2, which is analytic on 2 except for a simple pole at \, with
residue of finite rank m. The part of T in .# is then absolutely
continuous in 2N R, except for an eigenvalue )\, of finite multiplicity
equal to m. Since Q'(z) and @ (2) do not in general agree on £2,
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the etgenvalue )\, s in general embedded in the absolutely continuous
spectrum of T.
If we now write

Q*(z) = Q(z) + (N, — 2)7'F

where F has finite rank and QZ(z) is analytic at A, then I + £Q3(z)
can be inverted by a Neumann series for [z — A\,| <0, and [£]| < 0,
if 6, and 4§, are sufficiently small. Hence, AR(z, £)B* also has a
bounded extension Q,(z, £) for Im z == 0, which has completely mero-
morphic (meromorphic with finite rank principal parts at all poles
[2]) continuations QZ(z, £) from 2% to [z — \,| < 9, satisfying

I — £Qi(z, k) = [I + £Q*(2)]™
= {I + £ — 2)[ + £QE@]F}'[I + £QE@)]™ .

The poles of Qi(z, £) need not be real, but for real £ do not lie in
Q%; they are the resonances of this perturbation problem.

(1.3)

THEOREM 1.1. There is an analytic function 4(2, £) on a polydisc
{(z, £): |2 — N | <0y, |£]| < 0y} such that

(@) For |k| <9, 4d(z, k) has exactly m zeros z(K), «--, 2,(K)
(repeated according to multiplicity) in |z — N\| < 8,, which are pre-
cisely the poles of Qi (z, k) in |2 — N| <0,. For £=0, 2;(0) =,
(j:]-, Tty m)'

(o) If for some real k, z;(k) ts real, then z;(£) is an eigenvalue
of H(k) of multiplicity equal to the multiplicity mik) of z;(k) as a
zero of A(z, k).

This result was proved in [2, §5], except for analyticity of
A(z, £) which is clear from the construction of 4(z, £) (see equation
(2.2) below). However, we have omitted the hypothesis of [2] that
Q(z) is compact. This can be done; for in [2] compactness was used
only for two things: (a) to prove that I 4+ £Q*(z) has a completely
meromorphic inverse, and (b) to prove, by references to [10], that
H(k) is self-adjoint for real £. However, we have argued above that
(a) holds here, while (b) holds for « sufficiently small [10, p. 59].

Note that [2] F' = AP,[BP,]*.

We shall now show that the resonances can be grouped into
cycles, so that each of the p elements of a cycle is one of the values
of a series expansion in powers of £'?. Such series are known as
Puiseux series [9, p. 130]. For their application to perturbation
theory, see [6; Chapters II and VII].

THEOREM 1.2. The resonances z,(k), ---, 2.(k) may be labeled so
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that each zi(k) has a Puiseux series expansion in k. If
(1.4 2i(£) = N + @K + @A 4+ - G=1---, 9

18 o given Puiseux cycle of resonances, where w is a primitive pth
root of unity, then either the series has the form

(1°5) zi(’i) =N+ QA vt QK™ + a2np+1wj/52n+l[p o

where Ny, Ay, *++, Apu_1yp are real and Im a,,, <0, or p=1 and all
the coefficients a, are real.

Moreover, the multiplicity m;(k) is independent of k£ for £+ 0
and sufficiently small, and 1is the same for each element z;(k) of a
given Puiseux cycle.

In particular, if z;(k) belongs to a Puiseux eycle with p = 2,
then z;(k) is not real for all sufficiently small real £ = 0. Thus any
actual embedded eigenvalues of H(kx) are analytic.

COROLLARY 1.3. For real k= 0 sufficiently small, the multi-
plicity of point eigenvalues im the imterval (A, — 0, N, + 0,) 8 im-
dependent of £. If for some j, z;(k) is real for all sufficiently small
K, then z;(k) is analytic in k.

Proof of Theorem 1.2. Since 4(z, 0) = (A, — 2)™, the Weierstrass
Preparation Theorem [1, p. 188] yields that

Az, £) = [ = N)™ + gna(B)Z — N)™ ' + - o+ + g(K)]F(2, k)

where g,, ++-, 9., and F are analytic, F'(\, 0) = 0 and g,0) = -+ =
9n-1(0) = 0. Thus z(x), ---, 2,(£) are the zeros of a polynomial in 2
with coefficients analytic in £, namely 4(z, £)/F'(z, £). Hence, (c.f. [6,
pp. 63-66]) 2,(k), - - -, z,(k) are algebroidal functions having at most
an algebraic singularity at £ = 0, and must therefore have Puiseux
series expansions. The statement about multiplicities is part of this
theory.

Since H(x) is self-adjoint for real k£, R(z, £), and hence @/ (z, k),
is analytic for Imz > 0, so that in the cycle (1.4), one has Im z,(x) <

0 for real k£, and each § =1, ---, p. Therefore, the first term of
(1.4) with a nonreal coefficient must have negative imaginary part
for all real £ and j =1, .-+, p. But this can only happen for an

even integer power £** where, moreover, Im a,,, < 0. If all coefficients
a,w™ are real, then because of the factor w’, we can only have
p =1or 2. However, if p = 2 and a,®w’£™* is the first nonzero term
with % odd, then changing £ into —«k introduces a factor %, so that
by proper choice of j, the imaginary part of this term can be made
positive. Since this cannot occur, we must have p = 1.
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REMARK. With perhaps a mild additional hypothesis, stationary
scattering theory [8] shows that, for real £, the absolutely continuous
parts of H(k) and T in (A, — 0, N, + 0,) are unitarily equivalent.

2. Fermi’s golden rule. In the simple case in which the per-
turbation B*A removes the degeneracy at ),, calculation of the reso-
nances up to terms of order &* leads to the venerable Golden Rule
for the line widths I';(x¥). In order to discuss this, we must recall
the construction of A(z, k) [2, §5].

It was proved in [2, p. 329; Theorem 3.1] that the residue of
Q*(z) at N\, is —AP|[BP,]*, where P, is the orthogonal projection
onto ker (T — )\,). Hence the operator

(2.1) Q7 (2) = Q7(2) — (v — 2)AR[BP]*,

which corresponds to the continuous part of T near X\, is analytic
on 2. According to [2, p. 335; Theorem 5.1]

Az, k) = (N — 2)"det [I + [I + £Q/(2)] '£(\, — 2) "AP[BP]*] .

Using the formula det (I + ST) = det (I + TS) [6, p. 162; Problem
4.17] gives

(2.2) 4z, £) = (N — 2)™ det {I + [BPJ*[I + £Q;(2)]'k( — 2) AP} .

Now, A and B are one-one on .#Z(P,) and H([BP)*) = #(P) [2,
p. 331]. We may therefore write (2.2) as a determinant on Z(F,),
and then the factor (A, — 2)™ may be taken inside the m x m deter-
minant to yield

A(z, £)

(2:3) = det {(\, — #2)I, + k[BPJ*AP, — £*[BP]*Q:(z)AP, + O(*)}

uniformly in 2z, where I, is the identity on <Z(P,) and [ + £Q;(z)]™"
has been expanded in a Neumann series.

The operator V, = [BP,]*AP, maps Z(F,) into itself, and is es-
sentially the compression of the perturbation B*A to <#(P,). Using
(1.1), we find that for x, y € 5%

(Ver, y) = (IBP|*APw, y) = (APx, BPy) = (BPw, APy)
= ([AR]*BPg, y) = (Vi'z, y)

which means that V, is self-adjoint on <Z(P,). Therefore, with re-
spect to a suitable orthonormal basis ¢, ---, ¢,, of Z(F), V, has a
diagonal matrix
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The perturbation B*A is said to remove the degeneracy at X\,
iff the eigenvalues \,, ---, \,, to V, are all distinct. If X(z) denotes
the matrix with entries

Xii(z) = —(QI(2)A¢,, Bg;)
then writing (2.3) with respect to the basis ¢, ---, ¢,, yields finally
(2.4) Az, £) = det {(x, — 2),, + £D + £ X(z) + O(£%)}

uniformly in z on a neighborhood of X,.

THEOREM 2.1. If B*A removes the degeneracy at X\, then z;,(£)
s analytic (j =1, +--, m) and

(@.5) 2i(K) = N + BNy + BX5500) + O(K) -

Taking the imaginary part of (2.5) for real k£, we obtain formally

I'i(k) = —Imz;(k) = —£* Im (Q;(\)Ag;, Bg;) -+ O(x°)
= —2Im (R.(\, + 10) Vg, Vo;) + Ok
29 K([R.( — 0) — R + 10)] Vg, Vo)) + O(r?)

and hence finally

{2.6) I'j(k) = we* (0T — X)) Vg, Vg;) + O(x°)

where V = B*A = A*B, R (z2) = R(z) — (A, — 2)7'P,, and
0T — \) = @2ry)'[R,( — 10) — R.(A + 10)] .

Formula (2.6) is Fermi’s Golden Rule.

Proof of Theorem 2.1. We already know that z,(x) = )\, + O(k),
and hence X(z;(k)) = X(\,) + O(x). If we define

Cilk) = £7(25(K) — No) -
‘Then the equation for {;(x) is, by (2.4),
{2.7) det {—£{(k)L, + £D + £2X(\) + O(°)} =0 .
Expanding and dividing by £™ gives
(2.8) O = E5(8)) -+ v — L)) + Or) = 0.
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Since the polynomial (A, — {) --- (A, — {) obtained for £ = 0 has dis-
tinet simple zeros, equation (2.8) has m analytic solutions, one asymp-
totic to each root as kK — 0. Thus we may take
Ci(£) = N + Bik + O(£%) G=1--,m).
Setting j = 1 and substituting into (2.7), we find that
det {£J + £*°X(\,) + O(£%)} =0
where

._,5131
(7\'2 - )"1) - 531

(n — A — 5B,

Expanding (2.7) gives
’Cm+1(7\'2 - 7\'1) ce (>\’m - 7\41)()(11()\'0) - .31) + O(":m+2) =0

so that, in fact,

Bl = X11(>"0) .

3. Spectral concentration. The following theorem extends the
main result of [3] to embedded eigenvalues.

THEOREM 3.1. Assume that there exists a subspace & of 2 (A)N
Z(B) such that B C 2(A*), A= C =2(B*), and which s dense
m Z(A) and < (B) in the respective graph norms. Forj=1, -+ m
and & real, choose 6;(k) such that 0;(k) = o(1) and Im z;(k) = o(d,(x))
as £— 0. Let

S(r) = U {t: Re 2,(5) — 0,(k) < t < Re z;(x) + 3,(x)} -
If H(k) = SxdEx(x), then

P, = st — lim S _dEWN) .
S(k)

£—0

As shown in the appendix, the additional hypothesis insures
that, for real &, the poles of Qf(z, £) are the complex conjugates of
those of Q7 (2, £). Thus we did not need to take into account the
poles of Qi (z, £) when defining S(x), as was done for the corre-
sponding set J, in [3, Theorem 2.1]. In order that & exists, it is
sufficient that either A or B be bounded, or that A and B be com-
muting self-adjoint operators.
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Theorem 8.1 has a proof very similar to that of [3, Theorem 2.1],
but cannot be deduced directly from that result because the operator
Qf(z, k), which corresponds to Qi (2, ») of [3], tends to zero as £ — 0,
and cannot, therefore, satisfy Hypothesis III (b) of [3]. To avoid
repeating the lengthy arguments of [3], we shall simply carry the
argument along to a point at which the arguments become essentially
identical. A considerable study of [3] is therefore necessary to un-
derstanding the remainder of this section.

In order to surmount the difficulties posed by nonsimple poles,
or poles close together, we shall show that for real £, the resonances
z(k), --+, 2,(k) may be grouped into what we shall call clusters in
such a way that, as £ — 0, the resonances of a single cluster act
together as a single, simple pole of Q/(z, k), at least insofar as their
asymptotic effect on the spectral measure of H(x) is concerned.

The result of our considerations is a rather detailed desecription
of the singular part of Q/(z, k).

In the first two lemmas, £ may be complex.

LEMMA 3.2. Let zik)(j =1, ---, N) be the distinct poles of
Qi (2, k). Then Q{(z, k) has the partial fraction expansion

Bl Qi) =SB0 . BB | e,

=1 (2 — z4(k)) (z — zi(k))"™
where L(z, £) is analytic in z and k. If z;k) has a Puiseux series
expansion tn powers of kY?, then BP(k)(k =1, ---, m;) also has an

expansion in powers of k%, and has at most an algebraic pole at
£=0.

The proof is a simple adaptation of the argument on pp. 69-70
of [6]. Certain additional facts obtained there do not hold here,
since Q7 (z, £) is not a resolvent. Analyticity of L(z, k) is proved in
the proof of the next lemma.

It follows immediately that for small £ == 0, B{(x) either vanishes
identically or is never zero. Hence, for small £ = 0, the order m;
of the jth pole z;(k) of Qf(z, £) is independent of k.

If the terms of the singular part of @f(z, £) in (3.1) are combined,
we obtain

Qiz, ) = ﬁ,’(—fg + L(z, )

where P(z, k) is a polynomial in z with coefficients having at most
an algebraic singularity at £ = 0, and 4(z, £) is the analytic function
of z and £ defined in §1.
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LEMMA 3.3. (@) As £—0, Qf(z, k) — Q(z) uniformly on 0 <
eS|z — N| =0, for every € > 0.

(b) P(z, k), 4(z, k), and L(z, £) are all analytic in z and k.
Moreover,

3.2) lim P(z, £) = (z — A)"AP,[BP]* .
£—0

Proof. From (1.3) and (2.1) one obtaing
(3.3) I —kQi(z k) =[I+ k(N — 2)7'I'(2, £)AP[BPJ*] ' I'(2, k)
where
I'(z, £) = [ + £Q:(2)]™

is analytic in z and &, for £ and 2 — A, small. Expanding the right
side, canceling I on both sides and dividing by & yields the result.
Analyticity of L(z, £) and the coefficients of P(z, £), as well as (3.2)
follow from the formulas between equations (2.7) and (2.8) of [3],
where the discrete parameter # must be replaced by k.

Assume now that « is real, and write

2i(£) = Ny(£) — iL75(k) G=1--,N)

where \;(£) is real and I';(k) = 0. We shall now describe the group-
ing of the z;(k)’s into clusters. To begin with, we specify that if
I's(k) = 0, then z,(k) is to form a cluster by itself. Otherwise, {;(k) >
0 for small £ = 0, and we shall assume now for convenience that

I'i(k) >0 4=1---,N).
Then I";(k) has a Puiseux series, so that
(3.4) (k) = a;x?9 + ---

where a; > 0 and p(j) is an integer (j =1, ---, m). (If £ is complex
in (3.4), I';() is defined, but no longer the imaginary part of —z;(x).)
For £ = 0, choose d;(k) > 0 such that

9,(k) = o(£?77) G=1 -, m)
while
£79 = 0(9(£)) G=1 - m)
as £— 0, and consider the intervals
Ji(£) = (Mi(£) — 0,(K), Ni(K) + 0,(K)) .

If £ is small, the number of component intervals of
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(3.5) Ju(k) U + - U Ju(K)

is independent of £, and each component is the union of the intervals
J;(£) corresponding to a certain set of resonances. For the distance
between \;(£) and N\.(k) is of the order of some integral power of &,
and is therefore either much greater or much less than the length
of Ji(x). These sets are the clusters; they are independent of k. We
shall denote the components of (3.5) by

(¢s(£) — 0i(£), ¢;(k) + 0,(K)) (=1 -, N)

where N is the number of clusters. We shall refer to ¢;(£) and p;(x)
as the center and radius of the jth cluster.
It is easily seen that if {2,(k), - --, 2, (k)} is the first cluster, then

3.6) Vi) — ei(k) = 0(0.(K)) (G=1- ).

For if N,(k) and M\,(x) belong to the first cluster, the distance between
them is much less than either (k) or 0,(«), neither of which can
exceed po,(£). Similarly

3.7 PAK) = o(] e(k) — c(K) ) (1=12)

because ¢,(k) — ci(k), being determined by the \;(k)’s, is of integral
power order, while 0;(k), being determined by the d;(£)’s is not.

Similar statements hold for other clusters. The interpretation
of (3.6) is that the resonances of a cluster are asymptotically very
close to the center of the corresponding interval (¢, — 0., ¢ + 04),
while (3.7) says that distinct components of (3.5) are asymptotically
very small compared to their distance apart.

LEMMA 3.4. For Imz > 0, and |z — \| < 0,

| P(z, k) || = C| 4(z, £) | (Im 2)™*

where C 1s independent of k.

Proof. For each k, the coefficients of P(z, £) are of finite rank,
since they are residues of functions with singular parts of finite rank,
and are also analytic in £. The lemma therefore follows by a proof
similar to that of equation (2.8) of [3].

The procedures of [3] could now be applied to yield an asymptotic
expansion for the singular part P(z, £)/4(z, k) of Qi (z, k). However,
we shall be content to remark that for any sequence k,— 0, the
quantities P(z, £,), 4(z, k,), ete. have precisely the properties of P,(z),
4,(2) ete. which are used in the proof of [3, Theorem 2.1] from
equation (2.10) of [3] onward. The remainder of the proof of Theorem
3.1 follows [3] with essentially no change.
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4. Examples. We shall now consider some simple examples
which illustrate certain phenomena.

ExampPLE 1. We shall first give an example in which a nonana-
lytic Puiseux series occurs. Let SF = Ly(—oco, +c0)@ L% and let
e,, ¢, be the usual orthonormal basis of £2. Define

u(t)) (t 0) (u(t) (tu(t))

H{) = =

3 0 ¢ g cé

where % € Ly(— o0, +), £€? and ¢ is a fixed real number. H,= T
has absolutely continuous spectrum of simple multiplicity, except for
an embedded eigenvalue ¢ of multiplicity m = 2. Let f,(¢), fu.(t) be

an orthonormal pair of functions in L,(— o, + ), and define an
operator Y from €?® into L,(— oo, +co) by

Y(éier + &) = E011() + &S(D) ©
The operator Y* from L,(— o, + o) back into £? is then
Yru = (Su(t)f—l(t)dt)el + (Su(t)ﬂ(t)dt)ez .

We shall consider the perturbed operator

H(r) = H, + £V

V- 0 Y)
B (Y* AT
and A, > 0. The perturbation V is self-adjoint of rank 4, and its

range has the orthonormal basis {f, f,, €, €.}. If we choose the fac-
torization

where

V=VP=PV

where P is the orthogonal projection onto the range of V, then the
matrix of

Q) = V(H, — 2)7'P
with respect to the orthonormal basis fi, f,, e, €. of the range of V is

0 (c—2)'L
<F (® (c— 2)"%112)

where
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i@ ﬁ(t)fz(t)> it
VROYEOIEVAGN

and I, is the 2 x 2 identity matrix.

If we now assume that F(z) has a meromorphic continuation from
the upper half-plane across the axis in a neighborhood of ¢, then
the equation

e = (@ - z)*(

(e —zydet(I + £Q(:) =0
for the resonances reduces to
£D(z) — i*T(z)(c + kN, — 2) + (¢ + £, — 2P =0

where T(z) and D(z) are the trace and determinant of F'(z). Solving
for (¢ + &x, — 2)* by the quadratic formula yields

z=c+ ME+ £9(z)

where

9(z) = ~~f1z~(T(z) V' Tz) — 4D()) .

For simplicity, let us now take ¢ = 0. Then, if the function
H(z) = T%z) — 4D(z)

has a simple zero at z = 0, the function g¢(z) has a Puiseux series
expansion

9(&) = ay + 2" + ag + -+
where a, == 0. It then follows easily from
2= MK+ K a, + a2+ az + --0)
that
2= ME + @’ + a2 + O(k)

which means that z(k) has a nonanalytic Puiseux series in £. We
shall therefore have obtained the desired example, if we can find
f:(®) and fi(t) such that H(z) has a simple zero at z = 0.

To this end, let
o {23V 1
= (2)" 55
and

Jot) = (2 — 2¢) 2 sgnt 0<e< i<l
=90 otherwise .
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Then f, and f, are an orthonormal pair, and since they are real,
F(z) = Fu(?) .
The values of F,(0) and F'/,(0) may be computed from
F,z)=—(+ 2+ Imz>0

while due to the fact that f,(¢) vanishes near the origin, the integrals
for F,(0) and F,(0), as well as those obtained for F/,(0) and F,0)
by differentiation under the integral sign are absolutely convergent.
In fact, one has

F0)=@-297] 20
e<iti<i ¢
and
F0) = (2 ~ 25)“S dt _ o
e<iti<t §2
Similarly,
et 1 dt
F,(0) = 2(r — 7s ”ZS_____.__
0) = 2= U +1 ¢
and

F(0)=0.
Hence, one computes that
H(0) = (Fu(0) — Fi(0))* + 4F,0)

= —4 + 16(t — m)_l”: z i 1 itt_}

and
H,(O) = 2(Fu(0) - FZZ(O))(Flll(O) - Fz’z(o)) + 8F12(O)F1’2(O)
=—4i3B +¢e)~0.

It therefore remains to choose ¢ such that H(0) = 0; that is, such
that

T \'? el 1 dt
—_ = 1 — 1/28 —_— == @ .
< 4> =9 w1 ©

But since 9(¢) is decreasingon 0 < ¢ < 1, @(0+) = + o0, and ¢(1—) =
0, there is a unique ¢ in the interval 0 < ¢ < 1 satisfying this equation.

Finally, note that the Puiseux series appears here as a degenerate
case, since in the usual case when H(z) does not vanish at the origin,
9(z) and hence z(x), have two distinct analytic branches.
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ExAMPLE 2. An example will now be given of an eigenvalue of
multiplicity one embedded at an end point of the continuous spectrum,
and perturbed by an operator of rank two, which gives rise to a
resonance or an eigenvalue which cannot be represented as a Puiseux
series. The endpoint appears as a branch point of Q7(z). Branch
points of continued quantities occur in Simon’s articles [14, 15] as
“thresholds” for certain processes (that is, the minimum energies at
which the processes can occur). His theory excludes eigenvalues
embedded at thresholds—with good reason, as this example shows.
Most of the thresholds in [14, 15] are embedded in a continuous
spectrum, rather than at an end point. An example of this along
the present lines would be easily constructed. The example is similar
to Example 8.3 of [5, p. 581]. The operator H, = T on L,0, )&
¢ defined by

H[u(?), €] = [tu(?), 0]

has absolutely continuous spectrum [0, o) and an eigenvalue at », = 0
with eigenvector

¢ = [0, 1] .
Let H(x) = H, + £V where
Viu(), &1 = [Ef(@), (u, £) + MéE] .
We assume that A, > 0 and

| 1r@ras 1.

The perturbation V has rank 2, so the resonances are to be sought
as poles of an analytic continuation of the inverse of the matrix
W(z, £) of the restriction of I + «V(H, — z)~* to the range ZZ(V) of
V. Computing Wi(z, £) with respect to the orthonormal basis ¢, f
of .##(V), one obtains [5; eq. (8.9), p. 581]

W _ 1 — Kz
(2 £) = (/fF(z) 1-— /fxlz”)

where
F) = | 17@ 1 — 2t

If we assume that F(z) has a continuation F' (z) from the upper half-
plane across the positive real axis, then the resonances satisfy the
equation

4.1 z=KN — KEFL(2) .
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(See [5, p. 581], the third equation from the bottom of the page—in
which there is an error of sign.)
Now choose

1

(4.2) FOr ==

3o

so that

Flz) = 21 — (Z{n—?—lcz)zg z2— 2

where 0 < argz < 27. The solution of (4.1) then has the asymptotic
expansion

(4.3) (k) = £ + (2/7)k log (RN — 2t6* + O(£%)

which is not of Puiseux type. For £ < 0, z(r) lies in the region 0 <
arg z < 2z, and is therefore a negative eigenvalue (k) of H(x), with
the expansion

ME) = &N + 2/m)E* log (—EN) + Ok < 0.

For £ > 0, the continuation F,(2) of F'(z) leads to the solution z,(r)
with argz,(x) = 0, while if F,(z) is replaced in (4.1) by the con-
tinuation F_(z) of F(z) from the lower half-plane, one obtains the
solution z_(x) with arg z_(r) = 2r. These numbers are complex con-
jugates. If & is complex, the first situation essentially prevails, in
the sense that the non-self-adjoint operator H(x) has an eigenvalue
at z(x) for all sufficiently small £ in any given sector |argr — 7| =
T —297,0>0.
If instead of (4.2), one chooses

(1.4 7O = 2 cos (raiz) L

where —1 < a < 1, then one obtains, for « % 0,

F(z) — cot (77.'6(/2) — cls(i;_(yzf(/z)zae-im — 5

where 0 < argz < 2zr. The solution of (4.2) then has the expansion
(4.5)  2(k) = &N, — K2 cot (ma/2) + k¥ N ese (Ta/2) + O(£P) .

This has the same general behavior: for £ > 0, there is an eigenvalue
Mr) with expansion

ME) = BN, — K% eot (Tae/2) + (— k)TN ese (ma/2) + O(kP)

while for £ > 0, there is a resonance. A notable feature, however,
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is that one may obtain a Puiseux series by taking, for example, o =
+1/2, in which case W(z, £) has only an algebraic singularity at z =
0. In fact there are only two sheets, and it is interesting to note

that for £ < 0, these is a pole on the second sheet directly below the
eigenvalue \(k).

Let us see what becomes of Fermi’s Golden Rule in this case.
One has

<55(H0 - A') V¢Oy V¢o> = ]f(N) ]2 .

(See [5, eq. (8.7)]. Note that, in the notation of [5], the V, term
contributes nothing.) Hence, Fermi’s Rule gives

I'(k) = 76l F () [P

Applied to the case )\, = 0 with f(¢) given by (4.4), this gives the
following results: (a) for @ = 0

I'(k) = 267
which agrees with (4.3); (b) for @« > 0
I'e)=0

which agrees with (4.5), to order %, but is not informative; (c¢) for
a < 0, I'(k) is infinite, which is not surprising because according to
(4.5), I'() is not O(k?). The Gold from which the Rule is made is
apparently mixed with Brass.

If, however, ), is replaced in the Rule by \, + £\, the resulting
formula

(4.6) (k) = nk*0,(Hy — Ny — EXN) Vo, Voy
is an unalloyed success; for one then obtains

(k) = k] f(eN) P = 202" cos (Ta/2)
which agrees with (4.5).

ApPPENDIX. Let T be self-adjoint and suppose that for some
pair of vectors f, g the function

(@) = (T — 2)7'f, 9)

has meromorphic continuations 7.(z) across some interval of the real
axis. That the poles of 7_(z) need not be the complex conjugates of
the poles of r.(2) may be seen by taking Tu(t) = tu(t) on Ly(— o, + o)
and choosing f(t) = (¢t + 7)™ and g(f) = (¢ — 4)™. Then r.(2) has a
pole at 2 = —4, while r_(2) vanishes identically.



174 JAMES S. HOWLAND

Similarly, the poles of @;(2) and Qr(2) are not always conjugate.
For A = (-, f)f and B = (-, g)g are bounded and self-adjoint, and
AB = BA =0 because f and ¢ are orthogonal. Hence, H = T +
B*A = T, and

Q.(z) = Q(z) = (GRS, 9)(-, 99 = r(2)(-, g

so that Q;(z) has a pole at z = —4 while Q7(2) vanishes identically.

We shall give sufficient conditions that Q;(z) and Q;(z) have
conjugate poles. Let 7T, A, and B satisfy the hypotheses of §1, and
assume that Qf(z) defined by

I— Q) = [I + @*(=)]™

is meromorphic, and has finite rank principal parts at all its poles.
This is true, for example, if £ is small in § 1, or if Q*(z) is compact.
Formula (1.2) (with £ = 1) then defines the resolvent R(z) of an ex-
tension H of T + B*A, and Q,(z) is the extension of AR(z)B*. (It
18 not clear whether or not H is self-adjoint in this generality, but
this is not at issue.) By taking adjoints, [7, eq. (2.2)] one also finds
that BG(z)A* has the compact extension

Q(z) = [QE)}*
which has the continuations
(1) Q*(z) = [@*(2)]*
defined on . Similarly, BR(z)A* leads to Q.(z) and Q%(2).
THEOREM. In addition to the hypotheses above, suppose that
there exists a subspace & of 2(A) N Z(B) such that By < (A*),
Az c Z(B*), and < is dense in Z(A) and 2 (B) respectively, in

the graph norms. If Q*(z) is analytic at z, then Qf(z) is analytic
at z, off Qf(z) is analytic at z,.

Proof. Let P, and P; be the orthogonal projections oﬁto the
closures of the ranges of A and B. Then I — P, projects onto ker
B*, so that

P.QR) = Q) and Q@)I— Py =0
for Imz > 0, and hence by continuation
(2) P.RQ*(2) = @7()
and

(3) Q)P = Q*(2) .



RESONANCES NEAR AN EMBEDDED EIGENVALUE 175

Observe next that by (1.1),
B*Ax = A*Bx xe .
Hence, for z, ge &, and Imz > 0, one has

(Q.(2)Bx, Ay) = (BR(2)A*Bz, Ay)
= (BR(2)B* Az, Ay) = (AR(z)B* Az, By)
= (Q.(2)Az, By)

where (1.1) was used in the equality next to last. Using that & is
dense in the graphs, and passing to a continuation shows that ana-
lyticity of P,Qi(2)P, at z, is equivalent to analyticity of PQ:(2)P,
at z,.

If we now assume that Q*(z) and @;(z) are analytic at z, then
since (1), together with (2) and (3), implies that

7(?) = @7(2) — [QT(R)" + QT ()R ()Q™(2)
= Q'(2) — [T + Q" (PR (:)P.Q"(2)

it follows that Q;(z) is also analytic at z,. The other implication is
proved similarly.

It is evident from the proof that if the ranges of A and B are
dense, the assumption that Q*(z) is analytic at z, may be dropped.
However, the example above shows that it cannot be dropped in
general.

COROLLARY. If all poles of Q*(z) are real, then the nonreal
poles of Qf(z) and Qr(2) are complex conjugates.

This follows from (1).

PROPOSITION. Eftther of the following conditions suffices for the
existence of 2.

(a) Either A or B s bounded.

(b) A and B are commuting self-adjoint operators.

Proof. If A is bounded, it follows from (1.1) that A=(B)C
<(B*). Hence, one may take &7 = & (B). Similarly if B is bounded.
Sufficiency of (b) follows easily from [12, p. 358].
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