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The symmetric P?"-integral (and P?"*!-integral) as defined
by R. D. James in ‘““Generalized nth primitives’’, Trans. Amer.
Math. Soc., 76 (1954), is useful to solve problems relating to
trigonometric series (see R. D. James: Summable trigonometric
series, Pacific J. Math., 6 (1956)). But the definition of the
integral is not valid, since Lemma 5.1 of the former paper
of James, which is the basis of the whole theory, is incom-
plete due to the fact that the difference of two functions
having property B,,._, may not have this property. Therefore,
all the subsequent results of James also remain incomplete
and a complete systematic definition of the integral is needed.

In the present paper a definition of the P?™-integral (and
P*m*lintegral) is given and it is shown that all the results
of the later paper of James remain valid with this integral.

1. Definitions and Notations. Most of the definitions and
notations of [8] will be used with essential modifications. The gener-
alized symmetric derivative [8] (also called symmetric de La Vallée
Poussin derivative [18]) of even and odd orders and the generalized
unsymmetric derivative [8] (also called Peano derivative [13] or
unsymmetric de La Vallée Poussin derivative [11]) of a function f at
z, will be denoted by D"f(x,) and f(,,(x,) respectively, where r denotes
the order of the respective derivatives. If D¥*f(x,) exists, 0 <k <
m — 1, define 8,,(f; 2, k) by

h* : _1 L g
@m)] Oun(f3 @y ) = —-AF (@ + 1) + f(o — B} %‘(2;070 £ () -

The upper generalized symmetric derivate of f at x, of order 2m is
defined as

D f(x,) = lim sup Oun(f; %, 1) -
h—0

Replacing ‘lim sup’ by ‘liminf’ one gets the definition of D*"f(x,).
The function f is said to satisfy the property .54, at x, written
as fe (), if

lim Sup h02m(f; xO) h’) 2 O ’
h—0

and fe %, (x,) if —fe.Z.(x,). The function f is said to be smooth
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at x, of order 2m if

Lim A8 (f; @, 1) = 0 .
-0

Clearly smoothness of order 2m implies smoothness of order 2m — 2
and if f is smooth at x, of order 2m then fe .. (%) N Fn(®x,). For
symmetric derivatives of odd order, ,,..(f; @, h), D*""'f(x,), D*"*'f (x,),
Foms (@), Fomir(,) are defined analogously.

If fi,(x,) exists, 0 <r <n — 1, 7,(f; 2, h) is defined as

i ) = Fo+ 1)~ 5 g @
n. =0 7.

The upper generalized unsymmetric derivate of f at z, of order = is
defined as

f(n)(mo) = lhlg;l sup A/n(f’ xo; h)

with a similar definition for f,(x,). By restricting 4 suitably one can
define one-sided derivates which are denoted by fi(x), ete. For
convenience, the first order derivates £, (2,), f(®,), etc., will be denoted
simply by f(x,), f*(x,), etc. The ordinary wmth derivative of f at x,
will be denoted by f™(x,).

A function f is said to satisfy the property .2 in an interval I,
written fe & in I, if for every perfect set Pc I, there is a portion
of P in which f restricted to P is continuous (see [17]). A function
fis said to satisfy the property .7~ in (a, b), written f€.7 in (a,b),
if there exists a function F' continuous in [a, b] such that F',, = fin
(@, b) for some n. The class of all Darboux functions will be denoted
by <. From the properties of Darboux functions it follows that if
D*fe <7 and if g is continuous then D*f + ge <. This fact will
be used in the sequel. For the definition of n-convex functions we
refer to [8, 1].

We now come to the definition of major and minor functions. Let
S be defined in (@, b) andleta = a, < a, < -++ < @y, = b. A function
Q is said to be a P*"-major function or simply a major function of f
over (a;1 <1 < 2m) if

(i) @ is continuous in [a, b],

(ii) D*™*Q exists and D¥e # N7 in (a,0), 0=k =m — 1,

(iii) Q@) =0,1=1=2m,

(iv) DQ = f a.e. in (a, b),

(v) D™Q > — o, except on an enumerable set E C (a, b),

(vi) @ is smooth of order 2m on E.

The function ¢ is a minor function of f if —gq is a major function of
—f. The P*™"-major functions and P***'-minor functions are defined
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similarly.

This definition of major and minor functions differs from that of
James [8] in allowing certain exceptional sets in (iv) and (v). But
this is standard and is also noted by James in his modified definition
of the P*"-integral [9]. Another difference is in condition (ii) where
we are assuming D*Qe.2? .7 instead of James’ [8] requirement
that @ has properties A,, and B,,_,. (The property .&# is weaker
than A,, by Lemma 3.2 of [8] and the property .7 is stronger than
B,, . by Lemma 8.1 of [8] or by Theorem 2 of [13].) But this is
necessary since the difference of two functions in .# N7 1is in
Z# N7 which is not true with the property B,,_.. We shall prove
in the sequel that this is a proper definition of major and minor func-
tions and the P*-integral defined by these major and minor functions
is capable of handling trigonometric series.

2. Preliminary lemmas.

LEMMA 2.1. If f is smooth of order 2m + 1, as well as of order
2m + 2, at x, then fo.(x,) exists. If fi..(x,) exists then f is smooth
of order m + 1.  More generally, iff&ﬂ)(xo), f@ﬂ)(wo), f—‘(tb—m(xo)v Saen(®)
are all finite, then

HH}}E}D RO, (5 @, B) = " ;_ 2 {f_(rzq‘—n(xo) = Sao(@o)}

lim inf b6, o(f; @, ) = -’%;—2 @) — @) -

h—0

Procf. The first part is clear. For the last part, since f, ()
exists, D"f(x,) exists, 0 < » < n, and

@D i, D)+ Yalfi @ ) = Opn(F 0 1)

1 ) . __hk
(2.2) E{“/W(f, Loy ) — Voir(f5 2oy —h)) = po

2 0n+2(.f; xOy h’) °

From (2.1)
lim k0,..(f; x, h) = 0,

h—0

and from (2.2)

R f @) = Facsf@)) S liminf 10, (3 2 B) -

The other relation follows similarly.
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LEMMA 2.2. If Gu_y»(x,) and D"G(x) exist and if Ge ., (x,)
then the function w,,.(G; x, h) defined by

hn+1 . _ _ n—1 hr _ ZL_Z "
(2.3) mwn+1(G, %o, h) = G(x, + h) %}TG(M(%) o D"G(x,)

satisfies the relation

lim sup @,,..(G; 2, k) = lim inf @, (G; x,, k) .
h—0+ h—0—

Proof. Since

@G5 2oy B) — 0,,,(G5 @y —) = nzf S 00lGi 0 1)

and since G e ., 4(x,), the proof is immediate.

LEMMA 2.83. If fi., exists wn (a, b) and x,< (a, b) then
(2.9) ) @) = Finn(®o), Fm@o) = (F) (@), ete.
(2.5) (fu)@o) < DVf (@), D" f () = (Fim)(0)

Proof. If m = 0 this is immediate. Suppose » = 1. Then f is
continuous in (a, b). Let x,¢[a, 8] < (a, b). Then each f, is C-
continuous in [, 8], 0 £k < n, by Lemma 11.1 of [8]. From the
definition of Cesaro derivative (see [4]) we have C,D*fi.,(%) = fiin(®@0),
where C,D*f..(x,) is the right hand upper nth Cesaro derivate of f,,
at x,. Since C,D'f. (%) is the first order derivate (fu)(®.), (2.4)
follows from Theorem 2.1 of [4]. Lastly, from (2.1), D"*"'f(x,) =

fuwsn(®,) and hence (2.5) follows from (2.4).

LEMMA 2.4. Let g be continuous in [a, b] and D¢ = 0 in (a, b),
except on an enumerable set E < (a, b) and let g € F(x) for x ¢ E. Then
g s convex in [a, b].

This is proved in [19, I, p. 328], which sharpens a result of de La
Vallée Poussin (see [16, Lemma 3]).

3. 2m-convex functions. In this section and in §4, the results
are stated in a more general form than is necessary for P*™-major
and P*"*'-major functions. Since every member in .9~ possesses
Darboux property [13], we have .9~ N &2 < &7 N .2 and hence these
results are applicable in §§ 5 and 6.-

THEOREM 3.1, 2m. Suppose that
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(i) f vs continuous in [a, b],
(ii) D**f exists and D*fe 27 N.# in (a,b), 0=k =m—1,
(iili) D*f= 0 in (a, b), except on an enumerable set E C (a, b),
(iv) fe . F.(x) for xcE.
Then D*™*f is convex in (a, b) and it is the continuous derivative
e in (a, b).

The above theorem is true for m =1 by Lemma 2.4. So, we
assume that the theorem is true for m = m, i.e., Theorem 3.1, 2m,
is true and we prove that Theorem 3.1, 2 (m, + 1) is also true and
so the theorem will be proved to be true for all m by induction on
m. We require the following auxiliary lemmas:

LEmMA 3.1, 2m,. Suppose that
(i) G is continuous in [a, b],
(ii) D*™G exists in (a, b) and is F-integrable in [a, b],
(iii) D*GeznN.Z in (a,b), 0=k < m, — 1.
Then ¥ — G is a polynomial of degree at most 2m, — 1 in [a, b], where

— 1 i - 2mo—2
mx)_mga(x tymrg(t)dt

M@:YDWﬂMt
and GP™™V exists and is continuous in (@, b).

Proof. As in [10, Theorem 18], one can construct a sequence of
continuous functions {4,} which converges uniformly to ¢ in [a, b] as
i— o and for all ¢

(A)@) > D*™G(z), xe(a,bd).

For each 7, define

1 e 2mp—2
mw:ﬁ%ﬁiﬁ&“‘” Adt, wela,b].

Then {U,} converges uniformly to ¥ in [a, b] as ©— . Since 4, is
continuous, taking (2m, — 1)th derivative

UPm(x) = A(z) , ze(a,bd).
So, by (2.5) we have
@.1 (4)(@) = (U™ ) (@) < D™U(x), xe(a,b).
Since by construction (4,)(x) > D*™G(x) for z ¢ (a, b),
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(3.2) D*™[U, — Gl(x) > D*™U,(x) — (A)(x) , xe(a, d).
Hence from (3.1) and (3.2)
D*™[U, — Gl(x) > 0, ze(a, d) .

Since D*Ge 22 N < and D*U, is continuous in (e, b) for 0 < k <
m, — 1, D*[U;, — Gle 2 N . in (a, b) for 0 < k < m, — 1. Hence by
Theorem 3.1, 2m,, D*™* U, — G] is convex in (a, b) and so U, — G is
2m,-convex in (a, b) and by the continuity, U, — G is 2m,-convex in
[a, b]. Since U, — G converges uniformly to ¥ — G in [a, b], ¥ — G
is 2m,-convex in [a, b]. It can be similarly shown that ¥ — G is 2m,-
concave in [a, b]. Hence ¥ — G is a polynomial of degree at most
2m, — 1. Since ¥*™~1 exists and is continuous, G*®™™ also exists and
is continuous in (e, b).

LEMMA 3.2, 2m,. Let G be continuous in [a,b] and let D*™G
exist in (a, b) and be F-integrable in [a, b]. Let G*™™" exist and
be continuous in (a, b). If D*™G attains a maximum at < (a, b)
then

lim Sup @,p,1(G; @, b) < 0 < lim inf @, ,,(G; @, &) ,
h—0+ h—0—

where @ is the function defined in (2.3) with n = 2m,.

Proof. Let
J(w) = S:Dz’"OG(t)dt, zela, b] .

Then by Lemma 3.1, 2m, J — G®™™V is constant. Since G®*™™" ig
continuous in (a, b), by mean value property, for any h, 0 < h < b — x,,
there is 7, 0 < 7 < 1, such that

(5 0, ) = 2 (0, 4 78) = G (a) = DG

= 2 e — D

Therefore, since D*™(G is maximum at «,,

Iim Sup w2m0+1(G; xo, h) é 0 M
h—0+

The other part follows similarly.

LEMMA 3.3, 2m,. Suppose that
(i) F 1s continuous in [a, b],
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(ii) D*™*F exists and D¥*Fe o N.# in (e, b),0=k < m, — 1,
(ili) D*™F =0 in (a, b), except on an enumerable set E C (a, b),
(iv) Fe %, (x) for xcE.

Then

Orm(F5 2, h) =20, for all 2, h, a <x—h<ax+h<b.

LEMMA 3.4, 2m,. Suppose that
(i) G s continuous in [a, b],
(ii) D*™G exists and D¥*Ge o N.# in (a,d), 0 <k < my,
(iii) D*™G attains a maximum at x,€ (a, b).
Then

Dot G(ay) < 0 .

The proof of Lemma 3.3, 2m, is similar to that of Lemma 4.1, 2m,
of [8]. Lemma 3.4, 2m, can be proved by using Lemma 8.3, 2m, in
the same manner as in Lemma 4.2, 2m, of [8].

LEMmA 3.5 2m,. Suppose that

(i) f is continuous in |a, 0],

(ii) D*mof exists and D¥fe o7 N.Z in (a,b), 0 <k < m,,

(iii) D™**f =0 in (a, b), except on an enumerable set E C (a, b),

(iv)  fe Fpul@) for xeE,

(v) D*™f 4s upper semicontinuous in (a, b) and F-integrable
wn la, b].
Then D*™f is convex in (a, b).

Proof. We first consider the special case when the inequality in
(iii) is strict inequality. Suppose that D*mf is not convex in (a, b).
Then there is a subinterval [a, B8] < (a, b) such that

o) = D*™f (z) — 79—%7;{(6 — z)D*of(a) + (@ — a)D*™f(B)}

= D*™f(x) — px — q

takes positive values somewhere in («, 8). Since o is upper semi-
continuous in [a, 8] and p(a) = p(B) = 0, p attains maximum in (@, B).
So, if p is sufficiently near to p then the function D*™(G, where

x2m0+1 meo

Gm+ D1 L @my)!

’

G(@) = f(@) — 1

also attains its maximum in (a, 8), say, at z.. Hence by Lemma
3.4, 2m,
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DzmﬁzG(x#) — D2m°+2f(x#) <0.

Hence z.€¢ E. Now G satisfies the hypotheses of Lemma 3.1, 2m, and
hence G®*™ " exists and is continuous in (a, b). Also since fe §;MO+2(x)
for ze B, Ge 9%, .(z.). Hence by Lemma 2.2

lim sup @, +.(G; 2., h) = lim inf @,,,,,(G; 24, h)
h—0+ h—0—

where @ is the function as defined in (2.3) with # = 2m,, ©, = x.. But

by Lemma 3.2, 2m,, since D*™G is maximum at z,,

lim sup @;,,4.(G; %4, h) = 0 < lim inf @,,,..(G; @4, h)
h—0+ h—0—

and hence

lim inf @, (G; @, h) = 0
h—0—

i.e.,

lir,fioiflf @y i3 Ty ) = 2.
Thus for each g sufficiently near to p there exists z,€ E and for
different ¢ the points x, are also different. This contradicts the fact
that E is enumerable.
To complete the proof, consider, for arbitrary ¢ > 0, the function
g. Where

x2m0+2

9:(x) = f(x) + 5'm .

Then by the above special case, D*™yg, is convex in (a, b) and since ¢
is arbitrary, D*™f is convex in (a, b), completing the proof.

Proof of Theorem 3.1, 2 (m,+1). To prove the theorem we remark
that under the hypotheses, if D?*™f is continuous in an interval (a, g) C
(@, b), then by Lemma 3.1, 2m, f®™ " exists and is continuous in («, B)
and so by Lemma 7 of [18], D*™f is the continuous ordinary deriva-
tive f¢™ in («, 8). Hence applying the mean value property it can
be shown that D¥(f®™) > D*™**f and that @™ ¢ .S%(z) if fe& T, :(@)
for points in («, B) and so by Lemma 2.4, f®™ ig convex in (a, B).

Let U be the set of all points « in (a, b) such that there is a
neighborhood of 2 in which D?of is continuous. Then U is open.
Let (o, B) be any component interval of U. Then D*™f is continuous
in (a, B) and so by the above remark D*™f is convex in (@, 8). Hence
lim, .., D*™f(x) and lim,.,_ D*™f(x) exist and by the property =,
D*™f is continuous in [a, Bl N (a, b). Let P=(a, b)) — U. Then P is
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closed in (a, b). Since D*™f is continuous in the closure (relative to
(@, b)) of each component interval of U, P is perfect in (e, b). If
possible, suppose that P == 0. Then there is [¢, d] C(a, b) such that
[e, d] N Pis a nonvoid perfect set. Since D*fe.&Z in (a, b), there is
a portion of [¢, d] N P, say, H = [a, b)) N P on which D*f/H is con-
tinuous for each %k, 0 £k < m,. It can be shown, as in Theorem
4.1, 2(m, + 1) of [8] that D*™f is upper semicontinuous in [a,, b,].
Hence there is M such that D*mof(x) £ M for ze]a, b)]. Since the
theorem is true for m = m,, the function F'(x) = Mx*/2 — D*™*f(x)
is convex in (a, b,). Choose a, b,, such that a, < a, < b, < b, and
Pn(a, b) 0. Then by Lemma 3.16 of [19, I, p. 328], D*F exists
almost everywhere in (a, b,) and is &~ -integrable in [a,, b,]. Since F'
is continuous, D*F' = M — D*™of holds whenever D®*F exists and hence
D*™f is “P-integrable in [a, b]. So, by Lemma 3.5, 2m,, D*™f is
convex in (a,, b,)). Hence D*™f is continuous in (a,, b,). This contra-
dicts the fact that (a, b)N P+ 0. Hence P=0 and so D™f is
continuous in (a, b). Hence by our earlier remark D®*™f is convex in
(a, b). The rest follows from Lemma 3.1, 2m, and Lemma 7 of [18].
This completes the proof of the theorem for m = m, -+ 1.

Thus the theorem is true for all m and so henceforth we shall
omit 2m in refering to this theorem. The usual extension of the
above theorem is the following

THEOREM 3.2. Suppose that

(i) f is continuous in [a, b],

(i) D™ *f exists and D*fe 2 N.# in (a,b), 0=k =<m—1,

(iii) D*f =0 a.e. in (a, b),

(iv) D*™f > —oo, except on an enumerable set E C (a, b),

(v) fe (%), for xe E.
Then D*™%f is convex in (a, b) and D*™*f is the continuous deriva-
tiwe f? in (a, b).

This can be proved from Theorem 3.1 by using standard argument
used to prove Theorem 1.1 of [5] or Theorem 16 of [1] and so we
omit it.

REMARK 3.1. The property D*fe & for 0 =k < m — 1, in the
above theorem plays an important role. For, consider the function f
where »

2, =0

Fl@) = —x% x<0.

Then D*f exists everywhere but D*f ¢ &r. Also f satisfies all the other
conditions of the above theorem and D‘f = 0 everywhere; but D*f is



242 S. N. MUKHOPADHYAY
neither convex nor concave in any interval including 0.

REMARK 3.2. The above example shows that if D*™f replaces
Df in the hypotheses (iii) and (iv) of the above theorem and if in
(v) smoothness of f of order 2m is assumed everywhere, then even
under this stronger conditions the theorem is false without the property
D¥fe .

4. (2m + 1)-convex functions. Now it is natural to ask whether
the analogous results hold for odd order derivatives. In [8], it is
indicated that the proof of Theorem 4.1, 3 of [8] was similar to that
of a theorem of Saks [14]. But Saks used the lower derivate D*f and
not D°f and so the induction on m in [8] ensures the validity of
Theorem 4.1, 2m + 1 of [8], provided D*"*'f is replaced by D*™*'f in
its hypotheses. But if in the hypotheses of Theorem 4.1, 2m + 1 of
[8], D**if is replaced by D*"*'f then this new theorem is only a
consequence of Theorem 4.1, 2(m + 1) of [8] for the integrated func-
tion. The proof of Theorem 4.1, 2m + 1 of [8] is thus incomplete.
We complete the proof in the following more general theorem.

THEOREM 4.1. Suppose that
(i) f is continuous n [a, b},
(ii) D*™'f ewists and D*"'fe 2 N.F in(a,b),0Zk=m—1,
(iliy D™ f =0 in (a, b), except on an enumerable set E < (a, b),
(iv) fe.Fpulx) for xzc K.
Then D*™'f is convex in (a, b) and it is the continuous derivative
fem1 4n (a, b).

The proof is similar to that of Theorem 38.1. It is necessary to
prove this theorem for m = 1 and to do this, Lemmas 4.1, 1, 4.2, 1,
4.4, 1, 4.5, 1, which are analogous to Lemmas 3.1, 2m,, 3.2, 2m,, 3.4, 2m,,
3.5, 2m,, will be needed. The proofs of Lemmas 4.2, 1 and 4.5, 1 are
similar to those of Lemmas 3.2, 2m, and 3.5, 2m, respectively. In
proving Lemma 4.1, 1 one is to appeal to a result of [12] instead of
assuming Theorem 3.1, 2m, as it was done in Lemma 3.1, 2m, and in
proving Lemma 4.4, 1 one is to notice that since D'Ge =, by the
same result of [12], D'G has mean value property and hence for any
h there is &, x, — h < & <, + h, such that

B204(G; @, h) = 3! {D'G(E) — D'G(xy)} < 0

giving D°G(x,) < 0. The proof of Theorem 4.1 for m = 1 will now
follow the same line of argument as in Theorem 3.1, 2(m, + 1). The
F-integrability of D'f will follow from the fact that F(x) = Mz —
f(x) is nondecreasing in [a,, b,], [12] and M — D'fis the derivative of
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F where it exists. Proving the above theorem for m = 1 and sup-
posing it to be true for m = m,, all the lemmas beginning 4.1, 2m, + 1
through 4.5, 2m, + 1 can be proved and the proof of the theorem
for m = m, + 1 can be completed. We remark that an analogue of
Theorem 3.2 is also true in this case.

5. The P?".integral. We now come to the definition of the
integral. We must show that the definition of major and minor func-
tions, as introduced earlier, actually helps to obtain a proper definition
of the integral. For, because of the presence of the exceptional set
E in condition (v) and (vi) of the definition of major function we
cannot apply directly Theorem 3.2 to prove that @ — ¢ is a 2m-convex
funection for arbitrary major and minor functions @ and ¢ respectively.
(As the definition of the P*"-integral in [9] and that of the P*integral
in [7] are also affected by the exceptional sets S and E, respectively,
(see [9] and [7]) they would also need this clarification; but the
definition of the P*integral in [6] is not affected since the smoothness
of major and minor functions is assumed everywhere). We shall
follow the method adopted in [15].

LEMMA 5.1. Given ¢, > 0 and x,<(a, b) there is a major fumnc-
tion @ for the function t(x) = 0 such that

(i) Q¥ {s continuous in [a, b],

(ii) D*Q®*~» =0 in (a, b),

(iii) ling hO,(Q®™?; x,, h) > 0, I}Ln% hO,(QP™ %5 x, h) = 0, for x #

(iv) [Q" ™| = ¢ in (a,b),
(V) [hOQ*™ ;2 h)| <&, for x +* x, and x, x = he(a,d).

Proof. Let g be the function such that
o) =0, gla) = 5 min- e — o) = |,

o) = g min- (b — ), o |,

and g is linear and continuous in each of the interval [a, 2,] and [, b]
and let G be the (2m — 2)th indefinite integral of ¢ in [a, b]. Then
the function @ defined by

Q@) = G@) — 30w 2)G(@)
satisfies the requirements, where

(5.1) M a,) = Hﬁ:_%, @ =0, < Q< o <@y =b.
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LEMMA 5.2. If Q is a major function of f and € > 0, then there
18 a major function Q. such that

IDzm—zQe _ D2m~2QI <e, I_)WQE > —o0, in (@, b) .

Proof. Letx, x, +--, @, --- be an enumeration of the exceptional
set £ C (a, b), where D*"Q = — holds. For each positive integer %,
let F', be the major function obtained from Lemma 5.1 with ¢, and
x, replaced by ¢/2F and z, respectively. Set

V@) = S F@),  F@) = SF0).

k=1

The first series being uniformly and absolutely convergent, ¥ is
continuous and ¥ = F'®"®, By the mean value property there is %,
0 <7 <1, such that

O.(F5 2, b)) = 0,W; x, ) = §3 O(F ™ 1, 7h)

and since by (i), (ii) of Lemma 5.1 and by Theorem 3.1, each F{@™»
is convex in (a, b), D*F =0 in (@, b). Also, for x,€ E, the series
St hO(FE™%; 2, ) is uniformly and absolutely convergent with
respect to % and hence

lim h0,,(F; @, h) = lim hO,(F; x, h)
h—0 h—0

= lim 3% h(FEm2; w, 1)
= Lim ROLFE""; @, h)
>0.
Now set
Q:(x) = Qx) + F(=) .
Then if x, ¢ E,

lim 40,,(Q.; x;, h) = lim ko, (F; x,, k) > 0
h—0 h—0

and hence D*"Q.(x;) = <. Clearly @, is a major function of f and by
construction | D**%Q), — D*™*Q| < e.

LEMMA 5.3. If Q and q are any major and minor functions
then Q — q 1is 2m-conver.

Proof. By Lemma 5.2, for each positive integer n there is a
major function @, and a minor function ¢, such that
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(6.2) |D™Q,— D™Q| <L D™Q,> —o, in (a,b)
%

and a similar relation for ¢, holds. Hence D*"[@Q, — ¢,] = 0 a.e. in
(e, b) and D*"[@, — ¢q,] > — o in (a, b). Since D*Q,c 7, and D*q, €
.7, we have D¥*[Q, — q,] € .7~ and hence D*[Q, — q,] ¢ &, for each
kE,O<k<m-—1,[13]. So, by Theorem 8.2 D**[Q, — ¢,] is convex
in (a, b) and hence by (5.2) and a relation for ¢,, D™ %@ — q] is
convex in (@, b) and so the result follows.

Lemma 5.3 gives the analogue of Lemma 5.1 of [8]. Once this
lemma is proved all the subsequent results of [8] can be deduced with
this definition of major and minor functions. The definition of P*™-
integral thus obtained remains valid and all the results of [8] except
Theorem 5.4 of [8] are true. We state Theorem 5.4 of [8] in our
setting whose proof is similar to that in [8].

THEOREM b.1. If G is such that

(i) G is continuous in [a, b],

(ii) D*™°G ewists and D*Ge# N9 in(a, b), 0 =<k=m—1,

(iii) D*"G ewists a.e. in (a, b),

(iv) —oo < D™G £ D™G < oo, except on an enumerable set E C
(a, b),

(v) G is smooth of order 2m on K,
then D*™G is P™™-integrable over (a;;x), where a < a, < a, < -+ <
A Z b, and if a, Zx < a,,,, then

1 || FOdat = 6@) — 3@ 0)6(@)
where N 1s the function defined in (5.1).

6. The P*™'.integral. The definition of P?"*-integral can be
obtained from the P**'-major and minor functions in the same manner
as in the case of P?™-integral. The P'-integral i.e., P*™™-integral for
m = 0 is not defined in [8]. Theorem 3 of [12] shows that the defini-
tion of P-integral is also valid and so the definition of symmetric
Printegral is valid for all » = 1.

7. The unsymmetric P"integral. The unsymmetric P*-integral
as defined in [8] is not affected by Lemma 5.1 of [8]. We state here
the conditions to be satisfied by an unsymmetric P*-major function @
of the function f in our improved setting:

(i) @ is continuous in [a, b],

(ii) Q.. exists in (a, b),

(ii) Q@) =0,1=7=mn,

(iv) Qu = f a.e. in (a, b),
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(v) @Qu > —eco, except on an enumerable set E C (a, b).
It is easy to verify that for any major and minor function, @ and ¢,
the difference @ — q is n-convex. The definition of the unsymmetric
Pr-integral now follows that of the symmetric P -integral. For differ-
ent approach we refer to [2, 3].

8. Application to trigonometric series. Now we shall show that
the results of [9] remain true with this definition of the P*™-integral.
For the notations Al(x), Bi(x) and the upper and the lower (C, k) sums
S*(x) and s*(x), which we shall use here, we refer to [9] (see also [19,
I, pp. 74-77)).

THEOREM 8.1. (Cf. Theorem 6.2 of [9].) Suppose that the series

(8.1 %ao + i (a, cos nx + b, sin nx)

ts summable (C, k) almost everywhere to a finite function f on [0, 27]
and let

(8.2) —oo <sM) = SH@) < =,
except on an enumerable set in [0, 2r). If for xe]0, 2]
(8.3) Al x) = o(n¥) , Bi(x) = o(n*),

as n— >, then f(x), f(x)cosrx, f(x)sinrx, are P*-integrable over
(a;; x) and the coefficients of (8.1) are given by

5 0
(8.4) a, = 2"“71;:’”2 S(%) f(x)cosra d,..x
) 0 .
(8.5) b, = 2k+17’;k+2 Smi) f(x)sinre d, .z
where
Bk:—(lﬁjz—)!—z if k is even ,
(Gl
2
(k + 2)! if & is odd .

TESSYIEEN
)
Proof. Since (8.1) is summable (C, k), the series obtained by

integrating (8.1) term by term % + 2 times converges uniformly to a
continuous function F' and

a, = o(n¥), b, = o(n*),



ON THE REGULARITY OF THE P"INTEGRAL 247

as n— <, (see [18]) and hence F' is smooth of order k + 2 (see [9,
Theorem 3.1]). Since the once-integrated series of (8.1) is also sum-
mable (C, k — 1) a.e. in [0, 2] (see [11]), F' is smooth of order k& + 1;
hence by Lemma 2.1, F, exists and by Lemma 6 of [18], F; € &
in (0, 27) for 0 <7 < k. By [18, Theorem B] we get from (8.2)

—co < 1_)’°+2F(ﬂ7) < Ek+2F(DC) < oo

except on an enumerable set and D*"F(x) = f(x) a.e. in (0, 27). So,
by Theorem 5.1, f is P**%-integrable over («,; x). The proofs that
f(x)cosrx and f(x) sinrx are also P*'*integrable and that the coeffi-
cients of (8.1) are given by (8.4) and (8.5) are similar to those given
in [9, Theorem 4.2 and its corollary].
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