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Dragilev’s theory of regular bases in nuclear Fréchet
spaces is applied to obtain necessary and sufficient conditions
in terms of the zeros for a linear Pincherle sequence to be a
basis for the space ¥, of functions analytic on the interior
of the disk of radius F < oco. It is shown that a linear
Pincherle basis is always proper. All possible phenomena for
the basis radius of a linear Pincherle sequence are exhibited.
In this connection it is shown that for any finite £, > 0 there
is a sequence of analytic functions which is a basis for &,
if and only if R< R, or R = co.

A classical problem of fundamental interest is to study the
representability of analytic functions as infinite series in a given
sequence of functions. The purpose of this note is to point out one
case in which recent developments in the theory of nuclear Fréchet
spaces are directly applicable and lead to results which have not been
obtained by other methods.

In order to describe the results it is necessary to explain certain
concepts. A sequence («,) in a Fréchet space E is a basis if each
x€ E has a representation z = 3 ¢,«t, where (¢,) is a sequence of
scalars uniquely determined by 2 and the infinite series converges in
the topology of K. Two bases, («,) and (B,) are equivalent if 3 ¢,
converges in F if and only if >)¢,8, converges in E.

Let 0 < R< . We shall be interested in the nuclear Fréchet
space ¥, consisting of all functions analytic on the open disk of
radius R, equipped with the topology of uniform convergence on
compact sets. As is well known, the sequence (z") is a basis for #5.
An arbitrary basis, («,) for #, will be called proper if it is equiva-
lent to (27).

The general question then can be viewed as the problem of
determining when a sequence («,) is a basis for &, and when it is
a proper basis. Of course, one can only hope for conclusive results
in special cases. M. Arsove, in a series of papers over the past
15 years (see [1] for a bibliography) has considered Pincherle sequences
in which «, has the form a,(z) =2"y,(2), n =0, 1, 2, --- where each
49, is a function in &% and +,(0) = 1. Most recently, in [1], Arsove
studied linear Pincherle sequences in which each +, is a nonconstant
linear function with its zero at z,, so we can write,

anzz’(l——i), n=10,1,2 .
2,
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Our results can then be described as a complete determination,
in terms of the sequence of zeros (z,), of when a linear Pincherle
sequence is a basis and when it is proper. Also we consider the
question of how the result depends on the value of R. It is hoped
that both our results and our method will be useful in studying
general Pincherle sequences.

Our method is to apply a deep result of M. M. Dragilev ([3],
Theorem 5), which we use in the formulation given by C. Bessaga
[2]. In order to describe the method, we must introduce some further
concepts. Let (x,) be a basis for a nuclear Fréchet space E. We say
that the basis is regular if there is a fundamental sequence of semi-
norms (|| - ||,) for E such that

(R) ”ank > ”xn—H”k for all » and k.

1 | PRTE [ | P

We say that the basis is of type D, or D, if we have (|| - ||;) such that
(R) is satisfied and

D)) lla,|l, = 1 for all # and Vk3j 5 sup HH <1
or
(D) lim|jz,|l =1 for all » and Vk3j3sup H“Hks 1

Then the main result which we will use in this paper is due to
Dragilev and has the following formulation:

LEMMA. If (z,) and (y,) are regular basis in a nuclear Fréchet
space and they are both of type D, or of type D, then they are
equivalent.

The proof of the lemma is immediate from [2], 1.10 formulas (5)
and (6).

Now we explain some of the notation which will be used. For
the topology in the space &L, we can take the seminorms |- ||,
0 < p < R given by

Iflle=Slelom,  f=3odes:.
We set, for 0 < R £ oo,
4 ={@E):3fem2 () = 567 2] < B} .

As is well known, £e 4, iff lim|é&, [ < 1/R. The map J: A, — F¢
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given by
JED = 36

is an algebraic isomorphism and we write ¢ = J'(2"). We can use
J to define a topology on A4, (carried over from .&#3). It is not hard
to show that the topology is defined by the seminorms |-, 0 <0 < R
where

G sgplénl ", (¢.)edp.

Given a linear Pincherle sequence («,) with zeros (z,) and 0 < B < oo,
we will use the labels » = p(R) and r, = r,(R) given by

1 if R=
! r—____]__z_ﬁ_L_ 7?/:0,1,2,'--.

P=lRit R<o’ ™" @tz 0’

The symbol z, +-+ z,_, is clear if # > m and if » = m we will take
it to be 1.

An automorphism is a linear topological isomorphism of a space
onto itself. We recall that two bases (x,) and (v,) in a Fréchet space
E are equivalent iff there is an automorphism T of E such Tz, = y,.
Also, it is obvious that if (x,) is a basis and (¢,) is a sequence of
nonzero scalars, then (¢,x,) is a basis.

THEOREM 1. A linear Pincherle sequence («,) with zeros (z,) is
o basis for Fp 0 < R< oo off

(Cr) Vp<R3,5<Rasupsup—l(—l—i%<oo.
n omzm |2, e 2,

Proof. Suppose that («,) is a basis for 7.

The first step is to show that the basis (r,«,) is of type D, or
D, according as B = o« or R < c. Consider the seminorms on &,
and compute, for o < P,

[l | s lls _ (o + lz_ll‘o)<p )
[, 15 1] Qs llo (pn + _I__z];_lﬁn+1>((o'n+1 + Iz_lnlpwz)

_ PlzallZass [+ 0" 20| + 0P [ Z0is [ + 0P 4
lo‘znllzn+1|+loz|zn|+pplzn+ll+pzp

whence the basis («,) is regular, so the basis (r,«,) is also regular.
If R= -, we have

A O
sl = g1+ ) = 1

and, for 1< 0*=<p,
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n 1 n+12
[ 7u@alls _ |z”\<p+ml‘0 > 2, "+ 202, + 0°

so the property (D,) is satisfied.
If R< «, we fix n and have

IA

1,

lim || r,a, |, = lim 2@ T 120 _ ¢
o o~z R™(R + [ 2,])

Also, for 0 < p < P*/R,

im L 7a%allo _ jip (BOY(0 + [2.1) _
R LA N )

’

so the property (D,) is satisfied.

Next we observe that it is a simple matter to check that in .7,
the basis ((1/p™)z"), is also of type D, or D, according as R is infinite
or finite. Hence it follows from the lemma that the basis (r,«,) is
equivalent in &, to the basis ((1/p")z"). This in turn implies that
(r.p"a,) is a proper basis in .Z,.

Thus we have an automorphism 7: 4, — 4, given by the relation,
Té¢ = n where & 7 are determined by the relation,

(1) 3, 68" = % Nal D"
Using formula (3.3) of [1], we obtain that

- o |
Tem:Z——————l e”zZ—————-——p+mw e .
”:anpnzm R nE=EM Gy v Ry ' Zn |
It is not hard to check, using the seminorms in 4,, that the continuity
of T is equivalent to the statement,

Vp<R3p<RasupM<m

nle™ |l
Using the definitions of these seminorms in the explicit repre-

sentation for T, we see that the continuity of 7T is equivalent to,

Vo < R37 < R 5 sup sup— L1200

W 2 e 2| O

When R = o, this is exactly (C.). For R < < this is equivalent to
(Cy) in view of the fact that

min (1, p) = 252l <max(1,p),  0<p< .
1+ (2]
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This completes the necessity portion of the proof.

Now suppose that (C;) holds. We can then immediately assert
the existence and continuity of the map T: A, A, defined by the
relation (1). We can use this relation to compute,

T " = rmpm(em 1 e’”“) .
Zm

This map is in any case continuous because

sup LT 7" 1l

nlem [l

:supmax{ [ Zn | , i 1<oo.

m D+ 2. D+ 2]

Hence T is an automorphism of A, so JT'J* is an automorphism

of &, and since JT'J7'(z") = r,p"a, it follows that (r,p"a.,) is a basis

for 7, and since r,p* = 0, it follows that (a,) is a basis for 3.
This completes the proof of the theorem.

COROLLARY. A necessary condition for a linear Pincherle sequence
(o,) with zeros (z,) to be a basis for F, is

i (LEleal)™ (<o R
|2 | =1 fR< oo,

m

Proof. We apply (C;) and, in the second sup we always take
n = m. The given condition is then easily derived.

REMARK. By taking other special values of m and % in (C;) we
can easily obtain other necessary conditions. For example, if we take
m = 0 in the first sup, we immediately obtain condition (1.4) of [1].
These conditions will not be sufficient. For instance, the condition of
the corollary is always satisfied if z, is constant. However, by Lemma
2.2 of [1], if this is so and |z,| < R, then («,) will not be a basis.
On the other hand, the condition of the corollary is strong enough
to settle the question of when a linear Pincherle basis is proper.

THEOREM 2. FEvery linear Pincherle basis is proper.

Proof. In the proof of Theorem 1 it was shown that if a linear
Pincherle sequence («,) is a basis for &5, then (r,p"«,) is a proper
basis in .%#,. Hence Y, &,«, converges iff

co En

=z _g" converges in g,
w=07,p"

which is equivalent, by the Cauchy-Hadamard formula to

(Ll )y < L

n

_R’
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and, in view of the corollary, this is equivalent to Iim,|&, | < 1/R,
i.e., that >, £,2" converges in .#5.

REMARK. The above result shows that the sufficient condition
given in Lemma 3.4 of [1] is also necessary. Alternatively, that
lemma can be used, along with Theorem 1 to obtain Theorem 2.
This is done by observing that condition (C,) directly implies condition
(3.11) of [1].

We turn now to the question of basis radius. A Pincherle sequence
is said to have basis radius R, provided that it is a basis for &, if
and only if 0 < R < R,. This is slightly different, on the face of it,
from the definition given by Arsove [1] who requires that the sequence
be a basis for &, whenever R < R, and fail to be a basis when
R > R,. The two statements are equivalent because it follows from
general considerations that if a sequence is a basis for &#; whenever
R < R,, then it is a basis for 7.

Arsove [1] points out that a Pincherle sequence may fail to have
a basis radius. The next theorem gives more or less complete in-
formation in the linear case.

THEOREM 3. Let (a,) be a linear Pincherle sequence. Then («,)
has a basis radius if and only if either (C.) fails or (Cz) holds for
all BR< . In either case we have,

R, =sup{R:0 < R < = and (Cy) holds} .

Proof. If (Cp) holds for all R < o, then obviously R, = « and
the given representation is valid. Suppose that (C.) fails and define
R, as in the statement of the theorem. Then we have an increasing
sequence (R;) of positive numbers which converges to R, and > (Cy))
holds for each j.

Suppose now that R < R’ < = and (C,) holds. Then given
¢ < R, we consider o(R'/R) < R’ so we have ¢ from (C.). But then
O(R/R’) < R and the inequality in (C;) holds for p, o(R/R’). Thus
(Cr) holds.

Thus we may conclude that for each 5 and each R<R;, (Cy) holds.
This implies that (Cr) holds for all R < R,.

Finally, suppose fe.#,. For each K <R, («,) is a basis for
F5 and fe #,. Hence we have a unique sequence, (¢f), of scalars
5f = M clfa, and the convergence is uniform on each closed disk of
radius less than R. By the uniqueness, (c?) is independent of R and
this shows that (a,) is a basis for .#,. (This last argument is a
specific proof of the equivalence of Arsove’s definition of basis radius
and the one given above.)

This completes the proof in one direction. The converse is obvious
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so the theorem is proved.

In Arsove’s example showing that a linear Pincherle sequence
can fail to have a basis radius, the sequence is a basis for .#. but
not a basis for any F,; 0< R< . We now give an example
showing that for any R, with 0 < R, < <o, there is a linear Pincherle
sequence which is a basis for .&, if and only if R = « or 0 < R < R,.

ExAmPLE. Let (z,) be defined by
¥ form=2,5=12...
1  otherwise .

2, =

Then the linear Pincherle sequence («,) with zeros (z,) is a basis for
F if and only if R= o or R< 1.

Proof. First we consider R = «. Fix p < «= and choose 0 = 0.
We may assume that o > 1. Then

sup—};—sup—-———l+[z“[ o"
mz2 0™ nzm |2, cc- 7, |

=< 2sup sup isup———‘o—n———

520 sicmsaitt P w2 | 2 e By |
7
= 2supmax ) sup ——_1 sup i )
720 sicm<zir P nzm [ Z, e e 2]
1 n
=od+1 su o
08 gt | Zoiir o0 v Ry |
‘3
=< 2sup max{ sup L sup——O0°
720 dem<edtl O™ nzm |2, o 00 2, |
Y2
N
0 Tl opzedtiog ! Rogtig = Bpy [
3
<20sup sup L sup— O
) 2J-<m<2g'+1 pm n=m [zm, oo zn——ll

= 20sup sup Tl—max{ sup p",

iZ0 sicmaits O™ msns2dtl

2d+141 n
(_7 + 1) n>2dtlyg }Zm LR z%—1!

Now, if j = o — 1, the expression after the first sup is dominated by

. 4i+1
sup —_1~ max{pz"l, sup £ } < sup P
i>7

. . m *4i = . —
2f<m<edtl O 1 si<m<aitt O™

2/+1
=1,

for j sufficiently large. This shows that the quantity in (C.) is
dominated by 20 for m sufficiently large and so it remains to show
that for each m,
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sup—L < oo
an!z ‘zn-—l'

But, given m, for » sufficiently large, we can take 2/ < n < 2*' and
obtain,

o0 o
1
|zm°“zn—ll .7“

<1 for j sufficiently large .

Hence by Theorem 1, («,) is a basis for .&..
For R<1, we fix p < R and choose p with p < p < R and we
have

sup sup M<25up 1 sup.___‘o’r.b____
p = APR R AP

= 2sup_imsupp“ = 2 sup (@) =2,
m /0 nZm m [0
so (a,) is a basis for #, R< 1.

Finally, if B >1 we can choose o < R, p > R**. Then for any
0 < R, we choose m = 27" 4+ 1, n = 27 to obtain,

sup sup ————1 12 ot — L > sup 1+ |2 R“‘zj"“l(—%y

moazm [ R, e 2, 1 o" lzzﬂ—'1+1"'zzj|

T e 1) S

so by Theorem 1, («,) is not a basis for .&.

This completes the proof of the example which is a special case
of the statement we made before the example. For the general case,
we simply observe that from Theorem 1 it follows immediately that
if (a«,) is a linear Pincherle sequence which is a basis for .,
0 < R < o with zeros, (z,), then for any a > 0, the linear Pincherle
sequence obtained by taking, as zeros, the sequence (2,/@) is a basis
for &#,z.

Finally we observe that in the above example, if » = 2/, then

[2o v+ Zp [ = jzj—l

so that for any positive number » we have

im [2y e c &y |1
n nr

= oo ,

This shows that the sufficient condition of Arsove ([1], Theorem 4.3)
is not necessary for a linear Pincherle sequence to be a basis for .&#.
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Remarks added in proof.

1. It has recently been shown by L. Crone and W. B. Robinson
(Studia Math. 52 (1974) 203-207) that any two regular bases in a
nuclear Fréchet space are equivalent and thus we can drop the
requirement in the above Lemma that the two bages are both of
type D, or of type D,. This considerably simplifies the proof of
Theorem 1.

2. Using a recent result of Nguyen Thanh Van (Ann. Inst.
Fourier, 22:2, 1972, pp. 187-190) it is possible to prove Theorem 2
without assuming that the basis is linear. There are many additional
applications of this fact including an improved version of Theorem 3.
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