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In this paper we prove a Dugundji Extension Theorem for
a large class of monotonically normal spaces, the generalized
ordered spaces. We show that if A is a closed subset of a
generalized ordered space X and if C*(A) and C*{X) denote
the vector spaces of continuous, bounded real-valued functions
on A and X respectively, then there is a linear transformation
u: C*{A) -> C*(X) such that for each g e C*(A), u{g) extends g
and the range of u(g) is contained in the closed convex hull
of the range of g. Furthermore, we give an example which
shows that such linear transformations from C(A), the vector
space of all continuous, real-valued functions on A, to C{X)
cannot always be found, even when A is a closed, separable
metrizable subspace of a hereditarily paracompact linearly
ordered space.

1* Introduction* For any space S, let C(S) be the vector space
of all continuous, real-valued functions on S and let C*(S) be the
space of all bounded members of C(S). In [4], Dugundji proved
that if A is a closed subset of a metrizable space X, then there is
a linear transformation u: C(A) —> C(X) such that for each g e C(A):

(a) u(g) is an extension of the function g; and
(b) the range of u(g) is a subset of the closed convex hull of

the range of g.
We shall call u a simultaneous extender from C(A) to C(X); the notion
of a simultaneous extender from C*{A) to C*(X) is analogously
defined1.

Subsequent generalizations of Dugundji's theorem have relaxed the
requirement that X be metrizable and have considered functions having
values in a locally convex topological vector space [1, 2, 3,10,12,13].
The largest class of spaces for which a Dugundji Extension Theorem
has been proved Is the class of stratifiable spaces [3] (which includes
all metric spaces). Recently, a theorem reminiscent of Dugundji's
result has been obtained for the still larger class of monotonically
normal spaces [6]. In this paper we present a Dugundji Extension
Theorem for a large and important subclass of the monotonically
normal spaces, vis., the generalized ordered spaces. Our theorem,

1 It is interesting to note that if A is a closed subset of a normal space X,
then there will always exist linear transformations u: C(A) -> C(X) such that u(g)
extends g for each geC(A): this may be deduced from the Tietze extension theorem
by considering a Hamel base for the real vector space C(A).
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unlike some of the ones mentioned above [1, 2, 3, 10, 12], deals with
simultaneous extenders from C*(A) to C*(X) and an example in §3
shows that it is not always possible to obtain simultaneous extenders
from C(A) to C(X), even when X is hereditarily paracompact and
such extenders from C*(A) to C*(X) are known to exist.

A linearly ordered topological space is a linearly ordered set
endowed with the usual open-interval topology of the linear order.
A generalized ordered space is a linearly ordered set X endowed
with a topology having a base έ% every member of which is an
interval (open, closed, half-open and degenerate intervals are allowed)
and which contains all open intervals of X. The generalized ordered
spaces may also be characterized as those spaces which can be
embedded in linearly ordered spaces; spaces of this type were studied
in [8] and it is known that any generalized ordered space is mono-
tonically normal [6]. Perhaps the most familiar pathological generalized
ordered spaces are the Sorgenfrey line (3.1) and the Michael line (3.3).

2* The extension theorem for bounded functions* The key
to our extension theorem is the notion of a Banach limit. Let us
begin by recalling some definitions.

DEFINITION 2.1. Let (D, ^ ) be a directed set [7] and let / be
a bounded, real-valued function on D. Then

(/) = inf {sup {/(sc): x ^ y}: y e D) and

liminf z> (/) = sup {inf {f(x): x ^ y}: y e D) .

If limsupp (/) = liminfD(f), then we define limD(f) = limsupz? (/).

LEMMA 2.2. Let (D, <0 be a directed set and let V be the vector
space of all bounded, real-valued functions on the set D. Then there
is a linear transformation L:V-+R, the space of real number sf

such that
(a) for any f e V, liminf * (/) ^ L(f) ^ limsup* (/);
(b) if urns (/) exists, then L(f) — lim^ (/).

Proof. See [15; p. 104].

REMARK 2.3. In the classical case of this result, D is the set
of positive integers and the functional L is called a Banach limit.
We shall call the functional L in 2.2 a Banach limit over D. Observe
that if the directed set (D, ^ ) has a last element df, then L(f) =
f(df) for each / in V. In our applications, the set D will carry a
linear ordering.
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THEOREM 2.4. Let A be a closed subset of a generalized ordered
space X. Then there is a simultaneous extender u: C*(A) —• C*(X).

Proof. Let ^ = {Ir: 7 e Γ) be the collection of all convex com-
ponents of set X\A.2 For each 7e Γ let Af = {αe A: a ^ x for each
α? € Ir} and let Ay = {ae A:a ^ x for each a; 6 / r }. Using the ordering
inherited from X, Ay is a directed set; using the reverse of the ordering
inherited from X, Af is also a directed set. Provided Aγ Φ 0 , let
L+ be a Banach limit over Af; provided Ay Φ 0 , let Ly be a Banach
limit over Ay. For each ΎeΓ, let o/rr: X—> [0, 1] be a continuous
function such that

( i ) {x e X: x < y f or each yelr}a ψy'iϊ)
(ii) {# G X: # > 1/ for each yelr} a ψy^O)
(iii) if Ir has at least two points, then there are points rr and

sr of Jr having rr < sr and

For each / e C*(A), define / on X by

/(a?) if ^ e i ;

ψr(x)Lj(f) + (1 - trW)^r+(/) if a e Γr and Ar

+ ^ 0 Φ Ay
Lr

+(/) if x G Jr and Ar = 0

,L7(/) if xe Ir and A+ = 0 .

Then f: X—+ R is continuous and /(X) ccl^ {r e R: for some a, be A,
f(a) <; r ^ /(δ)}, the closed convex hull of the set /(-A). Hence fe
C*(X). Therefore, if we define u(f) = /, we obtain the required
simultaneous extender.

REMARKS 2.5. It is clear that the simultaneous extender found in
2.4 preserves constant functions and that if C*(Λ) and C*(X) are each
equipped with the sup-norm, then the simultaneous extender is a
linear operator of norm 1.

3* Extending unbounded functions* We begin this section
with examples showing that simultaneous extension of all continuous
real-valued functions is sometimes possible in spaces which are not
stratifiable.

EXAMPLE 3.1. Let A be any closed subset of the Sorgenfrey line
2 A subset S of a linearly ordered set X is convex provided [a, b] c S whenever a

and b are points of £ having a ^ b. A subset S of a set T in X is called a convex
component of T provided 5 is a convex subset of X, S c T and no strictly larger
convex subset of X is a subset of T. Clearly any subset of X c an be uniquely
expressed as a union of its convex components.



422 R. W. HEATH AND D. J. LUTZER

X [14], i.e., the set of real numbers topologized in such a way that
for each real number x, the collection {[x, x + t): t > 0} is an open
neighborhood base at x. Then there is a simultaneous extender
u: C(A) — C(X). For consider ^ = {Ir: 7 e Γ}, the family of all convex
components of X\A,2 and choose α0 e A. Each Ir will have one of
the five forms described in the following definition: for any g e C(A),
define g: X—> R by

g(x) if x e A;

^ g(ar) if xelr = (αr, br) or if xelr = (αr, + oo);
g(χ) = K

g(br) if xelr •= [αr, 6r) or if x e Iγ — (— oo, br);
g(a0) if ί̂ G Iγ = [αr, +oo) .

Defining w(#) = ^, we obtain the required simultaneous extender from
C(A) to C(X).

Because the Sorgenfrey line is not metrizable, it is not stratifiable
[8; Theorem 5.3].

Our second example shows that a space may satisfy a Dugundji
Extension Theorem without being paracompact or perfectly normal.

EXAMPLE 3.2. Let X be the usual space of countable ordinals [7].
For any closed subset A c X there exist simultaneous extenders from
C(A) to C(X). Theorem 2.4 provides a proof of this fact since C*(A) =
C(A) and C*(X) = C(X).

Our final example shows that simultaneous extenders from C(A)
to C(Y) may fail to exist even when A is a closed, separable metrizable
subspace of a hereditarily paracompact linearly ordered space Y (whence
simultaneous extenders from C*(A) to C*(X) do exist). In our example,
P, Q, and R will denote the sets of irrational, rational and real num-
bers, respectively.

EXAMPLE 3.3. Let X be the Michael line [11], i.e., the set of real
numbers endowed with the topology ^£ — {U U V: U is open in the
usual topology of R and F c P } . Let A = Q. Then there is no
simultaneous extender u: C(A) —* C(X).

We argue indirectly. Enumerate A as A = {rn: n ^ 1} and suppose
there were a simultaneous extender u: C(A) —> C(X). For any g e C(A),
denote u(g) by g.

Let aQ = — π and b0 = TΓ. Define fι e C(A) by

l if a A\[αo,5o]

0 if x G i n k i o ] .
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Then there are irrational numbers at < bt such that [alf 6J c (α0, 60)\W
and such that fx{[au 6J) c [0, 1/4] because the set {x e [a0, 60] /i(^) ̂  1/4}
is nowhere dense in [α0, δ0] with its usual topology. Inductively con-
struct irrational numbers an < bn and functions fn e C(A) satisfying:

(1) [anf 6 n ]c(α n _ l f bn^)\{rn})
( 2 ) for n ^ 2,

jl/2-1 if a> e A n (K_2, δ^JMα^!, δn_J)

10 if x e A\([αΛ_2, &Λ-2]\[α»-i, &*-J)

( 3 ) (ΣU?i)([an,K])(Z [0,1/2^].
It follows from (1) that Π {[αw? bn]:n ^ 1} consists of a single irra-
tional number c. Let # = Σ { / % : ^ ^ 1 } . T l l e n ^eC*(A) because
the series X {/,Λ: n Ξ> 1} converges uniformly. Furthermore, because
the range of # -- Σ {/i 1 ^ ΐ ^ }̂ is & sufoset of [0, l/2n], so is the
range of uΐ> - Σ {/<: 1 ^ i ^ }̂) = ^ ~ Σ {Λ: 1 ^ i ^ ^}; h e n c e ^ =
Σ {A: » ^ 1} so that g(e) = 0.

Define h e C(A) by h(x) = 1 + 1/(|» - c|) and let yfc be the number
h(c). There is an ε > 0 such that h(x) > k + 1 whenever a? e A Π [c — ε,
c + έ\. Let m be the minimum value of g(x) on the set A\[c — ε, c + ε].
Then m > 0 so that, for some positive integer N, Nm > fc + 1- There-
fore, the range of the function h + Ng is a subset of [k + 1, +oo);
hence the same is true of the function fe + Λ^. But that is impossible
since (h + Ng)(c) — k.

To obtain the hereditarily paracompact linearly ordered space in
which simultaneous extenders for unbounded functions cannot be
found, observe that there is a linearly ordered space Y which contains
the Michael line X as a closed subspace and which is also hereditarily
paracompact (in the notation of [8], Y = X*).

REMARK 3.4. Example 3.3 shows that the assertion on page 806
of [10] that simultaneous extenders from C(A) to C(X) can be found
provided A is a closed metrizable subspace of a paracompact space
X is erroneous. The correct statement is that if A is a closed,
metrizable, G^-subspace of the paracompact space X then simultaneous
extenders from C(A) to C(X) exist [9].

Our final theorem contrasts with the situation in 3.3 and illus-
trates the special role of perfect normality in generalized ordered
spaces; see also [8; Theorem 4.8].

THEOREM 3.5. Suppose that A is a closed subset of a perfectly
normal generalized ordered space X. If A is σ-compact, then there
is a simultaneous extender from C(A) to C(X).

Our proof requires two lemmas.
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LEMMA 3.6. Let A be a closed, σ-compact subset of a generalized
ordered space X. Suppose that X\A is an Fσ-subset of X and that
each convex component of X\A is closed in X. Then there is a
simultaneous extender from C(A) to C(X).

Proof. Let {Ir: 7 e Γ) be the family of all convex components
of X\A. Write X\A = \J {Fn: n^l} where each Fn is closed in
X and let Γ'n = {ye Γ: Ir n Fn Φ 0}. Let Γγ = Γ[ and for n ^ 1
let Γn+1 = Γ'n+ι\\J {Γ,: l ^ i ^ n } . Then each collection {Ir:yeΓn} is

a discrete collection of closed and open subsets of X.
Write A = \J {An\ n ^ 1} where Ax(zA2c: are compact sets.

For each n ^ 1 let un: C(An) —• C(X) be the simultaneous extender
constructed in 2.4. For each g e C(A) define g on X by

ff " Uto/lXa;) if x e \J {Ir: ΎeΓn}.

Because the collections Γn are pairwise disjoint, g(x) is well-defined.
Furthermore, g is continuous because each un has the following pro-
perty, as may be seen from the proof of 2.4: if a < b are points of
An and if / e C(An), then (un(f))([a, b]) is contained in the closed
convex hull of the set f(An Π [α, b]). Then, defining u(g) = </, we
obtain the required simultaneous extender.

LEMMA 3.7. Suppose that B is a closed subset of the generalized
ordered space X and that no convex component of X\B is closed in
X. Then there is a simultaneous extender from C{B) to C(X).

Proof. Let {Ir: 7 e Γ) be the family of convex components of
X\B. Each set Iγ must have either one or two limit points in B and
these limit points must be end-points of Iγ. If Ir has a right end-
point which belongs to J5, denote it by bf; if Ir has a left end-point
which belongs to B, denote it by by. If both bf and by exist, choose
a continuous function ψr: X—» [0, 1] having ψr({x e X:x ^ by}) = 0 and
fr({x eX:x^ 6+}) = 1. For each g e C(B) define g on X by

g(x) if xeB;

g(by) if xelr and by, but not b+, exists;

(6+) if # e l r and b^, but not 67, exists;§(x) = ^

ψr(x)g(bϊ) + (1 - ψr(aj))flr(6jr) if xelr

land both fe^ and by exist .

Then #(#) is well-defined and continuous, and the required simultaneous
extender is obtained by defining u(g) — g.



DUGUNDJI EXTENSION THEOREMS FOR LINEARLY ORDERED SPACES 425

Proof of Theorem 3.5. Let {Ir: ye Γ) be the family of all convex
components of X\A and let Γί = {ye Γ: Ir is closed in X}. Let Xt =
A U (U {IγiyeΓj}) and apply 3.6 to the closed subset A of the gen-
eralized ordered space Xγ to obtain a simultaneous extender ut: C(A) —•
C(Xi). Observe that X1 is a closed subset of X and that no convex
component of X\X1 is closed in X. Apply 3.7 to find a simultaneous
extender u2: C(X^—*C(X). Then the composite function u = %2°^i is
the required simultaneous extender from C(A) to C(X).

Let us conclude with some questions suggested by the results
above; further questions related to the Dugundji Extension Theorem
maybe found in [5].

(1) If A is a closed subspace of a perfectly normal generalized
ordered space X, must there be a simultaneous extender from C(A)
to C{X)1 What if X is assumed to be linearly ordered?

(2) Is there an analogue of Theorem 2.4 for functions with
values in a locally convex topological vector space?
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