
Pacific Journal of
Mathematics

STABILITY OF MEASURE DIFFERENTIAL EQUATIONS

S. LEELA

Vol. 55, No. 2 October 1974



PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 2, 1974
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The preservation of stability properties of perturbed dif-
ferential equations when the perturbations are impulsive are
discussed relative to asymptotically self invariant sets. The
fact that the solutions of perturbed systems are discontinuous
offers many difficulties in applying the usual methods of
perturbation theory and thus makes the study interesting.

1* Introduction* Generally, in perturbation theory, we consider
the perturbed system given by

- ^ = fit, x) + R(t, x) ,
dt

where the perturbation term R(t, x) is continuous and small in some
sense. But it is of much importance to consider the case when the
perturbation term is rather wildly impulsive in character and it is
also natural to expect such a situation in pulse frequency modula-
tion systems, models for biological neural nets and some automatic
control problems. Thus the study of equations of the type

(1.1) DX = fit, x) + Git, x)Du ,

where Du denotes the distributional derivative of the function u is
important in itself. Equations of the form (1.1) are called measure
differential equations. The existence of solutions of such equations has
been studied by Schmaedeke, W. W. [6] and Das, P. C. and Sharma,
R. R., (see [2], [3]).

Our interest here is to treat Eq. (1.1) as a perturbation of the
ordinary differential system

(1.2) -§Γ = /<*' *>
dt

and to investigate the preservation of stability properties of solutions
of (1.2) under the effect of impulsive perturbations. Some simple
situations of the stability of such problems have been considered by
Das, P. C. and Sharma, R. R. [3], Barbashin, E. A.[l] and Zabalishchin,
S. T. [7].

The fact that the solutions of (1.1) are discontinuous (i.e., func-
tions of bounded variation) offers many difficulties in applying the
usual techniques of perturbation theory. It is known (see [4], [5])
that even in the case of ordinary differential systems, it is more
general and natural to consider the stability of asymptotically self
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invariant (ASI) sets rather than that of usual invariant sets. Thus,
it seems more appropriate to consider ASI sets and their stability
properties with respect to (1.1). In this paper, we study the effect
of impulsive perturbations on the stability in variation of ASI sets,
making use of the methods developed in our earlier work [5].

2* Notation and basic theorems* Let Rn and M denote the n-
Euclidean space and the set of all n x m matrices of real numbers,
with the norms | |a | | = Σ?«il*il, a e Λ and | |G| | = Σ?=iΣ?=i iΛyl, (fcy) =
GeM, respectively. Let Bv{R+, Rm) denote the set of all vector func-
tions defined on R+ with values in Rm, whose components are scalar
functions of bounded variation on R+.

Let us consider the measure differential equation

(2.1) Dx = f(t, x) + G(t, x)Du , x(tQ) = x0, ί0 ^ 0 ,

where (i) the functions / and G are defined on R+ x S(p), S(p) —
[xeRn: || x\\ < p], with values in Rn and M respectively; (ii) u is a
right continuous function belonging to the set Bv(R+, Rm); and (iii)
Dx, Du denote the distributional derivatives of functions x and u
(identified with Stieltjes measure) respectively.

DEFINITION 1. A function y( ) = y( , t0, x0) is said to be a solution
of Eq. (2.1) on R+ if y(-) is a right continuous function e Bv(R+, S(ρ))
and the distributional derivative of y( ) on (ί0, T), TeR+, satisfies
the Eq. (2.1).

For the existence and uniqueness of solutions of Eq. (2.1) and
for more details about equations of the type (2.1), refer [2], [3]. In
the sequel, we shall assume that the solutions of Eq. (2.1) exist and
are unique for t^t0.

The following classes of functions will be used often in our dis-
cussion. So, we define

L = [σ: σ e C[R+, R+] , σ(t) is decreasing in t and σ(t)—>0 as f —> oo]

A — [a: a e C[R+x[0, p), R+] , a{t, r) is decreasing in t for each r

and increasing in r for each t such that lim a(t, r) = 0]

B = ΪH: He C[R+%R+, R+] and for some τ > 0,

where C[ Yy Z] denote the set of continuous functions on Y taking
values in Z.

We shall now suppose that fe C[R+xS(ρ), R% fx(tf x) exists and
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is continuous on R+xS(p) and x{t, ί0, xQ) is the solution of the unper-
turbed system

(2.2) toL = f ( t , x ) , x(to) = x o .
dt

Let Φ(t, t0, x0) denote the fundamental matrix solution of the varia-
tional system

dz
-τ~ = fχ(tf x(t, K χo))z > «(ί0) = 1 (identity matrix) .

We use the following definitions for the characterization of the
asymptotically self invariant (ASI) set with respect to the system
(2.2) and the stability criteria of such sets.

DEFINITION 2. The set x = 0 is said to be ASI relative to (2.2) if
every solution x(t, ί0> 0) of (2.2) satisfies

\\x(t, t0> 0)11 ^λ( ί 0 ) , ί ^ to, λ e L .

DEFINITION 3. The ASI set x = 0 is said to be
( i ) uniformly stable in variation, if for each a, 0 < a ^ p,

there exists a constant M{a) > 0 such that

l|Φ(ί, ίo, Bo)ll ^M{a) , ί ^ ί 0 ,

provided \\xQ\\ g a;
(ii) uniformly asymptotically stable in variation, if for each

α, 0 < a <: p, there exists a function σaeL such that whenever

ί, ίo, a*) 11 ̂ σa(t-t0), t^t0;

(iii) uniformly stable, if there exists a function ae A such that

(iv) uniformly asymptotically stable, if there exist functions
aeA, rjeL, and HeB such that

|| a?(ί, ί0, a;0) || ^ α(ΐ0, || a?0 IIM* - *o) + £Γ(*, *o) , t^t0;

(v) quasi-equi asymptotically stable if the estimate in (iv) is
replaced by

| x(t, tQ, x0) || ^ {α(ί0, || a?o II) + iSWί " «o) + fl(*, *o) , ί ^ *

where β is a constant > 0 and the functions α, rj, and ί ί are as in (iv);
(vi) exponentially asymptotically stable if, for t ^ ί0,
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II x ( t , ί0, Xo)\\£ {a{K || xo II) + β}e~^-^ + fT(ί, ί 0 ) ,

where the constant β Ξ> 0, d > 0, α e A and HeB.

REMARK. If /(ί, 0) = 0 so that x = 0 is the unique solution of
(2.2), then the ASI set reduces to the usual invariant set.

We next state two known results [5] which are very useful in
our investigation of stability properties of Eq. (2.1).

THEOREM 2.1. Assume that the ASI set x = 0 with respect to
(2.2) is uniformly stable in variation. Then, there exists a Lyapunov
function V(t, x) with the following properties:

(1) V(t, x) is defined and continuous on R+ x S(cx);
(2) llsH^ V(t, x)£a(t, || a? ||), (ί, x) e R+ x S(a),aeA;
(3) I V(t, x) - V(t, y ) \ ^ M{a) \\x~y\\, (ί, x), (ί, y)eR+ x S(a);
( 4 ) £> + F ( 2 . 2 ) (ί , x) = l i m ^ + s u p l/h[V(t + h,x + hf(t, x))~ V(t, x)] £

0, for (ί, a?) G i2+ x S(a).

THEOREM 2.2. Suppose that the ASI set x = 0 relative to (2.2)
is uniformly asymptotically stable in variation. Then, there exists
a Lyapunov function W(t, x) verifying the following properties:

(1') W(t, x) is defined and continuous on R+ x S(ά);
(2') || x || ^ W(t, x) ^ 6(ί, || x ||), (ί, x ) e i 2 + x S(α), 6 e A)
(3') I W(t, x) - T7(i, y) I ^ L(α:) || a; - y ||, (ί, a;), (ί, y)eR+ x S(a);
(4') D+Wi2Λ)(t, x) ^ -3TΓ(ί, a?) + λ(ί), («, x) e R+x S(a), where δ>0

and λ e L .

REMARK. It is important to note that the Lyapunov functions
obtained in the foregoing theorems are Lipschitzian in x for a con-
stant and this fact plays a crucial role in studying the effect of
perturbations. The usefulness of the stability in variation notions
lies in the above fact.

3. Main results* In this section, we shall assume that the set
x = 0 is ASI relative to the unperturbed system (2.2) and give suf-
ficient conditions for the stability criteria of the ASI set x — 0 with
respect to the measure differential system (2.1). First we state the
following hypotheses:

(HJ /(ί, x) and /β(ί, x) are defined and continuous on R+ x S(p)
and fx(t, x) is bounded on R+ x S(p);

(H2) the ASI set x = 0 relative to (2.2) is uniformly stable in
variation;

(H3) the ASI set x = 0 relative to (2.2) is uniformly asymptotical-
ly stable in variation;
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(H4) || G(t, x) II ̂  g(t) \\ x || on R+ x S(<o) where G(ί, a?) is measurable
in t for each a?, continuous in x for each t and #(£) is cfa;% integrable
function vu being the total variation function of u;

w(s)ds < co where
0

i rt+h

w(t) = lim sup — 1 g(s)dvu(s)

is the upper right Dini derivative of the indefinite integral I g(s)dvu(s);

(H6) the function w(t) in H5 is such that

S t+l
w(s)ds 0 as t

(H7) the discontinuities of u occur at isolated points {tk}, tx <
< < tk < and are such that

(3.1) || u(tk) - u(tΰ) || ^ λ4 exp ( j |* ^(s)ds), fc = 1, 2, ,

and λfc are constants

(H8) Σ?=i ί/(*jfe)λΛ converges.

We are now in a position to state our first main result which
deals with the sufficient conditions for the uniform stability of the
ASI set x = 0 with respect to the perturbed system (2.1).

THEOREM 3.1. Assume that the hypotheses (H^, (H2), (H4), (H5),
(H7), and (H8) are satisfied. Then, the set x = 0 is ASI with respect
to (2.1) and is uniformly stable.

Naturally, the proof depends on the construction of a Lyapunov
function for the unperturbed system (2.2), obtaining the estimate of
solutions of the perturbed system (2.1) in terms of that Lyapunov
function and estimating the jumps of the solutions of (2.1) at the
points of discontinuity. For convenience, we first state and prove
the following lemmas.

LEMMA 3.1. Let the hypotheses (H^, (H2), (H4), and (H5) hold.
Then,

'D+m(t) = lim sup —[m(ί + h) - m{t)\

(3.2) I ^° + h

^ M(a) || y(t, t0, xQ) \\ w(t) + D+V(t, x) ,
(2.2)

where m(t) = V(t, y(t, t0, x0)), v(t, t0, x0) is the solution of (2.1), V(t, x)
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is the Lyapunov function obtained in Theorem 2.1 and M(a) is the
Lipschitz constant for the function V(t, x).

Proof. Set x = y(t, ί0, x0) and note that y(t+h, tQf xQ) Ξ= y{t+h, t, x),
h>0, in view of the assumed uniqueness of solutions of (2.1). Also,
let x(s, t, x) denote the solution of the system (2.2). Then, using the
definition of m{t), the Lipschitzian property of V, we get,

D+m(t) = lim s u p \ \ V ( t + h, y(t + h, ί0, x0)) - V(t, y(t, ίOf O)]

= lim sup —[V(t + A, i/(ί + h, t, x)) - V(t, x)]
ho+ h

S lim sup —[V(t + h, y(t + h, t, x)) - V(t + h, x(t + h, t, x))]
λ o + h

+ lim sup — [V(t + A, a?(ί + h, t, x)) - 7(ί + h, x + ft/(ί, a?))]

+ lim sup - ί [ V(ί + A, α? + A/(ίf α?)) - F(ί, α?)]

^ M{a) lim sup Γ— || y(t + A, t, α?) - x(t + A, ί, x) | |Ί+£>+ F(ί, α?)
Λ-»O+ [_h J ( 2 2 )

^ ΛΓ(α) lim sup -pf Γ+* || /(β, y(s, ί, »)) - /(β, Φ , ί, »)) II ώ

+ Γ+* || G(s, y(8, t, x)) || dvκ(s)\ + D+ V(t, x) ,
Jt ) (2.2)

where vu is the total variation function of u.

Since / is Lipschitzian in x9

i rrt+h ~|

l im^ 0 + sup - ^ [ ^ || f(8, y(s, t, x)) - f(s, x(s, t, x)) \\ dsj

^ L lim sup sup (|| y(s, t, x) — x(s, t, x) ||) = 0 ,

and we obtain, using (H4), D+m(t) ^ Λf(α)w(ί)|| y(t, tOf xQ) \\+D+ F(2.2)(ί, x).

LEMMA 3.2. Let the hypotheses (Hx), (H2), (H4), and (Hβ) AoZώ. //
2/(ί, *o, ̂ o) is α solution of (2.1), £Aew, αί ίAe points of discontinuity
{tk}, we have

Proof. Following the arguments in [3], we get
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II V(tk, ίo, a?0) - v{tk, to, x0) || = II G(tk, y(tk, t0, xo))[u(tk) - u(tk)] \\ .

Hence, using the assumption (H4),

I V(tk, y(tk, to, Xo)) - V(tk, y(tϊ, t0, Xo)) \

S M(a) || y(tk, ί0, x0) - y(pk, tQf xQ) ||

^ Λf(α)flf(ίt) || y(tk, t0, xo)\\\\ u(tk) - u(tk) [\ ,

which yields the estimate (3.3).

Proof of Theorem 3.1. Recalling that D+ VliΛ)(t, x)^0 and || x || ^
F(ί, ^), we have from (3.2), the following differential inequality

(3.4) D+m(t) ^ M{a)m{t)w{t) .

Since τ/(ί, ί0, x0) is continuous on [ίΛ_lf tk), k — 1, 2, , the ine-
quality (3.4) yields, for each te[tk_l9 tk),

(3.5) V(t, y(t, to, Xo)) ^ V(tk-U y(tk-u ί0, x0)) exp (j|f(α) Γ w(s)ds) .

In view of (3.3), (3.5), and (3.1), we now obtain

V(tk, y(tk, t09 xo))

^ V(tk, y(tk, ίo, Xo)) + M{a)pg{tk)Xk exp (M{O) Γ* w(s)ds)

^ V(tk-lf y(tk-u t0, Xo)) exp (M(CL) Γ* w(s)ds)

+ M(a)pg(tk)Xk exp ( M(a) \ w(s)ds) ,
\ Jί0 /

where M(a) >̂ 1 (without any loss of generality).

Also, we have

V{t, y(t, to, Xo)) ^ V(to, Xo) exp (M(OL) ^ w(s)ds^, t e [ί0, t j

F(ί, »(ί, ίo, «o)) ^ ^(*i, 2/(*i, ίo, α0)) exp (M{a) j | w(8)ώ), ί e [ίlf ί2) .

Hence, for t e [tQ, t2) we get

V(t, y(t, to, Xo)) ^ [ V(t0, Xo) exp (jM{a) ^ w(s)ds)

)\ 1 w(s)ds j exp ίikf(α) l

exp

Thus, in general, for t >̂ ίo>
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V(t, y(t, t0, xQ)) ̂ [ V(t0, x0) + M(a)p Σ flr(**)λ*]exp (M{O)

Now, using the upper and lower estimates of F(see Theorem 2.1),
we get

|| y(t, t0, x0) || S [α(ί 0, || a?0 II) + M O P Σ giQX^NiQ = a (t0, || a?01|) ,

where iV(£0) = exp (M{OC) I w(s)cfej. Clearly α e i since Σ~=i0(**)λ*

converges and the proof is complete.

T H E O R E M 3.2. Let the hypotheses (HO, (H3), (H4), (Hβ), and (H8)

Further, let

(3.6) | |%(ί*)-w(Q| | ^ λ

δβ satisfied in place of (3.1) m (H7). T/̂ β ,̂ the ASI set x — 0 is
exponentially asymptotically stable with respect to (2.1).

Proo/. We now employ the Theorem 2.2 and set m(ί) =
W(t, y(t, t0, x0)), where W(t, x) is the Lyapunov function obtained in
Theorem 2.2. Using the same arguments as in proof of Lemma 3.1
for this W, we get, in place of (3.2), the following inequality:

(D+m(t) ^ L(a)pw(t) + D+W(t, x)
1 (2-2)

(3 7) \ ^ L(a)pw(t) + λ(t) - δm(t)
[ = χo(t) - δm(t) , δ > 0

S ί + l
λo(s)ώs — 0̂ as t —> oo.

Since τ/(£, ί0, a;0) is continuous on [tk_u tk), k = 1, 2, , the differential
inequality (3.7) implies, for each t e [tk^, tk),

1
where ^(t, t0, v0) = voexp (—δ(ί — ί0)) + -ff(ί, ô) is the solution of the
scalar differential equation

v' = — 5^ + λo(ί) , i;(t0) = ô ,

S t

exp(—δ(t — s))X0(s)ds. For the properties H{t, t0), see
[4] and [5]. ίθ

In view of (3.3) (which is true with W in place of V and L(a)
instead of M(a)), (3.8) and the estimate (3.6) for the jumps of u, we get
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W(tk, y(tk, t0, *„)) ^ W{tk, y(tς, ίo, Xo)) + L(a)pg(th) \\u(tk) - u{tl) \\

^ W(ί*-ι, 2/(**-i, ίo, O ) exp (-δ(ί f c - ί^O)

+ H(tk, th.d + L(a)pg(tk)Xkexp(-d(tk - t0)) .

We also have

W(t, y(t, to, Xo)) ^ W(t0, x0) exp (~δ(t - t0)) + Hip, U), t e [U, t,)

W(t, y(t, U, Xo)) ^ Wit,, viK U, xo)) exp (-8(t - tj) + H(t, tx), 16 [tιt Q .

Thus, for t e [t0, έjj), we obtain

W(t, y(t, t0, xo)) ̂  {[W(t0, xo) + Ha)pg(tJK] exp (-δ(ί t - ί,))

+ Hit,, to)} exp i-δit - ίθ) + 2Γ(ί, ίθ

= [L^^fif^O^ + Wit0, Xo)] exp (-5(ί - ί0)) + Hit, to) ,

since, by the definition of Hit, t0), it is obvious that

H{tlt to) exp i-δit - «,)) + Hit, td = Hit, to) .

Hence, in general, it can be shown that, for t Ξi ί0,

Wit, y(t, to, xo))

^ [WiU, Xo) + Lia)p Σ g(tt)\t] exp (-δ(t - ί,)) + JET(ί, ί.).

Now, by using the upper and lower estimates of W(t, x) (see Theorem
2.2), we have

II y(t, U, x0) || ^ [6(ί0, || a?o II) + /S] exp (-δ(ί - ί0)) + ίf(ί, ί0) ,

oo

where /3 = L ( φ Σ 9(tk)Xk. Further, using the facts that

( i ) l i m ^ [ s u p ^ H(t, ίo)] = 0 (see [4], p. 113),

(ii) H(t, t0) ^ σ(t0), σeL (see [4]) and

(iii) β can be made small by choosing k sufficiently large, we
see that the set x — 0 is ASI relative to the perturbed system (2.1)
and that the ASI set x = 0 is exponentially asymptotically stable
with respect to (2.1). The proof is complete.

REMARK. If in the above proof, we do not take ί0 ^ Tk (k suf-
ficiently large enough to make β as small as we wish), we could still
conclude that the solutions of (2.1) tend to zero as ί—»°o, without
the ASI set x — 0 being uniformly stable, i.e., we can conclude that
the ASI set is quasi-equi asymptotically stable.
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