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The class 3f of all (/, M, m)-extensions of a Boolean
algebra s>f can be partially ordered and always contains a
maximum and a minimal element, with respect to this partial
ordering. However, it need not contain a smallest element.
Should 3f contain a smallest element, then 3f has the struc-
ture of a complete lattice. Necessary and sufficient conditions
under which 3f does contain a smallest element are derived.
A Boolean algebra ^f is constructed for each cardinal m such
that the class of all m-extensions of ^f does not contain a
smallest element. One implication of this construction is that
if a Boolean algebra <s>f is the Boolean product of a least
countably many Boolean algebras, each of which has more
than one m-extension, then the class of all m-extensions of
s^ does not contain a smallest element. The construction
also has as implication that neither the class of all (m, 0)-
products nor the class of all (m, ̂ -products of an indexed
set {^}ter of Boolean algebras need contain a smallest
element.

1* Sikorski [2] has investigated the question of imbedding a
given Boolean algebra j y into a complete or m-eomplete Boolean
algebra & and has shown that in the case where the imbedding map
is not a complete isomorphism, the imbedding need not be unique up
to isomorphism. He further has shown that if J%Γ is the class of all
(J, M, m)-extensions of a Boolean algebra jy, then S%Γ has a naturally
defined partial ordering on it and always contains a maximum and a
minimal element. He has left as an open question whether it always
contains a smallest element. La Grange [1] has given an example
which implies that 3ίΓ need not always contain a smallest element.
However, the question of when does 3ίΓ in fact contain a smallest
element is of interest as it turns out that should <_^ contain a
smallest element, it has the structure of a complete lattice.

In § 2, necessary and sufficient conditions are given for 3Γ to
contain a smallest element. In addition, the principle behind La
Grange's example is generalized in Proposition 2.10 to show that if
Ssf is not m-representable then the class 3Γ of all (J, My m')-exten-
sion of J ^ where J,M<σ and m' > M, will not contain a smallest
element.

Since the proof of this result requires that J and M have cardi-
nality ^ σ, it is of interest to ask if the class of all m-extensions
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contain a smallest element in general, and the answer is no.
In § 3, a Boolean algebra Szf is constructed for each cardinal m

such that the class 3fΓ of all m-extensions of J ^ does not contain
a smallest element. The construction has as implication (Theorems 3.1
and 3.2; Corollary 3.1) that for each algebra in a rather broad group
of Boolean algebras, the class of all m-extensions will not contain a
smallest element. In particular, this group includes all Boolean
algebras which are the Boolean product of at least countably many
Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski's result that there is an
equivalence between the class & of all (m, 0)-products of an indexed
set {Ssζ}teτ of Boolean algebras and the class of all (/, M, m-exten-
sions of the Boolean product J < of {S^t\t^τ, for suitably defined /
and M, is generalized to show there is an equivalence between the
class έ^n of all (m, ̂ -products of {Szft}t&τ and all (J, M, m)-extensions
of ^ 7 where j ^ ~ is the field of sets generated by a certain set £f,
for suitably defined J and M. Then the above results imply that
neither &> nor ^ n need contain a smallest element.

The notation throughout follows that of Sikorski [2].

2* Let n be the cardinality of a set of generators for the
Boolean algebra J ^ let J ^ > Λ be a free Boolean m-algebra with a
set of n free m-generators, let J^,Λ be the free Boolean algebra
generated by this set of n free m-generators and let g be a homo-
morphism from Ssζ>n to J^f. Let Δo be the kernel of this homo-
morphism and let I be the set of all m-ideals A in J^4,n such that:

a. Δ Π JK,n = Δo;
b. A contains all the elements

A - U A , U A - Ao,
AeS1 At Si

AeS2 AeS2

where Aoej^ζ>n and S^f Si are any subsets of Stζ>n of cardinality
:S m such that:

Jf g(A0)= U g(A)

g(Si) e M , g(A0) = fl g(A) .
l6o/

For each A el let

and

gΔ([A]j) = g(A) , for all A e

Set iΔ = 071. We need the following results due to Sikorski.
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PROPOSITION 2.1. The ordered pair {iΔ, JtfΔ) is a (J, M, m)-
extension of the Boolean algebra Szf and if {%, &} is a (J, M, m)-
extension of j&f there is a A e I such that {i^, J^Δ) is isomorphic to
{i, &). Further, if A, Af e I then

if, and only if, A Ξ2 Δ' .

LEMMA 2.1. If S is a set of elements in J3f~ then the least upper
bound (lub) of S exists in

Now let 3Γ(Jt M, m) denote the class of all (J, M, m)-extensions
of

THEOREM 2.1. Let SΓ be the class of all (J, M, m)-extensions of
a Boolean algebra Ĵ Γ The following are equivalent:

1. 3ίΓ contains a smallest element;
2. 3ίΓ is a lattice;
3. 3ίί is a complete lattice.

Proof.
1. => 3. It suffices to show that if S is a set of (J, M, m)-

extensions of sf then the greatest lower bound (gib) of S exists in
J^f which follows from noting that if L is the set of all lower bounds
for the set S then L Φ 0 and by Lemma 2.1 the lub of L exists in
J^7 hence is in L.

3. => 2. By definition.

2. =>1. If {i, &) is an m-completion of J ^ {j, ^je^T, and SΓ
a lattice, then there is an element {jr, &"} e 5ίΓ such that

Thus

{f,
so

if,
implying

{i, ^ ) £ {3, c

Hence {i, ̂ } is a smallest element in

COROLLARY 2.1. If Jf a J and Mf 2 M then the following are
equivalent:

1. Sf{J, M, m) contains a smallest element)
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2. 3ίΓ{J\ M\ m) is a sublattice of 5ίί(J, M, m);
3. J5Γ(J\ M\ m) is a complete sublattice of 3ίΓ{J, M, m).

Proof.
1. => 3. Since J%Γ(J'9 M', m) contains a smallest element, so does

5ίί(J, M, m) hence 3ίΓ{J\ M\ m) and JΓ(J, M, m) are complete
lattices. If {{it, ^t}}teτ = S is a set of elements in 3ίΓ(J\ Mr, m),
{i, 9f} is the lub of S in S£T{J9 M, m) and {ί', <£"} is the lub of S in
3ίΓ(J\ M', m), then there is an m-homomorphism h mapping- ^ ' onto
^ such that hi' — i. Hence ΐ is a (J'9 M', m)-isomorphism. Thus
{i, %?} e 3T{Jf, M', m), implying

{i, ^} = {i'f ^} .

If {i, <£?} is the gib of S in ST{J, M, m) and {i\ <£"} e S, then
by a similar argument, i is a (/', M\ m)-isomorphism, which implies
K ^} is the gib of S in JSΓ(J', M', m).

3. => 2. By definition.

2. => 1. The proof is the same as that for showing 2. => 1, in
Theorem 2.1.

Thus it is of particular interest to know whether J%Γ(Jy M, m)
contains a smallest element, in general. Although, as it turns out,
c5^(J, M, m) need not contain a smallest element in general, a minimal
(J, M, m)-extension is always an m-completion, hence there is always
a unique minimal (J, M, m)-extension in S%ί (J, M, m).

PROPOSITION 2.2. An m-completion {i, &} of the Boolean algebra
is a unique minimal element in J%"7

Proof. That a minimal element in J%Γ is an m-completion is
clear.

If {i\ &'} is another minimal element in SZ~, there are Ay Δ
f el

such that

{i,

and

Now {i, ^} and {i\ &'} minimal in J%Γ imply Δ and A' are maximal
m-ideals in J, but if Δ is a maximal m-ideal in I then gϊ(J^>n) is
dense in j ^ > . The ideal / ' = </, A> in J ^ > % is an m-ideal and
Δ' e I, contradicting the maximality of / . So {i', 3?f) is an m-com-
pletion of J^ hence isomorphic to {i, &}, implying
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PROPOSITION 2.3. If jzf is a Boolean m-algebra that satisfies
the m-chaίn condition and

\JAt
teT

is the join of an indexed set {At}teτ in J^ then there is an indexed
set {Ar

t}teτ of disjoint elements of *S*f such that

1. U A!t = U At
teT teT

2 . A ' t S A t for all t e T .

Proof. Let Sf be the collection of all sets S of disjoint elements
in j y such that for each se S there is a t e T with s £ At. If

S1 S S2 S S S, S

is a chain of sets in S^ indexed by I and ordered by set theoretical
inclusion, then

\JSt = Se^.
iel

By Zorn's lemma there is a maximal set in S^, say S' = {Ar}reR, and
it immediately follows that

U Ar Φ A .
reR

Now let

φ: S' > T

be a mapping such that if Ar e S' then

Ar S AφUr) .

F o r e a c h teT d e f i n e

A't = \J{AreS':φ(Ar) = t}

if there is an Ar e Sf such that φ(Ar) = t, otherwise define

A: = A .
Then

\At} teT

is the desired set.

PROPOSITION 2.4. Lβί Jzf be a Boolean algebra. The following
are equivalent:
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1. Szf satisfies the m-chain condition:
2. for all sets S in Jϊf such that \JsesS exists,

\Js = \Js
seS seS'

for some set S' S S with S' :g m; and dually for meets.

Proof.
1. ==> 2. Suppose S^ satisfies the m-chain condition. It suffices

to show that if

S = {At}teτ and V = U At , T = m' > m ,
teT

then there is a set T g Γ, f ^ m, such that

U At = V
tT'

Let {i, &} be an m'-completion of Ĵ C Then & satisfies the m-chain
condition and

V- = i(V^)
= U^ i(At) .

teT

By Proposition 2.3, there is a set {&t}teτ of disjoint elements in
& such that

Bt £ i(At) and \J" B* = IT W .
teT teT

Since this set contains at most m-distinct elements,

\J"Bt = \J"Bt,
teT teT'

T Ξ T and Ψ ^ m. Thus

or

2. => 1. Suppose {At}teτ is an m'-indexed set of disjoint elements
of J^<m' > m. It may be assumed that {At}teT is a maximal set of
disjoint elements of Ĵ C Then for some T g Γ , f ^ m,

Since f' ^ f, there i s a ^ e T - f such that
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AtQe{At}teτ - {At}teτ, and AH Φ Λ ^ -

Thus

a contradiction. Hence T ^ m.
This gives, as an immediate corollary, the following result due

to Sikorski [2].

COROLLARY 2.2. If jzf is a Boolean m-algebra and satisfies the
m-chain condition, it is a complete Boolean algebra.

PROPOSITION 2.5. The class <β$Γ(J, M, m') contains a smallest
element if J%~(J, M, m) contains a smallest element^ m' < m.

Proof. Let {i, ^} be the smallest element in 3ίΓ(J, M, m). If
{/, <&'} e ST{Jy M, m'), let {fc, ^} be an m-completion of ^ . Then
{kj, %?} 6 JT(J, Λf, m).

By the fact that {%, &} is the smallest element in 3ίΓ{J, M, m),
there is an m-homomorphism h such that

h: ^ > & and hkj = i .

Also {i, &\ an m-completion of S*/ implies that there is an m'-
completion {i, ^ ' } of J ^ such that &' S ^ . Thus hk{^') is an
m-subalgebra of ^ , hence ^ ' S hk(^') and is an m-subalgebra of

Now Ay(j^) m-generates /b(^') in & and
hence

or

But

thus

so

Since hkj = i,
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{i, ^ ' } ^ {kj, k(<S»)} .

But k a complete isomorphism implies that

{kj, k{&")\ = tf, «"} >

and since isomorphic elements in 3ίΓ(J, M, m) have been identified,

{i, ^ ' } - {i, «"} .

LEMMA 2.2. If J^o and M^σ then there is a (J, M, m)-
ίsomorphism i of a Boolean algebra Stf into the field &~ of all
subsets of a space.

PROPOSITION 2.6. // the Boolean algebra Jzf is m-representable
but not m+-representable, m+ the smallest cardinal greater than m,
then 31ί(J, M, m+) does not contain a smallest element if

J, M, m+) Φ 0 .

If J^σ,M^σ then ^ ( J , M, m+) Φ 0 .

Proof. Suppose {j, £f} e ^ ( J , M, m+). Then & is m-represen-
table and if an m+-completion {i, &} of Jϊf is a smallest element in
3ίΓ(J, M, m+), there is a surjective m+-homomorphism

h: & > & ,

which implies & is m+-representable, hence J ^ is m+-representable,
a contradiction. Thus J%Γ{J9 M, m+) does not contain a smallest
element if 3fΓr{J, M, m+) Φ 0 .

If J ^ σ and M <Ξ σ then s*f is (J, ikf, m+)-representable by
Lemma 2.2, hence 3ίΓr{J, M, m+) Φ 0 .

The next proposition is an easy generalization of Sikorski's [2]
Proposition 25.2 and will be needed for the last theorem in this section.

PROPOSITION 2.7. A Boolean algebra J^f is completely distribu-
tive, if, and only if, it is atomic.

COROLLARY 2.3. A Boolean algebra Jtf is completely distributive,
if, and only if, S/ is m-distributive, m =

The following proposition is due to Sikorski [2] and will be given
without proof.

PROPOSITION 2.8. If the Boolean algebra Jϊf is m-distributive,
then 3£~{J, M, m) contains a smallest element for arbitrary J and M.
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LEMMA 2.3. // {i, &} is an m-extension of the Boolean algebra
and & is m-representable, then Szf is m-representable.

Proof. This follows immediately from the fact that J ^ is
m-regular in &.

Now to prove the main theorem of this section.

THEOREM 2.2. "Let Szf be a Boolean algebra. Then the following
are equivalent'.

1. 3$Γ contains a smallest element for arbitrary J, My and m;
2. S^ is m-representable for all m;
3. S^ is completely distributive;
4. J^ is atomic;
5. an m-completion of Stf is atomic for all m;
6. an m-completion of Jϊf is in 5ίΓr{Jy M, m) for arbitrary J, M,

and m;
7. 3ίΓ(Jy M, 2m*) contains a smallest element, where J— M— 0

and J$f= m*.

Proof.
1. ==> 2. If ejy is m-representable but not m*-representable, then

Proposition 2.6 implies j?Γ(Jf M, m*) does not contain a smallest element
if J, M < σ.

2. => 3. This follows from the fact that if a Boolean algebra
is 2w-representable, it is m-distributive.

3. <=>4. This follows from Proposition 2.7.

3. => 1. This follows from Proposition 2.8.

4. <=* 5. If {i, &} is an m-completion of J^ then i(j*f) is dense
in &, so & is atomic, and conversely.

2. => 6. This follows from noting that 2. =* 3. and J ^ completely
distributive implies an m-completion of sf is completely distributive,
hence m-representable for all cardinals m.

6. => 2. This follows from Lemma 2.3.

3. « 7 . If J== M = 0 and JΓ(J", M, 2m*) contains a smallest
element, then by Proposition 2.6, St? is 2m*-representable, hence
m*-distributive. Since m* = J^f~J^ is completely distributive, by
Corollary 2.3. The converse is clear.
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3* The example in § 2 of a Boolean algebra J ^ such that the
class of all (J, M, m)-extensions of Sf does not contain a smallest
element depends on the assumption that J, M ̂  σ. Thus it is of
interest to know whether an example can be found showing that the
class of all m-extensions of S^f does not contain a smallest element,
since this corresponds to the case where J and M are as large as
possible. As it turns out, there are Boolean algebras Ssf such that
the class of all m-extensions 3ίΓ does not contain a smallest element.
In this section such an example will be constructed for each infinite
cardinal m and several general types of Boolean algebras such that
31Γ does not contain a smallest element will be given.

Throughout this section J%Γ will denote the class of all m-
extensions of a Boolean algebra Ssf and ̂ %Γ{J, M, m) the class of all
(J, M, m)-extensions.

If ei^ is a Boolean algebra and {i, <£*} e 3T(J, M, m), let

{CeW: if i(A) g C , A € J ^ then A =

and

KP{9?) = {Ce if: if P = {A e sf\ i(A) 3 C} then f

Note that J5ΓP(<if) S

LEMMA 3.1. The set KP{^) is an ideal and K{^) = KP(
C^), if,

and only if, K{c^) is an ideal.

Proof. It follows easily that KP{Ί^) is an ideal.
If K(1f) is an ideal and We K{cέ?) let

P - {A e JV: i(A) 2 C) .

If A' esif and A ' g i for all A e P, then

ί(A') - CeK(W) .

Now i{Af) Π C G JBΓ(^), hence

i{A') = {i{A') - C) U (i(A') Π C) e

which implies ί(A') = A^ o r A' = A ^ Thus

so CeKP(W), and

i

Since KP(W) is an ideal, the converse is true.
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PROPOSITION 3.1. If jzf is a Boolean algebra the following are
equivalent:

1. J%Γ(J, M, m) contains a smallest element]
2. K{<&) = KP{^) for all {i, <Sf} e 3Γ{β, M, m);
3. K(^) = KP{^) if {i, ^} is the maximum element in

, M, m).

Proof.
1. =>2. Suppose J%^(J, M, m) contains a smallest element {i, &},

and there is an element

e 3ίT{J, M, m)

with the property that

Let h be the unique m-homomorphism mapping ^ onto & such that
hj = i. Let ker h be the kernel of this mapping. Then

P{) £ ker h

and

ker h Φ

Pick x e K{c^) - ker h and let

Δ = <x> ,

so J is a complete ideal. Thus

e 3ίΓ{β, M, m) ,

where

iΔ\

is defined by

iΔ{A) = ^

Consequently, there are unique homomorphisms hΔ and hr mapping
ctf onto ^ 7 ^ , ^ 7 J onto ^ and satisfying A î = ίJf hfiά — i, respec-
tively. Hence

h'hjj ~ hfiΔ = i

and by the uniqueness of h,

h — hfhΔ .

This implies

h(x) — hrhΔ{x) = A ^ 9
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a contradiction. Thus

2. => 3. Obvious.

3. => 1. To show that J%Γ{J, M, m) contains a smallest element,
let {j, ^} be the largest element in 3ίΓ{J, M, m) and suppose {f, <£"} e
3fΓ{J, M, m). Let {i, &} be an m-completion of Ĵ C Then there is
an m-homomorphism h' mapping & onto <g7' such that h'j = j ' and
an m-homomorphism h mapping ^ onto & such that hj = i. Thus

S ker h S

which implies, by assumption, that

KP{%?) = ker h =

so KP(^) and iΓ(^) are m-ideals in ^ . Further,

This implies that

hence UL(^') is an m-ideal. Let

Then ^f\Δ is an m-algebra and

m-generates <g"/J. Final ly, jr

Δ{^f) is dense in <if'/J. Thus {j[, <&ΊΔ\
is an m-completion of J^ hence is equal to {i, ^ } , as isomorphic
elements of ^Γ"(J, ikf, m) have been identified. The m-homomorphism

hΔ: ^f • <<g"lΔ

defined by

hΔ{C) = [C'h

has the property that

hj = j9

Δ for all A e J^f,

implying that

{i* ^ΊΔ) £ {f, <%»} .
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Hence J%Γ(J, M, m) contains a smallest element.
This, then, gives a way to construct a Boolean algebra Sf such

that S$Γ does not contain a smallest element. Namely, by finding a
Boolean algebra Sf with an m-extension {i, ^} such that KP{^) Φ

The next task is to construct such a Boolean algebra.
If T = m and <Stf= j^ft for all ί e ϊ 7 , the Boolean product of

will be called the m-fold product of J&ϊ Note that if Jz? is
a subalgebra of the Boolean algebra jy", ^ ~ is the m-fold product
of J ^ and ^~' is the m-fold product of Ssf', then

LEMMA 3.2. // j ^ is an m-regular subalgebra of the Boolean
algebra J%?r then the Boolean m-fold product ά?~ of Szf is isomorphic
to an m-regular subalgebra of the Boolean m-fold product ά?~f of J^f'.

Proof. Since ^ is a subalgebra of j ^ ' , ^ ϋ ^*\ Let
be the set of all φt(A\ 4 e j / and ί e T(A e j ^ ' and t e T). Then
FeSS(Fe&") implies - F e y ί - F e y ' ) and ^ ( ^ ' ) are sets of
generators for ^ r ( ^ ' ' ) F° r elements Fzjf' of the form

^ = ή Ft,

define

Note that if F e y ' and teT is such that Xt(F)φ\/^ then

In order to show ^ is m-regular in ^ \ it suffices to prove
that if {Ft}teτ is an m-indexed set of elements of JΓ such that

then

teT

Now Ft e &~ so Ft may be rewritten as

Pt Qt

Ft = nu FP,9tt,
p = l g = l

where Pt, Qt are finite numbers and Fp>qίteS^ for all pePu qeQt,
and * e T. Thus
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jr Pt Qt

Λ,=nnu
teT p = l g=l

j r Qs

after a suitable re-indexing, where S^m and F8>q = FP,q>t for suitable
pePt, te T. Without loss of generality, assume that for each
seS, Xt(Fβ,q) Φ Λ^' implies \(F8>g,) = \f j,, for all te T and q' Φ q,
and that F8>q Φ V*•* for all q, 1 <: q ̂  Q8, and all seS . Suppose
F ' G ^ - ' and F' S ^ for all t e Γ. Then

SO

M N

F' — \\ Γ\ F' Ff

l l

N Qsn W> c l i p
l

for 1 < m <; ikf, and all seS. Thus to show F' = λjr,, it suffices to
prove that if

for all seS, where Fi 6 ̂ ' , then

It may be assumed that for each n,l<^n£N, Xt{Ff

n) Φ k^> implies.
\t{F'J) = V^, for all ί e ϊ 7 and n' Φ n, and that F'%φ\j' *•, for all
n,l^n^ N.

Now

implies

and as each i^I and -jPβfβ is of the form <pt(A) for some 4

and ίGΪ 7, the independence of the indexed set {φt(J^')}teτ of sub-

algebras of ^~* implies that for some n8y 1 ̂  ns <£ iV, and some

?., 1 ̂  g, ̂  Q.,

^ n , Π —F8)qs = t^jr, ,

which implies Fis S F s, g s . This argument may be repeated for each
seS.
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The set {na:seS} is finite so let {ns: seS} = {nt: 1 ^ i £ N'}.
Let Si = {s e S: Ff

n. g Fs>q). If ts e T is such that

χt8(F8>q)^ V^ ' for all seS

then Xts(F8}q)ej^ and

Thus

Fs,qg) Φ K^" 9
jy"

seSi

or

n \s(F$,q) Φ A ^ »

hence there is an A*e J ^ At Φ A^> with

Aέ g λίg(Fs,gβ) for all seSt .

Let i i M be the set of all x e X such that πts(x) e At. Thus AtΛ e
and this argument may be repeated for each i, 1 <£ i ^ iV'. Now

fi
i

and

n AM s u

for all seS. But then

Nr sr Qs

n AtΛ s n u — i\jr ,u
seS q = l

a contradiction. Thus ^ is m-regular in
The next lemma assumes there is a Boolean algebra sf such that

an m-extension is not an m-completion. Sikorski [2] cites an example
due to Katetov of such a Boolean algebra for the case m = σ. As
Lemmas 3.5 and 3.6 imply, there is such an Szf for all infinite cardinal
numbers m.

Assume for the moment that Ssf is a Boolean algebra such that
3fΓ contains more than one element and {i, &} e .βt~ is an m-extension
that is not an m-completion. Thus there is a Be έ%? such that
i(A) g JS, Ae Ssf, implies A — Λ^ Let &~' be the Boolean m-fold
product of ^ h0 an isomorphism of & onto the Stone space άf of
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^ X the Cartesian product of Jf with itself m times and indexed
by T, and

Bt = φth0(B) for all t e T .

Let

B Q = U B t ,U
teT'

where T is a fixed, but arbitrary subset of T such that T ^ σ,
and define

Since Ί" ^ σ, ^ Φ

LEMMA 3.3. If J^ is the Boolean m-fold product of Sf then
^ is isomorphic to an m-regular subalgebra of J^.

Proof. It may be assumed, without loss of generality, that
g &. Thus Jfςz ^ι% Let 6^{S^}) be a generating set for

Let

S^ - Sff U

so S^ is a generating set for ^ v As in the previous lemma, to
prove ^ is m-regular in ^ it suffices to show that if

for all se S, S ^ m; and

Γl F'n S U

Fs,q e ^ for all seS and 1 ^ g ^ Qβ, F ^ e ^f, 1 g ^ ^ ΛΓ; then

N

7 1 = 1

Since F'n e £%, there is an n, 1 S n g iV, such that ^ = 5 0 or F'n =
— So, otherwise there is nothing to prove. This may be reduced to
two cases:

Case 1.

ή F: n BQ s U

for all s e S, where ί7^ e Sf' and
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Case 2.

for all seS, where F'% e SSf and Fs>q e Sf.

Proof of Case 1. If for each se S there is an n8, 1 ^ ns ^ N,

such that there is a gs, 1 <; qs <: Q,, with i ^ s <Ξ JF1.,^, then

N Qs

n ^ s u F.,
n=l q=l

for all δ θ S , and

implies

ή F: = A*..

Thus it may be assumed there is an s0 such that

ί i = l g = l

Hence for all %, Fl g FS o > g for some q9 is false. If

let xeX be defined as follows. Let tl9 •••, ί n e Γ be such t h a t

\t{(Fl) Φ \f &, 1 ^ i g iSΓ. Choose an sc G X such t h a t it satisfies the

following conditions:

( a )

π (x) e \ X t i ( F ° i f Xti(Fs»q) = V ^ f o r a 1 1 q> X = q - Qs°
πAX) \\U(F!) - xti(FSo>go) if λ f <(FS o, g o) ^ V ^

for 1 ^ i ^ JV;

( b ) τr i g(s)6 -Xtq(FSo,q) for each ί ? e Γ such t h a t Xtq(F8Q,q) Φ

1 ^ ^ ^ Qs0 and tq Φ ti9 1 ^ i ^ n;

(c) T Γ ^ ) 6 hQ(B) for all ί ^ ί f f ; l ^ i ^ J V ; i ^ g ^ QSo.

Now x is well defined,

iV

x e Bo and a; € Π Fί ,
71 = 1

by its definition. But x$ FH>q for all q, 1 g q £ Qs, hence
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g = l

a contradiction.

Proof of Case 2. If

and \t%(F») Φ\/^,tneT, let A* = <Ptn(-B0), 1 ^ n ύ N. Then

ή ^ n (-£„) = ή(Fi n A.) n(-£„)

and

As before, an soe S may be found such that

Define ίx, , tN as before so t h a t Xti(Fί Π A%) Φ V^> l ^ i ^ J V .

Choose a? e X satisfying the following conditions:

( a )

y,u(FΪ Π A,) if λ t <(F.O f ί) - V^, 1 ^ 9 ^ QSo

\.u(Fl Π A,) - \u(F§Q,q) if λ ί4(jP.Off fo)^ V ^

for 1 ^ i ^ JV.

( b ) πtg(x)e - \(F8o,q) for each tqeT such that λ ί g(i^0, ?) Φ\/&;

1 ^ ^ ^ QSo, and ίg Φ tifl S i ^ N.
( c ) πt(x) e M-Bo) if ί Φ tt9 tq; 1 ^ i ^ wf 1 ^ q ^ QSo.

Now x is well defined and

ze(-£o)nn(i^n An) = -Bonr\Fϊ,

so

a contradiction.
Consequently, in either case

N

Π Fn =
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LEMMA 3.4. If j is the identity isomorphism of J^ into
and {i, ̂ } is an m-completion of J?\> then {ij, ̂ } is an m-extension
of

Proof. All that needs to be shown is that ij{^) m-generates
But this follows immediately from the fact that Ssf m-generates

and the definition of ^ and J?l.

THEOREM 3.1. // s%f m-generates & then ^Γ{^) does not
contain a smallest element.

Proof. f e ^ a n d F 3 S 0 then F= V 0>
 b ^ definition of Bo.

Thus if j and {i, ̂ } are defined as in Lemma 3.4, {ij, <tf} is an
m-extension of &~ and ij(B0) e K{^). By Proposition 3.1, JfX^O
does not contain a smallest element.

The results of this theorem may be generalized as follows. Let
{^t}teτ be an infinite indexed set of Boolean algebras and {{it}teτ, ^}
be the Boolean product of {J^}ter Let T' be the set of all teT
such that J%Γ(J^) contains more than one element.

THEOREM 3.2. The class of m-extensions J%Γ(^?) does not contain
a smallest element if Tr >̂ σ.

Proof. Define ^ ' to be the Boolean product of {{jt,
where \jt, &t} e 5ίΓ( j&ζ) for all teT and {jt, &t} is not an m-com-
pletion of j^f for all teT. For each &t, te T, there is a Bte^t

such that jt(A) S Btj Ae j^f, implies A — Λ^v Let φt map &t into
& and set

and

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and
3.4, and Theorem 3.1, J%Γ(&) does not contain a smallest element.

COROLLARY 3.1. If sx?t = sft, for all t, f e T then J%""(^) contains
a smallest element if, and only if, an m-extension of & is an
m-completion.

Proof. If 3ίΓ(0?) contains an m-extension which is not an m-
completion, let & play the role of J ^ in Lemmas 3.2, 3.3, and 3.4.
By Theorem 3.1, J^%^~) does not contain a smallest element. As
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the m-fold product &~ of & is isomorphic to ^ <-^*(^) does not
contain a smallest element. The converse is clear.

Now to prove the assumption on which these results are based.

LEMMA 3.5. For each infinite cardinal number m there is a
Boolean algebra Jzf such that an m-completion {i, &} of JZ/ contains
an element B with

BΦ\J n AUtV,
ueU veV

for all m-indexed sets {Au>v}ueUfV£V in Jzf.

Proof. The proof will be by constructing such an Jzf for each
m. Let S be an indexing set of cardinality m. Let &fm be the
Cartesian product of S with itself m times and indexed by T. Define

A, s = {de ^m: πt(d) = s} .

Fix si s'2eS, s[ Φ s[, and set S' = S - {s[, s'2}. Let D = \Jteτ(Dt,.{ U

Dt,s$. Thus D = 2m and de&m- D implies πt(d) Φ sf

k, k = 1, 2, for

all 16 T.
Let

^ = {{d}: de^rm}U {Dt,s: teT,seS'}.

Let J^f be generated by £S in ^ m and let & be the m-field of sets
m-generated by £f in &rm. Then s^ is dense in έ% and m-generates
&, so if i is the identity map of Sf into &, {i, &} is an m-comple-
tion of

Let

- u n AU,V ,
ueU veV

Suppose

{AUfV}ueu>vev an m-indexed set in J^C This can be written in the form

u n u Au,v,m;
ueU veV m,eMUfV

Au>υ>m or - Au>v>m e <9ζ MZ < o .

Let Bfj= {de&m: {d} = AUtV>m for some ue U, ve V, and m e l j .

Then B' ^ m, so if
-Mϋ, = {m e MU)V: AU)V>m is not of the form {d}9 de&J, it follows

that
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- u n u A.,,,m ^ m.
ueϋ t e c me if' „

It will now be shown that in fact

5 - U Π U Au.v,m > m ,
u&U v e V me 31'

u ,v

a contradiction. Hence it may be assumed that AUtVf1Λ is not of the
form {cZ}, d e j£rm, for all ueU,ve V, and m e MUtV.

If AU)V>m = — {cί}, dGu^m, for some meMu>v, then either

( 1 ) U A . . . f W = -{<*}

or

(2) J J Au,v,m= V .

If (1) occurs, it may be assumed that MUtV = {1} and AUtVtl = -{d}.
If (2) occurs, the term \Jm6MutV AUjV>m may be dropped. Thus for all
ueU,V may be written as" 'F w U VI, where (1) Vu Π VI = 0 ; (2)
.̂«,«,« = — {d*,v}f dUfV 6 £%rm, for all v e Vu; and (3) AM>VtW is either of

the form -Dt>s or A,, for all VG V'U. Consequently, for all ue U,

Dv M AUM =

V[) " {du'v] n ,eQ w e y Aw'^m

Let

c = n u A
veV m e M u } v

Suppose Z7 is the set of all ordinals u < a, where a = U. Let
A = {ώ G £^w: 7rt(cZ) = sj, s'2}. Now A = 2m implies there is a ^ e i ?
such that

dιe Π — {̂ i,„} .

Since dι g JS, this implies

^1 ί ΓΊ U Άl v m 9

hence for some vι G V[,

dt & U A l t V >m .

Also, A S - A , , for all t e T and s e S', hence

Alft>lfW = Dh m)8t

for some tUm e T and s ί l m e S', for all m e MUVl. Let 2\ = {ί1>m: m 6 AflfVl}
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and pick sL e S' such that sx Φ sh m for all m € MltVχ. Define

φ(t) = s1

for all t e Tx. Let B1 = 0 and define ί?2 = {d e i^m: τrt(d) = ^(ί) for
all t e ΓJ.

Note that £ 2 Π Ci = 0 .
Suppose i > 1 and a finite set TV has been defined for each

V < i so that TV Π TV' = 0 if i', ΐ " < i, V Φ i") 8t, e S' has been
chosen; 9> has been defined on each Tif, if < i, so that 9>(t) = sίf for
all t e TV; and if

jBί = [d e &m\ nt{d) = φ(t) for all t e U Γ }̂

then

Let

t = ^ ,̂

and note that T* < m. Let

Dt = {d e ^ m : π t(d) = ^(t) for all ί e ft

and πt{d) = s'k, k = 1, 2, if te T - Tt] .

Then Di^ D and Zζ = 2m, hence there is a ώ̂  e A such that

Since dt ί J5, this implies

di*vQ>.M v

At v'mf

hence for some vt e F/,

m e Λ f ΐ , » .

If Bif]Ci= 0 set Γ€ = 0 . If not, there is a ώ eB* such that
d\ e Cif so

Note that 7Γt((Z{) = πt(dt) for all t e Tt.

I t immediately follows that if
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die U Ait9i,m

then

AitVitin = A ί ( M , ί t i m f

where ί<fWe Γ* and

for some m e MiyV..

Let

T< = {ί<ιm eT- f,: AifVi>m = A ^ , . ^ m for some m e ΛΓ,,,,}

and pick s* e S' such that if tί>m e Ύt then

for all m e Mi)V.. Now define

φ(t) = s, for all ί e T, .

Thus Γ, Π ft = 0 which implies Γ, 0 ^ = 0 for all i' < i. If

5 i + 1 = {d 6 ̂ m : ττt(d) - φ(t) for all ί e Tt U f j

then it is clear that

Bi+1 n U c< = 0 .

Now let f = Uκ« Γi and set

B = {de ^m: πt(d) = <p(t) for all t e Γ

and πt(d) Φ s'lf si if ί e Γ - f} .

Then JB Φ 0 and B^ B. But JB n U^e^C,, = 0 which implies

B -\JCUΦ 0 .
ueU

If JB' = JB - U«β^ Ctt then for each J e f f ,

for some m-indexed set {se,6}ίeΓ in S' Thus

5 = u n u .̂..,« u u n A,.t»,
weZ7 veV meMUiV beB' teT

but the above construction shows that
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B-(un u A.,v,m u u n Dt,.t t) Φ 0
ueU veV meMu>v beB' teT *

if B' < m. Hence

B - \JCu>m .
ueU

LEMMA 3.6. If {i, &} is an m-completion of the Boolean algebra
and there is a Be & such that

BΦ U Πi(Att.)
teT seS

for all m-indexed sets {At>s}t<BT}SeS in J^, then there is an m-ideal
Δ in & such that {j, ^} is an m-extension of iΔ(J&) but not an
m-completion, where iΔ{A) = [ί(A)]j for all A e J < &Δ = &\Δ and
j is the identity map of iΔ(J*f) into &Δ.

Proof. Let

Δf = {Bf e^:B' S-B and Bf = f\ i(At) ,
teT

for some m-indexed set {At}teτ in

and let Δ = (Δr)m. Then if δeΔ,δ^B, so B <£ Δ. If A e j& and
[i(A)]j § [B]Δ then i(A) — Be Δ so i(A) — J3 S # which implies
i(A) gΞ JB, hence ΐ(A)€ J and [i(A)]Δ = A^Δ> implying iΔ(Ssf) is not
dense in &_.

It only remains to show that iά(Szf) is m-regular in &Δ. If

n ίί(A()i, = Λ^,

then i(A) S iί-A*) for all teT implies i(A) e Δ, so i(A) S B. If

Π i(Aβ) g B ,

then there is an A Φ A^ in J ^ such t h a t

() ft ί )
teT

contradicting the above statement. Thus

Π i(At) S 5
ί e Γ

SO
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and

Thus if sf is the Boolean algebra constructed in Lemua 3.5,
is a Boolean algebra such that 5ίΓ(iΔ( Jzf)) contains more than

one element. Hence it is justified to assume that for each infinite
cardinal m there is a Boolean algebra S$f such that J^f has an m-
extension which is not an ra-completion.

4* Let {J^t}teτ be a (fixed) indexed set of Boolean algebras.
Let ht be an isomorphism of Szft onto the field _^7 of all open-closed
subsets of the Stone space Xt of sft. Let X denote the Cartesian
product of all the spaces Xt. Let πt be the projection of X onto
and define

by:

if Fe jpς then φt{F) = {x e X: πt(x) e F) .

Let &~ be the Boolean product of {J^} i e r. Define h* = ΨtK and

let ^ be the set of all sets Γlteτ,h?(At); Ate Jϊft, T S Γ, Γ ^ w.

Define JF~ to be the field of sets generated by St. Let J be the set

of all sets S g / such that

1. S^m;
2. there is a teT such that S S h?(<M);

3. the join Ufe^A exists.
Let Mr be the set of all sets S S Γ such that

1. S ^ m ;
2. there ί s a ί e Γ such that S S ht{S*ft))

3. the meet ΠίU-A exists.
Let M" be the set of all sets S £ T such that

1. Srg^;
2. if A e S then A G hf{j*ft) for some ί e T;
3. if A, 5 G S, A ^ JB, then A e hΐ{*M) implies B $ hΐ(jχft). Let

Λf = M' U M".
The following lemma is due to La Grange [1] and will be given

without proof.

LEMMA 4.1. If {{ίt}teτ, ^}e^n then there is one and only one

(J, M, m)'isomorphism h mapping &~ into & such that

hhf = it for all teT .
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THEOREM 4.1. If {{it}tQTf ^\ e ̂  then there is a mapping h
/\ /\

0/ ά^ into & such that {h, &) is a (J, M, m)-extension of J?~. If
{h, &) is a (J, M, m)-extension of J^ then the ordered 'pair
{{hht}tβτ, .<

Proof. Let h be the (J, M, m)~isomorphism from ^ into &
such that hhf = i« for all te T. Then {Λ, ̂ } is a (J, Λf, m)-extension
of Jrm

Conversely, if {h, &} is a (J, M, m)-extension of ^ it follows
immediately that {{hh?}t€T,, ̂ } is an (m, ̂ -product of

THEOREM 4.2. 1/ {{it}ίeΓ, .^}, {{i't}teτ> ^f) are two (m, n)-products
°f {^t}teτ then

i/, and only if,

{i, m ^ {%', .$?'}

where {ί, .&} and {if, &'} are the (J, M, m)-extensions of ^ induced
by the (J, M, m)-isomorphisms ir and i of ά^ into &' and £%?,
respectively, given by Lemma 4.1.

Proof. Now

{{ith*T, ^} ^ {{ϊt}teτ, &'\

if, and only if, there is an m-homomorphism h such that

h\^f >&

and hi't — it for all te T. Similarly,

{i, ̂ } £ {*', έ&'}

if, and only if, there is an m-homomorphism

h: &' > &

such that h'i' — i. Thus it suffices to show that hi' = i, if, and
only if, hi[ — it. Let h? be defined as above. Then ihf = it and
i'h* = it, so if hi' — ί,

hi't = hi'ht = ihf = it ,

and if hi\ — ίt, then

hi' = hi'th?-1 = ithΐ~ι - i .
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La Grange [1] has given an example of an (m, 0)-product for
which & does not contain a smallest element and an example of an
(m, ^-product for which &n does not contain a smallest element.
Theorem 4.2 extends this result by showing that the question whether
& or £Pn contains a smallest element reduces to asking whether the
class of all (J, M, m)-extensions of J^J or J^ contains a smallest
element for J and M defined appropriately in each case, where j^J
and j?~ are denned as above. Now the class of all (J, M, m)-exten-
sions of J^J contains a smallest element only if the class of all m-
extensions of S^ contains a smallest element and Theorem 3.2 shows
that the class of all m-extensions of s^ need not contain a smallest
element, which implies the same is true for ^ . Since Theorem 3.2
may be extended to Boolean algebras of the form ^ it follows that
&>n need not contain a smallest element.
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