Pacific Journal of

Mathematics

ON THE EQUIVALENCE OF TWO TYPES OF OSCILLATION

FOR ELLIPTIC OPERATORS

WALTER ALLEGRETTO




PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 2, 1974

ON THE EQUIVALENCE OF TWO TYPES OF
OSCILLATION FOR ELLIPTIC OPERATORS

W. ALLEGRETTO

The strong oscillation of a second order symmetric elliptic
operator is shown to be equivalent to the oscillation of all
solutions of the associated homogeneous equation. Extensions
of a nonoscillation theorem and of an existence theorem are
obtained as applications.

Introduction. Let {E" o~} denote the topological space formed
by the standard one point compactification of n-dimensional Euclidean
space E”. A real valued function » with domain in E" is said to be
oscillatory (at o) iff o belongs to the closure (in the topology of
{E", oo}) of the set {x|x € E™ and u(x) = 0}. Let L denote a second
order symmetric elliptic operator with coefficients defined in an un-
bounded domain 2 of E*. Following I. Glazman [6], we define L
to be strongly oscillatory (at ) iff L has a nodal domain in NN 2 for
any given neighborhood N of c. That is: Given any neighborhood
N of «, there exists a bounded domain Dc N N 2 for which zero is
the smallest eigenvalue for L (corresponding to Dirichlet boundary
conditions). Since the classical Sturm-Kneser theorem can be extended
to partial differential equations by means of the Swanson-Picone iden-
tity, [14, p. 187], [2], it follows that if L is strongly oscillatory then
every C*? function v which is a solution of the equation Lu = 0 in
NN 2, for some neighbourhood N of <o, must be oscillatory. This
connection between the strong oscillation of L and the oscillation of
the solutions to the equation Lu = 0 has been noted for some time,
beginning with results of K. Kreith [8], for special cases of L;
Headley and Swanson [7], for the general case; and, more recently,
several other authors. Further extensions of these concepts have
also been made to the case of elliptic systems [1], [16] and eigenvalue
problem [2], [3]. We refer the reader to the recent book by K. Kreith
[9], where these ideas are discussed and an extensive bibliography is
given.

It is our main purpose to show that the strong oscillation of a
second order elliptic operator L is equivalent to the oscillation of all
solutions % of the equation Lu = 0 in neighborhoods of o, if the
coefficients of L and 2 are reasonably regular. This extends a result
which is obviously true for ordinary differential equations. As applica-
tions of our results, a nonoscillation theorem of C. A. Swanson is
strengthened and some related results of L. M. Kuks are clarified
and extended.
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320 W. ALLEGRETTO

We shall restrict our discussion to the case where 2 is an un-
bounded domain and L has regular coefficients. The analogues of our
results for the case where 2 is bounded but the coefficients of L are
singular at some boundary point of 2 will be obvious from the
presentation.

2. Assumptions and main results. As is usual, points of E"
will be denoted by = = (x,, ---, #,) and differentiation with respect
to «; by D; for ¢ =1, ---, n. Let Q denote an unbounded domain of
E". We shall use the following notation throughout:

2, 0,=82N{xlzecE" and o, < x| < 0},
R, =02N{xjxcE” and p < |z|},

where 0 < p, < p < .
Let L denote the elliptic operator formally given by:

Lu = —_ilDi[aiiju] +eu, a;=aj.
%,5=

The coefficients a;; are assumed of class C™" and ¢ is assumed of
class C™ where m = 3[[3 + n/2]/2] in the closure of any bounded
subdomain of 2, where [¢q] denotes the largest integer not exceeding g.
L is assumed uniformly elliptic in any bounded subdomain of Q.
These assumptions are more restrictive than what is needed for many
of the results, however they lead to a unified and simple presentation.
About 2 we shall only assume that 2, , is a domain for all p, o
with 0, < p, < p < = for some p, > 0. Unlike most results for un-
bounded domains, no other restrictions are placed on 2 or on the
coefficients of L at o or on the sign of c.

LEMMA 0. Let B be a positive constant and x, @ point in 2 so
that {x||x — x| < B} & 2. Define the C3 () function ¥ as

w(x)_ _(Ix""xo|2'—;82)21» ’Lf |93~*5130|§,3
B 0 , if lw—m| =8,

Then given ¢, 0 < & < 1/2, there is a l, = l,(x,, B, &) such that for each
positive integer | = 1,, the following hold:

(i) L¥@)=0 for eR=|x— x|

(ii) L¥@)>0 for ez —xz|=(1—9)pB.

The proof of Lemma 0 follows easily from the locally uniform
ellipticity of L and the local boundedness of the coefficients of L.

As an immediate consequence of Lemma 0, we note that given
any arbitrarily large ¢ > 0 and any sufficiently small ¢ > 0 we can
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construct a function ¢,€ C¥(Q, ,...) such that L(g,) = 0(z£0) in 2,,. 412+

Given any bounded subdomain D of 2 we introduce the space
CY(D) of all continuously differentiable functions in D and the space
H'(D) which is the completion of C'(D) in the norm:

e = SD{EZ; (D)’ -+ uZ}dQ.

By H;(D) we denote the closure in the || [|,;-norm of the space
Cr(D), of all infinitely differentiable functions with compact support
in D.

We shall not distinguish in notation between the equivalence
classes which form the elements of H*(D) and functions chosen from
various equivalence classes.

Given any function we HXD), we define u to be nonnegative in
the H{ sense iff there exists a sequence of nonnegative CY(D) functions
which converges to w in the || |[;-norm. If w, v € H{(D), we write w = v
iff w—v=0in the H} sense. Let G denote the function from E' to
R! given by:

For any u e H)(D), we set u* = Gou, u~ = Go(—u) and define |u| by
fuw| = ut + u .
The form B(u, ¢) given by:

B(ur Q) = g Z CLL]'DZMD]“/’,S -+ cup
D 3,3=1

is naturally associated with the operator L and subdomain D. A
function w e H'(D) is called subsolution with respect to L in D iff
B, 9) =0 for ¢eCr(D), 6 = 0. A generalized solution of Lu = f
is a function w in H'(D) such that B(u, ¢) = (f, ¢) for all s¢C(D)
where, as usual, we set (f, ¢) =\ fo.
D

The above terminology was introduced in [13] where the following

two results were established (in much greater generality):

LEMMA 1 [13, p. 18]. If w is a member of H}(D) then so are
w oand v and:

‘ (0 u=0
Du™ = 7Du w> 0 a.e.D; Du = .e.D.

vV A

{O u=0
a
—Du <0

LemMA 2 [13, p. 75]. If u, v are subsolutions in D and the form
B is coercive over H;(D) then max (u, v) is also a subsolution.
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If we H)(D) then clearly u* and u~ are nonnegative in the H}(D)
sense.

The next two lemmas show that if L has no nodal domains in
Q,... then there exists a positive C® function w such that Lu(z) =
0 for all |z| sufficiently large. Such a function « is obtained as the

limit of solutions of suitable boundary value problems involving
bounded subdomains of 2, ...

LEMMA 3. Let L have no nodal domain in 2,,. for some integer
m > 0, and let ¢,€ CR,. ..2.) be a function constructed by the above
procedures (for some € > 0) such that Lo, = 0(3£0) i1 2y misee  Then
Jor each integer k > m + 2¢ there exists a function w, 1 Hi(Q2,...)

such that Lu, = L¢, in a generalized sense. Furthermore, iof k, > k, >
m + 2¢ then w,, = u;, = 0.

Proof. Since L has no nodal domains in 2,. then for each
integer k, k > m + 2¢, there exists a positive constant v such that
for all functions ¢e C*(2,....,) we have:

(Lg, 8) = (3, 9) -

Consequently L is uniformly positive definite in C;*(2,...,,) and we
can form the Friedrichs extension of L (also denoted by L) whose
domain is contained in the completion of Ci*(2,....,) in the || [[,-norm,
where |[¢]2 = (¢, Lg). We note that if ¢e Co(Q,..,) then [[g]l7 =
M52 for some constant M which depends on the coefficients of L,

and, conversely,
loles [T+ ) + L]
A v v

-

TSI
ollZ

where )\ denotes a positive lower bound on the smallest eigenvalue
of (a;;(x)) and N = sup |e(x)| for x€ 2,,,.,. Consequently, the || |;-
norm and || [[,-norm are equivalent for C(2,..,) and the completion
of C3(2,..;) in the || ||;-norm is H}(2,...). By the results stated, for
example, in [12, Chapter 1] there exists a unique function %, in
H}(2,...,) which is a generalized solution of Lu, = Lg, in Q,.., and
is further characterized as the function which minimizes the functional:

J(9) = llgllL — 2(9, Léy)
over the space H)(2,...,). By Lemma 1, it follows that |u,| € H{(2,..:),

(D;u;)* = (Duy)? and ju,* = u} a.e. 2,..,. Consequently,

) = Jou) = 2| e = [u)Lg <0

Qm+e,k
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since Lg, =0 in 2,,...... By the uniqueness of the minimizing function
u,, it follows that u, = |u,| a.e. and consequently u, = 0. If &, >k, >
m + 2¢ then w,, —u, is a solution in HY(2,.:) of Lu =0 and
since the the constant function » = 0 is also a solution of Lv = 0 then
max (U, — uy, 0) = {u,, — u, }* is a subsolution (in Hi(2+.,1,)) by Lemma
2. Consequently,

B({uy, — ur}*, ) =0,
for all nonnegative ¢ in C3(2,..,,) and by continuity:
B({ukz - uk1}+, {ukz - uk1}+) é 0 .

It follows that {u;, — u;}* = 0 and hence u;, = uy,.

LEMMA 4. Let the conditions of Lemma 3 hold. Then there
exists a positive function u € CHQ2, 2..) such that Lu(x) =0 for x¢€

Qm+2£,oo‘

Proof. Consider the sequence {w;};>n... With u,; set identically
equal to zero outside 2,..;. This is a minimizing sequence for the
functional J in the space formed by completing C5(2,.4...,) in the || ||.-
norm since if ¢ € C5(2,...,..) then J(¢) = J(u;) for any j chosen so that
SUpp ¢ C 2,4..5. We note that the expression ||4|2 = (¢, L¢) defines a
norm even for g€ Cy(2,.) since L has no nodal domains in 2, ..
Consequently, the Cauchy-Schwartz inequality shows that the map ¢ —
(¢, Lp,) is a bounded linear functional on the space Cy(2,.) (and
hence on C3(Q,.,..)), with respect to the || ||;-norm. By means of
the Riesz representation theorem, we conclude that the minimum of
J is achieved in the completion of Cy(2,....) (With respect to the
Il llz-norm) and it follows that the sequence {u;} converges in the
|| llz-norm, [12, Chapter 1]. If ¢ denotes any function in Ci(@2,.) we
again employ the Cauchy-Schwartz inequality to conclude that {(u,,
L9)} converges. Let « denote any point of 2,,... Since 2,... is
connected, it is possible to find a finite number of spheres {S,}i., such
that: Lg,> 0in S,; the center of S,,, belongs to S;; € S;; and U:.S;
2,i00. As noted above, the sequence {(u;, L¢,)} converges. Since
L¢, =0 in 2,.,.. then {u,} is L' cauchy in S,. Let ¢, be a Ci2,..)
function constructed by the above procedures such that Lg, >0 in
S, — S, and L¢, = 0 in the complement of S,. Since:

(W, L) = SSluiLgﬁl + S L.,

we conclude that {u;} is L'(S,) cauchy. By induction, it follows that
{w;} is cauchy in L'(S,). We set u = supu, and conclude that u is
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of class L},(2,:..) and that for all g€ C(2,.,....) We have (4, Lg) =
(3, Lg,). Clearly if supp ¢ does not intersect 2, . mi then (u, Lg) =
0. Let K denote a regular subdomain with K a compact subset of
2,.... which does not intersect @,....... Following a standard re-
gularity argument (see, for example, [4, p. 195]), we employ the
Sobolev embedding theorem as follows: Let ¢e Cy(K) then:

(@, 0) = sup 6@ || Jul = Cllglan:| 1l

It follows that the map ¢ — (u, 9) is a bounded linear functional
on the space H["'#*(K). By the Riesz representation theorem we
have:

(@, 8) = (U, (=DM 4017

for some wu, in H{™**, where H/"'**(K) is now considered as the
completion of Cy(K) in the (equivalent) norm:

1817 = (3, (—1yergomg)
It follows that:
(w, 9) = (¥, (—=1)'4%) ,
and, consequently,
(w, Lg) = (o, (—1)'4'L$) =0,

for some 4, in L¥K) and all ¢ in Cy(K), where ¢t = [1/2[(n + 6)/2]].
Since the coefficients of L are of class C** and C* respectively, we
conclude by a classical result (see, for example, [5, p. 56]) that €
C**(K) and consequently that u e C*K). Hence u is a classical solu-
tion of Lu = 0 in 2,,:.. Since u is obviously nonnegative, then u
must be positive [10].

It is interesting to note that the conclusion of Lemma 4 cannot
be strengthened to read: “there exists a function u solution of Lu =
0 in 2 and positive in 2,,....”, as the following counterexample shows.
Let 2 = E* and let ¢ denote any regular nonpositive function with
support in {x||xz| < 1} such that the operator formally defined by
Lu = —4u + cu has no nodal domains in {x||2| < 2}. L has no nodal
domains in 2, since if ¢e€Cy(2,,.,) then Lg = —4p. Assume that
there exists a function v such that Lv = 0 in E? and v >0 in Q...
with 0 <e< 1. If » vanishes at some point of E* then it must
change sign [10]. By Lemma 1, (—v)" € H{({z||z| < 2}) and by Lemma
2 (—v)" is a subsolution. Consequently, we have

B((=v)", (=v)") = 0.
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If (—v)* # 0 then we have a contradiction to the assumption that L
has no nodal domains in {z||2z| < 2}. It follows that v is positive in E*
and therefore 4v = ¢v < 0. But, by Liouville’s theorem, any function
which is bounded below and superharmonic in the whole of E* is a
constant. If ¢ is nontrivial, this is a contradiction.

THEOREM 1. L 4s strongly oscillatory iff every C® function u,
solution of Lu = 0 in some meighborhood of oo, is oscillatory.

Proof. If L is strongly oscillatory then, given any neighborhood
N of « it follows by the standard theory of eigenvalue problems
that there exists a bounded domain DC NN 2 and a function we
H;(D) such that (w, Lw) < 0. By arguments involving the Swanson-
Picone identity (see, for example, [14, p. 205], [2]) we conclude that
all solutions w of Lu = 0 in D must change sign in D. Consequently,
all solutions of the equation Lu = 0 in some neighborhood of «~ are
oscillatory. Conversely, if L is not strongly oscillatory, then, by
Lemma 4, there exists a positive solution to the equation Lu = 0 in
some neighborhood of .

The proofs of the lemmas and of Theorem 1 would be even simpler
if the fact that L had no nodal domains in 2, . implied that, for
€ > 0, the eigenvalues of L in the bounded subdomains of 2,.... were
uniformly bounded below by a positive constant. Simple examples
can be constructed to show that this is, in general, false.

As an application of Theorem 1 it is possible to give strengthened
versions of known nonoscillation theorems. As an example we give
the following corollary which strengthens a result of C. A. Swanson
[15], which is itself an extension of a result of Glazman.

COROLLARY 1. Assume that 2 is the complement of a sphere in
E", let N, > 0 denote the ellipticity constant of L (i.e. Dyt o 0,i(®)6.65 =
Mo i &5 for all (x,6&, ---, &) tn 2 X E™), and let g(r) denote the
mintmum of c(®) on {x||z| =r}. If

—(n = 2)°\

(1) liI}fl—' inf rig(r) > 1

then there exists a positive solution in a neighborhood of o to the
equation Lu = 0.

Proof. It is shown in [15] that condition (1) is sufficient for L
to have no nodal domains in a neighborhood at co. The conclusion
then follows from Theorem 1.

It is obviously possible to obtain other such results by using
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known nonoscillation criteria, but we do not pursue this point.

In conclusion we note that L. M. Kuks has stated related results
which, as given in [11], appear valid only under the implicit assumption
that the (open) domain 2 and the coefficients of L are such that the
standard existence and uniqueness theories apply to the whole of 2.
Specifically, it is stated in [11] that a necessary and sufficient condition
for the unique solvability of the Dirichlet problem in the subdomains
of Q is that there exists a positive solution to the inequality Lu = 0
(cf. Definition 2 and Theorem 8 of [11]). However, this is false for
the (open) domain 2 even if @ is bounded and regular, unless some
restrictions are placed on the coefficients of L up to the boundary of
2, as the following example indicates: Let 2 = (0, 1) x (0, 1) and let
L be formally given by:

Lu = 0 ( 1 —ai>+ 0 ( L 6u>+2[_1_+_1_}u.
ox \ x* Ox oy \ y* oy xt y!

Then u(z, y) = (x* — x/n)(y* — y/n) solves Lu = 0 and vanishes on the
boundary of (0, 1/») x (0, 1/n). Consequently, the Dirichlet problem
does not have unique solutions in the subdomains of (0, 1) x (0, 1).
Yet the function w(x, y) = zy satisfies Lv = 0 and is positive in Q.
Analogous examples are possible for unbounded domains. If the
“domain” of [11] is not assumed open, i.e., if 2 = Q@ U P with @ some
open set and P a nonempty subset of the boundary of @, then
clearly Theorem 3 of [11] is again false, for if the smallest eigenvalue
for L in @ is zero and conditions are sufficiently regular then by the
Swanson-Picone identity every solution of the inequality Lu = 0 must
vanish in 2 even though the Dirichlet problem has a unique solution
in each (proper) subdomain of Q. It follows that, as claimed above,
Theorem 3 of [11] is valid (for open sets) only under global regularity
assumptions and, consequently, it does not imply Theorem 1. We state
a result which is, in form, a local version of Theorem 3 of [11].

COROLLARY 2. There exists an integer m such that the Dirichlet
problem for L has a unique (generalized) solution in any bounded
subdomain of 2, . iff there exists an integer m' such that the equation
Lu = 0 has a positive solution in 2, ...

Proof. If there exists a positive solution u to the equation Lu =
0 in 2,. then by Theorem 1, L has no nodal domains in 2, ..
Consequently, the Dirichlet problem for any bounded subdomain of
2., has a unique solution. Conversely, if the Dirichlet problem for L
in the bounded subdomains of 2, .. has a unique solution then L has no
nodal domains in 2, .. The existence of a positive solution in a
neighborhood of < follows from Theorem 1.
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If @ and the coefficients of L are such that, for some ¢ > 0, it
is possible to regularly extend the coefficients of L to the open set
Qoo 0f E™ in such a way that the extension has no nodal domains in
2,_... then we choose m’' = m in Corollary 2 and in this case we have:

COROLLARY 3. The Dirichlet problem for L has a unique solution
in any bounded subdomain of 2,. tff there exists a positive solution
M 2. to the equation Lu = 0.

Note that if 2 == E* we may replace “2,.” by “Q7 in the state-
ment of Corollary 3 and hence we have, for this special case, an
analogue of Theorem 3 of [11] for our unbounded domain. Even
though it is easy to give simple sufficient conditions for the exten-
of L, as required in Corollary 3, to be possible, necessary and sufficient
conditions for such an extension are not known to the author at this
time.

Added in Proof. The significance to spectral theory of the
equivalence of the two types of oscillation has been considered by
J. Piepenbrink in his recent paper: “Nonoscillatory Elliptic Equations”,
J. Differential Equations, 15, 541-550 (1974). Theorem 1 answers in
the affirmative the question posed by J. Piepenbrink at the end of
his paper.
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