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It C,---,C, are n convex surfaces or sets in d-dimensional
Euclidean space E¢, then it is of some interest to study the invariance
properties of M, (C; + a,) for all choices of vectors a, in E¢ Such
considerations occur naturally in identifying an object irrespective of
the direction in which it approaches the observer.

For example, Melzak [2] and Lewis [1] have investigated the
conditions under which the intersection N%.,; (C, + a,) of certain convex
surfaces always is a single point. These surfaces arise from the work
of Ratcliff and Hartline [3] concerning varying light intensities upon
different visual elements of the eye.

In this article we study such intersections and in Theorem 1, we
show that the result of Melzak [1] has an associated Helly number in
E? but not in E® In Theorem 2 we give a necessary and sufficient
condition for N, C; + a, to be nonempty, whenever C, .-+, C, are
convex sets, in terms of the outward normals. This condition is not
easy to apply in that it involves the outward normals to intersections
of d-membered subsets. So in Theorem 3 we give a sufficient condition
in terms of inner and outer apertures which is widely applicable.
Finally, in Theorem 4, we give a characterization of the sets which
can arise as inner apertures. I am indebted to Z. A. Melzak for
suggesting these problems to me.

To define the inner and outer aperture, let D be a convex subset
of E¢. If | = I(u,v),

= {u+ %= 0)
is a typical ray in E¢ u, ve E% v # o, define
6(\, D) = dist. {u + v, E4\D}
and

(D) = sup o(\)

where

dist. {A, B} = inf ||a — b]
ac 4

beB

when A, B are nonempty subsets of E¢ The inner aperture .7 (D)
of D is the union of those rays l(u, v) — u emanating from the origin
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o such that 6(l(u, v), D) = + . So, if D contains o, .Z (D) is the
union of those rays ! = l(o, u) in D such that Au can be made an
arbitrarily large distance from the boundary of D for A sufficiently
large. The outer cone O(D) of D is what is usually known as the
characteristic cone namely the set of all rays i(u, v) — u emanating
from o with I(u, v) contained in D. Both O(D) and .# (D) are convex
cones and O(D) is closed whenever D is closed. In general, of course,
O(D) can be any convex cone in E* but this is not the case for .# (D).
It will follow from Theorem 4 that .# (D) is a G,-convex cone with
the property that whenever a rayl € cl. {_#(D)}\-# (D) then the smallest
exposed face F(I) of cl.{ #(D)} containing ! also is contained in
{cl. A (D)\~ (D).

THEOREM 1. Let C¥, ---,C¥ be n convex sets in E® whose d-
dimensional interiors are nonempty and do not contain a line. Let C,,
«+«, C, be the convex surfaces bounding C¥, -+ -, C¥ respectively. Then
N;-. (C; + a;) is at most a single point for all choices a,, ++-, a, of
points in E* if and only if there does not exist n parallel lines of
support 1, +--, 1, to CF, ---, C¥ respectively. In E* this is true if

and only if some four membered subset C}, ---, C} do not have parallel
lines of support. However, in E* and for every n = 3 there exist
convex sets C¥, --., C¥, whose relative interiors do not contain a line,

such that every n — 1 membered subset have parallel lines of support
but this is not so for C¥, ..., C¥.

LeMMA 1. Let A, ---, A, be spherically convex subsets (possibly
open, half-open or closed semicircles) of the unit circle S* such that

fJ(A,.yU —A)* 2,15, =n,v=1 -+ 4.
Then

é(AiU —A)= 2.

Proof. We parametrise S* in terms of the angle ¢ made with
some fixed line through the origin and consider the semicircular
interval [0, 7]. The intersection A4, U — A, with [0, 7] is either

(i) an interval {¢,;, d,> not containing either 0 or =,

or (ii) [0, «],

or (iii) two intervals [0, a, >, < b, 7], the first containing 0 and
the second containing .

The classification yields a corresponding subdivision I,, I,, I, of
{1, -+, n}. Let
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[0, ai1> = 1@ [0, a;
by, 7] = N <by, 7]«

iely

If {¢, d.) and <{c;, d;), %, j€ I, both meet [0, ;> and

(1) {eo dy N<ejy dd N[0, 00 = @

then at least one of these intervals is contained in [0, ;). But then
(AU —A)n4; U —4A)Nn A4, U —4)n4,U —4,)

is contained in [0, a,> U — [0, a,> and consequently, by (1), is empty,
which is contradiction. So, if

I'= {’LG Il: <Cu dz> N [0; a'i1> * @}
we have, from Helly’s theorem, that

(2) [0, a.> NN, diy = D -

iel i
Similarly, if

I! = {ie I: <e;, di) N <by, T] # @}
<bi27 7Z'] ﬂ nz<ci, d1.> # @ .

iely

If there exists 4,¢ I\I! and %,e IL\I? then

(3)

OA%U _Aiy: @7
so either I} = I, or I? = I, and, using (2) and (3),

REMARK. This is the best possible result for if A, = [0, 7/2], A, =
[7/4, 3n/4], A, = [7/2, 7], A, = [874, 57/4] then

3
nAi,,U ——Aiyi @,1§7:1<7;2<7:3§4
v=1

but

AAU-A=0.

LEMMA 2. There exist n closed spherically convex two dimensional
subsets D,, ---, D, on S? mome of which contain antipodal points,
such that for every m — 1 membered subset D,, ---, D, _ there exists

Tp—1
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a great circle of S* which meets each D,, but there does mot exist a
great circle meeting each of D,, -+-, D,.

Proof. In [4], Santalo constructs, for each n = 3, a family of
n compact convex two dimensional sets F), --., F, in E*® so that each
n — 1 members of the family admit a common transversal but the
entire family does not have a common transversal. We mention that
such an example is the family of # circular discs whose centers have
polar coordinates o =1 and 6 = 2kn/n, k =1, ---, n and whose radii
are all equal to cos®w/n or cos’w/n + cos®w/2n — 1 according as whether
n is even or odd.

Now, if we place the configuration F), .-, F, into a plane tangent
to S?% let D, ---, D, be the corresponding closed spherically convex
subsets of S? obtained by the projection of F, ..., F, into S* from
the origin. Clearly D, ---, D, satisfy the requirements of the lemma.

Proof of Theorem 1. The proof of the first part is essentially
due to Melzak [1] but as he makes the restriction that d =n we
repeat the details.

If there exist n parallel lines of support I, ---, 1, to Cf, -+, C}
respectively then by translating the line [; into the relative interior
of C; if necessary, j =1, ---, n we obtain » nondegenerate similarly
orientated chords [p;, g;] of C} parallel to [; such that

”p1 - Q1” = e = Hpn = qn” .

Hence, if a;=p, —p;,7=1, -, m
NC + a2 p, a)
i=

and so contains at least two points.

On the other hand, if there exist vectors a; j =1, -+, n such
that 7., C¥ + a; contains at least two points say p, q then, by
considering two dimensional sections of C;, C; has a line of support
I; parallel to [p, q] and hence [, ---, [, are parallel lines of support
to C, ---, C, respectively which completes the proof of the first part.

In E* we may select a set A, of unit tangent vectors u to C}
by ensuring that the outward normal lies on the left hand side of
u when viewed from the point of contact on C; in a clockwise direction.
Then A, is a spherically convex subset of S* which is either S* or is
contained in semicircle according to whether or not C; is bounded.
Now C¥, --+, C¥ do not have parallel lines of support if and only if

é(A,-U—Ai)=@.
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This, by Lemma 1, is true if and only if there exists some four
membered subset of C¥, ..., C¥ which do not possess parallel lines of
support which completes the proof of the second part of the theorem.

In E® and for each n = 2 consider the » closed spherically convex
subsets D, ---, D, of S? afforded by Lemma 2. If {,) denotes scalar
product consider the set of closed half-spaces 57 such that H™ € 57 if

H = {x:<{x,u) <1} for some uecD,.
Let
C:=NH, 1=1,,n.
Then D, is the set of outward normals to Cf and so as D, is two

dimensional, C§ does not contain a line,7 =1, ---, n. Also for every
n — 1 membered subset C%, ---, C¥ _ of C,, -+, C, the corresponding

Yp—1
set of outward normals D,, ---, D,  all meet some great sphere S =
S(i, +++, ta—s). Consequently, if ! is a line perpendicular to aff. S,

Ci, +++, C;,_, each possess lines of support parallel to I.

On the other hand, if C, ---, C, possess parallel lines of support
then there would exist a great sphers S* of S* which meets each of
D, ---, D, which, by Lemma 2, is not so. Hence C, ---, C, do not
possess parallel lines of support, which completes the proof of
Theorem 1.

We observe the following lemma which is easily established by

separating two disjoint convex sets by a hyperplane.
LEMMA 3. Two convex sets C,, C, in E?¢ cannot be separated by

translation if and only if N(C) N (—N(C,) = o, where N(C,) is the
convex cone of outward normals to C,, i =1, 2.

Using Helly’s theorem we readily verify the following lemma.

LemMA 4. If C, ---,C, are convex sets in E?, then (i (C; +
a;) = @ for all points a,, -+, a, in E*if and only if N (C,, + a;) #
@ for all points a,, ---,a, in E* and for every d + 1 membered
subset {C.}*1 of {CJtu.

Using Lemmas 3 and 4 we obtain

THEOREM 2. If C, ---,C, are convex sets in E° then (. (C; +
a) #* @ for all points a,, ---a, in E* if and only if

-neynNUc,) =2
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Jor all d + 1 membered subcollections {C;}i%t of {Ci}i-..

However, this condition is not completely satisfactory in that
N(U!:C,) is a function of [Ui2;C, rather than a combination of
functions of each C,. We shall resolve this problem to a certain
extent in Theorem 3 by giving a widely applicable sufficient condition.

THEOREM 3. Let C, ---,C, be n convexr sets in E*. Then
(4) iﬂ:l(Cﬁai);&@
Sfor all choices of a,, ---, a, if there exists j such that
0. )N N #(C.) # @

SJor all d + 1 membered subcollections {C,}it; of {C)i-.. Further, if
y

at least of cl. C, ---, cl. C, does not contain a line, each is unbounded
and C, ---, C, cannot be separated by translation, i.e., (4) holds for
all a, «--, a, then

éO(cl. C)= o .

Proof. Let I be a ray of O(cl. C;) N M=, -~ (C;) which, by Helly’s
theorem, is nonempty. We may suppose, without loss of generality,
that oeC,N --- N C,. Then, if a, ---, a, are points of E?,

l+acC, +a,, 1=1 v, 0.

If 1 = {\u, » = 0}, then, as I = _#(C,), © + J, there exists A, such that
A+ a; is in G, A =\,
SO, if M* = max;<;<q. Ny

Mu + a;€ M C; as required .
4=1

To prove the second part, let C; denote the closure of C;, 7 = 1,
«++,n. We may assume that C, and C} do not contain a line and
that for some n», M2=! Cf is unbounded, which is certainly true for
n = 2. As 2! C¥ is convex closed and unbounded it follows that
O(N:=! Cf) is nonempty. Further, as (=} C¥ is contained in C},
Nz CF and O(N=! C¥) do not contain a line. Let I be a ray of
O(Ni=! CF), say L = P, A= 0}, If O(N, CY) is empty then, in par-
ticular, M, C¥ must be a compact convex set.

If x>0,

m—1 m—1

7\,u+DCiCDCi,
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and consequently,
(5) (w+Nc)nc =(m+nc)n(Ac).

If no matter how large X\ is taken, (Au + N&:'C;) N C, contains a
point z(\) say then, by (5), z(\) is confined to a compact set M, C;
and z(\) — aMee N C,, A= 0. It follows that —1is a ray of O(N* C¥)
which is a contradiction to C* not containing a line. So N, Cf is
an unbounded closed convex set and hence O(N\», C¥) is nonempty. So
repeating this process for m =1, 2, ---, n we conclude that O(N}-, C¥)
is nonempty as required.

DEFINITION. We say that a collection 5 of closed half-spaces
in E? is closed if whenever {H;}z, is a sequence of closed half-spaces
in 57, where

H; = {x:{x, u,y £ ;}, u, a unit vector,
and u,— u, a,— a as ©1— o« then the closed half-space
H = {x:{x,u) £ a}

is in &~ We say that a collection 57 of closed half-spaces is F,
if it is the countable union of closed collections.

If 27 is a closed collection of closed half-spaces notice that the
set Uuy-<» H, where H is the bounding hyperplane of H-, is a closed
set and consequently (Ny-.. int H- is a relatively open subset of

nH'e.V H_-

THEOREM 4. A set C in E? is the inner aperture of some convex
subset of E°¢ if and only if

C=o0oUNint. H-
P

where 57 is an F,-collection of closed half-spaces and o€ H, the
bounding hyperplane of H-, for all H € 5#.

REMARK. So, in particular, C has to be a G;-convex cone with
apex the origin such that if xe{cl. C}\C then the smallest exposed
face F(x) of cl. C that contains x is also contained in {cl. C)\C. In
E® the converse is also true.

Proof. We shall assume that the theorem is true in d — 1 dimen-
sions, the theorem being trivial for d = 1.

(i) Necessity. Let C be the inner aperture of some convex set
D in E* where, since (D) = “(cl. D) we may suppose that D is
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closed. If D = E* then C = E? and, by convention,
C=Nint. H = E*

2

where 57 is the empty set of closed half-spaces.

Otherwise D = E°* and so possesses at least one hyperplane of
support M say with D contained in the closed half-space M~. We
may suppose, without loss of generality, that eoc M. If D contains

a (maximal) linear subspace L of dimension at least one then Lc M
and

D=F+ L

where F'is a closed convex subset of L'. By the inductive assumption
the inner aperture . #(F') of F' can be written

F#(F) = o U int. H*"

where S7°* is a closed subset of the closed half-spaces in L. Then
C=o0oUNint. H-
where 57 is the closed collection of closed half-spaces in E¢ formed
by taking H™ in 5~ if
H =L+ H*

where H* ¢ 5#7*.
If D does not contain a line then the set of rays in D is a closed
convex cone K which has a hyperplane of support say {z, = 0} with

Kn{w,=0=o.

Let 7, denote the hyperplane z; = v, v = 0. Let [ be a typical ray
of K,

a,(l) = dist. {(Ix,), = (E\D)} ,
and

a(l) = sup a,d) .

By considering two dimensional sections through [ it is easily verified
that «a,(l) increases with v. Also

lcC if and only if a(l) = + « .
So, if
C,={l:1is a ray in K, a(l) > 1},
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then

(6) c=NCc,
Now CK,i=1,2, --- and

(7) K =oU()int. H"

where 57 is the collection of closed half-spaces, whose bounding
hyperplanes contain o, such that K\oecint. H-. If K= Kn S,
let 2#;* denote the closed set of the closed half-spaces H,

H = {x:{x,u) <0}
where
(~u, k)= —-27, for all keK.
Then 57 = Ui, &7;* and so, using (6), (7) it is enough to show that
C.,=KnNint. H

where 57, is a closed collection of closed half-spaces of E?¢ whose
bounding hyperplanes goes through o.
Suppose now that ! is a ray of K\C,. Then

al) 1.
For j=1,2, ---, there exist points a,, a, ---, with a;ex; N bdy. D
such that
(8) lla; —{m; N =1

Let H; denote a hyperplane of support to D at a;, with Dc H;. As
we may suppose that K == o, H; is not parallel to the hyperplane x,.
So H;N «, is a line in «,. If we consider the two plane o; through
and a; then H; meets ¢, in a line l;. As l; supports ¢; N D, it follows,
using (8), that

(9) HWinm —Iinm|=7.

Consequently the (d — 2) affine space 7, N H; lies within a distance %
of INm. So we may suppose, by picking subsequences if necessary,
that 7, N H; —n, N\ H, as j— < and [; N 7, tends to a point which,
with a view to later developments, we denote by /, N 7,. Let the line
through the points a; and I, N7, bel},j=1,2 ---. As(8),(9) hold,
l¥ converges to a line [, through [, N 7, and parallel to !. Consequently
H;,— H, as j— c. So Dc H; and
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(10) lz.nlb—mNnll=B=1, if v=o0,
B a constant. We claim that

Hy + {ml — nl} = H]” say,
contains K and H; supports K and passes through o. Certainly
11 lc H;

and so H] passes through o. If there exists a ray I* in K\H;", then
l* meets H, which contradicts Dc Hj.

Now let 2% denote those closed half-spaces H- such that the
bounding hyperplane H supports K and there exists a closed half-
space H*~ containing H~- such that H* supports D; H* is parallel to
H and a distance, in the hyperplane 7, at most ¢ from H.

By (11),

12) C.oKn ﬂ int. H,
where 57, is a closed set of closed half-spaces.
Conversely, if [ is a ray of
K\{(Kn Nint. H}
g
then there exists H~ in 5% such that ! < H. Then there exists a

closed half-space H*~ which contains D such that H* is parallel to
H and the distance between H and H* is at most 7. Consequently

al)=1,v=0

and so Il ¢ C,. Hence
(13) C;cKnMint. H™ .
Combining (12) and (3),

C,=KnNint. H-
which completes the proof of the necessity of the conditions.

(ii) Sufficiency. Suppose now that
C=o0UNint. H-

where 57 is an F,-collection of closed half-spaces and oec H for all
H e 27 So we may write 57 = Uz, &4, where the &7, form an
increasing sequence of closed collections.

Consider the closed convex cone
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Co=clC=NH .
s

If C,= E°¢ then C = E? and C is its own inner aperture. Otherwise
C, possesses one hyperplane of support M through o with C, contained
in the closed half-space M~. If M C, contains a maximal linear
subspace L of dimension at least 1 then we may write C,= F + L
where F' is a proper closed convex cone in L. Notice that L — H for
each H ¢ 257 and consequently we may write

H =L + H* for each H €27,

where H*™ is a closed half-space in L whose bounding hyperplane H*
passes through o. Consequently

C=oU{{Nint. H*7} + L} .
By the inductive assumption, there exists a closed convex set D* in
L such that
oU[)int. H*~

is the inner aperture of D* in L. Let
D=D*+ L

and then C is the inner aperture of D.

Henceforth therefore we may suppose that C, is a proper closed
convex cone in K¢ i.e., C, does not contain a line and we can also
suppose that the ray

X}— - {(07 ) 0; xd)y Lq z 0}

is in C, and that the hyperplane 7, = {#; = 0} supports C, with 7, N C, =
0. Then, as for K in the proof of necessity,

C,=o0oUfNint. H

)

where 57 is a closed set of closed half-spaces whose bounding hyper-
planes pass through o. We may suppose that

GG, T
and let
C,=oUNint. H, 1=0,1,2 ---.
iy

We shall produce inductively a nested sequence of closed convex sets
{C¥}%, such that C, is the inner aperture of C; and indeed
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(14) =CNNH",120
g

where, if H™ e 57, then H*™ is that closed half-space containing H-
such that H* and H are parallel and at a distance ¢ apart in the
hyperplane =,.

We begin the induction by taking

Cy={x=(x, -+, 2),2, =0 and dist. (x,C,Nr,,)=2.

Clearly C¥ is closed and it is convex since, from above, C¥ N7, is
convex, ¥ = 0 and so Cf cannot possess a point of concavity. We
shall show that

(15) A(C) = C,.

First notice that if u = (4, ---, u;) is a unit vector in C, then u; >
0. So, if I = {vu: ) = 0} is the corresponding ray in C,

01 = C(Md(l) g V)\zud > 0 .
So, if m is a positive number

provided m?u, < \. It is an almost immediate consequence of (16)
that [ < ~#(C{) and hence C, < #(C).
Suppose next that the ray

U'={w, » =0}

is not in C,. If v, <0 then 2w CF for all » > 0 and then certainly
!¢ 7(C¥). If v,>0 then I’ N7, is a single point for each v = 0
and there exists 7 > 0 such that

dist. (v, CoN m,) > 7.
So
amn dist. (w, Cty,,) > A7 .
But, if I’ © 7 (C{) then, in particular, A e Cf for each A = 0. So
(18) dist. (W, Ci3,,) = (Wv)' 5, M = 0.

However, provided )\ > v,/%* it follows from (17) that (18) is false.
Consequently ' ¢ _#(C}) which establishes (15).

Suppose inductively that for some m = 1 we have constructed m
closed convex sets C¥, ---, Ck_, in E? with C, being the inner aperture
of C¥,i=0,---,m — 1. Indeed,
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(19) C?‘H:Cfﬂﬂﬂ*", '5=0,1,---,m—2,
S+

where, if H € 57, then H* is that closed half-space containing H~
such that H* and H are parallel and at a distance 7 + 1 apart in
the plane =,.

For each H e 5%, let H*  be that closed half-space containing
H- such that H* and H are parallel and at a distance m apart in
the plane 7,. Define

(20) Cr=Cr.nN H* .

We claim that the inner aperture of C} is C, i.e.,
(21) F(Cr) =0C, .

If 1 is a ray of C, not in C, then [ is in some hyperplane H where
H-e 57,. Consequently, by considering the corresponding closed half-
space H*", we deduce that a(l) < m, and so I & - #(C}). Hence
Z(C¥) cC,.

On the other hand, suppose that [cC,. That the set
%LJ'LH * = H, say
is a closed set and does not meet the ray l\o. As each hyperplane
H, with H™ e 57, passes through o, it follows that
(22) dist.(Nx, H,)—> + © as y—> + oo,
Also le .~ (C}_) and so
(23) dist. (n=m, E\Ci_))— + © as yv—> + oo,
Consequently using (20), (22), (23),
dist. (N w,, ENCE)— + o0 as y—> + oo,

Therefore, | ©.#(C}) and so C, c #(C%) which completes the verifica-
tion of (21).
The results (20), (21) verify (19) for m and we can now suppose

that the C; have been defined so that (20), (21) hold for m =0, 1, 2,
Define

and we shall show that .~ (C*) = C.

Suppose that [ is a ray of C, not in .#(C*). Then there exists
m such that a,(l) <m,v=0. So !l is not in _#(C%,) = Cp;,. Con-
sequently [ is not in C. So Cc #(C*).
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On the other hand, suppose that ! is a ray of C, which is not in
C. Then [ is not in C, for some m = 0. So

lg A(Cr)> ~A(C).
Hence #(C*) c C and this finally establishes that
Z(C*) =C
which completes the proof of Theorem 4.
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