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A group G is said to be residually finite if the intersec-
tion of the collection of all subgroups of finite index in G is
the trivial group. This paper is concerned with the following
question. If A and B are residually finite groups, and if G
is the generalized free product of A and B with a single
eyclic sebzroup amalgamated, then what conditions on A and
B will insure that G is residually finite? The main result of
this paper is that there exists a class C of residually finite
groups which contains all free groups, polycylic groups, funda-
mental groups of 2-manifolds, ard other common residually
finite groups, and in addition C is closed under the operation
of forming generalized free preducts with a single cyclic
subgroup amalgamated.

A well known example of G. Higman [4] shows that the gen-
eralized free product of residually finite groups amalgamated along
a single cyclic subgroup need not be residually finite. However G.
Baumalag [1] has shown that such a product is residually finite if
both factors of the product are free or if both factors of the product
are finitely generated and torsion free nilpotent. The results here
generalize these theorems of Baumsiag.

In order to study generalized free products of rszidu
groups, P. Stebe [6] introduced the notion of a =, group. LetJ be
a subset of a group G, and let H be a subgroup of G. Jissaid to
be H-separable in G if for each ¢ in J, either ge H or there is a
homomorphism « of G onto a finite group such that a(g)e a{H).
Let 7(G@) denote the subset of G x G with the property that (g,
h)e n(G) if and only if {g} is gp(h)-separable in G. (gp(h) denotes
the subgroup of G generated by h.) We say that G is a 7, group
if 7(G) =G x G.

It is not difficult to show that the most common residually finite
groups are 7@, groups (e.g. free groups, parafree groups, polycyclic
groups, ete.). However, there are residually finite groups which
are not @, groups [2]. Such groups can be used to construct a large
class of nonresidually finite groups.

Let A and B be groups with subgroups H and K respectively,
and let a: H— K be an isomorphism. We denote the generalized
free product of A and B analgamated along H and K via the iso-
morphism « by G = *(4, B; H, K, «). When we are not concerned
with the amalgamating isomorphism, this notation will sometimes be
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372 BENNY EVANS

shortened to read G = *(4, B; H). When H is cyclic, we shall also
make use of the notation G = *(4, B; a, = b,).

2. Some technical lemmas. We wish here to record several
lemmas that will be useful in the next section. Some of these
lemmas appear elsewhere in various forms, but in any case all can
be proved using standard techniques. Where necessary in this sec-
tion, references for similar theorems will be provided, but explicit
proofs will be omitted.

That the most common residually finite groups are @, groups is
the subject of the next two lemmas. The proof of the first part of
Lemma 2.1 may be found in [6], and the second part may be proved
by similar methods. The proof of Lemma 2.2 is essentially given in
Theorem 1 of [6].

LeEMMA 2.1. Each finite extension of a m, group s & &, group,
and each split extension of a finitely generated @, group by a @, group
18 @ T, group.

LeMMA 2.2. If G is residually a finite p-group for all primes
p, and if the centralizer of each element of G s cyclic, then G 1is
a T, group.

From Lemma 2.2 we conclude that free groups, parafree groups,
and fundamental groups of 2-manifolds are 7, groups. Then using
Lemma 2.1. we see that polycyclic groups are m, groups. Finally
a generalized free product of finite groups is a finite extension of a
free group so that all such groups are m, groups.

The proofs of some of Stebe’s theorems in [6] can be altered
to obtain the following useful lemma.

LEMMA 2.8. Let G=(4, B;H). If AUB is an H-separable
subset of G, and if A x AUB X Bcrn,(G), then G is a T, group.

In case H is cyeclic, we obtain a more concise version of Lemma
2.3.

LEMMA 2.4. Let G = *(4, B; H). If H 1is cyclic, and if A X
AUB X Bcrn/(G), then G s a ©, group.

G. Baumslag [1] has shown that if A and B are residually finite
groups, then *(4, B; H) is residually finite if H is a finite group.
A slight modification of the method used by Baumslag to prove the
above result together with Lemma 2.8 yields the following result.
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THEOREM 2.5. If A and B are @, groups, and if H is a finite
subgroup of both A and B then *(A, B; H) is a @, group.

3. Finite quotient groups of 7, groups. By following the
construction of Higman [4], we obtain the following theorem.

THEOREM 3.1. Let A be a residually finite group with an element
a of infinite order. There is a residually finite group B with an
element b of infinite order such that G = *(A, B; a = b) is not resid-
ually finite.

Proof. Let B be any residually finite group which is not a =,
group. Then there is an element b, of infinite order in B and an
element b, in B such that b, is not gp(b,)-separable. Let G = *(4,
B; a* = b,).

Then the commutator [a, b,] is a reduced word in G and hence
is not the trivial element. Let o be any homomorphism of G onto
a finite group. Then «(b,)ec gp(a(db)) < gp(ala)). It follows that
ala, b] = [a(a), a(d)] = 1. Hence G is not residually finite.

Let C* be the class of all residually finite groups A with the
propterty that if B is any residually finite group then *(4, B; H) is
residually finite if H is cyclic. Let C denote the class of all z, groups
with the property that *(4, B; H) is a 7, group whenever H is a cyclic
group. According to the above theorem and Theorem 3 of [1], C*
is exactly the class of all residually finite torsion groups. In com-
parison, we shall show that C is considerably larger than C*. Not
only does C contain the most common 7, groups, but also C is closed
under the operation of forming generalized free products with a single
cyclic subgroup amalgamated.

We begin with a study of finite quotient groups of 7, groups.
With each element g of a group G, we associate a set of positive
integers G(g) with the property that n e G(g) if and only if G has
a finite quotient group in which the image of g has order «.

A subset X of G(g) is said to be cofinal in G(g) if and only if
for each pair g, ¢.in G, either g, € gp(g,), or there is a homomorphism
a of G onto a finite group such that a(g,)¢ gp(a(g,)), and the order
of a(g) is in X. In particular, G is a 7, group if and only if G(1)
is cofinal in G(1). More generally, we have the following lemma.

LEeMMA 3.2. Let A and B be m, groups, and let a, and b, be
elements of infinite order in A and B respectively. Then the gen-
eralized free product *(A, B;a, = b)) is a ©, group if and only if
A(ay) N B(by) s cofinal in both A(a,) and B(b,).
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Proof. Suppose G = *(4, B; a, = b,) is a w, group. We wish to
show that A(a,) N B(b,) is cofinal in A(a,). Let x and y be elements
of A with z¢ gp(y). There is a homomorphism « of G onto a finite
group such that a(x)¢ gp(a(y)). Since a(a,) = a(b,), we may restrict
a to A and to B to obtain |a(a,)| € A(a,) N B(b,). Thus A(ao) N B(b,)
is cofinal in A(a,).

Similarly, A(a,) N B(b,) is cofinal in B(b,).

We now suppose that A(a,) N B(b,) is cofinal in both A(a,) and
B(b,). According to Lemma 2.4, we need only show that A x AU B x
Bcr,(G). Let z, ye A with x¢ gp(y). Since A(a,) N B(b,) is cofinal
in A(a,), there is a homomorphism « of A onto a finite group such
that a(x)¢ gp(a(y)), and |a(a,)|e A(a,) N B(b,). Let A, be the kernel
of a. Since |a(a,)| € B(b,), there is a normal subgroup B; of finite
index in B such that the order of b,in B/B, is |a(a,)|. Observe that
the isomorphism of gp(a,) onto gp(b,) defined by a,— b, carries A, N
gp(a,) isomorphically onto B, N gp(b,). Thus we obtain a natural
homomorphism B of G onto a generalized free product of finite groups

G, = *(A/A,, B/B;a,=1b,).

Further, since z¢ gp(y) mod A4,, it follows that B(z)¢ gp(B(¥)).

Since G, is a 7, group, it follows that (z, y)e7(G). Thus A X
A cr,(G). Similarly, B x Bcr(G). An application of Lemma 2.4
completes the proof.

We say that G has regular quotients at g if there is a constant
K, such that nKg;n =1, 2, ---} CG(g). A group G is said to have
regular quotients if G has regular quotients at each element of infinite
order in G. All =, groups have a property approximating regular
quotients. This is the subject of the next lemma.

LEMMA 3.3. Let G be a w, group and K any positive integer.
If x€ G has infinite order, then there is a homomorphism « of G
onto a finite group such that K divides the order of a(x).

Proof. 1t clearly suffices to prove Lemma 3.3 when K = p’ is
a power of a prime p. Since x has infinite order, ¢ gp(x?) and 2" ¢
gp(x?’) for any r with 0 < || < p'. Thus there is a homomorphism
o of G onto a finite group with the following properties.

(1) a@) ¢ gp(a(@)).

(2) a@) egplal@y), 0 <|r|<p".

Since a(x)¢ gp(a(x)?), it follows that (Ja(x)|, p) # 1. Hence p
divides the order of a(x). Let |a(x)| = p'Q wher (p, Q) =1. We
wish to show that ¢ < s.

Choose an integer R =1 such that (R, p) =1 and Ep°Q > p.
Then Rp°Q = Wp' + r where |r| < p'. Then (a(z)’)” = a(x)™". It
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follows from condition 2 above that » = 0. But then RQ = Wp'.
Since (p, R) = (p, Q) = 1, it follows that ¢t — s < 0. Hence t < s so
that p* divides |a(2)].

COROLLARY 3.3.1. Let G be a m@, group, and let g be an element
of infinite order in G. If G has regular quotients at g* for some
positive integer k, then G has regular quotients at g.

Proof. Let {nL;m=1,2, -} cG(g*). Let G, be a normal sub-
group of finite index in G such that % divides the order of g in G/G,.
Suppose G, is of index S in G. We shall show that

nSLk;n =12, ---} = G(9) .

Let G, be a normal subgroup of finite index in G such that g*
has order »SL in G/G,. Let G, = G,N G,. Then ¢g* has order nSL
in G/G,, and k divides the order of ¢ in G/G,. In G/G,,

k| — lg]
19 =L B

But (9|, ¥) = k. Thus |g| = |¢*|k = nSLk in G/G,. This completes
the proof of Corollary 3.3.1.

We are now prepared to prove a theorem which will enable us
to identify certain members of the class C.

THEOREM 3.4. Let A and B be w, groups with elements a, and
b, of infinite order in A and B respectively. If A has regular
quotients at a, them G = *(A, B; a, = b)) 18 a T, group.

Proof. We shall show that A(a,) N B(b,) is cofinal in both A(a,)
and B(b,). Let {Kn|n =1,2, ---} c A(a,). Letx, yc A with z¢ gp(y).
Let A, be a normal subgroup of finite index in A such that 2¢
gp(y) mod A,. Suppose a, has order L in A/A,. Choose B, to be a
normal subgroup of finite index in B such that b, has order KLM
in B/B, for some positive integer M. Let A, be a normal subgroup
of finite index in A such that a, has order KLM in A/A4,. Put 4, =
A, N A;. Then clearly x¢ gp(y) mod 4;, and a, has order KLM in
A/A,. Since KLM belongs to both A(a,) and B(b,), we have shown
that A(a,) N B(b,) is cofinal in A(a,).

The proof that A(a,) N B(b,) is cofinal in B(b,) is similar (in fact
less complicated) and is omitted.

Theorem 3.4 together with Theorem 2.5 yield the following
corollary.
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COROLLARY 3.4.1. If G is a group with regular quotients, then
G s in the class C.

We wish now to establish that the most common groups have
regular quotients and hence belong to C. In order to prove this,
we need to consider a possibly stronger property. We say G has
completely regular quotients at an element g of infinite order in G
if there is a constant K, such that for each =, there is a charac-
teristic subgroup H, of finite index in G such that G has order nK,
in G/H,.

Following closely the proof of Corollary 38.3.1, we obtain the
following lemma.

LEmMmA 3.5. Let G be a finitely generated w, group, and let g
be an element of infinite order in G. If G has completely regular
quotients at g¥ for some positive integer K, then G has completely
regular quotients at g.

LEMMA 3.6. Let G be a finite extension of a finitely generated
w, group A. If A has completely regular quotients, then G has
regular quotients.

Proof. Let g be an element of infinite order in G. Then g*e
A for some positive integer k. By Corollary 3.3.1., it suffices to
prove that G has regular quotients at g*.

Let L be a positive integer such that for each =, there is a
characteristic subgroup A4, of finite index in A such that g¢* has
order nL in A/A,. Observe that A, is a normal subgroup of finite
index in G and that g¢g* has order nL in G/A,. Thus

mL;n=12 ---}cG(g" .

This completes the proof of Lemma 3.6.

Lemma 5.14 of [1] (together with the simple observation that
an element of order % in a residually finite group can be represented
on a finite group so that its image has order k) shows that torsion
free nilpotent groups have regular quotients. The proof in fact
yields that finitely generated torsion free nilpotent groups have
completely regular quotients.

It is an easy consequence then that finitely generated parafree
groups have completely regular quotients. Since each generalized
free product of finite groups is a finite extension of a free group,
it follows that these groups also have regular quotients.

If g is an element of infinite order in a polycyclic group G, then
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there are integers 7 and % such that ¢g* has infinite order in G®¥/G!+Y
(G is the rth term of the commutator series of G). Then following
Baumslag’s proof of Lemma 5.14 [1], it is not difficult to show that
G has completely regular quotients at g*. It follows from Lemma
3.5 that each polycyclic group has completely regular quotients. In
summary, we have the following theorem.

THEOREM 3.7. Free groups, parafree groups, polycyclic groups
and generalized free products of finite groups have regular quotients
and hence belong to the class C.

This compares favorably with Baumslag’s Theorems 6 and 7 of
[1]. We now proceed to show that C is in fact closed under cyclic
amalgamations.

LEmMA 3.8. Let AU B be an H-separable subset of G = *(A, B;
H). Then G has regular quotients at each element of cyclic length
greater than one in G.

Proof. Let g = a,basb, --- a;b, be a cyclically reduced word in
G with . =1 and a,¢ A — H,b,e B— H1 <1 <k). Then there is
a normal subgroup N of finite index in G such that a,, b, ¢ Hmod N(1 <
1<k). Let A=ANN and B,= BN N. Since A, N H= B N H,
we obtain a natural homomorphism « of G onto a generalized
free product of finite groups G, = *(4/A,, B/B; H/Hn N) with the
property that

a(a)e AJA, — HHHO N, a(.)e B/B, — HHHANN (1<i<k).

In particular, a(g) has cyclic length greater than one in G, and
hence a(g) has infinite order in G,. Since G, has regular quotients,
it follows that G has regular quotients at ¢g. This completes the
proof of Lemma 3.8.

LemMMA 3.9. Let a, and b, denote elements of infinite order in
A and B respectively and let a, be an arbitrary element of A. If
G, = *(4, B;a, =b,) is a w, group, then G, = *(4, B; a,aa" = by is
also a @, group.

The proof of Lemma 3.9 is fairly straightforward and is omitted.

THEOREM 3.10. If A and B belong to the class C and +f His a
subgroup of A and B that is either finite or cyclic, then G = *(4,
B; H) is a member of C.
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Proof. We consider only the case that H is infinite cyclic so
that G = *(4, B; a, = a,). (The case that H is finite can be handled
in a similar fashion.) Let D be any z, group, and let g, and d,
denote elements of G and D respectively such that gp(g,) is isomorphic
to gp(d,). We wish to show that K = *(G, D; g, = d,) is a &, group.
By Theorem 2.5, we may assume that gp(g,) is infinite. Also making
use of Lemma 3.9, we assume that g, is a cyclically reduced word
in G.

If g, has length greater than one, then G has regular quotients
at g, and we may apply Theorem 3.4 to obtain our resulf.

It remains only to consider the case that g, has length one (with
no loss of generality we assume that g,€ B). But then applying the
definition of the class C twice we obtain that

K = *((4, B a, = b), D g, = dy)
= *(4, *(B, D; g, = dy; a, = by)

is 2 @, group.

There are several interesting questions concerning the class C
which the author has been unable to answer.

Question 1. Is there a @, group nmot in class C?

Question 2. If G 1s in C, does G have regular quotients?

The author strongly suspects that both questions 1 and 2 have
an affirmative answer, and that all that is required is a suitably
general example of a =, group without regular quotients. Note
however, that Lemma 3.3 indicates that some care will be required
in constructing such an example (if it exists).

In any case, a theorem analogous to Theorem 3.10 can be esta-
blished for groups with regular quotients.

THEOREM 3.11. If A and B have regular quotients, and if H
18 a subgroup of A and B such that H is either finite or cyclic, then
*(A4, B; H) also has regular quotients.
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