ON \((J, M, m)\)-EXTENSIONS OF BOOLEAN ALGEBRAS

Dwight Webster Read
ON \((J, M, m)\)-EXTENSIONS OF BOOLEAN ALGEBRAS

DWIGHT W. READ

The class \(\mathcal{K}\) of all \((J, M, m)\)-extensions of a Boolean algebra \(\mathcal{A}\) can be partially ordered and always contains a maximum and a minimal element, with respect to this partial ordering. However, it need not contain a smallest element. Should \(\mathcal{K}\) contain a smallest element, then \(\mathcal{K}\) has the structure of a complete lattice. Necessary and sufficient conditions under which \(\mathcal{K}\) does contain a smallest element are derived. A Boolean algebra \(\mathcal{A}\) is constructed for each cardinal \(m\) such that the class of all \(m\)-extensions of \(\mathcal{A}\) does not contain a smallest element. One implication of this construction is that if a Boolean algebra \(\mathcal{A}\) is the Boolean product of a least countably many Boolean algebras, each of which has more than one \(m\)-extension, then the class of all \(m\)-extensions of \(\mathcal{A}\) does not contain a smallest element. The construction also has as implication that neither the class of all \((m, 0)\)-products nor the class of all \((m, n)\)-products of an indexed set \(\{\mathcal{A}_i\}_{i \in \tau}\) of Boolean algebras need contain a smallest element.

1. Sikorski [2] has investigated the question of imbedding a given Boolean algebra \(\mathcal{A}\) into a complete or \(m\)-complete Boolean algebra \(\mathcal{B}\) and has shown that in the case where the imbedding map is not a complete isomorphism, the imbedding need not be unique up to isomorphism. He further has shown that if \(\mathcal{K}\) is the class of all \((J, M, m)\)-extensions of a Boolean algebra \(\mathcal{A}\), then \(\mathcal{K}\) has a naturally defined partial ordering on it and always contains a maximum and a minimal element. He has left as an open question whether it always contains a smallest element. La Grange [1] has given an example which implies that \(\mathcal{K}\) need not always contain a smallest element. However, the question of when does \(\mathcal{K}\) in fact contain a smallest element is of interest as it turns out that should \(\mathcal{K}\) contain a smallest element, it has the structure of a complete lattice.

In §2, necessary and sufficient conditions are given for \(\mathcal{K}\) to contain a smallest element. In addition, the principle behind La Grange’s example is generalized in Proposition 2.10 to show that if \(\mathcal{A}\) is not \(m\)-representable then the class \(\mathcal{K}\) of all \((J, M, m')\)-extensions of \(\mathcal{A}\), where \(J, \overline{M} < \sigma\) and \(m' > M\), will not contain a smallest element.

Since the proof of this result requires that \(J\) and \(M\) have cardinality \(\leq \sigma\), it is of interest to ask if the class of all \(m\)-extensions
contain a smallest element in general, and the answer is no.

In § 3, a Boolean algebra \mathcal{A} is constructed for each cardinal m such that the class \mathcal{K} of all m-extensions of \mathcal{A} does not contain a smallest element. The construction has as implication (Theorems 3.1 and 3.2; Corollary 3.1) that for each algebra in a rather broad group of Boolean algebras, the class of all m-extensions will not contain a smallest element. In particular, this group includes all Boolean algebras which are the Boolean product of at least countably many Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski’s result that there is an equivalence between the class \mathcal{P} of all $(m, 0)$-products of an indexed set $\{\mathcal{A}_t\}_{t \in \mathcal{T}}$ of Boolean algebras and the class of all (J, M, m)-extensions of the Boolean product \mathcal{A}_0 of $\{\mathcal{A}_t\}_{t \in \mathcal{T}}$, for suitably defined J and M, is generalized to show there is an equivalence between the class \mathcal{P}_n of all (m, n)-products of $\{\mathcal{A}_t\}_{t \in \mathcal{T}}$ and all (J, M, m)-extensions of \mathcal{F}, where \mathcal{F} is the field of sets generated by a certain set \mathcal{I}, for suitably defined J and M. Then the above results imply that neither \mathcal{P} nor \mathcal{P}_n need contain a smallest element.

The notation throughout follows that of Sikorski [2].

2. Let n be the cardinality of a set of generators for the Boolean algebra \mathcal{A}, let $\mathcal{A}_{m,n}$ be a free Boolean m-algebra with a set of n free m-generators, let \mathcal{A}_n be the free Boolean algebra generated by this set of n free m-generators and let g be a homomorphism from \mathcal{A}_n to \mathcal{A}. Let Δ_0 be the kernel of this homomorphism and let I be the set of all m-ideals \mathcal{A} in $\mathcal{A}_{m,n}$ such that:

a. $\Delta_0 \cap \mathcal{A}_n = \Delta_0$;

b. \mathcal{A} contains all the elements

$$A_0 - \bigcup_{A \in S_1} A, \quad \bigcup_{A \in S_1} A - A_0,$$

$$A_0 - \bigcap_{A \in S_2} A, \quad \bigcap_{A \in S_2} A - A_0,$$

where $A_0 \in \mathcal{A}_n$ and S_1, S_2 are any subsets of \mathcal{A}_n of cardinality $\leq m$ such that:

$$g(S_1) \in J, \quad g(A_0) = \bigcup_{A \in S_1} g(A)$$

$$g(S_2) \in M, \quad g(A_0) = \bigcap_{A \in S_2} g(A).$$

For each $\mathcal{A} \in I$ let

$$\mathcal{A}_\mathcal{A} = \mathcal{A}_{m,n} / \mathcal{A}$$

and

$$g_\mathcal{A}(\mathcal{A}/\mathcal{A}) = g(\mathcal{A}), \quad \text{for all } \mathcal{A} \in \mathcal{A}_{m,n}.$$
Proposition 2.1. The ordered pair \(\{i_\Delta, A_\Delta\} \) is a \((J, M, m)\)-extension of the Boolean algebra \(A \) and if \(\{i, B\} \) is a \((J, M, m)\)-extension of \(A \) there is a \(\Delta \in I \) such that \(\{i_\Delta, A_\Delta\} \) is isomorphic to \(\{i, B\} \). Further, if \(\Delta, \Delta' \in I \) then
\[
\{i_\Delta, A_\Delta\} \leq \{i_{\Delta'}, A_{\Delta'}\} \text{ if, and only if, } \Delta \supseteq \Delta'.
\]

Lemma 2.1. If \(S \) is a set of elements in \(\mathcal{X} \) then the least upper bound (lub) of \(S \) exists in \(\mathcal{X} \).

Now let \(\mathcal{X}(J, M, m) \) denote the class of all \((J, M, m)\)-extensions of \(A \).

Theorem 2.1. Let \(\mathcal{X} \) be the class of all \((J, M, m)\)-extensions of a Boolean algebra \(A \). The following are equivalent:
1. \(\mathcal{X} \) contains a smallest element;
2. \(\mathcal{X} \) is a lattice;
3. \(\mathcal{X} \) is a complete lattice.

Proof.
1. \(\Rightarrow \) 3. It suffices to show that if \(S \) is a set of \((J, M, m)\)-extensions of \(A \) then the greatest lower bound (glb) of \(S \) exists in \(\mathcal{X} \), which follows from noting that if \(L \) is the set of all lower bounds for the set \(S \) then \(L \neq 0 \) and by Lemma 2.1 the lub of \(L \) exists in \(\mathcal{X} \), hence is in \(L \).

3. \(\Rightarrow \) 2. By definition.

2. \(\Rightarrow \) 1. If \(\{i, B\} \) is an \(m \)-completion of \(A \), \(\{j, C\} \in \mathcal{X} \), and \(\mathcal{X} \) a lattice, then there is an element \(\{j', C'\} \in \mathcal{X} \) such that
\[
\{j', C'\} \leq \{j, C\}.
\]
Thus
\[
\{j', C'\} \leq \{i, B\},
\]
so
\[
\{j', C'\} = \{i, B\},
\]
implying
\[
\{i, B\} \leq \{j, C\}.
\]
Hence \(\{i, B\} \) is a smallest element in \(\mathcal{X} \).

Corollary 2.1. If \(J' \supseteq J \) and \(M' \supseteq M \) then the following are equivalent:
1. \(\mathcal{X}(J, M, m) \) contains a smallest element;
2. $\mathcal{H}(J', M', m)$ is a sublattice of $\mathcal{H}(J, M, m)$;
3. $\mathcal{H}(J', M', m)$ is a complete sublattice of $\mathcal{H}(J, M, m)$.

Proof.
1. \Rightarrow 3. Since $\mathcal{H}(J', M', m)$ contains a smallest element, so does $\mathcal{H}(J, M, m)$ hence $\mathcal{H}(J', M', m)$ and $\mathcal{H}(J, M, m)$ are complete lattices. If $\{\{i, \mathcal{B}_i\}\} \in S$ is a set of elements in $\mathcal{H}(J', M', m)$, $\{i, \mathcal{C}\}$ is the lub of S in $\mathcal{H}(J, M, m)$ and $\{i', \mathcal{C}'\}$ is the lub of S in $\mathcal{H}(J', M', m)$, then there is an m-homomorphism h mapping \mathcal{C}' onto \mathcal{C} such that $hi' = i$. Hence i is a (J', M', m)-isomorphism. Thus $\{i, \mathcal{C}\} \in \mathcal{H}(J', M', m)$, implying

$$\{i, \mathcal{C}\} = \{i', \mathcal{C}'\}.$$

If $\{i, \mathcal{C}\}$ is the glb of S in $\mathcal{H}(J, M, m)$ and $\{i', \mathcal{C}'\} \in S$, then by a similar argument, i is a (J', M', m)-isomorphism, which implies $\{i, \mathcal{C}\}$ is the glb of S in $\mathcal{H}(J', M', m)$.

3. \Rightarrow 2. By definition.

2. \Rightarrow 1. The proof is the same as that for showing 2. \Rightarrow 1, in Theorem 2.1.

Thus it is of particular interest to know whether $\mathcal{H}(J, M, m)$ contains a smallest element, in general. Although, as it turns out, $\mathcal{H}(J, M, m)$ need not contain a smallest element in general, a minimal (J, M, m)-extension is always an m-completion, hence there is always a unique minimal (J, M, m)-extension in $\mathcal{H}(J, M, m)$.

Proposition 2.2. An m-completion $\{i, \mathcal{B}\}$ of the Boolean algebra \mathcal{A} is a unique minimal element in \mathcal{H}.

Proof. That a minimal element in \mathcal{H} is an m-completion is clear.

If $\{i', \mathcal{B}'\}$ is another minimal element in \mathcal{H}, there are $\Delta, \Delta' \in I$ such that

$$\{i, \mathcal{B}\} = \{i_s, \mathcal{A}_s\}$$

and

$$\{i', \mathcal{B}'\} = \{i_{s'}, \mathcal{A}_{s'}\}.$$

Now $\{i, \mathcal{B}\}$ and $\{i', \mathcal{B}'\}$ minimal in \mathcal{H} imply Δ and Δ' are maximal m-ideals in I, but if $\hat{\Delta}$ is a maximal m-ideal in I then $g_{\hat{\Delta}}(\mathcal{A}_s, \mathcal{A}_s)$ is dense in $\mathcal{A}_{\hat{\Delta}}$. The ideal $\hat{\Delta}' = \langle \hat{\Delta}, A \rangle$ in $\mathcal{A}_s, \mathcal{A}_s$ is an m-ideal and $\hat{\Delta}' \in I$, contradicting the maximality of $\hat{\Delta}$. So $\{i', \mathcal{B}'\}$ is an m-completion of \mathcal{A}, hence isomorphic to $\{i, \mathcal{B}\}$, implying
\{i', \mathcal{B}'\} = \{i, \mathcal{B}\}.

Proposition 2.3. If \(\mathcal{A} \) is a Boolean \(m \)-algebra that satisfies the \(m \)-chain condition and

\[
\bigcup_{t \in T} A_t
\]

is the join of an indexed set \(\{A_t\}_{t \in T} \) in \(\mathcal{A} \), then there is an indexed set \(\{A'_t\}_{t \in T} \) of disjoint elements of \(\mathcal{A} \) such that

1. \(\bigcup_{t \in T} A'_t = \bigcup_{t \in T} A_t ; \)
2. \(A'_t \subseteq A_t \) for all \(t \in T \).

Proof. Let \(\mathcal{I} \) be the collection of all sets \(S \) of disjoint elements in \(\mathcal{A} \) such that for each \(s \in S \) there is a \(t \in T \) with \(s \subseteq A_t \). If

\[
S_1 \subseteq S_2 \subseteq \cdots \subseteq S_i \subseteq \cdots
\]

is a chain of sets in \(\mathcal{I} \) indexed by \(I \) and ordered by set theoretical inclusion, then

\[
\bigcup_{t \in I} S_t = S \in \mathcal{I}.
\]

By Zorn's lemma there is a maximal set in \(\mathcal{I} \), say \(S' = \{A_r\}_{r \in R} \), and it immediately follows that

\[
\bigcup_{r \in R} A_r \neq A.
\]

Now let

\[
\varphi: S' \longrightarrow T
\]

be a mapping such that if \(A_r \in S' \) then

\[
A_r \subseteq A_{\varphi(A_r)}.
\]

For each \(t \in T \) define

\[
A'_t = \bigcup \{A_r \in S' : \varphi(A_r) = t\}
\]

if there is an \(A_r \in S' \) such that \(\varphi(A_r) = t \), otherwise define

\[
A'_t = \Lambda.
\]

Then

\[
\{A'_t\}_{t \in T}
\]

is the desired set.

Proposition 2.4. Let \(\mathcal{A} \) be a Boolean algebra. The following are equivalent:
1. \(\mathcal{A} \) satisfies the m-chain condition:
2. for all sets \(S \) in \(\mathcal{A} \) such that \(\bigcup_{s \in S} s \) exists,

\[
\bigcup_{s \in S} s = \bigcup_{s \in S'} s
\]

for some set \(S' \subseteq S \) with \(S' \leq m \); and dually for meets.

Proof.

1. \(\implies \) 2. Suppose \(\mathcal{A} \) satisfies the m-chain condition. It suffices to show that if

\[
S = \{A_t\}_{t \in T} \quad \text{and} \quad V = \bigcup_{t \in T} A_t, \quad \bar{T} = m' > m,
\]

then there is a set \(T' \subseteq T, \bar{T}' \leq m, \) such that

\[
\bigcup_{t \in T'} A_t = V.
\]

Let \(\{i, \mathcal{B}\} \) be an \(m' \)-completion of \(\mathcal{A} \). Then \(\mathcal{B} \) satisfies the m-chain condition and

\[
V_{\mathcal{B}} = i(V_{\mathcal{A}})
\]

\[
= \bigcup_{t \in T'} i(A_t).
\]

By Proposition 2.3, there is a set \(\{B_t\}_{t \in T} \) of disjoint elements in \(\mathcal{B} \) such that

\[
B_t \subseteq i(A_t) \quad \text{and} \quad \bigcup_{t \in T} B_t = \bigcup_{t \in T} i(A_t).
\]

Since this set contains at most \(m \)-distinct elements,

\[
\bigcup_{t \in T'} B_t = \bigcup_{t \in T'} i(A_t),
\]

\(T' \subseteq T \) and \(\bar{T}' \leq m \). Thus

\[
V_{\mathcal{B}} = \bigcup_{t \in T'} i(A_t)
\]

or

\[
V_{\mathcal{A}} = \bigcup_{t \in T'} A_t.
\]

2. \(\implies \) 1. Suppose \(\{A_t\}_{t \in T} \) is an \(m' \)-indexed set of disjoint elements of \(\mathcal{A} \), \(m' > m \). It may be assumed that \(\{A_t\}_{t \in T} \) is a maximal set of disjoint elements of \(\mathcal{A} \). Then for some \(T' \subseteq T, \bar{T}' \leq m, \)

\[
V_{\mathcal{A}} = \bigcup_{t \in T'} A_t.
\]

Since \(\bar{T}' \neq \bar{T} \), there is a \(t_0 \in T - T' \) such that
Thus
\[\bigcup_{i \in T} A_i \neq \bigvee \mathcal{A}, \]
a contradiction. Hence \(T \leq m. \)

This gives, as an immediate corollary, the following result due to Sikorski [2].

Corollary 2.2. If \(\mathcal{A} \) is a Boolean \(m \)-algebra and satisfies the \(m \)-chain condition, it is a complete Boolean algebra.

Proposition 2.5. The class \(\mathcal{X}(J, M, m') \) contains a smallest element if \(\mathcal{X}(J, M, m) \) contains a smallest element, \(m' < m. \)

Proof. Let \(\{i, B\} \) be the smallest element in \(\mathcal{X}(J, M, m). \) If \(\{j', C'\} \in \mathcal{X}(J, M, m'), \) let \(\{k, C\} \) be an \(m \)-completion of \(C'. \) Then \(\{kj, C\} \in \mathcal{X}(J, M, m). \)

By the fact that \(\{i, B\} \) is the smallest element in \(\mathcal{X}(J, M, m), \) there is an \(m \)-homomorphism \(h \) such that
\[h: C \rightarrow B \text{ and } hkj = i. \]

Also \(\{i, B\} \) an \(m \)-completion of \(\mathcal{A} \) implies that there is an \(m' \)-completion \(\{i, B'\} \) of \(\mathcal{A} \) such that \(B' \subseteq B. \) Thus \(hk(C') \) is an \(m \)-subalgebra of \(B, \) hence \(B' \subseteq hk(C') \) and is an \(m \)-subalgebra of \(C. \)

Now \(kj(\mathcal{A}) \) \(m \)-generates \(k(C') \) in \(C \) and \(kj(\mathcal{A}) \subseteq h^{-1}(B'), \) hence
\[h^{-1}(B') \supseteq k(C'), \]
or
\[h(h^{-1}(B')) \supseteq hk(C'). \]
But
\[h(h^{-1}(B')) = B', \]
thus
\[B' \supseteq hk(C'), \]
so
\[B' = hk(C'). \]

Since \(hkj = i, \)
But a complete isomorphism implies that

\[\{kj, k(C')\} \leq \{kj, k(C')\} , \]

and since isomorphic elements in \(\mathcal{A}(J, M, m) \) have been identified,

\[\{i, \mathcal{B}'\} = \{i, \mathcal{C}'\} . \]

Lemma 2.2. If \(\bar{J} \leq \sigma \) and \(\bar{M} \leq \sigma \) then there is a \((J, M, m)\)-isomorphism \(i \) of a Boolean algebra \(\mathcal{A} \) into the field \(\mathcal{F} \) of all subsets of a space.

Proposition 2.6. If the Boolean algebra \(\mathcal{A} \) is \(m \)-representable but not \(m^+ \)-representable, \(m^+ \) the smallest cardinal greater than \(m \), then \(\mathcal{A}(J, M, m^+) \) does not contain a smallest element if

\[\mathcal{A}^+(J, M, m^+) \neq \emptyset . \]

If \(J \leq \sigma \) and \(M \leq \sigma \) then \(\mathcal{A}^+(J, M, m^+) \neq \emptyset . \)

Proof. Suppose \(\{j, C\} \in \mathcal{A}^+(J, M, m^+) \). Then \(C \) is \(m \)-representable and if an \(m^+ \)-completion \(\{i, \mathcal{B}\} \) of \(\mathcal{A} \) is a smallest element in \(\mathcal{A}(J, M, m^+) \), there is a surjective \(m^+ \)-homomorphism

\[h: C \rightarrow \mathcal{B} , \]

which implies \(\mathcal{B} \) is \(m^+ \)-representable, hence \(\mathcal{A} \) is \(m^+ \)-representable, a contradiction. Thus \(\mathcal{A}(J, M, m^+) \) does not contain a smallest element if \(\mathcal{A}^+(J, M, m^+) \neq \emptyset . \)

If \(J \leq \sigma \) and \(M \leq \sigma \) then \(\mathcal{A} \) is \((J, M, m^+)\)-representable by Lemma 2.2, hence \(\mathcal{A}^+(J, M, m^+) \neq \emptyset . \)

The next proposition is an easy generalization of Sikorski's [2] Proposition 25.2 and will be needed for the last theorem in this section.

Proposition 2.7. A Boolean algebra \(\mathcal{A} \) is completely distributive, if, and only if, it is atomic.

Corollary 2.3. A Boolean algebra \(\mathcal{A} \) is completely distributive, if, and only if, \(\mathcal{A} \) is \(m \)-distributive, \(m = \mathcal{A} . \)

The following proposition is due to Sikorski [2] and will be given without proof.

Proposition 2.8. If the Boolean algebra \(\mathcal{A} \) is \(m \)-distributive, then \(\mathcal{A}(J, M, m) \) contains a smallest element for arbitrary \(J \) and \(M \).
LEMMA 2.3. If \(\{i, B\} \) is an \(m \)-extension of the Boolean algebra \(A \) and \(B \) is \(m \)-representable, then \(A \) is \(m \)-representable.

Proof. This follows immediately from the fact that \(A \) is \(m \)-regular in \(B \).

Now to prove the main theorem of this section.

THEOREM 2.2. Let \(\mathcal{A} \) be a Boolean algebra. Then the following are equivalent:
1. \(\mathcal{A} \) contains a smallest element for arbitrary \(J, M, \) and \(m \);
2. \(\mathcal{A} \) is \(m \)-representable for all \(m \);
3. \(\mathcal{A} \) is completely distributive;
4. \(\mathcal{A} \) is atomic;
5. an \(m \)-completion of \(\mathcal{A} \) is atomic for all \(m \);
6. an \(m \)-completion of \(\mathcal{A} \) is in \(\mathcal{A}, \mathcal{(J, M, m)} \) for arbitrary \(J, M, \) and \(m \);
7. \(\mathcal{A}(J, M, 2^m) \) contains a smallest element, where \(J = M = \emptyset \) and \(\mathcal{A} = m^* \).

Proof.
1. \(\Rightarrow \) 2. If \(\mathcal{A} \) is \(m \)-representable but not \(m^* \)-representable, then Proposition 2.6 implies \(\mathcal{A}(J, M, m^*) \) does not contain a smallest element if \(\mathcal{J}, \mathcal{M} < \sigma \).

2. \(\Rightarrow \) 3. This follows from the fact that if a Boolean algebra \(\mathcal{A} \) is \(2^m \)-representable, it is \(m \)-distributive.

3. \(\Rightarrow \) 4. This follows from Proposition 2.7.

3. \(\Rightarrow \) 1. This follows from Proposition 2.8.

4. \(\Rightarrow \) 5. If \(\{i, B\} \) is an \(m \)-completion of \(\mathcal{A} \) then \(i(\mathcal{A}) \) is dense in \(B \), so \(B \) is atomic, and conversely.

2. \(\Rightarrow \) 6. This follows from noting that 2. \(\Rightarrow \) 3. and \(\mathcal{A} \) completely distributive implies an \(m \)-completion of \(\mathcal{A} \) is completely distributive, hence \(m \)-representable for all cardinals \(m \).

6. \(\Rightarrow \) 2. This follows from Lemma 2.3.

3. \(\Rightarrow \) 7. If \(J = M = \emptyset \) and \(\mathcal{A}(J, M, 2^m) \) contains a smallest element, then by Proposition 2.6, \(\mathcal{A} \) is \(2^m \)-representable, hence \(m^* \)-distributive. Since \(m^* = \mathcal{A} \), \(\mathcal{A} \) is completely distributive, by Corollary 2.3. The converse is clear.
3. The example in § 2 of a Boolean algebra \mathcal{J} such that the class of all (J, M, m)-extensions of \mathcal{J} does not contain a smallest element depends on the assumption that $\overline{J}, \overline{M} \leq \sigma$. Thus it is of interest to know whether an example can be found showing that the class of all m-extensions of \mathcal{J} does not contain a smallest element, since this corresponds to the case where J and M are as large as possible. As it turns out, there are Boolean algebras \mathcal{J} such that the class of all m-extensions \mathcal{K} does not contain a smallest element. In this section such an example will be constructed for each infinite cardinal m and several general types of Boolean algebras such that \mathcal{K} does not contain a smallest element will be given.

Throughout this section \mathcal{K} will denote the class of all m-extensions of a Boolean algebra \mathcal{J} and $\mathcal{K}(J, M, m)$ the class of all (J, M, m)-extensions.

If \mathcal{J} is a Boolean algebra and $\{i, \mathcal{C}\} \in \mathcal{K}(J, M, m)$, let

$$K(\mathcal{C}) = \{C \in \mathcal{C}: \text{if } i(A) \subseteq C, A \in \mathcal{J}, \text{ then } A = \bigwedge_{\mathcal{J}}\} ,$$

and

$$K_p(\mathcal{C}) = \{C \in \mathcal{C}: \text{if } P = \{A \in \mathcal{J}: i(A) \supseteq C\} \text{ then } \bigcap_{A \in P} A = \bigwedge_{\mathcal{J}}\} .$$

Note that $K_p(\mathcal{C}) \subseteq K(\mathcal{C})$.

Lemma 3.1. The set $K_p(\mathcal{C})$ is an ideal and $K(\mathcal{C}) = K_p(\mathcal{C})$, if, and only if, $K(\mathcal{C})$ is an ideal.

Proof. It follows easily that $K_p(\mathcal{C})$ is an ideal.

If $K(\mathcal{C})$ is an ideal and $\mathcal{C} \in K(\mathcal{C})$ let

$$P = \{A \in \mathcal{J}: i(A) \supseteq C\} .$$

If $A' \in \mathcal{J}$ and $A' \subseteq A$ for all $A \in P$, then

$$i(A') - C \in K(\mathcal{C}) .$$

Now $i(A') \cap C \in K(\mathcal{C})$, hence

$$i(A') = (i(A') - C) \cup (i(A') \cap C) \in K(\mathcal{C}) ,$$

which implies $i(A') = \bigwedge_{\mathcal{J}}$ or $A' = \bigwedge_{\mathcal{J}}$. Thus

$$\bigcap_{A \in P} A = \bigwedge_{\mathcal{J}} ,$$

so $C \in K_p(\mathcal{C})$, and

$$K_p(\mathcal{C}) = K(\mathcal{C}) .$$

Since $K_p(\mathcal{C})$ is an ideal, the converse is true.
Proposition 3.1. If \mathcal{A} is a Boolean algebra the following are equivalent:

1. $\mathcal{K}(J, M, m)$ contains a smallest element;
2. $K(\mathcal{C}) = K_P(\mathcal{C})$ for all $\{i, \mathcal{C}\} \in \mathcal{K}(J, M, m)$;
3. $K(\mathcal{C}) = K_P(\mathcal{C})$ if $\{i, \mathcal{C}\}$ is the maximum element in $\mathcal{K}(J, M, m)$.

Proof.

1. \Rightarrow 2. Suppose $\mathcal{K}(J, M, m)$ contains a smallest element $\{i, \mathcal{C}\}$, and there is an element $\{j, \mathcal{E}\} \in \mathcal{K}(J, M, m)$ with the property that

$$K(\mathcal{C}) \neq K_P(\mathcal{C}) .$$

Let h be the unique m-homomorphism mapping \mathcal{C} onto \mathcal{D} such that $h_j = i$. Let $\ker h$ be the kernel of this mapping. Then

$$K_P(\mathcal{C}) \subseteq \ker h \subseteq K(\mathcal{C}) ,$$

and

$$\ker h \neq K(\mathcal{C}) .$$

Pick $x \in K(\mathcal{C}) - \ker h$ and let

$$\Delta = \langle x \rangle ,$$

so Δ is a complete ideal. Thus

$$\{i_j, \mathcal{C}/\Delta\} \in \mathcal{K}(J, M, m) ,$$

where

$$i_\Delta: \mathcal{A} \to \mathcal{C}/\Delta$$

is defined by

$$i_\Delta(A) = [i(A)]_\Delta .$$

Consequently, there are unique homomorphisms h_Δ and h' mapping \mathcal{C} onto \mathcal{C}/Δ, \mathcal{C}/Δ onto \mathcal{D}, and satisfying $h_\Delta j = i_j$, $h'i_\Delta = i$, respectively. Hence

$$h'h_\Delta j = h'i_\Delta = i$$

and by the uniqueness of h,

$$h = h'h_\Delta .$$

This implies

$$h(x) = h'h_\Delta(x) = \bigwedge_{\mathcal{C}} ,$$
a contradiction. Thus

\[K(\mathcal{C}) = K_p(\mathcal{C}) . \]

2. \(\implies\) 3. Obvious.

3. \(\implies\) 1. To show that \(\mathcal{A}(J, M, m)\) contains a smallest element, let \(\{j, \mathcal{C}\}\) be the largest element in \(\mathcal{A}(J, M, m)\) and suppose \(\{j', \mathcal{C}'\} \in \mathcal{A}(J, M, m)\). Let \(\{i, \mathcal{B}\}\) be an \(m\)-completion of \(\mathcal{A}\). Then there is an \(m\)-homomorphism \(h'\) mapping \(\mathcal{C}\) onto \(\mathcal{C}'\) such that \(h'j = j'\) and an \(m\)-homomorphism \(h\) mapping \(\mathcal{C}\) onto \(\mathcal{B}\) such that \(hj = i\). Thus

\[K_p(\mathcal{C}) \subseteq \ker h \subseteq K(\mathcal{C}) , \]

which implies, by assumption, that

\[K_p(\mathcal{C}) = \ker h = K(\mathcal{C}) , \]

so \(K_p(\mathcal{C})\) and \(K(\mathcal{C})\) are \(m\)-ideals in \(\mathcal{C}\). Further,

\[h'(K_p(\mathcal{C})) \subseteq K_p(\mathcal{C}') \subseteq K(\mathcal{C}') \subseteq h'(K(\mathcal{C})) . \]

This implies that

\[h'(K_p(\mathcal{C})) = K_p(\mathcal{C}') = K(\mathcal{C}') = h'(K(\mathcal{C})) , \]

hence \(K(\mathcal{C}')\) is an \(m\)-ideal. Let

\[\Delta = K(\mathcal{C}') . \]

Then \(\mathcal{C}'/\Delta\) is an \(m\)-algebra and

\[j'_*(\mathcal{A}) = \{[j' (A)]_\Delta : A \in \mathcal{A}\} \]

\(m\)-generates \(\mathcal{C}'/\Delta\). Finally, \(j'_*(\mathcal{A})\) is dense in \(\mathcal{C}'/\Delta\). Thus \(\{j', \mathcal{C}'/\Delta\}\) is an \(m\)-completion of \(\mathcal{A}\), hence is equal to \(\{i, \mathcal{B}\}\), as isomorphic elements of \(\mathcal{A}(J, M, m)\) have been identified. The \(m\)-homomorphism

\[h_\Delta : \mathcal{C}' \longrightarrow \mathcal{C}'/\Delta \]

defined by

\[h_\Delta(C') = [C']_\Delta \]

has the property that

\[h_\Delta j = j' \quad \text{for all} \quad A \in \mathcal{A} , \]

implying that

\[\{i_\Delta, \mathcal{C}'/\Delta\} \subseteq \{j', \mathcal{C}'\} . \]
Hence \(\mathcal{K}(J, M, m) \) contains a smallest element.

This, then, gives a way to construct a Boolean algebra \(\mathcal{A} \) such that \(\mathcal{K} \) does not contain a smallest element. Namely, by finding a Boolean algebra \(\mathcal{A} \) with an \(m \)-extension \(\{i, \emptyset\} \) such that \(K_p(\emptyset) \neq K(\emptyset) \). The next task is to construct such a Boolean algebra.

If \(\bar{T} = m \) and \(\mathcal{A} = \mathcal{A}_t \) for all \(t \in T \), the Boolean product of \(\{\mathcal{A}_t\}_{t \in T} \) will be called the \(m \)-fold product of \(\mathcal{A} \). Note that if \(\mathcal{A} \) is a subalgebra of the Boolean algebra \(\mathcal{A}' \), \(\mathcal{F} \) is the \(m \)-fold product of \(\mathcal{A} \) and \(\mathcal{F}' \) is the \(m \)-fold product of \(\mathcal{A}' \), then \(\mathcal{F} \subseteq \mathcal{F}' \).

Lemma 3.2. If \(\mathcal{A} \) is an \(m \)-regular subalgebra of the Boolean algebra \(\mathcal{A}' \) then the Boolean \(m \)-fold product \(\mathcal{F} \) of \(\mathcal{A} \) is isomorphic to an \(m \)-regular subalgebra of the Boolean \(m \)-fold product \(\mathcal{F}' \) of \(\mathcal{A}' \).

Proof. Since \(\mathcal{A} \) is a subalgebra of \(\mathcal{A}' \), \(\mathcal{F} \subseteq \mathcal{F}' \). Let \(\mathcal{I}(\mathcal{F}') \) be the set of all \(\mathcal{P}_t(A) \), \(A \in \mathcal{A} \) and \(t \in T(A \in \mathcal{A}' \) and \(t \in T \). Then \(F \in \mathcal{I}(\mathcal{F}(\mathcal{F}')) \) implies \(-F \in \mathcal{I}(\mathcal{F}(-F \in \mathcal{F}')) \) and \(\mathcal{I}(\mathcal{F}') \) are sets of generators for \(\mathcal{F}(\mathcal{F}') \). For elements \(F \in \mathcal{F}' \) of the form

\[
F = \bigcap_{t=1}^{N} F_t, \quad F_t \in \mathcal{I},
\]

define

\[
\lambda_t(F) = \left\{ \pi_t(x) : x \in \bigcap_{t=1}^{N} F_t \right\}.
\]

Note that if \(F \in \mathcal{F}' \) and \(t \in T \) is such that \(\lambda_t(F) \neq \bigvee_{\mathcal{F}} \), then \(\mathcal{P}_t(\lambda_t(F)) = F \).

In order to show \(\mathcal{F} \) is \(m \)-regular in \(\mathcal{F}' \), it suffices to prove that if \(\{F_t\}_{t \in T} \) is an \(m \)-indexed set of elements of \(\mathcal{F} \) such that

\[
\bigcap_{t \in T} F_t = \Lambda_{\mathcal{F}}
\]

then

\[
\bigcap_{t \in T} F_t = \Lambda_{\mathcal{F}'}.
\]

Now \(F_t \in \mathcal{F} \) so \(F_t \) may be rewritten as

\[
F_t = \bigcap_{p=1}^{P_t} \bigcup_{q=1}^{Q_t} F_{p,q,t},
\]

where \(P_t, Q_t \) are finite numbers and \(F_{p,q,t} \in \mathcal{I} \), for all \(p \in P_t, q \in Q_t, \) and \(t \in T \). Thus
$\Lambda_{\mathcal{S}} = \bigcap_{t \in T} \bigcap_{p=1}^{P_t} \bigcup_{q=1}^{Q_t} F_{p,q,t}$

$$= \bigcap_{s \in S} \bigcup_{q=1}^{Q_s} F_{s,q}$$

after a suitable re-indexing, where $\bar{S} \leq m$ and $F_{s,q} = F_{p,q,t}$ for suitable $p \in P_t, t \in T$. Without loss of generality, assume that for each $s \in S, \lambda_t(F_{s,q}) \neq \Lambda_{\mathcal{S}'}$ implies $\lambda_t(F_{s,q'}) = \bigvee_{\mathcal{S}'}$ for all $t \in T$ and $q' \neq q$, and that $F_{s,q} \neq \bigvee_{\mathcal{S}'}$ for all $q, 1 \leq q \leq Q_s$, and all $s \in S$. Suppose $F'' \in \mathcal{S}'$ and $F'' \subseteq F_t$ for all $t \in T$. Then

$$F'' = \bigcup_{m=1}^{M} \bigcap_{n=1}^{N} F'_{m,n}, \quad F'_{m,n} \in \mathcal{S}'$$

so

$$\bigcap_{n=1}^{N} F'_{m,n} \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}$$

for $1 < m \leq M$, and all $s \in S$. Thus to show $F' = \Lambda_{\mathcal{S}'}$, it suffices to prove that if

$$\bigcap_{n=1}^{N} F'_{n} \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}$$

for all $s \in S$, where $F'_{n} \in \mathcal{S}'$, then

$$\bigcap_{n=1}^{N} F'_{n} = \Lambda_{\mathcal{S}'}.$$

It may be assumed that for each $n, 1 \leq n \leq N, \lambda_t(F'_{n}) \neq \Lambda_{\mathcal{S}'}$ implies $\lambda_t(F'_{n'}) = \bigvee_{\mathcal{S}'}$ for all $t \in T$ and $n' \neq n$, and that $F'_{n} \neq \bigvee_{\mathcal{S}'}$ for all $n, 1 \leq n \leq N$.

Now

$$\bigcap_{n=1}^{N} F'_{n} \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}$$

implies

$$\bigcap_{n=1}^{N} F'_{n} \cap \bigcup_{q=1}^{Q_s} F_{s,q} = \Lambda_{\mathcal{S}'}$$

and as each F'_{n} and $-F_{s,q}$ is of the form $\varphi_t(A)$ for some $A \in \mathcal{A}'$ and $t \in T$, the independence of the indexed set $\{\varphi_t(A')\}_{t \in T}$ of subalgebras of \mathcal{S}' implies that for some $n_s, 1 \leq n_s \leq N$, and some $q_s, 1 \leq q_s \leq Q_s$, $F'_{n_s} \cap -F_{s,q_s} = \Lambda_{\mathcal{S}'}$,

$$F'_{n_s} \subseteq F_{s,q_s}.$$

This argument may be repeated for each $s \in S$.

The set \(\{n_s: s \in S\} \) is finite so let \(\{n_s: s \in S\} = \{n_i: 1 \leq i \leq N'\} \). Let \(S_i = \{s \in S: F'_{n_i} \subseteq F_{s,q}\} \). If \(t_s \in T \) is such that
\[
\lambda_{t_s}(F_{s,q}) \neq \bigvee \mathcal{S}, \quad \text{for all } s \in S
\]
then \(\lambda_{t_s}(F_{s,q}) \in \mathcal{S} \) and
\[
\bigcap_{s \in S_i} \lambda_{t_s}(F_{s,q}) \neq \bigwedge \mathcal{S}.
\]
Thus
\[
\bigcap_{s \in S_i} \lambda_{t_s}(F_{s,q}) \neq \bigwedge \mathcal{S},
\]
or
\[
\bigcap_{s \in S_i} \lambda_{t_s}(F_{s,q}) \neq \bigwedge \mathcal{S},
\]
hence there is an \(A_i \in \mathcal{S}, A_i \neq \bigwedge \mathcal{S}, \) with
\[
A_i \subseteq \lambda_{t_s}(F_{s,q}) \text{ for all } s \in S_i.
\]
Let \(A_{t,i} \) be the set of all \(x \in X \) such that \(\pi_{t_s}(x) \in A_i \). Thus \(A_{t,i} \in \mathcal{S} \) and this argument may be repeated for each \(i, 1 \leq i \leq N' \). Now
\[
\bigwedge \mathcal{S} \neq \bigcap_{i=1}^{N'} A_{t,i}
\]
and
\[
\bigcap_{i=1}^{N'} A_{t,i} \subseteq \bigcup_{q=1}^{Q_s} F_{q,s}
\]
for all \(s \in S \). But then
\[
\bigcap_{i=1}^{N'} A_{t,i} \subseteq \bigcap_{s \in S} \bigcup_{q=1}^{Q_s} F_{q,s} = \bigwedge \mathcal{S},
\]
a contradiction. Thus \(\mathcal{S} \) is \(m \)-regular in \(\mathcal{S}' \).

The next lemma assumes there is a Boolean algebra \(\mathcal{A} \) such that an \(m \)-extension is not an \(m \)-completion. Sikorski [2] cites an example due to Katetov of such a Boolean algebra for the case \(m = \sigma \). As Lemmas 3.5 and 3.6 imply, there is such an \(\mathcal{A} \) for all infinite cardinal numbers \(m \).

Assume for the moment that \(\mathcal{A} \) is a Boolean algebra such that \(\mathcal{A} \) contains more than one element and \(\{i, B\} \in \mathcal{A} \) is an \(m \)-extension that is not an \(m \)-completion. Thus there is a \(B \in \mathcal{B} \) such that \(i(A) \subseteq B, A \in \mathcal{A} \), implies \(A = \bigwedge \mathcal{A} \). Let \(\mathcal{F}' \) be the Boolean \(m \)-fold product of \(\mathcal{B}, h_0 \) an isomorphism of \(\mathcal{B} \) onto the Stone space \(\mathcal{F} \) of
\(R, X \) the Cartesian product of \(R \) with itself \(m \) times and indexed by \(T \), and
\[
B_t = \mathcal{P}_t h_0(B) \quad \text{for all} \quad t \in T.
\]
Let
\[
B_0 = \bigcup_{t \in T'} B_t,
\]
where \(T' \) is a fixed, but arbitrary subset of \(T \) such that \(\bar{T}' \geq \sigma \), and define
\[
\mathcal{F}_0 = \langle \mathcal{F}', B_0 \rangle.
\]
Since \(\bar{T}' \geq \sigma \), \(\mathcal{F}_0 \neq \mathcal{F}' \).

Lemma 3.3. If \(\mathcal{F} \) is the Boolean \(m \)-fold product of \(\mathcal{N} \) then \(\mathcal{F} \) is isomorphic to an \(m \)-regular subalgebra of \(\mathcal{F}_0 \).

Proof. It may be assumed, without loss of generality, that \(\mathcal{A} \subseteq \mathcal{B} \). Thus \(\mathcal{F} \subseteq \mathcal{F}_0 \). Let \(\mathcal{I}(\mathcal{F}') \) be a generating set for \(\mathcal{F}(\mathcal{F}') \).

Let
\[
\mathcal{I}_0 = \mathcal{I}' \cup \{B_0\},
\]
so \(\mathcal{I}_0 \) is a generating set for \(\mathcal{F}_0 \). As in the previous lemma, to prove \(\mathcal{F} \) is \(m \)-regular in \(\mathcal{F}_0 \) it suffices to show that if
\[
\bigcap_{n=1}^N F_n' \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}
\]
for all \(s \in S, \bar{S} \leq m \); and
\[
\bigcap_{s \in S} \bigcup_{q=1}^{Q_s} F_{s,q} = \bigwedge \mathcal{S};
\]

\(F_{s,q} \in \mathcal{I} \) for all \(s \in S \) and \(1 \leq q \leq Q_s, F_n' \in \mathcal{I}_0, 1 \leq n \leq N \); then
\[
\bigcap_{n=1}^N F_n' = \bigwedge \mathcal{S}'.
\]
Since \(F_n' \in \mathcal{I}_0 \), there is an \(n, 1 \leq n \leq N \), such that \(F_n' = B_0 \) or \(F_n' = -B_0 \), otherwise there is nothing to prove. This may be reduced to two cases:

Case 1.
\[
\bigcap_{n=1}^N F_n' \cap B_0 \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}
\]
for all \(s \in S \), where \(F_n' \in \mathcal{I}' \) and \(F_{s,q} \in \mathcal{I} \).
Case 2.

\[
(-B_0) \cap \bigcap_{n=1}^{N} F'_n \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}
\]

for all \(s \in S\), where \(F'_n \in \mathcal{F}'\) and \(F_{s,q} \in \mathcal{F}\).

Proof of Case 1. If for each \(s \in S\) there is an \(n_s, 1 \leq n_s \leq N\), such that there is a \(q_s, 1 \leq q_s \leq Q_s\), with \(F'_{n_s} \subseteq F_{s,q_s}\), then

\[
\bigcap_{n=1}^{N} F'_n \subseteq \bigcup_{q=1}^{Q_s} F_{s,q}
\]

for all \(s \in S\), and

\[
\bigcap_{n=1}^{N} F'_n \in \mathcal{F}'
\]

implies

\[
\bigcap_{n=1}^{N} F'_n = \mathbb{1}_{\mathcal{F}'}.
\]

Thus it may be assumed there is an \(s_0\) such that

\[
\bigcap_{n=1}^{N} F'_n \not\subseteq \bigcup_{q=1}^{Q_{s_0}} F_{s_0,q}.
\]

Hence for all \(n\), \(F'_n \not\subseteq F_{s_0,q}\) for some \(q\), is false. If

\[
\bigcap_{n=1}^{N} F'_n \cap B_0 \neq \mathbb{1}_{\mathcal{F}'};
\]

let \(x \in X\) be defined as follows. Let \(t_1, \ldots, t_n \in T\) be such that \(\lambda_{t_i}(F'_i) \neq \mathbb{V}_\mathcal{F}, 1 \leq i \leq N\). Choose an \(x \in X\) such that it satisfies the following conditions:

(a) \(\pi_t(x) \in \{ \lambda_{t_i}(F'_i) \text{ if } \lambda_{t_i}(F_{s_0,q}) = \mathbb{V}_\mathcal{F} \text{ for all } q, 1 \leq q \leq Q_s \}
\)

for \(1 \leq i \leq N\);

(b) \(\pi_t(x) \in -\lambda_{t_i}(F_{s_0,q}) \) for each \(t_q \in T\) such that \(\lambda_{t_q}(F_{s_0,q}) \neq \mathbb{V}_\mathcal{F}, 1 \leq q \leq Q_{s_0}\) and \(t_q \neq t_i, 1 \leq i \leq n\);

(c) \(\pi_t(x) \in h_0(B) \) for all \(t \neq t_q; 1 \leq i \leq N, 1 \leq q \leq Q_{s_0}\).

Now \(x\) is well defined,

\[
x \in B_0 \quad \text{and} \quad x \in \bigcap_{n=1}^{N} F'_n,
\]

by its definition. But \(x \in F_{s_0,q}\) for all \(q, 1 \leq q \leq Q_s\), hence
Proof of Case 2. If

\[-B_0 \cap \bigcap_{n=1}^{N} F'_n \neq \Lambda_{S'},\]

and \(\lambda_{t_n}(F'_n) \neq V_{S'}, t_n \in T\), let \(A_n = \varphi_{t_n}(-B_0), 1 \leq n \leq N\). Then

\[\bigcap_{n=1}^{N} F'_n \cap (-B_0) = \bigcap_{n=1}^{N} (F'_n \cap A_n) \cap (-B_0)\]

and

\[\bigcap_{n=1}^{N} (F'_n \cap A_n) \in \mathcal{F}'.'\]

As before, an \(s_0 \in S\) may be found such that

\[\bigcap_{n=1}^{N} (F'_n \cap A_n) \not\subseteq \bigcup_{q=1}^{Q_{s_0}} F_{s_0,q}.\]

Define \(t_1, \cdots, t_N\) as before so that \(\lambda_{t_i}(F'_i \cap A_i) \neq V_{S'}, 1 \leq i \leq N\). Choose \(x \in X\) satisfying the following conditions:

(a) \(\pi_{t_i}(x) \in \lambda_{t_i}(F'_i \cap A_i)\) if \(\lambda_{t_i}(F_{s_0,q}) = V_{S'}, 1 \leq q \leq Q_{s_0}\); \(\lambda_{t_i}(F'_i \cap A_i) - \lambda_{t_i}(F_{s_0,q})\) if \(\lambda_{t_i}(F_{s_0,q}) \neq V_{S'}\)

for \(1 \leq i \leq N\).

(b) \(\pi_{t_q}(x) \in -\lambda_{t_q}(F_{s_0,q})\) for each \(t_q \in T\) such that \(\lambda_{t_q}(F_{s_0,q}) \neq V_{S'}; 1 \leq q \leq Q_{s_0}\), and \(t_q \neq t_i, 1 \leq i \leq N\).

(c) \(\pi_t(x) \in \lambda_t(-B_0)\) if \(t \neq t_i, t_q; 1 \leq i \leq n, 1 \leq q \leq Q_{s_0}\).

Now \(x\) is well defined and

\[x \in (-B_0) \cap \bigcap_{n=1}^{N} (F'_n \cap A_n) = -B_0 \cap \bigcap_{n=1}^{N} F'_n,\]

so

\[x \not\subseteq \bigcup_{q=1}^{Q_{s_0}} F_{s,q},\]

a contradiction.

Consequently, in either case

\[\bigcap_{n=1}^{N} F'_n = \Lambda_{S'}.\]
Lemma 3.4. If j is the identity isomorphism of \mathcal{F} into \mathcal{F}_0 and $\{i, \mathcal{C}\}$ is an m-completion of \mathcal{F}_0, then $\{ij, \mathcal{C}\}$ is an m-extension of \mathcal{F}.

Proof. All that needs to be shown is that $ij(\mathcal{F})$ m-generates \mathcal{C}. But this follows immediately from the fact that $\mathcal{X} m$-generates \mathcal{B} and the definition of \mathcal{F} and \mathcal{F}_0.

Theorem 3.1. If $\mathcal{X} m$-generates \mathcal{B} then $\mathcal{X}(\mathcal{F})$ does not contain a smallest element.

Proof. $F \in \mathcal{F}$ and $F \supseteq B_0$ then $F = \bigvee F_0$, by definition of B_0. Thus if j and $\{i, \mathcal{C}\}$ are defined as in Lemma 3.4, $\{ij, \mathcal{C}\}$ is an m-extension of \mathcal{F} and $ij(B_0) \in K(\mathcal{C})$. By Proposition 3.1, $\mathcal{X}(\mathcal{F})$ does not contain a smallest element.

The results of this theorem may be generalized as follows. Let $\{\mathcal{A}_t\}_{t \in T}$ be an infinite indexed set of Boolean algebras and $\{\{i_t\}_{t \in T}, \mathcal{B}\}$ be the Boolean product of $\{\mathcal{A}_t\}_{t \in T}$. Let T' be the set of all $t \in T$ such that $\mathcal{K}(\mathcal{A}_t)$ contains more than one element.

Theorem 3.2. The class of m-extensions $\mathcal{K}(\mathcal{B})$ does not contain a smallest element if $T' \geq \sigma$.

Proof. Define \mathcal{F}' to be the Boolean product of $\{\{j_t, \mathcal{B}_t\}_{t \in T}$, where $\{j_t, \mathcal{B}_t\} \in \mathcal{K}(\mathcal{A}_t)$ for all $t \in T$ and $\{j_t, \mathcal{B}_t\}$ is not an m-completion of \mathcal{A}_t for all $t \in T'$. For each \mathcal{B}_t, $t \in T'$, there is a $B_t \in \mathcal{B}_t$ such that $j_t(A) \subseteq B_t, A \in \mathcal{A}_t$, implies $A = \bigwedge A_t$. Let φ_t map \mathcal{B}_t into \mathcal{B} and set

$$B_0 = \bigcup_{t \in T'} \varphi_t(B_t)$$

and

$$\mathcal{F}_0 = \langle \mathcal{F}', B_0 \rangle .$$

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and 3.4, and Theorem 3.1, $\mathcal{K}(\mathcal{B})$ does not contain a smallest element.

Corollary 3.1. If $\mathcal{A}_t = \mathcal{A}_t'$ for all $t, t' \in T$ then $\mathcal{K}(\mathcal{B})$ contains a smallest element if, and only if, an m-extension of \mathcal{B} is an m-completion.

Proof. If $\mathcal{K}(\mathcal{B})$ contains an m-extension which is not an m-completion, let \mathcal{B} play the role of \mathcal{A} in Lemmas 3.2, 3.3, and 3.4. By Theorem 3.1, $\mathcal{K}(\mathcal{F})$ does not contain a smallest element. As
the m-fold product \mathcal{F} of \mathcal{B} is isomorphic to \mathcal{B}, $\mathcal{H}(\mathcal{B})$ does not contain a smallest element. The converse is clear.

Now to prove the assumption on which these results are based.

Lemma 3.5. For each infinite cardinal number m there is a Boolean algebra \mathcal{A} such that an m-completion $\{i, \mathcal{B}\}$ of \mathcal{A} contains an element B with

$$B \neq \bigcup_{u \in U} \bigcap_{v \in V} A_{u,v},$$

for all m-indexed sets $\{A_{u,v}\}_{u \in U, v \in V}$ in \mathcal{A}.

Proof. The proof will be by constructing such an \mathcal{A} for each m. Let S be an indexing set of cardinality m. Let \mathcal{D}_m be the Cartesian product of S with itself m times and indexed by T. Define

$$D_{t,s} = \{d \in \mathcal{D}_m : \pi_t(d) = s\}.$$

Fix $s', s'' \in S$, $s' \neq s''$, and set $S' = S - \{s', s''\}$. Let $D = \bigcup_{t \in T}(D_{t,s'_1} \cup D_{t,s''_2})$. Thus $D = 2^m$ and $d \in \mathcal{D}_m - D$ implies $\pi_t(d) \neq s_k, k = 1, 2$, for all $t \in T$.

Let

$$\mathcal{I} = \{\{d\} : d \in \mathcal{D}_m\} \cup \{D_{t,s} : t \in T, s \in S'\}.$$

Let \mathcal{A} be generated by \mathcal{I} in \mathcal{D}_m and let \mathcal{B} be the m-field of sets m-generated by \mathcal{I} in \mathcal{D}_m. Then \mathcal{A} is dense in \mathcal{B} and m-generates \mathcal{B}, so if i is the identity map of \mathcal{A} into \mathcal{B}, $\{i, \mathcal{B}\}$ is an m-completion of \mathcal{A}.

Let

$$B = \mathcal{D}_m - D.$$

Suppose

$$B = \bigcup_{u \in U} \bigcap_{v \in V} A_{u,v},$$

$\{A_{u,v}\}_{u \in U, v \in V}$ an m-indexed set in \mathcal{A}. This can be written in the form

$$\bigcup_{u \in U} \bigcup_{v \in V} A_{u,v,m} ;$$

$A_{u,v,m}$ or $-A_{u,v,m} \in \mathcal{I}$, $\overline{M_{u,v}} < \sigma$.

Let $B' = \{d \in \mathcal{D}_m : \{d\} = A_{u,v,m}$ for some $u \in U, v \in V, m \in M_{u,v}\}$. Then $\overline{B'} \leq m$, so if

$$M_{u,v}' = \{m \in M_{u,v} : A_{u,v,m}$ is not of the form $\{d\}, d \in \mathcal{D}_m\},$$

it follows that
It will now be shown that in fact

\[B - \bigcup_{u \in U} \bigcap_{v \in V} \bigcup_{m \in M_{u,v}} A_{u,v,m} \leq m. \]

a contradiction. Hence it may be assumed that \(A_{u,v,m} \) is not of the form \(\{d\} \), \(d \in \mathcal{D}_m \), for all \(u \in U, v \in V \), and \(m \in M_{u,v} \).

If \(A_{u,v,m} = -\{d\}, d \in \mathcal{D}_m \), for some \(m \in M_{u,v} \), then either

(1) \[\bigcup_{m \in M_{u,v}} A_{u,v,m} = -\{d\} \]

or

(2) \[\bigcup_{m \in M_{u,v}} A_{u,v,m} = V. \]

If (1) occurs, it may be assumed that \(M_{u,v} = \{1\} \) and \(A_{u,v,1} = -\{d\} \).

If (2) occurs, the term \(\bigcup_{m \in M_{u,v}} A_{u,v,m} \) may be dropped. Thus for all \(u \in U, V \) may be written as \(V_u \cup V'_v \), where (1) \(V_u \cap V'_v = \emptyset \); (2) \(A_{u,v,m} = -\{d_{u,v}\}, d_{u,v} \in \mathcal{D}_m \), for all \(v \in V_u \); and (3) \(A_{u,v,m} \) is either of the form \(-D_{t,s} \) or \(D_{t,s} \) for all \(v \in V'_v \). Consequently, for all \(u \in U, V \)

\[\bigcap_{v \in V} \bigcup_{m \in M_{u,v}} A_{u,v,m} = \bigcap_{v \in V_u} -\{d_{u,v}\} \cap \bigcap_{v \in V'_v} \bigcup_{m \in M_{u,v}} A_{u,v,m}. \]

Let

\[C_u = \bigcap_{v \in V} \bigcup_{m \in M_{u,v}} A_{u,v,m}. \]

Suppose \(U \) is the set of all ordinals \(u < \alpha \), where \(\alpha = \bar{U} \). Let \(D_1 = \{d \in \mathcal{D}_u : \pi_1(d) = s', s'_2\} \). Now \(\bar{D}_1 = 2^m \) implies there is a \(d_1 \in D_1 \) such that

\[d_1 \in \bigcap_{v \in V_1} -\{d_{1,v}\}. \]

Since \(d_1 \notin B \), this implies

\[d_1 \in \bigcap_{v \in V'_1} \bigcup_{m \in M_{1,v}} A_{1,v,m}. \]

hence for some \(v_1 \in V'_1 \),

\[d_1 \in \bigcup_{m \in M_{1,v_1}} A_{1,v_1,m}. \]

Also, \(D_1 \subseteq -D_{t,s} \) for all \(t \in T \) and \(s \in S' \), hence

\[A_{1,v_1,m} = D_{t_{1,m}, s_{1,m}} \]

for some \(t_{1,m} \in T \) and \(s_{t_{1,m}} \in S' \), for all \(m \in M_{1,v_1} \). Let \(T_1 = \{t_{1,m} : m \in M_{1,v_1}\} \).
and pick $s_i \in S'$ such that $s_i \neq s_{i,m}$ for all $m \in M_{i\!,\!v_i}$. Define

$$\varphi(t) = s_1$$

for all $t \in T_i$. Let $B_1 = \emptyset$ and define $B_2 = \{d \in \mathcal{D}_m : \pi_i(d) = \varphi(t) \text{ for all } t \in T_i\}$.

Note that $B_2 \cap C_i = \emptyset$.

Suppose $i > 1$ and a finite set T_i has been defined for each $i' < i$ so that $T_i \cap T_{i'} = \emptyset$ if $i', i'' < i, i' \neq i''$; $s_i \in S'$ has been chosen; φ has been defined on each $T_{i'}$, $i' < i$, so that $\varphi(t) = s_{i'}$ for all $t \in T_{i'}$; and if

$$B_i = \{d \in \mathcal{D}_m : \pi_i(d) = \varphi(t) \text{ for all } t \in \bigcup_{i' < i} T_{i'}\}$$

then

$$B_i \cap \bigcup_{i' < i} C_{i'} = \emptyset.$$

Let

$$\hat{T}_i = \bigcup_{i' < i} T_{i'}$$

and note that $\hat{T}_i < m$. Let

$$D_i = \{d \in \mathcal{D}_m : \pi_i(d) = \varphi(t) \text{ for all } t \in \hat{T}_i \text{ and } \pi_i(d) = s_{i', k = 1, 2, \text{ if } t \in T - \hat{T}_i}\}.$$

Then $D_i \subseteq D$ and $D_i = 2^m$, hence there is a $d_i \in D_i$ such that

$$d_i \in \bigcap_{v \in V_i} \left\{d \in D_i \mid d \notin \{d_{i,v}\}\right\}.$$

Since $d_i \notin B$, this implies

$$d_i \notin \bigcap_{v \in V_i} \bigcup_{m \in M_{i\!,\!v_i}} A_{i,v,m},$$

hence for some $v_i \in V_i$,

$$d_i \notin \bigcup_{m \in M_{i\!,\!v_i}} A_{i,v_i,m}.$$

If $B_i \cap C_i = \emptyset$ set $T_i = \emptyset$. If not, there is a $d'_i \in B_i$ such that $d'_i \in C_i$, so

$$d'_i \in \bigcup_{m \in M_{i\!,\!v_i}} A_{i,v_i,m}.$$

Note that $\pi_i(d'_i) = \pi_i(d_i)$ for all $t \in \hat{T}_i$.

It immediately follows that if
\[d_i \in \bigcup_{m \in M_{i,v_i}} A_{i,v_i,m} \]

then

\[A_{i,v_i,m} = D_{i,v_i,m} s_{i,m}, \]

where \(t_{i,m} \in \hat{T}_i \) and

\[\pi_{t_{i,m}}(d_i) = s_{i,m}, \]

for some \(m \in M_{i,v_i} \).

Let

\[T_i = \{ t_{i,m} \in T - \hat{T}_i : A_{i,v_i,m} = D_{i,v_i,m} s_{i,m} \text{ for some } m \in M_{i,v_i} \} \]

and pick \(s_i \in S' \) such that if \(t_{i,m} \in T_i \) then

\[s_i \neq S_{i,m}, \]

for all \(m \in M_{i,v_i} \). Now define

\[\varphi(t) = s_i \text{ for all } t \in T_i. \]

Thus \(T_i \cap \hat{T}_i = \emptyset \) which implies \(T_i \cap T_{i'} = \emptyset \) for all \(i' < i \). If

\[B_{i+1} = \{ d \in \mathcal{D}_m : \pi_t(d) = \varphi(t) \text{ for all } t \in T_i \cup \hat{T}_i \} \]

then it is clear that

\[B_{i+1} \cap \bigcup_{i' < i} C_i = \emptyset. \]

Now let \(\hat{T} = \bigcup_{i < \alpha} T_i \) and set

\[\hat{B} = \{ d \in \mathcal{D}_m : \pi_t(d) = \varphi(t) \text{ for all } t \in \hat{T} \}
\]

and \(\pi_t(d) \neq s', s'' \text{ if } t \in T - \hat{T} \} \).

Then \(\hat{B} \neq \emptyset \) and \(\hat{B} \subseteq B \). But \(\hat{B} \cap \bigcup_{u \in U} C_u = \emptyset \) which implies

\[B - \bigcup_{u \in U} C_u \neq \emptyset. \]

If \(B' = B - \bigcup_{u \in U} C_u \) then for each \(b \in B' \),

\[b = \bigcap_{t \in T} D_{t,s_{t,b}}, \]

for some \(m \)-indexed set \(\{ s_{t,b} \}_{t \in T} \) in \(S' \). Thus

\[B = \bigcup_{u \in U} \bigcap_{v \in Y} \bigcup_{m \in M_{u,v}} A_{u,v,m} \cup \bigcup_{b \in B'} \bigcap_{t \in T} D_{t,s_{t,b}}, \]

but the above construction shows that
\[B - \left(\bigcup_{u \in U} \bigcap_{v \in V} A_{u,v,m} \bigcup_{b \in B'} \bigcap_{t \in T} D_{i(t,b)} \right) \neq \emptyset \]

if \(B' \leq m \). Hence

\[B - \bigcup_{u \in U} C_u > m . \]

Lemma 3.6. If \(\{i, B\} \) is an \(m \)-completion of the Boolean algebra \(\mathcal{A} \) and there is a \(B \in \mathcal{B} \) such that

\[B \neq \bigcup_{t \in T} \bigcap_{s \in S} i(A_{t,s}) \]

for all \(m \)-indexed sets \(\{A_{t,s}\}_{t \in T, s \in S} \) in \(\mathcal{A} \), then there is an \(m \)-ideal \(\Delta \) in \(\mathcal{B} \) such that \(\{j, \mathcal{B}_\Delta\} \) is an \(m \)-extension of \(i_\Delta(\mathcal{A}) \) but not an \(m \)-completion, where \(i_\Delta(A) = [i(A)]_\Delta \) for all \(A \in \mathcal{A} \), \(\mathcal{B}_\Delta = \mathcal{B} \setminus \Delta \) and \(j \) is the identity map of \(i_\Delta(\mathcal{A}) \) into \(\mathcal{B}_\Delta \).

Proof. Let

\[\Delta' = \{B' \in \mathcal{B} : B' \subseteq B \text{ and } B' = \bigcap_{t \in T} i(A_t) \} , \]

for some \(m \)-indexed set \(\{A_t\}_{t \in T} \) in \(\mathcal{A} \) and let \(\Delta = \langle \Delta' \rangle_m \). Then if \(\delta \in \Delta, \delta \subseteq B \), so \(B \in \Delta \). If \(A \in \mathcal{A} \) and \([i(A)]_\Delta \subseteq [B]_\Delta \) then \(i(A) - B \in \Delta \) so \(i(A) - B \subseteq B \) which implies \(i(A) \subseteq B \), hence \(i(A) \in \Delta \) and \([i(A)]_\Delta = \bigwedge_{\mathcal{A}} j_\Delta \), implying \(i_\Delta(\mathcal{A}) \) is not dense in \(\mathcal{B}_\Delta \).

It only remains to show that \(i_\Delta(\mathcal{A}) \) is \(m \)-regular in \(\mathcal{B}_\Delta \). If

\[\bigcap_{t \in T} [i(A_t)]_\Delta = \bigwedge_{\mathcal{A}} j_\Delta \]

then \(i(A) \subseteq i(A_t) \) for all \(t \in T \) implies \(i(A) \in \Delta \), so \(i(A) \subseteq B \). If

\[\bigcap_{t \in T} i(A_t) \not\subseteq B , \]

then there is an \(A \neq \bigwedge_{\mathcal{A}} j_\Delta \) in \(\mathcal{A} \) such that

\[i(A) \subseteq \bigcap_{t \in T} i(A_t) - B , \]

contradicting the above statement. Thus

\[\bigcap_{t \in T} i(A_t) \subseteq B \]

so

\[\bigcap_{t \in T} i(A_t) \in \Delta \]
and

$$\Lambda_i = \left[\bigcap_{i \in T} i(A_i) \right] = \bigcap_{i \in T} [i(A_i)]_i.$$

Thus if \(\mathcal{A} \) is the Boolean algebra constructed in Lemma 3.5, \(i_\mathcal{A}(\mathcal{A}) \) is a Boolean algebra such that \(\mathcal{A}(i_\mathcal{A}(\mathcal{A})) \) contains more than one element. Hence it is justified to assume that for each infinite cardinal \(m \) there is a Boolean algebra \(\mathcal{A} \) such that \(\mathcal{A} \) has an \(m \)-extension which is not an \(m \)-completion.

4. Let \(\{\mathcal{A}_t\}_{t \in T} \) be a (fixed) indexed set of Boolean algebras. Let \(h_t \) be an isomorphism of \(\mathcal{A}_t \) onto the field \(\mathcal{F}_t \) of all open-closed subsets of the Stone space \(X_t \) of \(\mathcal{A}_t \). Let \(X \) denote the Cartesian product of all the spaces \(X_t \). Let \(\pi_t \) be the projection of \(X \) onto \(\mathcal{F}_t \) and define

$$\varphi_t : \mathcal{F}_t \rightarrow X$$

by:

$$\text{if } F \in \mathcal{F}_t \text{ then } \varphi_t(F) = \{ x \in X : \pi_t(x) \in F \}.$$

Let \(\mathcal{F} \) be the Boolean product of \(\{\mathcal{A}_t\}_{t \in T} \). Define \(h^*_t = \varphi_t h_t \) and let \(\mathcal{S} \) be the set of all sets \(\bigcap_{t \in T} h^*_t(A_t) ; A_t \in \mathcal{A}_t , T' \subseteq T , \mathcal{T}' \leq n \). Define \(\mathcal{H} \) to be the field of sets generated by \(\mathcal{S} \). Let \(J \) be the set of all sets \(S \subseteq \mathcal{H} \) such that

1. \(\bar{S} \leq m ; \)
2. there is a \(t \in T \) such that \(S \subseteq h^*_t(\mathcal{A}_t) ; \)
3. the join \(\bigcup_{\mathcal{A}_t} A \) exists.

Let \(M' \) be the set of all sets \(S \subseteq \mathcal{T} \) such that

1. \(\bar{S} \leq m ; \)
2. there is a \(t \in T \) such that \(S \subseteq h^*_t(\mathcal{A}_t) ; \)
3. the meet \(\bigcap_{\mathcal{A}_t} A \) exists.

Let \(M'' \) be the set of all sets \(S \subseteq \mathcal{T} \) such that

1. \(\bar{S} \leq n ; \)
2. if \(A \in S \) then \(A \in h^*_t(\mathcal{A}_t) \) for some \(t \in T \);
3. if \(A, B \in S, A \neq B \), then \(A \in h^*_t(\mathcal{A}_t) \) implies \(B \in h^*_t(\mathcal{A}_t) \). Let \(M = M' \cup M'' \).

The following lemma is due to La Grange [1] and will be given without proof.

Lemma 4.1. If \(\{i_t\}_{t \in T} \in P \), then there is one and only one \((J, M, m)\)-isomorphism \(h \) mapping \(\mathcal{F} \) into \(\mathcal{B} \) such that

$$hh^*_t = i_t \text{ for all } t \in T .$$
THEOREM 4.1. If \{\{i_t\}_{t \in T}, B\} \in \mathcal{P}_n then there is a mapping \(h \) of \(\hat{\mathcal{F}} \) into \(B \) such that \(\{h, B\} \) is a \((J, M, m)\)-extension of \(\hat{\mathcal{F}} \). If \(\{h, B\} \) is a \((J, M, m)\)-extension of \(\hat{\mathcal{F}} \) then the ordered pair \(\{\{h h_t^*\}_{t \in T}, B\} \in \mathcal{P}_n \).

Proof. Let \(h \) be the \((J, M, m)\)-isomorphism from \(\hat{\mathcal{F}} \) into \(B \) such that \(h h_t^* = i_t \) for all \(t \in T \). Then \(\{h, B\} \) is a \((J, M, m)\)-extension of \(\hat{\mathcal{F}} \).

Conversely, if \(\{h, B\} \) is a \((J, M, m)\)-extension of \(\hat{\mathcal{F}} \), it follows immediately that \(\{\{h h_t^*\}_{t \in T}, B\} \) is an \((m, n)\)-product of \(\{\mathcal{A}_t\}_{t \in T} \).

THEOREM 4.2. If \(\{\{i_t\}_{t \in T}, B\}, \{\{i'_t\}_{t \in T}, B'\} \) are two \((m, n)\)-products of \(\{\mathcal{A}_t\}_{t \in T} \) then

\[\{\{i_t\}_{t \in T}, B\} \leq \{\{i'_t\}_{t \in T}, B'\} \]

if, and only if,

\[\{i, B\} \leq \{i', B'\} \]

where \(\{i, B\} \) and \(\{i', B'\} \) are the \((J, M, m)\)-extensions of \(\hat{\mathcal{F}} \) induced by the \((J, M, m)\)-isomorphisms \(i' \) and \(i \) of \(\hat{\mathcal{F}} \) into \(B' \) and \(B \), respectively, given by Lemma 4.1.

Proof. Now

\[\{\{i_t\}_{t \in T}, B\} \leq \{\{i'_t\}_{t \in T}, B'\} \]

if, and only if, there is an \(m \)-homomorphism \(h \) such that

\[h: B' \rightarrow B \]

and \(h i'_t = i_t \) for all \(t \in T \). Similarly,

\[\{i, B\} \leq \{i', B'\} \]

if, and only if, there is an \(m \)-homomorphism

\[h: B' \rightarrow B \]

such that \(h' i' = i \). Thus it suffices to show that \(h i' = i \), if, and only if, \(h i'_t = i_t \). Let \(h_t^* \) be defined as above. Then \(i h_t^* = i_t \) and \(i' h_t^* = i'_t \), so if \(h i' = i \),

\[h i'_t = h i' h_t^* = i h_t^* = i_t , \]

and if \(h i'_t = i_t \), then

\[h i' = h i'_t h_t^{* -1} = i_t h_t^{* -1} = i . \]
La Grange [1] has given an example of an \((m, 0)\)-product for which \(\mathcal{I}\) does not contain a smallest element and an example of an \((m, n)\)-product for which \(\mathcal{I}_n\) does not contain a smallest element. Theorem 4.2 extends this result by showing that the question whether \(\mathcal{I}\) or \(\mathcal{I}_n\) contains a smallest element reduces to asking whether the class of all \((J, M, m)\)-extensions of \(\mathcal{A}_0\) or \(\mathcal{F}\) contains a smallest element for \(J\) and \(M\) defined appropriately in each case, where \(\mathcal{A}_0\) and \(\mathcal{F}\) are defined as above. Now the class of all \((J, M, m)\)-extensions of \(\mathcal{A}_0\) contains a smallest element only if the class of all \(m\)-extensions of \(\mathcal{A}\) contains a smallest element and Theorem 3.2 shows that the class of all \(m\)-extensions of \(\mathcal{A}\) need not contain a smallest element, which implies the same is true for \(\mathcal{I}\). Since Theorem 3.2 may be extended to Boolean algebras of the form \(\mathcal{F}\), it follows that \(\mathcal{I}_n\) need not contain a smallest element.

References

Received November 27, 1972 and in revised form March 28, 1973.

University of California, Los Angeles
Robert Lee Anderson, *Continuous spectra of a singular symmetric differential operator on a Hilbert space of vector-valued functions* .. 1
Michael James Cambern, *The isometries of $L^p (X, K)$* 9
R. H. Cameron and David Arne Storvick, *Two related integrals over spaces of continuous functions* ... 19
Gary Theodore Chartrand and Albert David Polimeni, *Ramsey theory and chromatic numbers* ... 39
John Deryck De Pree and Harry Scott Klein, *Characterization of collectively compact sets of linear operators* ... 45
John Deryck De Pree and Harry Scott Klein, *Semi-groups and collectively compact sets of linear operators* ... 55
George Epstein and Alfred Horn, *Chain based lattices* .. 65
Paul Erdős and Ernst Gabor Straus, *On the irrationality of certain series* 85
Zdeněk Frolík, *Measurable uniform spaces* .. 93
Stephen Michael Gagola, Jr., *Characters fully ramified over a normal subgroup* ... 107
Frank Larkin Gilfeather, *Operator valued roots of abelian analytic functions* ... 127
D. S. Goel, A. S. B. Holland, Cyril Nasim and B. N. Sahney, *Best approximation by a saturation class of polynomial operators* 149
James Secord Howland, *Puiseux series for resonances at an embedded eigenvalue* ... 157
David Jacobson, *Linear GCD equations* ... 177
P. H. Karvellas, *A note on compact semirings which are multiplicative semilattices* ... 195
Allan Morton Krall, *Stieltjes differential-boundary operators. II* 207
D. G. Larman, *On the inner aperture and intersections of convex sets* 219
S. N. Mukhopadhyay, *On the regularity of the P^n-integral and its application to summable trigonometric series* 233
Dwight Webster Read, *On (J, M, m)-extensions of Boolean algebras* 249
David Francis Rearick, *Multiplicativity-preserving arithmetic power series* ... 277
Indranand Sinha, *Characteristic ideals in group algebras* 285
Charles Thomas Tucker, II, *Homomorphisms of Riesz spaces* 289
Kunio Yamagata, *The exchange property and direct sums of indecomposable injective modules* .. 301