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LINEAR GCD EQUATIONS

DAVID JACOBSON

Let R be a GCD domain. Let A be an m X n matrix
and B an m X 1 matrix with entries in R. Let ¢#0, deR.
We consider the linear GCD equation GCD(AX + B, ¢) = d.
Let S denote its set of solutions. We prove necessary and
sufficient conditions that S be nonempty. An element ¢ in
R is called a solution modulus if X +{R* S S whenever
XeS. We show that if ¢/d is a product of prime elements
of R, then the ideal of solution moduli is a principal ideal
of R and its generator t, is determined. When R/{,R is a
finite ring, we derive an explicit formula for the number of
distinet solutions (mod ¢,) of GCD (AX + B, ¢) =d.

1. Introduction. Let R be a GCD domain. As usual GCD
(ay, ---, a,) will denote a greatest common divisor of the finite sequence
of elements a, ---, a, of R.

Let A be an m X n matrix with entries a,; in R and let B be an
m X 1 matrix with entries b, in R for i =1, -+, m; j=1, -+, n.
Let ¢ # 0, d be elements of R. In this paper we consider the “linear
GCD equation”

GCD(a, @, + «++ + a2, + by, -+,

(L.1)
Cpy®y + o0+ Ay + b'my C) =d.

Letting X denote the column of unknows «,, ---, #, in (1.1), we shall
find it convenient to abbreviate the equation (1.1) in matrix notation
by

(1.2) GCD(AX + B, ¢) = d .

Of course we allow a slight ambiguity in viewing (1.1) as an equation,
since the GCD is unique only up to a unit.

Let R™ denote the set of n X 1 matrices with entries in B. We
let S = S(A4, B, ¢, d) denote the set of all solutions of (1.1), that is

S ={XeR'|GCD(AX + B, ¢) = d} .

If S is nonempty, we say that (1.1) or (1.2) is solvable. Note that
X satisfies GCD(AX + B, d) = d if and only if X is a solution of the
linear congruence system AX + B = 0(mod d).

We show in Proposition 1 that if (1.1) is solvable, thend |¢, AX +
B = 0(mod d) has a solution and GCD(A4, d) = GCD(A, B, ¢). Here
GCD(A, d) = GCD(ay, *++, Gy ***y Cmay ***y Cua, ) and GCD(A, B, ¢) =
GCD(4, b, +++, b,, ¢). Conversely we show in Proposition 3 that if
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the above conditions hold and e = ¢/d is atomic, that is ¢ is a product
of prime elements of R, then (1.1) is solvable. (Also see Proposition 4).

Let the solution set S of (1.1) be nonempty. We say that ¢ in
R is a solution modulus of (1.1) if given X in S and X = X’(mod ¢),
then X" is in S. We let M = M(A, B, ¢, d) denote the set of all
solution moduli of (1.1). We show in Theorem 2 that M is an ideal
of R and if e = ¢/d is atomic, then M is actually a principal ideal
generated by d/g(p, --- p;), where g = GCD(A4, d) and {p, ---, Di}
is a maximal set of nonassociated prime divisors of ¢ such that for
each p,, the system AX + B = 0(mod dp,) is solvable. This generator
a/g(p, - -+ p,) denoted by ¢, is called the minimum modulus of (1.1).

In §4 we assume that R/t,R is a finite ring and we derive an
explicit formula for the number of distinct equivalence classes of
R"(mod t,) comprising S. We denote this number by N, =N, (4, B, ¢, d).
Let A’=AJ/g and d’' =d/g. Let L ={X+ d'R"| A’X = 0(mod d')}
and L, = {X + d'R"| A’X = 0(mod d'p,)} for s =1, -+, k. In Theorem
3 we show that

(1.3) N, =|L| ii[l (| R/p.R|* — | R/p,R|*ritd)

where 7, is rank A’(mod p;) and s; is the dimension of the R/p.R
vector space L/L,.
The formula (1.3) is applied in some important cases. For example
in Corollary 6 we determine N, when R is a principal ideal domain.
This paper is an extension and generalization to GCD domains,
of the results obtained over the ring of integers Z in [2].

2. Solvability of GCD (AX + B, ¢) = d.

PropoOSITION 1. If GCD (AX + B, ¢) = d s solvable, then the
following conditions hold.
21 (i) dle
(ii) AX + B = 0(mod d) is solvable,
(iliy GCD(A4, d) = GCD(A, B, c).

Proof. Let X satisfy GCD(AX + B, ¢) = d. Thenclearly (i) d|¢
and (i) AX+ B=0(modd). Let AX + B =dU where U is an
m X 1 matrix with entries u, for ¢ =1, ---, m. Then GCD(dU, ¢) =
GCD(duy, +++, du,, ¢) = d. Let ¢ = GCD(A, d) and h = GCD(A, B, c).
Then B = 0(mod g) as AX — dU = B and g|c¢ as d|¢, which shows
that g |h. Also dU = 0(mod &), so that h|GCD(dU, ¢), that is & |d.
Thus h|g, which proves (iii).

PROPOSITION 2. Let e tn R have the following property
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(I) GCD(AX + B, ¢) = 1 is solvable whenever GCD(A, B, ¢) = 1.
Suppose that ¢ = de, AX + B = 0(mod d) is solvable and GCD(A, d) =
GCD(A, B, ¢). Then GCD(AX + B, ¢) = d is solvable.

Proof. There exist X’ in R*and Vin R™ such that AX’' + B=dV.
Let ¢ = GCD(A, d) and let A’ denote the matrix with entries a.j/g
and B’ the matrix with entries b,/9 for 1 =1, ---, m; j =1, ---, n.
Then A’X’ + B'=d'V whered =d/g. Weclaim that GCD(4’, V, e) = 1.
For let » be any divisor of GCD(A’, V, ¢). Then B’ = O(mod k) and
h|GCD(A', B', ¢') where ¢ = d'e. However, GCD(A', B',¢) =1 as
9 = GCD(A, B, ¢). Hence h is a unit, that is GCD(A4’, V,¢) = 1. So
by property (I), there is a Y in R” such that GCD(A'Y + V,e) = 1.
Thus GCD(A(d'Y) + dV, de) = d and if we set X = X’ + d'Y, then
GCD(AX + B, ¢) = d, establishing the proposition.

We show in Proposition 3 that if ¢ is atomic, then e satisfies
property (I).

We require the following useful lemmas.

LEMMA 1. Let e = p, --- p, be a product of nonassociated prime
clements p, +--, p, in R. If GCD(A, B,e¢) =1, then GCD(AX +
B, e) =1 1s solvable.

Proof. Let GCD(A, B,e) =1. We use induction on k. Let
k=1. If GCD(B, p,) = 1, then X = 0 satisfies GCD(AX + B, p,) = 1.
Suppose that B = 0(mod p,). Then GCD(A4, p,) = 1. Hence there is
a j such that GCD(a,, ---, @,;, ) =1. Let X’ in R™ have a 1 in
the jth position and o’s elsewhere. Then GCD(AX’ + B, p) =
‘GCD(AX?, p,) = 1. Thus GCD(AX + B, p,) = 1is solvable. Now let
k>1and let ¢ = p, --- p,_,. By the induction assumption there is
X' in R" such that GCD(AX' + B,¢’) =1. Let B = AX' + B. We
claim that GCD(A¢, B, p,) = 1. If GCD(A, p,) = 1, then GCD(A¢,
B, p,) =1. Suppose that A4 = 0(mod p,). If B’ = 0(mod p,), then
B = O(mod p,), contradicting the hypothesis that GCD(A, B, ¢) = 1.
Hence GCD(B’, p,) = 1, establishing the claim. So there exists a Y
in R* such that GCD((A¢)Y + B, p,) = 1. Let X = X’ + €Y. Then
X = X'(mod ¢’) yields that AX + B = B'(mode¢’). Thus GCD(AX +
B, ¢') =1 since GCD(B’, ¢’) = 1. Also

GCD(AX + B, p,) = GCD((4¢)Y + B, p) = 1,

s0 that GCD(AX + B, ¢'p,) = 1, completing the proof.

LEMMA 2. Suppose that e is an atomic element of R.
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Let {p, -+, .} be a maximal set of mnonassociated
(*) prime divisors of e such that for each p,, the system
AX 4+ B = 0(mod dp,) ts solvable .

Then X s a solution of GCD(AX + B, ¢) =d if and only 1f GCD(AX +
B, deo) = d, where ¢ = de and e, = p, *++ p,.

Proof. Since e is atomic, it is clear that we may select a set
{p, ---, »} as defined in (*). If this set is empty, we let ¢, = 1.
Suppose that X satisfies GCD(AX + B, ¢) = d. Then there is U in
R™ such that AX + B=dU and GCD(U,e¢) =1. Since ¢ ]e,
GCD(U, ¢;) =1 and thus GCD(dU, de¢)) = d, that is, GCD(AX +
B, de,)) = d.

Conversely let X satisfy GCD(AX + B, de,) =d. Then AX +
B =dU and GCD(U, ¢) = 1. Suppose there is a prime p|e and
U = 0(mod p). Then AX + B = 0(mod dp) and the maximal property
of the set {p, ---, p,} shows that p is an associate of some p,. So
U = 0(mod p,), contradicting that GCD(U, ¢,) = 1. Hence GCD(U, p) =1
for all primes p | e and thus GCD(U, ¢) =1, thatis GCD(AX + B, ¢) =d.

PRrOPOSITION 3. Suppose that ¢ = de, AX + B = 0(mod d) s solvable
and GCD(A, d) = GCD(A, B, c¢). If e is atomic, then GCD(AX +
B, ¢) = d is solvable.

Proof. Let e be atomic. By Proposition 2 it suffices to show
that e satisfies property (I). Thus let GCD(A,, B, ¢) =1 where 4,
is an m X » matrix and B, is an m X 1 matrix. By Lemma 2,
GCD(A,X + B,, ¢) = 1 is solvable if and only if GCD(A4,X + B,, ¢,) =1
is solvable where ¢, = p, --- p, is a product of nonassociated prime
divisors of e. However by Lemma 1, GCD(4,X + B,, ¢) = 1 is solva-
ble since GCD(4,, B,, ¢,) = 1. Thus (I) holds and GCD(AX + B, ¢c) =d
is solvable.

THEOREM 1. Let R be a GCD domain. Consider the following
condition

(II) GCD(ax + by, +++, @& + b,, ¢) = 1 is solvable if
GCD(ay, *++, Qp, by, +++, by, ¢) =13

(1) If R satisfies (II), then GCD(AX + B, ¢) =1 is solvable when-
ever GCD(A, B, ¢) = 1.

(ii) If R is a Bezout domain such that GCD(ax + b, ¢) =1 1is
solvable whenever GCD(a, b, ¢) = 1, then R satisfies (II).

Proof. (i) Let R satisfy (II). Let GCD(A, B, ¢) =1 where A
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is an m x » matrix. We prove that GCD(AX + B, ¢) = 1 is solvable
by induction of ». For = = 1, solvability is granted by the suppo-
sition (II). Let % > 1 and let A’ denote the m x (n — 1) matrix with
entries a; ;. fori =1, -+ m; =1, ---, n—1. If ¢ = GCD(ay, -,
., ¢), then GCD(A’, B, ¢') = 1. Hence by the induction assumption,
there exist «, ---,2, in R such that GCD(a,x, + -+ + G2, +
by« Qs+ oot F Q@ + by, ) =10 If b} = @y + =0 + Qs + b;
for =1, ---, m, then GCD(ay, +++, @,y b}, -++, b, ©) = 1. Thus by
(II), there exists x, in R such that GCD(a,&, + b}, +++, @, + by, ¢) = 1.
So if X in R" has entries z, %, ---, 2,, then GCD(AX + B, ¢) =1,
completing the proof of (i).

(ii) Let R be a Bezout domain, that is a domain in which every
finitely generated ideal is principal. Suppose that R has the property
that GCD(ax + b, ¢) = 1 is solvable if GCD(a, b, ¢c) = 1. Let

GCD(a,, +-+, @p, by, +++, b, ¢) =1.

Let A and B denote the m x 1 matrices with entries a,, ---, @, and
b, ---, b, respectively. Then by [3, Theorem 3.5], there exists an in-
vertible m x m matrix P such that PA has entries @, 0, ---, 0. Also
it is clear that GCD(PA, PB, ¢)=1. Let PB have entries b, b}, - -+, b,.
Thus by hypothesis, GCD(ax + b, ¢’) =1 is solvable where ¢ =
GCD(b}, + -, b}, ¢). Hence GCD(Ax + B, ¢) = 1 is solvable, that is B
satisfies (II).

As an immediate consequence of the preceding propositions and
Theorem 1, we state

PRrROPOSITION 4. Let R be a UFD or o Bezout domain such that
GCD(ax + b, ¢) = 1 is solvable if GCD(a, b, ¢) = 1. Then GCD(AX +
B, ¢) = d is solvable if and only if d|c, AX + B = 0(mod d) is solvable
and GCD(A, d) = GCD(A, B, c).

We remark that we do not know whether there exists a GCD
domain in which (II) is not valid. Any Bezout domain satisfying (II)
is an elementary divisor domain [3, Theorem 5.2].

We conclude this section with the following result.

PROPOSITION 5. Let R be a Bezout domain. Suppose that (0)
GCD(ax + b, ¢) = 1 is solvable whenever GCD(a, b) =1 and a |c. Then
GCD(ax + b, ¢) = 1 is solvable whenever GCD(a, b, ¢) = 1.

Proof. Let GCD(a,b,c)=1. If a’=GCD(a, c), then GCD(a’,b) =1
and a'|c. By the assumption (0), there is 2’ in R such that
GCD(a's" +b,¢) =1. If uw = a2’ + b, then o’ | (v — b) and since R is
a Bezout domain, there is an z in R such that ax + b = u(mod ¢).
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Thus GCD(ax + b, ¢) = 1 since GCD(u, ¢) = 1.

Let a|¢ and let v: R/cR— R/aR be the epimorphism given by
Y(r + ¢R) = r + aR for all r in R. Let G(resp.G’) denote the group
of units of R/cR(resp. R/aR). If v:G— G is the induced homo-
morphism, then note that (0) is equivalent to the condition that
V(@) = G'. (See [5].)

3. The minimum modulus. Let the solution set S of
GCD(AX + B, ¢) = d be nonempty. Then

M={eR|X+tR"< S for all XeS}

is the set of solution moduli of GCD(AX + B, ¢) = d.

Note that ce M for if Xe S and X = X'(mod ¢), then AX + B =
AX' 4+ B(mod ¢), so that d = GCD(AX' + B, ¢).

It is obvious that M = R, that is S = R if and only if d =
GCD(4, d) = GCD(A, B, ¢) and GCD(A/d(X) + B/d, ¢/d) =1 for all X
in R".

THEOREM 2. Let R be a GCD domain. Let GCD(AX + B, c¢)=d
be solvable. Let ¢ =c¢/d = [[i.e;. Let é, =e, ++-¢,_1€., - €, for
1=1, -+ k.

(1) M is an ideal of R,

(2) M2NEt, M, where M, is the ideal of solution moduli for
GCD(AX + B, de,) = d.

(3) If each é, satisfies property (I) of Proposition 2, then
M= N, M; and M is a principal ideal if each M, is principal.

(4) If e is atomic, then M is a principal ideal generated by
d/g(p, - -+ p.) where g = GCD(A, d) and {p,, ---, p.} 18 defined in (*)
of Lemma 2.

Proof.

(1) As Sis nonempty, the set M is well-defined and o, ¢ belong
to M. Let ¢, t,bein M and let re R. Let Xe S andlet Ye R*. Then
X+t YeSand hence (X+t,Y)+t(—Y)eS, thatis X+ (¢, —¢)Ye S
which shows that ¢, —t,e M. Also X + ¢,(rY)eS, that is X +
(tr)YeS. So treM and thus M is an ideal of R.

(2) As d|c we let ¢ = de. Let S; denote the solution set of
GCD(AX + B, de,) = d where ¢ = [[%_,e;. Then clearly S =i, S..
Let teNf, M,. Let XeS and let Ye R*. Then X +tYe N, S;
since XeN.S,. So X +tYeS, that is te M, which proves that
M2 N M,.

(3) Assume that each &, satisfies property (I). We prove that
Mc M, for i=1--- k. As g = GCD(A, d) = GCD(A, B, ¢), let
A" = Alg, B = Bfg, and d = d/g. Let ¢ be fixed and let X, e S,.
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Then A'X,+ B’ =d'U where GCD(U,e¢;) =1. We claim that
GCD(e;A’, U, é;) =1. For let h be a divisor of GCD(e;A', U, é;). Then
A’ = 0(mod k) since GCD(h, e;) =1. Thus h|GCD(A', B, d’e), that
is h|1. So by assumption there exists X’ in R" such that

GCD((e,ANX' + U, é,)=1.
Let X=X, + d'e;,X’. Then for j =1, ...k,

GCD(A'X + B, d'e;)
= d' GCD((e,ANX' + U, ;) = d’ .

Hence X e i, S;, thatis Xe S. Now let te M and let Ye R*. Then
X+tYeSandso X+ tYeS,. However, X +tY = X, + tY(mod d’e;)
and thus X, +tYeS,, that is te M,, which proves that M & M,.
So by (2), M = ., M,. Moreover, if each M, is a principal ideal,
say M, =t,R, then M., M, is a principal ideal generated by the
LCM(t,, -+, t,).

(4) Let ¢t be any element of M. We show that d/g |t where
g = GCD(4, d). First note that S is the solution set of GCD(A'X +
B, d¢) = d where A’ = A/g, B’ = Blg, and d’ = d/g. Let XeS and
let A’X + B =d'U. Then GCD(A(X +tY) + B, de) =d for all Y
in R*. So GCD((A't)Y + d'U, d’e¢) = d’ and thus (A't)Y = 0(mod d’)
for all Yin R*. Hence At = O(mod d’) and since GCD(4’, d') =1, it
follows that d’|¢.

Now suppose that e is atomic. By Lemma 2, S is also the so-
lution set of GCD(A’X + B, d'e)) =d where ¢ =p,---p, and
{p,, ---, ps} is defined in (*). Thus M is also the ideal of solution
moduli of GCD(A’X + B’, d'e¢,) = d’. Let M; denote the ideal of
solution moduli of GCD(A'X + B',d'p;) =d’ for t =1, --- k. Then
Lemma 1 shows that (8) can be applied to yield that M = Ni, M.
We prove that each M/ is a principal ideal generated by d’p,. Clearly
d'p,e M{ fort =1, --- k. Let 1 be fixed and let ¢ be any element in
M;. Then as shown earlier, d’' |t say ¢ = d't’. By (*) there exists X
in B* such that A’X + B’ = 0(mod d'p;). Thus GCD(A/, p;) = 1 since
GCD(A', B', d'¢) = 1. So there is a j for which GCD(A'E;, p;) =1
where E; is the » x 1 matrix with 1 in the jth position and o’s
elsewhere.

Now assume that GCD(', p;) =1. Let X' = X + tE;. Then
GCD(A'(X'—X), d'p,)=d GCD{'A’E;, p;)=d’ since GCD(t'A’E;, p;)=1.
So GCD(A'X' — A'X, d'p;) = d’ and thus GCD(A'X' + B, d'p,) = d’
as B= —A'X(mod d'p;). Hence GCD(A (X’ + t(—E;)) + B, d'p)=4d
since te M;. That is GCD(A'X + B, d'p;) = d’ and thus d'p,|d,
which contradicts that p, is a nonunit. So the assumption that
GCD(t', p;) = 1 is untenable, that is p,|t’. Thus d'p, |t proving that
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M; = d'p,R. However M = ‘., M!, so that M is a principal ideal
generated by the LCM(d'p, ---, d’'p,), that is M is generated by
A'p, -+ py.

The generator d'p, --- p, of M is called the minimum modulus
of GCD(AX + B, de) = d.

4. The number of solutions with respect to a modulus. Let
GCD(AX + B, ¢) = d be solvable where ¢ = ¢/d is atomic. If ¢ in R
is a solution modulus of GCD(AX + B, ¢) = d, then S consists of
equivalence classes of R*(modt). If R/tR is also a finite ring, we let
N, = Ny(A, B, ¢, d) denote the number of distinct equivalence classes
of R*(mod t) comprising S.

For R/tR finite, let |t| = | R/tR| denote the number of elements
in R/tR. Note that if ¢,|¢, then each equivalence class of R"(mod t,)
consists of |t/t,|" = ([t |/|t, )" classes of R"(modt). Thus if ¢ is a
solution modulus and ¢, denotes the mininum modulus of GCD(AX +
B, ¢) = d, then N, = |t/t,[* N;. In Theorem 3, we explicitly deter-
mine N,

The following lemma is also of independent interest.

LEMMA 3. Let R be a GCD domain and suppose that R/AR 1is
a finite ring. Let p, ---, D, be nonassociated elements such that B/p.R
18 a finite field for © =1, --- k. Let A be an m X n matriz and let
r, denote the rank of A(modp,) for t=1 ---, k. Let ¥ ={Xe
R"|AX = O(mod d)} and L ={X + dR"|Xe ). Let ¢ = 1t 2;
and let &' = {XeR"| AX = 0(mod de,)} and L' = {X + de,R"| X € &'}.
Let &, = {XeR"| AX = 0(mod dp,)} and L, = {X + dR" | X e &£} for
1=1 - k. Lt H={X+ ¢R"| Xe &'} and H,= {X + p,R"| X € &}
Jor v =1, --- k. Then

(1) IL'|=|L|IH]
and
(= =1 H].

L/L, is an R/p,R wvector space of dimension s, and
|H,| = | R/p,R|""*% for 5 =1, «++, k.

s, = o if and only tf for each X im & there exists X’
i &, such that X' = X(mod d) .

(4) If GCDW, p;) =1, then s, = o .

|L| =1 i and only if n = rank A(mod p) for each
prime pld .

(2)

(3)

(5)
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Proof.

(1) In the obvious way, L, L', and H are R-modules. Let
0. L' — H denote the R-homomorphism defined by o(X + deR") =
X + ¢,R" for all X in &¥’. Then clearly Ker o = {¢,Y + de¢,R"| Y € &~}
so that L = Ker 0 under the R-isomorphism 7: L — Ker ¢ defined by
(Y + dR") = ¢,Y + de,R* for all Y in & Thus |L'|=|L||H]
since Imo = H. We now show that H is isomorphic to @, H,, the
direct sum of the R-modules H,. Let v: H— @, H, denote the
R-homomorphism defined by v(X + ¢,R") = (X + p,R*, ---, X + p.R")
for all X in &¥'. If X+ ¢R"ecKerv, then X = O(mod p;) for
1=1, ---, k, that is X = O(mod ¢,), which shows that vis 1 —1. To
show that Im~v = @}, H,, let X, e &, for ¢ =1, .-+, k. Since R/dR
is finite, it is easy to verify that d is atomic. Thus let d = d, [Jt., pr
where m; = 0 and GCD(d,, »;) = 1. By the Chinese remainder theorem
there exists X in R™ such that X = 0(mod d,) and X = X,(mod p*)
for =1, ..., k. However, AX, = O(mod p?*') for 1 =1 -+, k, so
that AX = 0 mod (d, [T¢-, p1*"), that is AX = 0(mod de,). Thus X +
¢, R*e H and (X + ¢,R") = (X, + p,R", ---, X, + p,R"). Hence 7 is
an isomorphism and | H| = It | H)|.

(2) Let Li={X+dp,R"|XeF)} for i =1, ---, k. Let 7 be
fixed. Let v:L;— L, denote the R-homomorphism defined by
(X + dp;R*) = X + dR™ for all X in <. Then clearly Ker v =
{dY + dp,R"| AY = O(mod p,)} and it follows that

[Kery|=|R/p,R["" = |p, """

where r; = rank A(mod p,). Thus |L;| = |p,|" " | L, | since Imy = L,.
However by (1), | L;| = |L|| H;|. Also since L, is an R-submodule
of L, the quotient module L/L, is defined and |L|=|L,||L/L,]|.
Thus we obtain that | H;| | L/L;| = |p;|" ™. We now show that L/L,
is an R/p,R vector space. Let (X) = X+ dR" for X in R*. Then
L/L; = {{X>+ L;| Xe<}. Forrin R, let #=7r + p,R in R/p,R.
We define #((X) + L;,) = (rX) + L; for all » in R and X in &~
We claim that this is a well-defined R/p,R multiplication on L/L,.
For let #¥=# and (X)+ L,=<X')+ L;,, where r,ve¢R and
X X'e” Then r— 1" =o(modp,) and (X) — (X’'>e L,, that is
(X — X">e L,. Thus there exists Y in &, such that (X — X") =
<Y). We must show that X))+ L, ={'X') + L;, that is
rX—7rX>eL,. We write »X—7X =(@r— )X+ rX-X).
However, X — X’ = Y(mod d) and thus »(X — X’) = rY(mod d). So
rX —rX =@ —r)X+ rY(modd) and (r — )X + rY e &,. Hence
(rX — r"X") € L,;, which establishes the claim. It follows immediately
that L/L; is an R/p,R vector space since L/L, is an R-module.

Let s; denote the dimension of the R/p,R vector space L/L,.
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Then |L/L;| =|p,|* and as | H,||L/L;| = |p;|*"", we obtain that
|H||p: "% = |p;|"%. Thus o<s,=mn—r, and |H|=|p, """+,
which completes the proof of (2).

(3) As|L|=|L,||p % it is immediate that s, = 0 if and only
if L = L;, that is if and only if for each X in & there exists X’
in & such that X’ = X(mod d).

(4) Suppose that GCD(d, p;) = 1. Let Xe & By the Chinese
remainder theorem there exists X’ in R"™ such that X’ = X(mod d)
and X’ = O(mod p,). Thus AX' = 0(mod dp,), so that s, = o by (3).

(5) Let » be a prime dividing d and let d = dp. Then L =
{X + dpR"| Xe &¥}. However as shown in the proof of (2), |L| =
|p[* | L,| where r, = rank A(mod p) and L, ={X + d,R"| X e &¥}.
Thus if |L| =1, then n = rank A(mod p) for any prime p|d. The
converse is trivial.

THEOREM 3. Let R be a GCD domain. Let GCD(AX + B, ¢)=4d
be solvable and suppose that e = c/d is atomic. Let A’ = Alg and
d' = d/g where g = GCD(A4, d). Lett, = d' [I%, p, denote the minimum
modulus of GCD(AX + B, ¢) = d where {p,, ---, p,} is defined in (*)
of Lemma 2. Suppose that R[t,R is a finite ring. Let L =
{(X+ dR"| A’X = 0(mod d')} and L, = {X + d’'R"| A’X = 0(mod d'p,)}
for i =1, «-< k. Then

(4.1) Ny = | LITL (o] = o)

where r, denotes rank A’'(mod p,) and s, denotes the dimension of the
R/p,R vector space L|L,.

Proof. Let S denote the solution set of GCD(AX + B, ¢) = d.
As g = GCD(A, B, ¢), let B = B/g. Then by Lemma 2, S is also the
solution set of GCD(A’X + B, d’e,) = d’ where ¢, = [[{..p,. Let &7
denote the set of X in R" such that A’X + B’ = O(mod d’). Let &4
denote the set of X in R" such that A’X + B’ = O(mod d’p,) for
1=1 .- k. It is clear that S=.\Ui, & Let T,={X+
t,R*| XeS}. Then | T,| is what we have denoted by N,. Also let
T={X+tR"|Xe}and T, = {X+ t,R" | Xe &} fori=1, --- k.
Hence T, = T\U:. T, and by the method of inclusion and exclusion

(4.2) Nto = | T,| = ;(_1)‘1' | T, |

where the summation is over all subsets I of

I={, -,k and Tr = T..

Now let &4 = Nie: & and d} = d' [1.c; p; for each subset I of
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I.. Then it is easy to see that .94 is the set of X in R™ such that
AX+ B =0modd)) and T, = {X + t,R"| Xe &4}, Let T/ ={X+
diR*| Xe %4} and let I' = I,\I. Then | T;| = | T;|ILicr | p:|", since
X + d;R" consists of |t,/d}|" = TI.cr | p:|" distinct classes of R"(mod ¢,).

Let &4 denote the set of X in R" such that A’X = 0(mod d}).
Let L) = {X + d)R*"| Xe &4}. As &4 is nonempty for i1 =1, .-+, k,
an argument involving the Chinese remainder theorem shows that
each &7 is nonempty. Hence it follows that | T';| = | L}|. Let L =
X+ dR"|Xe) and L, ={X+ dR"| XeH,} for i =1, -+, k.
Then (1) and (2) of Lemma 3 yield that |L}| = | L| [I;e; | 0" "%
where 7, = rank A’(mod p,) and s, = dimension of the R/p,R vector
space L/L,.

Hence by (4.2),

N, = LIS (=" I 2. T | p, |

where the summation is over all subsets I of I, and I’ = I,\I. Thus
we may write

k
Ny = | LITL [ S (— 17 I | o]

where the summation is over all subsets I of I,. However,
k
Lt (1 — | p [Trite) = ; (——1)"' ile_II | D4 |T(rited |

2

which yields the formula (4.1) for N,. This completes the proof of
the theorem.

We remark that if p is the highest power of p, dividing d',
then s; is also the dimension of the R/p,R vector space K}/K, where
K} ={X + pi“R*| A’X = 0(mod p7)} and

K, = {X + pi"R" | A’X = 0(mod p7*)} .

Also note that »,=1 for 1 =1, ---, k.
In Corollaries 1 and 2, the notation is the same as in Theorem 3.

COROLLARY 1. Let GCD(AX + B, ¢) = d be solvable and suppose
that ¢ = ¢/d is atomic. Let R[t,R be finite where t, = d' [[i., p, is
the minimum modulus of GCD(AX + B, ¢) = d.

(i) If GCD(d, e) =1, then

(43) N, = LI (ol = |l -

(it) If |L| =1, then
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(.4 N, =TT (p.l = 2.7,

where r, =n if p,|d.
(iii) If »' = rank A’'(mod p,) for ¢ =1, ---, k, where n' denotes
the smaller of m and n, then

*.5) Ny = LI (o0 = [2.") .

(iv) N, =1 f and only if (a) | L| = 1 and there exists no prime
ple such that AX + B = 0(mod dp) is solvable, or (b) n =1 and
[p| = 2 for any prime p|e such that AX + B = 0(mod dp) s solvable.

Proof.

(i) If GCD(d, p;) =1, then (4) of Lemma 3 shows that s, = o
in (4.1). Hence if GCD(d’,¢) =1, then s, =0 for ¢t =1, ---, k, which
yields (4.3).

(ii) Suppose that |L|=1. If p,|d’, then » =», by (5) of
Lemma 3 and thus s, = o since s, < n—r,. However if GCD(d', p,) =1,
then s, = o, so that (4.4) is immediate from (4.1).

In particular if d =1, then N, is given by (4.4). If A’ is in-
vertible (mod d’), then (4.4) also applies.

(iii) If » = r,, then s; = o. If m = r,, then the criterion in (3)
shows that s, = o. Thus (4.5) follows from (4.1).

(iv) Suppose that N, =1. Then by (4.1), |L| =1 and thus
s;=o0 for ¢=1 --- k. If p, is a prime dividing ¢ such that
AX + B = 0(mod dp,) is solvable, then |p;|" — |p;|" " =1, so that
n=7r,=1and |p;|] =2. Thus either (a) or (b) holds. Conversely
if (a) holds, then N, =1. If n =1, then clearly | L| =1 and hence
(b) implies that N, = 1.

COROLLARY 2. Let GCD(AX + B,c¢) =d be solvable and let
e = c/d. Suppose that R/cR is a finite ring. Then

(4.6) N.=|Ll]gel T (L = |p.] ") .

Proof. Since R/cR is finite, e is atomic. Thus ¢, = d' []5, p; is
the minimum modulus of GCD(AX + B, ¢) = d. Also R/t,R is finite
since ¢, |c, so that N, is given by (4.1). However N, = [c/t,|" N,,

which yields the result (4.6).

COROLLARY 3. Suppose that R/cR 1s a finite ring. Then
GCD(ax, + -+ + a,x, + b, ¢) = d s solvable tf and only if d|c and
GCD(a,, -+, a,,d)=GCD(a,, -+, a,, b, ¢). Leta;,=aj/gforj=1, ---, n
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where g = GCD(a,, -, a,, d). Let {p, -+, i} be a maximal set of
nonassociated prime divisors of e = ¢/d such that GCD(ay, -+ -, ai, ;) =1
for v =1, --- k. Then

(@) No=lellgel T = 1p.]7) .

Proof. Suppose that ¢ = de and g = GCD(a,, -+, a,, b, ¢). Since
R/cR is finite, d is atomic and R/pR is a finite field for any prime
p|d. Hence as ¢g|b, a standard argument shows that ax, + -+ +
a2, + b = o(mod d) is solvable and has |g||d|*" distinct solutions
(mod d). Thus GCD(ax, + --- + a,x, + b, ¢) = d is solvable since e
is atomic. Let d’ = d/g and b’ = b/g. Since GCD(a;, ---, a,, d'p,) =1
and R/d'p,R is finite, ax, + -+ + a,x, + b = 0(mod d’p,) is solvable

fori=1, .-+ k. It follows that t,=d’' [[%, »; is the minimum modulus
of GCD(ax, + -+« + a,x, + b, ¢) = d. Let A’ denote the 1 x » matrix
(@, -+, a;). Then rank A'(modp,)=1 for ¢=1 --- k. Also

%, + +++ + a,x, = o(mod d’) has |d'|*™* distinct solutions (mod d’).
Thus by (iii) of Corollary 1,

N, =@ T (p 0 = 12,77,

which yields (4.7).

COROLLARY 4. Suppose that R/cR is a finite ring where ¢ = de.
Let g =GCD(a, -+, a,, d) and a;=a,/9 for 1 =1 -+, m. Then
GCD(a,@ + by, +++, @4ux + by, ¢) = d ts solvable if and only if

(1) GCD(a,, d)|b, for i =1, ---, m,

(2) ab; = ab(modd) for 1=t < j=m,

(3) 9=GCD(a, -+, ap, b, +--, b,, ©).

Let {p, ---, v} be a maximal set of nonassociated prime divisors of
e such that for each p,, GCD(a,;, dp,)|b; for i1 =1 ..., m and
a; = ajb(mod dp,) for 1<i < j=<m. Then

N.=lgel [T (L= pa]) .

Proof. Let A and B denote the m x 1 matrices with entries
ay +++, @, and b, -+, b, respectively. Since R/dR is finite, the reader
may easily verify that the system Az + B = 0(mod d) is solvable if
and only if (1) and (2) hold. Thus as ¢ is atomic, GCD(Ax + B,¢) =d
is solvable if and only if (1), (2), and (3) hold. Let GCD(Ax + B,c¢) =d
be solvable and let d’ = d/g. Then it follows that ¢, = d' [I}-, ps is
the minimum modulus of GCD(Axz + B,c¢) = d. Let A’ denote the
m X 1 matrix with entries ai, ---, a},. Then rank A’(mod p,) =1 for
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1 =1, +--, k. Also the system A’x = O(mod d’) has only the solution
@ = o(mod d’). Thus by (ili) of Corollary 1, N, = II¢=.(ps| — 1).
Hence N, = |ge| [T, (1 — | psu|7H).

COROLLARY 5. Let ¢ = de where e is atomic. Let g = GCD(a,,
oo, @, d) and d' = djg. Suppose that R/d'R is a finite ring. Then
GCD(ax, + b, ++-, @, X, + b,, ) =d 1s solvable if and only if
GCD(a;, d) | b; for j=1,---, m and g = GCD(a,, ---, a,, b, -+, b,, ¢).
Suppose that R/(I1i-, p,)R is finite where {p, ---, D} is @ maximal
set of momassociated prime divisors of e such that for each 9,
GCD(a;, dp,) | b; for 7 =1, -+, m. Then t,= d' [[5.p; is the minimum
modulus of GCD(ax, + b,, -+, a,x, + b,, ¢) = d. Let d; = GCD(a;, d)
and d; = d;/g for =1, ---, n. Then

(4.8) N, =& TT (2 = 2P

where t, denotes the number of j in {1, ---, n} for which

GCD(Z,pi)—_-l.

Proof. Suppose that d;|b; for j =1, ---, n. Let a; = a,;/g and
b = bj/g for j =1, ---, n. Let A and A’ denote the » x n diagonal
matrices with entries a,, ---, a, and ai, ---, a, respectively. Let B
and B’ denote the #» X 1 matrices with entries b, ---, b, and b}, ---, b,
respectively. Then the system A’X 4+ B’ = 0(mod d’) is solvable since
GCD(a}, d') | b} for j =1, .-+, n and R/d'R is finite. Thus the system
AX+ B=0(mod d) is solvable. Henceif g=GCD(a,,+++,ay, by, +++, b, ¢),
then GCD(AX + B, ¢) = d is solvable.

Assume that GCD(AX + B, ¢) = d is solvable. It follows that
to = d’' [T%., p, is the minimum modulus of GCD(AX + B, ¢) = d. Let
L={X+dR"|A'X = 0(mod d')}. Let

& ={XeR"| A'X = 0(mod d'p,)}
and L, = {(X +dR"| Xe )} for 1 =1, ---, k. Then by (4.1),

k
Niy = [LITL (2" — [ pa[*7757)

where 7, = rank A’(mod p,) and s, is the dimension of the RE/p R
vector space L/L,. Clearly |L| = [[’.|d}| since d;= GCD(a;, d')
for j=1 ..-,n. Let Li={X+ dp,R"| Xe} and H,={X+
2R | Xe &£} for i =1, .-+, k. Then (1) and (2) of Lemma 3 show
that |L}| =|L||H,| where |H,|=|p;|"""*? for ¢=1,--: k.
However, GCD(a}, d'p;) = d; GCD(a;/d;, p;) and thus
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wwﬂugpw@?@]

for 1 =1, .-+, k. Hence |p, """t = [[*., | GCD(a;/d;, p;)| and thus
|p; [P~ "i%e) = | p, "%, since ¢, is the number of 7 in {1, ..., n} for
which GCD(e;/d;, p,) =1. So t,=r,+ s, for 1 =1, --- k, which
yields (4.8).

Note that if R/cR is finite, then

n k
N.=T1ldel I (= 2.7 -

COROLLARY 6. Let R be a principal ideal domain. Let A be
an m X n matrixz of rank r and let «, ---, a, be the invariant
Sfactors of A. Let B be an m X 1 matriz and let (A: B) have rank
r" and tnvariant factors B, -+, B,. Then GCD(AX + B, c)=d 1is
solvable if and only if (1) d|e¢, () GCD(a, d) = GCD(B, ¢), (3)
GCD(a;, d) = GCD(B;, d) for j=1 --- r and g, =o(modd) if
r=r+ 1.

Let {p,, -« -, p.} be a maximal set of nonassoctated prime divisors
of e = c/d such that each p, satisfies (3') GCD(a;, dp,;) = GCD(B;, dp;)
forj=1, --- rand B, =o(mod dp,) if ' =r +1. Let d; = GCD(a;, d)
for j=1 «-- r and d' = d/d,. Then t,= d' [[ ., p; is the mintmum
modulus of GCD(AX + B, ¢) = d. Suppose that R/t,R is finite. Then

(4.9) Ny =12 {2l — 2.0

where d; = d;/d, and t, denotes the largest j in {1, ---, v} for which
GCD(a;/dj, p;) = 1.

Proof. Since R is a principal ideal domain, it is well-known that
there exist invertible matrices P and @ such that PAQ = A, where
A, is an m X » matrix in “diagonal form”, with nonzero entries
a, ---,a, and ;| a; if 7 < j'. The elements «, ---, @, are called
the invariant factors of A and «; = D,;/D;_, where D, denotes the
GCD of the determinants of all the 7 x 7 submatrices of A. Clearly
GCD(4, d) = GCD(«,, ---, a,, d), that is GCD(A4, d) = GCD(a,, d) since
a,la; for 5 =1, --- r. Similarly GCD(A4, B, ¢) = GCD(B,, ¢). How-
ever, it is also well-known that the system AX + B = 0(mod d) is
solvable if and only if condition (3) holds (see [4]). Thus GCD(AX +
B, ¢) = d is solvable if and only if (1), (2), and (3) hold.

Let GCD(AX + B,¢) =d be solvable and let ¢ =de. Then
to = d' 1%, », is the minimum modulus of GCD(AX + B, c¢) =d.
Suppose that R/t,R is finite. Let S denote the set of X in R" such
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that GCD(AX + B, ¢) = d. Let PB = B, and let S’ denote the set
of Y in R" such that GCD(4,Y + B, ¢) = d. Then clearly Xe S if
and only if Y=Q'XeS’. Thus GCD(AX + B, ¢)=d and GCD(A,Y +
B, ¢) = d have the same ideal of solution moduli. Let T, = {X +
t,R"| XeS}tand T; = {Y + t,R"| Ye S’}. Then the mapping f: T,— T\
is a bijection, where f(X + t,R") = Q'X + t,R" for all X in S. Hence
| To| = | T¢ |, that is N, =|T7|. Let B, have entries b, ---, b, and
let ¢, = GCD®°,,, ---, b, ¢). Then S’ is the set of solutions of the
linear GCD equation

GCD(%% + b?, cee, LY, + bg, 0 Yris + o0,

(4.10)
) O'yn+0y c0) =d.

Thus ¢, = d' I] L. p, is also the minimum modulus of (4.10) and hence
by (4.8) of Corollary 5,

.Nto = |d [”_"JII; | d;[}‘:[l (" — | D )

where d; = d;/d, and ¢, is the largest j in {1, ---,r} for which
GCD(a;/d;, p;) = 1 sinee a;/d; | ae;/d; if 5 < 5.
If R/cR is finite, then

N.= (el T1del 1@~ .79

Finally we remark that the formula for N, in (4.1) applies to
the class & of GCD domains R which contain at least one element
p such that R/pR is a finite field. Some immediate examples are the
integers Z, the localizations Z,, at primes p in Z and F[X] where
F' ig a finite field.

However, an example of such a ring R in <r which is not a PID
is the subring R of Q[X] consisting of all polynomials whose constant
term is in Z. Indeed R is a Bezout domain which cannot be expressed
as an ascending union of PID’s [1]. Clearly if p is a prime in Z, then
R/pR is isomorphic to the finite field Z/pZ.

We are also indebted to Professor W. Heinzer for the following
construction of a ring R in & which is a UFD but not a PID. Let
F be a finite field. Let Y be an element of the formal power series
ring F[[X]] such that X and Y are algebraically independent over
F. Let Vdenote the rank one diserete valuation ring F[[X]]N F(X, Y)
and let B = F[X, Y][1/X]N V. Then R/XR is isomorphic to F' and
R is a UFD.
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