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The class 7 of all (J, M, m)-extensions of a Boolean
algebra % can be partially ordered and always contains a
maximum and a minimal element, with respect to this partial
ordering. However, it need not contain a smallest element.
Should -~ contain a smallest element, then " has the struc-
ture of a complete lattice. Necessary and sufficient conditions
under which 7" does contain a smallest element are derived.
A Boolean algebra %7 ig constructed for each cardinal m such
that the class of all m-extensions of - does not contain a
smallest element. One implication of this construction is that
if a Boolean algebra . is the Boolean product of a least
countably many Boolean algebras, each of which has more
than one m-extension, then the class of all m-extensions of
7 does not contain a smallest element. The construction
also has as implication that neither the class of all (m, 0)-
products nor the class of all (m, n)-products of an indexed
set {¥},c, of Boolean algebras need contain a smallest
element.

1. Sikorski [2] has investigated the question of imbedding a
given Boolean algebra .o into a complete or m-complete Boolean
algebra <# and has shown that in the case where the imbedding map
is not a complete isomorphism, the imbedding need not be unique up
to isomorphism. He further has shown that if .5 is the class of all
(J, M, m)-extensions of a Boolean algebra .27 then .9 has a naturally
defined partial ordering on it and always contains a maximum and a
minimal element. He has left as an open question whether it always
contains a smallest element. La Grange [1] has given an example
which implies that .2 need not always contain a smallest element.
However, the question of when does .2 in fact contain a smallest
element is of interest as it turns out that should .27 contain a
smallest element, it has the structure of a complete lattice.

In §2, necessary and sufficient conditions are given for .%  to
contain a smallest element. In addition, the principle behind La
Grange’s example is generalized in Proposition 2.10 to show that if
& is not m-representable then the class .7 of all (J, M, m')-exten-
sion of ./ where Jz, M < o and m’ > M, will not contain a smallest
element.

Since the proof of this result requires that J and M have cardi-
nality < o, it is of interest to ask if the class of all m-extensions
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contain a smallest element in general, and the answer is no.

In §3, a Boolean algebra .7 is constructed for each cardinal m
such that the class .2 of all m-extensions of .o~ does not contain
a smallest element. The construction has as implication (Theorems 3.1
and 3.2; Corollary 3.1) that for each algebra in a rather broad group
of Boolean algebras, the class of all m-extensions will not contain a
smallest element. In particular, this group includes all Boolean
algebras which are the Boolean product of at least countably many
Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski’s result that there is an
equivalence between the class & of all (m, 0)-products of an indexed
set {.94},., of Boolean algebras and the class of all (J, M, m)-exten-
sions of the Boolean product .7 of {84},.,, for suitably defined J
and M, is generalized to show there is an equivalence between the
class ., of all (m, n)-products of {97%},., and all (J, M, m)-extensions
of 5//7\? where &7 is the field of sets generated by a certain set &7
for suitably defined J and M. Then the above results imply that
neither 27 nor .22, need contain a smallest element.

The notation throughout follows that of Sikorski [2].

2. Let n be the cardinality of a set of generators for the
Boolean algebra .97 let .o, , be a free Boolean m-algebra with a
set of n free m-generators, let .94, be the free Boolean algebra
generated by this set of n free m-generators and let ¢ be a homo-
morphism from .97, to .94 Let 4, be the kernel of this homo-
morphism and let I be the set of all m-ideals 4 in .97, , such that:

a. 4N.>, =4,

b. 4 contains all the elements

A, - U 4, U4d-4,

4€58) AcSy
A, — N 4, NnA4-4,,
4e8,y 4e8,y

where A e .97, and &4, .94 are any subsets of .97, of cardinality
=< m such that:

g(eA)ed,  g(4) = U 9(4)

g(AeM,  g(4)= ) 9(4).
For each 4¢17 let
S = Ay a4
and

94[Als) = 9(4), for all Ae.%f,.

Set 4 = g7'. We need the following results due to Sikorski.
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ProroOSITION 2.1. The ordered pair {i, .} is a (J, M, m)-
extension of the Boolean algebra .7 and if {1, Z} is a (J, M, m)-
extension of 7 there is a del such that {i. 5} is tsomorphic to
{i, &}. Further, if 4, 4’ €I then

{id) L%} é {?:J" '/Q/J’} ?:fi and Only ,':ff A 2 A’ .

LEMMA 2.1. If S s a set of elements in 5% then the least upper
bound (lub) of S exists in 2%°

Now let 2#(J, M, m) denote the class of all (J, M, m)-extensions
of o7

THEOREM 2.1. Let ¢ be the class of all (J, M, m)-extensions of
a Boolean algebra &7 The following are equivalent:

1. 22 contains a smallest element;

2. % is a lattice;

3. 2 1s a complete lattice.

Proof.

1.=3. It suffices to show that if S is a set of (J, M, m)-
extensions of .o~ then the greatest lower bound (glb) of S exists in
%, which follows from noting that if L is the set of all lower bounds
for the set S then L = 0 and by Lemma 2.1 the lub of L exists in
2, hence is in L.

3.=2. By definition.

2.=1. If {i, &} is an m-completion of .7 {j, €} € 2%, and >~
a lattice, then there is an element {j’, €'} € .5 such that

{7,z ={,=z}.

Thus

U,z =i, Z},
S0

U, et =@, Z},
implying

(v, Z} = {4, €} .
Hence {¢, <2’} is a smallest element in 577
COROLLARY 2.1. If J'2J and M' 2 M then the following are

equivalent:
1. 22(J, M, m) contains a smallest element;
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2. 2Z(J', M'", m) is a sublattice of 2£(J, M, m);
3. F(J', M, m) is a complete sublattice of Z£(J, M, m).

Proof.

1. =38. Since .Z(J’, M’, m) contains a smallest element, so does
ZZ(J, M, m) hence £(J, M’,m) and .5(J, M, m) are complete
lattices. If {{i, B}}ier = S is a set of elements in ZZ(J', M', m),
{i, €} is the lub of S in 2#(J, M, m) and {#', €’} is the lub of S in
ZE(J, M', m), then there is an m-homomorphism # mapping Z”’ onto
% such that hi’ = 4. Hence ¢ is a (J’, M’, m)-isomorphism. Thus
{2, ©}e 2£(J'", M', m), implying

i, 2} =, €7} .

If {z, €} is the glb of S in Z(J, M, m) and {¢, '} €S, then
by a similar argument, ¢ is a (J’, M’, m)-isomorphism, which implies
{7, #} is the glb of S in 22(J', M’, m).

3. =2. By definition.

2.=1. The proof is the same as that for showing 2. =1, in
Theorem 2.1.

Thus it is of particular interest to know whether 5(J, M, m)
contains a smallest element, in general. Although, as it turns out,
Z(J, M, m) need not contain a smallest element in general, a minimal
(J, M, m)-extension is always an m-completion, hence there is always
a unique minimal (J, M, m)-extension in 2" (J, M, m).

PROPOSITION 2.2. An m-completion {i, <&} of the Boolean algebra
7 18 a unique minitmal element in 7.

Proof. That a minimal element in .2 is an m-completion is
clear.

If {#, £&'} is another minimal element in 9%, there are 4, £/'¢I
such that
{i, Z} = {is, A}
and
W, 2 = {is, S} .

Now {i, &} and {i’, <&’} minimal in .9  imply 4 and 4' are maximal
m-ideals in I, but if 4 is a maximal m-ideal in I then gi(.5%,) is
dense in .%7;. The ideal 4’ =<4, A) in &7, is an m-ideal and
4" e I, contradicting the maximality of 4. So {¢/, £’} is an m-com-
pletion of &7 hence isomorphic to {¢, <#’}, implying
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(", Z" = (i, Z} .

ProrosIiTION 2.3. If % is a Boolean m-algebra that satisfies
the m-chain condition and

U 4.

teT

s the join of an indexed set {A.}ier in 7 then there is an indexed
set {Al}icr of disjoint elements of .7 such that

1. U A; = U At ’
tel tel
2. Al A, for all teT.

Proof. Let .&” be the collection of all sets S of disjoint elements
in & such that for each sc S there is a te T with s<& A4,. If

ngszg"'gs,;c::'--

is a chain of sets in .57 indexed by I and ordered by set theoretical
inclusion, then

iel

By Zorn’s lemma there is a maximal set in . say S’ = {4,},.s and
it immediately follows that

U4, =4.

rTeER

Now let
.S —— T
be a mapping such that if 4,¢ .S’ then
A, S Ay, -
For each te T define
At=U{A.eS:9(4,) =t}
if there is an A,e S’ such that ®(4,) = ¢, otherwise define
A= A
Then
{Al}ter
is the desired set.

PROPOSITION 2.4. Let &7 be a Boolean algebra. The following
are equivalent:



254 DWIGHT W. READ

1. .7 satisfies the m-chain condition:
2. for all sets S in &7 such that U..ss exists,

Us=Us

ses ses8’
Jor some set ' = Swith S" < m; and dually for meets.
Proof.

1. = 2. Suppose .57 satisfies the m-chain condition. It suffices
to show that if

S={A}eyand V=U A4, T=m>m,

then there is a set 7" < 7, T' < m, such that

A, =V.

tel’

Let {¢, <&} be an m’-completion of .%. Then <% satisfies the m-chain
condition and

Vo =14V.)
= U~ i(4) .

By Proposition 2.3, there is a set {<Z,},., of disjoint elements in
< such that

B, = 1(A,) and tLeJ:’ B, = tLgJT”’”’ YA, .

Since this set contains at most m-distinct elements,

U‘@Bt = Uﬂ B,,

teT tel’
T"< T and T < m. Thus

Vo = tU“"’” @.(At)

eT

or

V. =U"4,.

tel’

2. =1. Suppose {4,}),., is an m'-indexed set of disjoint elements
of .o m' > m. It may be assumed that {A4,)},., is a maximal set of
disjoint elements of %< Then for some 7" <= T, T' < m,

Vy = Uy At .
ter’

Since T' = T, there is a t,€ T — T’ such that
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Atoe {At}teT - {At}teT' and Azo * Avv .
Thus

U A +V.,

a contradiction. Hence T < m.

This gives, as an immediate corollary, the following result due
to Sikorski [2].

COROLLARY 2.2. If .o 1s a Boolean m-algebra and satisfies the
m-chain condition, it 1s a complete Boolean algebra.

PROPOSITION 2.5. The class 2¢°(J, M, m') contains a smallest
element if 22(J, M, m) contains o smallest element, m’ < m.

Proof. Let {i, <&} be the smallest element in Z(J, M, m). If
', €'Ye 22°(J, M, wm'), let {k, €} be an m-completion of &’. Then
{kj, ©}e Z(J, M, m).

By the fact that {i, <#} is the smallest element in .%7J, M, m),
there is an m-homomorphism % such that

h: &—— <% and hkj=1.

Also {1, &} an m-completion of .o implies that there is an m’'-
completion {3, &'} of .o such that <&’ < < Thus hk(Z') is an
m-subalgebra of <, hence <Z’' = hk(Z€”’) and is an m-subalgebra of
z.

Now kj(.&7”) m-generates k(%¥”’) in ¥ and kj(¥) S h ('),
hence

Wiz 2 KZ"),

or
Mh™(Z") 2 h(Z) .
But
M i(Z') =",
thus
Z' 2 h(Z) ,
S0

B = hi(Z) .
Since hkj = 1,
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(i, Z'} < {kd, B(Z7")} .
But % a complete isomorphism implies that
{kg, K(Z") = {1, €},
and since isomorphic elements in 5#(J, M, m) have been identified,
i, Z't =, €%} .
LemMA 2.2. If J<o and M <o then there is a (J, M, m)-

isomorphism 1 of a Boolean algebra &7 into the field Z of all
subsets of a space.

PROPOSITION 2.6. If the Boolean algebra .7 is m-representable
but not m*-representable, m™* the smallest cardinal greater than m,
then Z£(J, M, m™) does not contain a smallest element if

2, M, m*) = @ .
0, M £ 0 then S7.(J, M, m*) = @.

G
[IA

Iy

Proof. Suppose {j, €} e 2%.(J, M, m*). Then & is m-represen-
table and if an m*-completion {¢, £#} of .o is a smallest element in
Z(J, M, m"), there is a surjective m*-homomorphism

h € — &,

which implies <Z is m*-representable, hence & is m™-representable,
a contradiction. Thus 2¢7(J, M, m*) does not contain a smallest
element if 27(J, M, m™) = @.

If J<o and M <o then .& is (J, M, m*)-representable by
Lemma 2.2, hence 27,(J, M, m*) = @.

The next proposition is an easy generalization of Sikorski’s [2]
Proposition 25.2 and will be needed for the last theorem in this section.

ProPOSITION 2.7. A Boolean algebra o7 is completely distribu-
tive, if, and only if, it is atomic.

COROLLARY 2.3. A Boolean algebra 7 is completely distributive,
if, and only if, 57 is m-distributive, m = .7

The following proposition is due to Sikorski [2] and will be given
without proof.

ProOPOSITION 2.8. If the Boolean algebra & 1s m-distributive,
then 22(J, M, m) contains a smallest element for arbitrary J and M.
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LeEmMmA 2.3. If {i, '} is an m-extension of the Boolean algebra
& and <& 1is m-representable, then .7 is m-representable.

Proof. This follows immediately from the fact that & is
m-regular in <Z.

Now to prove the main theorem of this section.

THEOREM 2.2. Let . be a Boolean algebra. Then the following
are equivalent:

1. 22 contains a smallest element for arbitrary J, M, and m;
&7 1is m-representadle for all m;
7 is completely distributive;
57 18 atomic;
an m-completion of & is atomic for all m;

6. an m-completion of .o is in 27 (J, M, m) for arbitrary J, M,
and m;

7. FZ(J, M, 2™) contatns a smallest element, where J =M = Q@
and 7= m*.

ANl Sl

Proof.
1.=2. If .7 is m-representable but not m*-representable, then
Proposition 2.6 implies .7Z7(J, M, m*) does not contain a smallest element

if J, M<o.
2.=3. This follows from the fact that if a Boolean algebra
57 is 2™-representable, it is m-distributive.

3.=4. This follows from Proposition 2.7.

3.=1. This follows from Proposition 2.8.

4.=5. If {i, &£} is an m-completion of .o~ then ¢(.o7) is dense
in &, so &% is atomic, and conversely.

2. = 6. This follows from noting that 2. = 3. and .& completely
distributive implies an m-completion of .97 is completely distributive,
hence m-representable for all cardinals m.

6. — 2. This follows from Lemma 2.3.

3.=17. If J=M=@ and 2¢(J, M, 2™) contains a smallest
element, then by Proposition 2.6, .o~ is 2™-representable, hence

m*-distributive. Since m* = &7 .o~ is completely distributive, by
Corollary 2.3. The converse is clear.
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3. The example in § 2 of a Boolean algebra .o~ such that the
class of all (J, M, m)-extensions of .57 does not contain a smallest

element depends on the assumption that Jz, M < o. Thus it is of
interest to know whether an example can be found showing that the
class of all m-extensions of .o~ does not contain a smallest element,
since this corresponds to the case where J and M are as large as
possible. As it turns out, there are Boolean algebras .o such that
the class of all m-extensions ¥~ does not contain a smallest element.
In this section such an example will be constructed for each infinite
cardinal m and several general types of Boolean algebras such that
2% does not contain a smallest element will be given.

Throughout this section %~ will denote the class of all m-
extensions of a Boolean algebra .o~ and ¢°(J, M, m) the class of all
(J, M, m)-extensions.

If o7 is a Boolean algebra and {i, ¢} e 2 (J, M, m), let

K#&)={Cew:if (A)SC, Ac .57 then A = A},
and
K(#)={Cew:if P={Aec.v:i(A)2C} then ADP”A = At

Note that K. (%) & K(%).

LEMMA 3.1. The set K %) is an ideal and K(%) = Kx(%), if,
and only 1f, K(&) 1s an ideal.

Proof. 1t follows easily that K,(Z") is an ideal.
If K{(#) is an ideal and &c K(&") let

P={Ac.o:i(A)2C}.

If A’c.v and A’ < A for all Ae P, then

(A — Ce K(%) .
Now #(A’) N Ce K(¥), hence

H(A") = (@A) - C)u ((A)YNC)e K(T) ,
which implies 1(4") = A, or A’ = A... Thus
N7A= A

so Ce K (%), and

Ky (%) = K(%) .

Since K (%) is an ideal, the converse is true.
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ProrosiTION 3.1. If .7 is a Boolean algebra the following are
equivalent:

1. 22(J, M, m) contains a smallest element;

2. K(%) = Ky(%) for all {i, ©}e 2% (J, M, m);

3. K(%¥)=K(¥) if {t, €} 1is the maximum element in
e, M, m).

Proof.
1.=2. Suppose .777(J, M, m) contains a smallest element {i, <%},

and there is an element
0, €te Z(J, M, m)
with the property that
K(%)+ K(%) .

Let h be the unique m-homomorphism mapping & onto <% such that
hj = 1. Let ker & be the kernel of this mapping. Then

K. (¥)ekerh & K(%),
and
ker h == K(%) .
Pick x € K(%") — ker h and let
4 =<y,
80 4 is a complete ideal. Thus
{7;-7, g/A} € L%/(']’ M; Irn/) ’
where
’L.A: - g/i]
is defined by
14(4) = [«(4)], .

Consequently, there are unique homomorphisms A, and %’ mapping
& onto &[4, /4 onto <Z, and satisfying h,j = i, h'i; = 4, respec-
tively. Hence

Whyj=HWi,=1
and by the uniqueness of 7,
h=hh,.

This implies
h(z) = Why(2) = A=
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a contradiction. Thus

K@) = Kp(¥) .
2. = 3. Obvious.

3.=1. To show that .2#(J, M, m) contains a smallest element,
let {7, &’} be the largest element in 2#7(J, M, m) and suppose {j’, "'} €
Z(J, M, m). Let {t, <&} be an m-completion of .o Then there is
an m-homomorphism #' mapping & onto &’ such that A'j = 3 and
an m-homomorphism # mapping & onto <& such that hj = <. Thus

K, (Z)S kerh & K(%),
which implies, by assumption, that
K.(¥)=kerh = K(%¥),
so K,(%) and K(%) are m-ideals in &. Further,
W(Kx(Z)) & Ko(T') & K(Z) & V(K(D)) -
This implies that
W(K(?)) = Ko(Z") = K(&") = W(K(Z))
hence K(%) is an m-ideal. Let
4 =K(&") .
Then &’/4 is an m-algebra and
() = {[7/(A)]s Ae 7}

m-generates Z’/4. Finally, j4(.%) is dense in &’/4. Thus {j’, €'/4}
is an m-completion of .4 hence is equal to {7, &7}, as isomorphic
elements of 277(J, M, m) have been identified. The m-homomorphism

hy: ©" —— &4
defined by
hi(C") = [C']4
has the property that
hyg =3, for all Ae. v,
implying that
(i, '8t =7, €'}
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Hence 22(J, M, m) contains a smallest element.

This, then, gives a way to construct a Boolean algebra . such
that 9" does not contain a smallest element. Namely, by finding a
Boolean algebra .o with an m-extension {i, €’} such that K. (%) #
K(%). The next task is to construct such a Boolean algebra.

If T=m and .= .o/ for all te T, the Boolean product of
{}ier Will be called the m-fold product of % Note that if .7 is
a subalgebra of the Boolean algebra .o7’, &# is the m-fold product
of &7 and .&# ' is the m-fold product of .&’, then ¥ < ..

LEMMA 8.2. If &7 1s an m-regular subalgebra of the Boolean
algebra 7' then the Boolean m-fold product F of 7 1is isomorphic
to an m-regular subalgebra of the Boolean m-fold product &' of &7,

Proof. Since .57 is a subalgebra of &7’ 7 & F'. Let A&
be the set of all ¢,(A), Ae . and te T(Ae. 7" and te T). Then
Fe AFes”) implies —Fe A (—Fe.5) and A(S”') are sets of
generators for .# (). For elements F e &' of the form

define
N(F) = {m(x): . eriv] F} .

Note that if Fes” and teT is such that N(F)== V.. then
P:(M(F)) = F.

In order to show & is m-regular in &', it suffices to prove
that if {Fi},.r is an m-indexed set of elements of & such that

n Ft = /\7
teT
then
h Fo= A~ .
teT
Now F,e & so F, may be rewritten as
Py Q¢
Ft = U Fp,q,t ’
p=1 qg=1

where P, Q. are finite numbers and F,,.c ., for all pe P, qe @,
and te 7. Thus
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F Pt @
Af‘ = ﬂ Fp,q,t
tel p=1g¢=1
F Qs
=N UF.,
seS ¢g=1

after a suitable re-indexing, where S < m and F,, = F,,, for suitable
peP,teT. Without loss of generality, assume that for each
se S, M(F,) = As implies N(F,,) = V.. for all teT and ¢ = g,
and that F,,# V., for all ¢, 1 <¢=<@Q, and all s€S. Suppose
F'e &7 and F' S F, for all te¢ T. Then

M N
FF=UNPF.., Fn.es,
m=1ln=1
S0

N , Qs
n Fm,n g LJIFs,q
g=

n=1

for 1 <m < M, and all se S. Thus to show F''= A, it suffices to
prove that if

N Qs
NrcsUpr,.,,
n=1 q=1
for all se S, where F)e .5, then
N
”Ql F,= A .

It may be assumed that for each n, 1 < n < N, M (F,) # A. implies
M(F.) = V. for all te T and »n’ + n, and that F, + VY.~ for all
n,1<n<N.

Now

D

8

FS,Q

1

in

N
n~e,
n=1

_
Il

implies

Qs
F,,:mU_“Fs,q:A;‘l,
1 =1

3>

n

and as each F, and —F,, is of the form ®,(A4) for some Ae .o’
and te T, the independence of the indexed set {@,(.%7")};cr of sub-
algebras of &' implies that for some %, 1 <#n,< N, and some

qs’ 1 é q3 § QS’

i

F’r:s N _Fs,qs = A;" ’

which implies F, S F,,. This argument may be repeated for each
seS.
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The set {n,:seS} is finite so let {n,:seS}={n:1=<7< N}
Let S;={seS: F,, & F..}). If t,e T is such that

Ne,(Fhe) # Vo forall seS
then N\ (F,,,) € .27 and
&7
ANFus) # Ao -

Thus

R4
O N(Fue) = A

or

7
,Q.Mx(Fs"’s) #= Ao s
hence there is an A4,e .97 A, # A., with
A, & N (F,,,) for all ses;.

Let A, be the set of all x € X such that 7, (x)e A,. Thus 4,,€ 5
and this argument may be repeated for each 4,1 < ¢ < N'. Now

o
A~ # QAM

and

D

s

FQ,s

1

N’
N A,

i=1 q

In

for all seS. But then

N’ 7 Qs
nAmg n UFq,x = Ay— ’
=1 seS g=1

a contradiction. Thus & is m-regular in & .

The next lemma assumes there is a Boolean algebra .o~ such that
an m-extension is not an m-completion. Sikorski [2] cites an example
due to Katétov of such a Boolean algebra for the case m = 0. As
Lemmas 3.5 and 3.6 imply, there is such an .27 for all infinite cardinal
numbers m.

Assume for the moment that .7 is a Boolean algebra such that
% contains more than one element and {i, <&’} € .22 is an m-extension
that is not an m-completion. Thus there is a Be€<# such that
1(A) & B, Ac 7, implies A = A.. Let &' be the Boolean m-fold
product of £z, h, an isomorphism of <% onto the Stone space # of
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<&, X the Cartesian product of .&# with itself m times and indexed
by T, and

B, = p,h(B) for all teT.
Let
BO = U Bt y
tel’

where 7" is a fixed, but arbitrary subset of T such that T > o,
and define

Fo=(F", By .
Since T' = 0, F; # 7.

LEMmA 3.3. If & 1is the Boolean m-fold product of &7 then
S 18 wsomorphic to an m-regular subalgebra of F,.

Proof. It may be assumed, without loss of generality, that
e F. Thus < F,. Let $7(.%) be a generating set for & (% ).
Let

S =S"U{By},

so % is a generating set for ,. As in the previous lemma, to
prove .& is m-regular in &, it suffices to show that if

hig Qs
NrF.sUF.,
n=1 g=1

for all se S, S < m; and

Since F, e .54, there is an n, 1 <% < N, such that ¥, = B, or F, =
— B,, otherwise there is nothing to prove. This may be reduced to
two cases:
Case 1.
v Qs
NF,.NB,SUF,,
n=1 g=1

for all se S, where F,e.o and F,,c.%~
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Case 2.
N Qs
(-B)NNF,sUF,,
n=1 g=1
for all se S, where F,ec. &’ and F,,c .~

Proof of Case 1. If for each sc S there is an #,, 1 <%, < N,
such that there is a ¢,, 1 <¢, = Q,, with F, & F,,, then

N Qs
NF,sUF,,
n=1 q=1

for all se S, and

fv]F;ef’

1

implies

F7:=Afro

1

1=

Thus it may be assumed there is an s, such that
N @so
NFZUF,,.

Hence for all n, F, & F, , for some g, is false. If

nF'r:nBoiAf”

n=1

let xe X be defined as follows. Let %, ---,t,€ T be such that
M(F{) # Va1 =4 < N. Choose an v € X such that it satisfies the
following conditions:

(a)
Kt;(ﬁv«:’) if )\'t,-(Fso,q) =Vsforall g1s¢= Qso
>\’t,(‘p—,ﬁ’) - )\'t,‘(Fsoxqo) if )\‘ti(F’D’qO) +*= v.ﬂ
for 1<1< N;
(b) m.(s)e =N\ (F.,q) for each ¢, € T such that N, (F, ) # V.,
1§Q§Qs0 and te#Ft,1=1=n;
() mx)ehyB) for all t #t;1<1<N,1<q=Q,,
Now « is well defined,

w(x) e

N
xeB, and ze N F,,
n=1

by its definition. But x¢ F, . for all ¢,1 < ¢ < Q,,, hence
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Qasq

239 Foo s
a contradiction.
Proof of Case 2. If
~B,N (Fi# A
and N, (F,) # Vs, t,eT, let A, =9, (—B),1<n=N. Then
AFN(-B)=AF N 4)N(-B)

and

D=

F.NA)esF".

n

1

As before, an s,€ S may be found such that

N Qs
AFNA)EUF,..

Define ¢, -++, ty as before so that N (FiNA4)=V. 1<i<N.
Choose x € X satisfying the following conditions:

(a)
)"t,-(Fi’ n4)if Nti(Fso,Q) =Vas1=2q¢= Qso

T, x) € .
() N (L0 A) = Ne(Fa) i Nef(Fla)# Vs

for 1<t < N.

(b) 7 (x)e — N (Fy,,) for each t,€ T such that N, (Fi,0) * V5
1=¢q=Q.,,and ¢, #¢,1 <7< N.

(¢) m@en(—B) il t#t,t5lSi<n1<qgsQ,
Now x is well defined and

N N

S0

Qsy

xe UFs,q )
g=1

a contradiction.
Consequently, in either case

2 ’
QF,,,: A;—l .
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LEMMA 3.4. If j is the identity tsomorphism of F into F,
and {i, €} 1is an m-completion of F,, then {ij, €} is an m-extension

of F.

Proof. All that needs to be shown is that 4j(% ) m-generates
%. But this follows immediately from the fact that .o m-generates
&% and the definition of &% and .#,.

THEOREM 3.1. If &7 m-generates <& then %(F ) does not
contain a smallest element.

Proof. Fe. and F2 B, then F =V -, by definition of B,.
Thus if j and {4, &} are defined as in Lemma 3.4, {ij, €} is an
m-extension of % and j(B,) € K(¥). By Proposition 3.1, .Z(F)
does not contain a smallest element.

The results of this theorem may be generalized as follows. Let
{7 },cr be an infinite indexed set of Boolean algebras and {{¢.}:cr, <&}
be the Boolean product of {94},er. Let T” be the set of all te T
such that 2£(.94) contains more than one element.

THEOREM 3.2. The class of m-extensions 22 (<#) does not contain
a smallest element if T" = o.

Proof. Define & to be the Boolean product of {{j, Z}}icr
where {j;, &} e 22(57) for all te T and {j, <&} is not an m-com-
pletion of .o for all te T". For each =%, te T", there is a B,c &%,
such that j(A4) E B, Ae .o, implies A = A.,. Let @, map <7, into
7 and set

Bo = tg’ Qt(Bt)

and
Fo=(F", By .

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and
3.4, and Theorem 3.1, .7¥(<%) does not contain a smallest element.

COROLLARY 3.1. If .of=.%7 for all t, t' € T then 27(<2) contains
a smallest element if, and only if, an m-extension of Z 1is an
m-completion.

Proof. If 27(<#) contains an m-extension which is not an m-
completion, let <& play the role of . in Lemmas 3.2, 3.3, and 3.4.
By Theorem 3.1, 27(% ) does not contain a smallest element. As
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the m-fold product &% of <Z is isomorphic to <& 27(<#) does not
contain a smallest element. The converse is clear.
Now to prove the assumption on which these results are based.

LEMMA 3.5. For each infinite cardinal number m there is a
Boolean algebra &7 such that an m-completion {i, &} of & contains
an element B with

=4

B=U

uel v

1

Au,v 4

@
<

Jor all m-indexed sets {A, }uev,ver M X

Proof. The proof will be by constructing such an .& for each
m. Let S be an indexing set of cardinality m. Let &, be the
Cartesian product of S with itself m times and indexed by 7. Define

D,,={de =z, m(d) =s}.
Fix s, s;e S, s, # s, and set S' =S8 — {s], sj}. Let D= Uier(D, o U
D,.). Thus D=2" and de g, — D implies 7(d) #s,, k = 1, 2, for

all te T.
Let

= {d):de =z, U D, teT scS}.

Let .&~ be generated by & in &, and let <& be the m-field of sets
m-generated by & in &,. Then .9 is dense in <& and m-generates
&, so if 4 is the identity map of .o into <7, {i, <&} is an m-comple-
tion of .5/

Let
B=2,—-—D.
Suppose
B=UMNA..,
WU vev

{A. }ucvoer an m-indexed set in %7 This can be written in the form

UN U 4ions

uelU veV mexkfu,v

Aypmor —A,, e M,,<0.

Let B'_: {de=z,:{d} = A,,, for some ue U, veV, and meM,.}.
Then B’ < m, so if

M,,={meM,, A,,, is not of the form {d}, de =,}, it follows
that
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B-UNU A4,.,.sm.

. , ,
uel veV 'mezuu’v

It will now be shown that in fact

B — U n U Au,v,m>7ny
uel veV meM,’u’v
a contradiction. Hence it may be assumed that A,,, is not of the
form {d}, de =, for all ue U,ve V, and me M,,.
If Ayym = —{d}, de =,, for some m € M, ,, then either

(1) mey Au,v,m = _{d}
or
o R

If (1) occurs, it may be assumed that M, , = {1} and A, = —{d}.

If (2) occurs, the term U,. yo Auom may be dropped. Thus for all

ue U, V may be written as V,U V., where (1) V.N V.= @; (2

Avom = —{du}, duve 2, for all veV,; and (8) A,,. is either of

the form —D,, or D,, for all ve V.. Consequently, for all uwe U,
N U 4..=N-{d.Jn N U 4i,n-

VeV meMy 4 vevV, VeV meMy ,

Let
C.=N U 4iun-

VeV meMy o,

Suppose U is the set of all ordinals w < @, where a = U. Let

D ={le =z, n(d) =s,s)}. Now D, =2 implies there is a d,e D
such that

die N —1{d..}.

veVy

Since d,¢ B, this implies
deN U An,

1eVi meMy ,

hence for some v, ¢ V/,

die¢ U Ay,

meM; vy

Also, D, & —D,, for all te T and sc S, hence

Al,'v]_,m =D

t,mo 881 ,m

for some t, ., € T and Sy, €S forallme M, ,. Let T.={t,,: melM,,}



270 DWIGHT W. READ

and pick s, € 8’ such that s, # s, , for all me M,,. Define
@(t) =8

for all te T,.. Let B, = @ and define B, = {de Z,: 7,(d) = ®(t) for
all te T}}.

Note that B, N C, = @&.

Suppose ¢ >1 and a finite set 7T, has been defined for each
<14 so that T, NT. =@ if 7,7 <1, ¢ #+1;8,€8 has been
chosen; @ has been defined on each T,, 7" < %, so that ®(t) = s, for
all te T,; and if

B, = {d e 9,: n,(d) = @(t) for all te U T.}
<3

then
B;‘ ﬂ .ILJ_C{' = @ .

Let

ol

and note that 7, < m. Let

D, = {de ,: w(d) = p(t) for all te T,
and 7(d) = s, k=1,2, if te T~ T}.

Then D, = D and 1_7: = 2™, hence there is a d,€ D, such that
d;e N — {di} «

vevV;

Since d;¢ B, this implies

hence for some v, ¢ V/,

di e U Ai,vi,m

MEM; o,
i

If BNC, =@ set T,= @. If not, there is a d;e B, such that
d;eC;, so

die U A -

Note that 7,(d}) = m,(d,) for all te T\
It immediately follows that if
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d': e U Ai,v;,m

MEM’;"’i
then
Ai,vi,m = Dt-

i,m>St ’

where ¢, ¢ T; and

Top (D) = 50,
for some m e M;,,.

Let
T.={tymeT— T Aoy = D‘i,m'sti,m for some me M, }
and pick s, €S’ such that if ¢;,, € T, then
s; + S‘i,m ,
for all me M,,,., Now define
o(t) =s, for all teT,;.
Thus T, N T, = @ which implies 7, N Ty = @ for all ¢ <. If
B, = {de o,: w(d) = @(¢t) for all te T,U T}

then it is clear that

Bi+lﬂ U,Ci: .

<%
Now let T = U,<. T; and set

B={dea,:n(d) = o) for all te T
and 7 (d) = s, s, if te T — T}.

Then B+ @ and BS B. But BN U..y C. = @ which implies
B-UC,+ 0.

uel
If B = B — U,y C, then for each be B,
b= thD"at’b ’

for some m-indexed set {s,;};.r in S’. Thus

B = U n U Au,v,m U U n 'Dt:st,b 4

uelU veV meMy,q beB' teT

but the above construction shows that

271
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B-(UN U A..uU N Do) # @

uel me M. % beB't
if B < m. Hence

B—-UC, >m.

wel

LeEMMA 3.6. If {t, &} is an m-completion of the Boolean algebra
& and there is o Be€ <& such that

Jor all m-indexed sets {A;.}ierses 1 7 then there is an m-ideal
4 im & such that {j, By} 1s an m-extension of 1,(.7) but not an
m-completion, where i,(A) = [1(A)], for all Ae . & = Z/4 and
J 1s the identity map of 14.7) into &

Proof. Let

—(Bes:B<Band B =i(4),
tel
for some m-indexed set {A,);.r in &7}

and let 4 = {4'),. Then if 6e4,6< B, so Bgd. If Ae. .oz and
[((A)], & [B], then i(A) — Bed so i(A) — B<S B which implies
#A) & B, hence i(A)e 4 and [i(A)], = A~ ,» implying i,(.27) is not
dense in Z.

It only remains to show that 71,(%) is m-regular in <z, If

i5(57)

0 G4 = Ao,
then 9(A) & i(4,) for all te T implies i(A)e 4, so i(4A) S B. 1If
Ni4)z B,
then there is an A # A. in % such that

i(4) S N i(A) — B

te

L]

contradicting the above statement. Thus

3\3

N i(A) S B

o~
™
|

80

A iA)ed

teT
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and
Ao, = (DAL = Q1A

Thus if .o~ is the Boolean algebra constructed in Lemua 3.5,
14.57) is a Boolean algebra such that #7(i,.%”)) contains more than
one element. Hence it is justified to assume that for each infinite
cardinal m there is a Boolean algebra .%~ such that .o has an m-
extension which is not an m-completion.

4. Let {54}, be a (fixed) indexed set of Boolean algebras.
Let &, be an isomorphism of .o/ onto the field .&#; of all open-closed
subsets of the Stone space X, of .%4. Let X denote the Cartesian
product of all the spaces X,. Let 7, be the projection of X onto &,
and define

@t:%'_’ X
by:
if F'e #; then o(F) = {re X: () F} .

Let & be the Boolean product of {.%4};c,. Define h} = @k, and
let &2 be the set of all sets Nierhi(4.); Aie o, TS T, T < n.
Define l%A to be the field of sets generated by &% Let J be the set
of all sets S& % such that

1. S =m;

2. there is a te T such that S & h}(.57%);

3. the join UZ.s A exists.
Let M’ be the set of all sets S < 7 such that

1. S = m;

2. there is a te T such that S & hf(.%%);

3. the meet n;ﬁsA exists.
Let M” be the set of all sets S < 7 such that

1. Ssu

2. if AeS then Aeh}(%4) for some te T,

3. if A, BeS, A+ B, then A€ hf(.%) implies B¢ h}(.%). Let
M=MuUM". ‘

The following lemma is due to La Grange [1] and will be given
without proof.

LemmA 4.1, If {{i}icr, Z} e F /t\hen there is one and only one
(J, M, m)-itsomorphism h mapping # into & such that

hhi =1, for all teT.
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THEOREM 4.1. If {{i}icr, F} €., then there is a mapping n
of j\“ mto & such that {h, &) is a (J M, m)-extension of .7 Ir
{h, 2} 18 a (J, M, m)-extension of " then the ordered patr
HhhE)er, F) e A,

Proof. Let h be the (J, M, m)-isomorphism from " into &
such that Ak = 4, for all te T. Then {h, <&} is a (J, M, m)-extension
of L?/\‘

Conversely, if {h, <z} is a (J, M, m)-extension of éf it follows
immediately that {{hh}},cr., <&} is an (m, n)-product of { o7 };c .

THEOREM 4.2. If {t}icr, 2}, {tier, SB'} are two (m, n)-products
of { .} ier then

{idicr, Z} = ({il}ier, 27}
if, and only if,
i, &) = (i, )

where {1, <7} and {i/, <2} are the (J, M, m)-extensions of 7 nduced
by the (J, M, m)-isomorphisms 7 and i of F into F' and B,
respectively, given by Lemma 4.1.

Proof. Now
{ihier, &7} = {idhier, 27}
if, and only if, there is an m-homomorphism % such that
h: B —— F
and A4, = 4, for all te 7. Similarly,
i, Z} = {, 2"}
if, and only if, there is an m-homomorphism
hi B —— F

such that /% = 4. Thus it suffices to show that hi =4, if, and
only if, hi; = 4,. Let A be defined as above. Then thf = 4, and
Thi = 1., so if At = 1,

hi, = hi'h} = thf = 1, ,
and if A4, = 4,, then

R = hithi™ = LhfT =1 .
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La Grange [t] has given an example of an (m, 0)-product for
which & does not contain a smallest element and an example of an
(m, n)-product for which 27, does not contain a smallest element.
Theorem 4.2 extends this result by showing that the question whether
P or &7, contains a smallest element reduces to asking whether the
class of all (J, M, m)-extensions of &% or 7A contains a smallest
element for J and M defined appropriately in each case, where .o
and ﬁA' are defined as above. Now the class of all (J, M, m)-exten-
sions of %7 contains a smallest element only if the class of all m-
extensions of .o contains a smallest element and Theorem 3.2 shows
that the class of all m-extensions of .%7 need not contain a smallest
element, which implies the same is true for 2 Since Theorem 3.2
may be extended to Boolean algebras of the form &% it follows that
&, need not contain a smallest element.
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