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Along with his study of the general Tauberian theorem
in L, N. Wiener introduced the algebra }; which consists
of all those continuous functions f on the real line R for
which

> max ]If(w)l< oo,

fn=—o ze[n,n+1

He proved that many features of L,, including the general
Tauberian theorem, are shared by M,. In this paper to
generalize M, to an arbitrary locally compact group G. While
doing this, a host of L,(G)-modules mutually related by con-
jugation and the operation of forming multiplier modules.
A#,(G) is among them. In case G is abelian, -#Z;(() is a Segal
algebra, so that it has the same ideal-theoretical structure as
Ly(G). 1If further G = R, -#,(G) reduces to the Wiener algebra
M, with an equivalent norm.

1. Our notations are basically the same as those used in [3].
We use, however, C to denote the complex number field. Throughout
the paper, G is a locally compact group with a left Haar measure
L. Instead of Cy(G), L,(G) ete. we write Cy, L, etc. We view L, as

a subspace of M. We identify two functions that are equal almost
everywhere.

For a function f on G define f’ by
fi@) = f@™)4@E™),

where 4 denotes the modular function of G. Then f” = f and
(f+9) =g =f" for f,ge L.

If B is a left Banach module over L, (see [3; 32.14]), then B*
becomes a left Banach module by

U, f¢) =(f'+4,8) (eB;geB*;fel).

If B=L,(1 < p< «) or B=C,the module operation on B* coincides
with the convolution operation on L (¢ = p/(p — 1)) or M.

Let B be a left Banach module over L,. By [3; 32.22], {f=j: f€
L;je B} is a closed submodule of B. We denote this submodule by
L,*B or B,,. We call B absolutely continuous if B,,, = B.

Suppose B is a Banach space, and there is a map (4, x)—j, of
B x G into B such that

(1) J.=34(@eB),

507
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(2) () =Jd.UeB;x,yeh),

(3) for every ze @, j—j, is a linear isometry,

(4) for every je B, x+J, is a continuous map G — B.
Then (5, 2) — 7, is called a continuous shift in B. Such a continuous
shift makes B into an absolutely continuous left Banach module over
L, by

(44, 8) = [F@)G, 9o, (fe Lije Bge BY) .

For details, see [2], [4].
We can define continuous shifts in L,(1 < p < «) and C, by

J.(y) =j@y) (GeL,or Cia,yeq).

The resulting module operation is ordinary convolution.

Let B be a left Banach module over L,. The continuous module-
homomorphism L, — B (the multipliers of B) form a Banach space
Mult B that can be turned into a left Banach module by

(f+T)9) = T(9+f) (f, g€ Ly; TeMult B).

Every je B induces the multiplier f+ fxj. The following theorem
is essentially due to Rieffel [6] and is proved in [2] as Theorem 5.2:

THEOREM 1.1. Let B be an absolutely continuous module. For
o€ B* let T, be the multiplier fi— fx¢ of B*. Then T is a module
isomorphism and o linear homeomorphism of B* onto Mult B*.

A Radon measure on G is a linear functional f: Cy, — C such
that for every compact set C — G there exists a number ¢ such that

G, W =cllill. (GeCy SuppjcC).

The Radon measures form a vector space which we denote by R.
For e R and for an fe L, with compact support we define
f=preR and txfec R by

U, f=1) = (f"+4, 1)
@, txf) = @G=4f, 19

These formulas reduce to the familiar convolution formulas in case
re L,

Every Radon measure is a linear combination of positive Radon
measures [1]. Thus, if #e R and if X is a relatively compact Borel
subset of G, we can in a natural way define ¢#(X). Further, if p¢
R and if A is any Borel set there is a unique &,#¢ R such that
£ X)) = (X N A) for all relatively compact Borel sets X. There

GeCy .
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exists a unique |[¢|e R such that &,|p¢| = |&,2¢| for every compact set
A (see [1; Ch. 13)).

By the Radon-Nikodym Theorem [3; 12.17] we may identify L, io.
with {¢#e B: ¢ < A}

THEOREM 1.2. If fe L, has compact support and if (€ R, then
f=p and pxf lie in L, ... If, in addition, f is bounded, and pe
Lo, them fxpt and pxf are continuous.

Proof. Let C = Supp f. If Dc G is compact, then

(f *E-pt)(X) = (f * )(X)

for all Borel set X< D. It follows that f=pg < n. Further by [3;
20.16], if f is bounded and pte L, .., then f g is continuous on every
compact D C@G.

The proof for = f is similar.

From now on, K will be a nonempty compact subset of G which
1s the closure of its interior.

For e R we define ¢%: G — [0, =) by
15(@) = |&uttll = | 12| @K) @e @ .
It is easy to check that
L=y

Thus, ¢ € L, .., and p* is continuous if e L, ..
Further, if f is a measurable function on G, define f* G -— |0,
o] by

@) = || Féxlle

f* is lower semicontinuous, hence measurable. (Proof: For r< R put
fA2) = min (v, | f(®)]); then f* = sup, f%. Thus, we may assume that

f is bounded and = 0. For jeL, j =0, Sj =1, the function fj=&x_,
is continuous [3; 20.16], and for every zeG,

fi@) = sup EEM J = Sup f7*Exm -
Thus, f* is a supremum of continuous functions.)

LemMmA 1.3. Let pc R, let f be a measurable function. Assume



510 TENG-SUN LIU, ARNOUD VAN ROOIJ AND JU-KWEI WANG

that either < ) or f is continuous. Then
(% 25 = METNS 1D -

Proof. By the assumption, for every xeG we have |f]| <
SHz)| ¢ a.e. on 2K, so that

rar@z| 11w .

We may assume f¥ufe L,. Then there exists a o-compact set X such
that f*¢* = 0 a.e. outside X. Since the X is o-compact, it follows
from [3;5.7] that there exists a closed and open o-compact subgroup
H of G containing X and K. Every relatively compact Borel subset
C of G\H can be covered by finitely many cosets a,K, «+-, a,K where
FHae)5(a;) = 0 for each ¢. Then

[)71d10 = Sr@re) =0

Put f, = &lfl, #h = &lul.  Then (Ifld|pl = |fdp. Further,
Firs = fiuf on Hand f% < f% ¢ < 1% everywhere; therefore (f%, 1) =
(% 5. It follows that we may replace f by f, and ¢ by p;i.e.,
we may assume that f >0, # =0 and that G is o-compact. This
enables us to apply the Fubini Theorem:

% 9 2 ([ 17 @)1 d [ 2] @)
= |[e@ 1 1@ dud 121 @)
= ur) 1701121 @) = MBI F@) 12 @) -

Note. This lemma, and also its applications, Theorems 3.1 and
6.1, should be read with some caution. In the case where f is con-
tinuous the “f” in the right hand member of the formula denotes
a single function, but the “f” in the left hand member stands for
the class of all functions that are l.a.e. equal to f.

COROLLARY 1.4. For all peR, S/ﬁ = MEY) | 2| (@). Thus, if
¢ = 0a.e., then ¢ =0.

Proof. 1t is clear that Slﬁ < ||&xalL] 21@) = ME | #](G). On
taking f =1, we getS#‘“ = MK )| ¢#|(G). Hence the equality. If C
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is compact, then

e = (e = (gl s = ME)201@) = ME)121(©)
Hence we have the second statement.

2. For 1 <p < o let
Ze= Vo =10€ Lt e Ly} .
Further, put

Vo =1{e L. 3"e L.},
;0 - {.7 € L1,loc; jh € CO} .

Clearly 7., #.. As Sj‘ = X(K‘l)gljl, we have ;= L,. For je
7 We set

715 = 1171 -

THEOREM 2.1. Let 1 < p < oo. ¥, and %5 are Banach spaces.
L, is o dense subset of 7, the natural ingjection L,— 7, s con-
tinuous. The formula

7.() = jlwy) (e P a, yeh)

defines a continuous shift in %;.

Proof. Clearly 7, #;, are vector spaces and || ||7 is a norm.
To prove completeness of ¥7;, let {j,} be a sequence in ¥/, such that
Silld.1l34 < <o; it suffices to prove that 37, converges in #,. We
know that 3 7%(x) converges for all x¢ G outside a certain locally
null set X. Take a compact set CcG. C is covered by finitely
many translates ¢, K, -, a,K of K and we can choose all ¢, in G\X.
Then

S|l ssie < -,

so that Y|j,| < e a.e. on C. By [3; 11.39 and 11.42] there exists
a measurable function j§ such that Y j, =4 la.e. Then Solﬂ <
_S_ZS |7.] for every compact C, so je L,,. and 7% < Xj55. Hence,
je 7n We also obtain (j — S\ 7.)F < S5, 4% so

5

1

(R

R
N1l |

= Sl = 3 N6

»
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Therefore, j = 37, in the sense of _7;.

For 7, we simply observe that j+ j% is a continuous map 7, —
L., so that 97, is closed in 77.

Next, take je L,. Since &x—1€ L,, j° = |j|*xéx—1€ L, and ||7|5 <
W7l || &x=|l,» It is easy to see that j*c C,. Hence, L, C 7;, and the
injection is continuous. To prove that L, is dense, take je 7;,
e > 0. There is a compact set C such that ||j*(1 — &)|l, =e. Then
L — &%) =0on C and (§ — jécx)* < j* everywhere. For p < o it
follows that ||7 — jéox|l% < ||7%Q1 — &o)ll, < e. But jécre L. Thus, for
P < oo, L, is dense in 7;,. A similar proof works for » = co.

Trivially, if je 7;, then j,e¢ 7;, for every x. We only have to
prove that a7, is continuous. As L, is dense, we may assume
je L,. Now for such 5 we know that the formula z+j, defines a
continuous map G — L,. Now observe that the injection L, — 75
is continuous.

THEOREM 2.2. For 1 < p < oo, L, is a dense subset of 7, and
the injection L,— 7, is continuwous. Further, C, is a dense subset
of 7., and C,— 72, 18 continuous.

Proof. The first statement follows from the formula
jh = l.7 I % &1

and [3; 20.13]. Further, for je C, we have |j|*&x-1€C, as is easy
to prove.

According to the remarks made in §1, 7;, can be made into an
absolutely continuous module. The module operation * is given by
the familiar convolution formula:

THEOREM 2.3. If feL, and jc 431 < p £ ), one has for
locally almost every xc G,

£ +i@) = @i ndy -
Proof. We may assume f,j =0. If heC, and h =0, then
t, 1.9 = {F@ 0, 5,02y = ([ r@h@i@ 2y
= {n@)|rapiniyds .
3. For 1 < p < = let _#; be the set of all measurable functions

f on G for which f¥e L,. Then _#; is a vector space, and the
formula
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WAIG =1t (fer?)
defines a norm on ._#;.

THEOREM 3.1. Let 1< p < oo, q = p/(p —1). Every fe. .1, de-
termines a Of € 7,F by

G, 2) = {i@r@ds e 7).
? is a linear homeomorphism on v, onto 7,x. We have

1ol S UME™) and o= | a7

K1

Proof. It follows directly from Lemma 1.3 that @ maps .4 into
7 and that ||@]] < MK?)'. For the converse, take s€ 7,. As
L, c 7;, and as the injection L, — 7}, is continuous, there is an fe L,
such that

G,9) = |i@/@da  GeL).

If fe 7, then ¢ = @f on a dense subspace of 7;, hence on all of
7. We proceed to prove that fe._#; and || f||i < Hq&HS 47,
KK

—1

Assume for the time being that f = 0. Take ¢ (0,1). The set
S = {@ y)eG:yezK; fly) = (1 — &)f ()}
is measurable. Then for la.e. x€ G the set
S, ={yeG:(x,y)e S} = {yeakK: fly) = A — &)/ ()}

is measurable. Moreover, the function x — \(S,) is measurable, and
MS,) > 0 la.e.
Let heL,nN L,, h = 0, Supp & compact. Then

( - afrehe@is < [ [L8 6. way o) = @ = [rarnwi,

where

h(x)
MS.)

i) = |2 @y .

One easily sees that je L, so that
- | r@h@ds = | r@iwa = 6,9 = 161111515 -

To find an estimate for ||j||% we observe that for every acG,
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@) = ([2() 2@, (a0 S g,
7@ = {|en)HE e dyde = TS

As S, cxK we have MaK N S,) = 0 unless x€ a KK, so that
7(a) < SGKK_lh(x)dx = B Expr(a) .
By again applying [3; 20.13] we find
13163 = s Emslly < 1Al | @) dy

Thus, for all ¢ > 0 and all he L, N L, » =0 we get

@—ofrn= s, |, 4.

KK

—1
We have proved our point for the case f = 0. For the general
case we notice that there exists a measurable function 7: G — C such
that |z(x)] =1 for all # and zf = 0. Define y: 7;,— C by

U, ¥) =G 9) .

Then fte L, ie., fe. 47 and || f]IF < |I]] SKK 40,

Then e 77, ¥l = llsll, and (G, ¥) = [i@) @ for je L. It

follows that tfe_ 47 and [|[zf || < ||+l S 471 g0 fe 4, and
KKl
i = el 4.

COROLLARY 3.2. 4, L.N L,. The injections A4,— L. and
A5 — L, are continuous.

Proof. By Theorem 2.1, there is a constant ¢ such that for
every je L, ||7|5 < ¢l|7ll,. Then if fe._7;, we have

lis = G, o) = clon s 1),

Hence fe L. and || f]l. < ¢||@]]|| f]li. The proof for the statements
concerning L, is simimilar, using Theorem 2.2 instead of Theorem 2.1,

COROLLARY 3.3. .7, s a Banach space which is also an L,-
module under convolution.

Proof. We know that 77 can be made into a left Banach module
over L,. After Theorem 3.1 we only have to show that the induced
module operation in .77 is convolution. Now for fe L, g€ .7, and
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j€ 7;, we have
G, 7.9) = ("3, 9) = || F@it wowazy
= [{re i wewaeaudy

= [[r@ienawaas = (| r@iwetyayds

i

liw|r@atndsdy .

4, For 1 < p < o let

Ay ={f et f is continuous} .
THEOREM 4.1. C, is a dense subspace of _7,.

Proof. Take fe_#, ¢ >0. There exists a compact C G such
that || /#(1 — &,)]|, < e, and there exists a geC,, g = f on CK, such
that |g| = ]f]. Then (f — ¢)* =0 on C, and

1F = glls N — Yol + 11/ — €, + lg" (@ — &), = 2¢ .

THEOREM 4.2. For 1 < p < co, #Zy = (A })as-  The formula
T, g =gx*f (fe sy 9ell)

establishes a one-to-one correspondence between ./, and Mult 7.

Proof. First, take feCy,. Let S = Supp f. Let U be a compact
neighborhood of S. For every ¢ > 0 there exists a neighborhood V.
of 1 such that Vi'ScU and || f — f.|l. <¢ for all xe V.. Then for
zxeV, we have |[(f — f)l. <¢ and (f — f.)F =0 off UK'. Thus,
for we V,, [ f — f.ll5 = MUK,

It follows that «+— f, is a continuous map G — _7, for every
fe€Cy, hence for every fe._#, (see Theorem 4.1). Thus, .7, can
be made into an absolutely continuous left Banach module over L..
It is easy to see that the induced module operation is convolution,
which is the same as the module operation in _#;. Thus, 7, =
Ll*-///; = ('///‘p)abs‘

Now (A7)ars = Lyx.4, c L+ L, and every element of L, L. is
continuous [3; 20.16]. Hence, (A3)us C #Zp $0 that (A43)u. = A

We also see that every T, maps L, into ., hence is an element
of Mult _#,. Let ¢q=9/(p —1), (@ =0 if p=1). As 7; is an
absolutely continuous module, it follows from Theorem 1.1 that for
every Te Mult 7, there exists a ¢ ¢ 7, such that Tf = f=¢(f € L,).
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The rest of the theorem follows from Theorem 3.1 and the trivial
observation that Mult _~z, < Mult _7;.

COROLLARY 4.3. _/7, is a Banach space.

Let us consider the case p = . Obviously, #2 = L... Thus,
{f e N_: f is continuous} is the space of all bounded continuous func-
tions. It is known, however, that (L_).,, = C..(see [3; 32.45]). We
could save the situation by defining, for 1 < p < oo,

'.///I):C'rum'-//;.

Then Theorem 4.2 remains valid if we change “1 < p < «” into
“1 é p § oo”,

5. _#, deserves some special attention.

THEOREM 5.1. 47 and _# are Banach algebras under convolu-
tion. If G is abelian, 7 is a Segal algebra (as defined in [5; Ch.
6, §2]).

Proof. The injection I:. 47— L, is continuous (Corollary 3.2).
For f,ge 4 wehave || f=g|i = || fIl.llglf = | LIl | Fkllg[li. Further,
#, is a left ideal in L, by Theorem 4.2. The second statement
follows from Theorem 4.1 and the continuity of the shift (see proof
of Theorem 4.2).

Consider in particular the case G = R, the additive reals. Wiener
defines his Banach algebra M, as the set of all continuous functions

f on R for which || flly, < oo, where
171l = 5 max [ F@)] .

M, was discussed in [7; Ch. 2] and [5; pp. 12, 127], [3; II pp. 506,
600]. To show that M, = _#, for a continuous function f on R
define f* on R by

f@y=sup |f| if neZ,n==c<n+1.
[nn+1]

Then || fllx, = Il /7]l.. By taking K =[0,1] we find f¥(z) = f"(») +
@+ 1) and f(x) < fx — 1) + fHx) for all 2. Hence M, = _# and

LU= e s 20 08

6. Finally, for 1 < p < « we set

7, ={re R pre L}, ¢l =11, .
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For all zzc R we have Sw(x)dx = MK |¢| (G). Hence %; = M.

THEOREM 6.1. Let 1 < p < o, q = p/(p — 1). The formula
(70 = e (Feitipre 77)
establishes a linear homeomorphism of 77, onto _#y*. Further,

1)< MK, [T < j g

K1

Proof. It follows from Lemma 1.3 that ¥: 97, — _#,* and that
7)) = MK ). Conversely, take ge _#;*. If C <G is compact, then
for every feC, that has its support in C we have

[ ol =gl 1A1E = sl Al IMCE)] 7.
Thus, there is a ¢#e€ R such that

(9 =|rae tecn.

If e L, and || £5]], < |9l S 471, then ¢t = ¢ on a dense subset

KKl
of _#, and we are done.

Take heCy, h = 0. Then
[r@e@as = [(rescwal sl @
= ||n@zxeazal ) = G, 12D

By [3; 14.5] and the continuity of h=x&, we obtain (h#&x, |#¢]) =
sSup;e.- |(J, )| where & = (feCy |f| = h=&}. Observe that for
every fe. % and aegG,

SHa) < sup hxéi(x) = sup S h < S h = hx&gx—(a) .
re€aK s K—1 akK—1

reaK

By another application of [3; 20.18] we find
[r@ @ = (i, |12]) = sup I(F, )] = sup (£, 9)]
fes fes

< sup I11 117115 = gl bl Eaalls < sl 1IRLL | a7

KE—1

Thus, (e L, and ||, < llgll | 47

KK—1
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COROLLARY 6.2. 9%, is a Banach space.

By the general theory of Banach modules, 97, can be made into
a left Banach module over L, (see §1, and §3 where we introduced
a module operation on _#;). An application of Theorem 4.1 yields
the fact that for fe L, . and pe 9%, the module product and the
convolution product f =g coincide. It follows that 7; is a submodule
of o7;.

We close the circle by:

COROLLARY 6.3. If p < oo, then 7, = ( #3)as. For all p the
Jformula

Suf = fxpt (re %5 fely)
yields a linear homeomorphism S of %%, onto Mult 7;.

Proof. For p =1 we can apply Wendel’s Theorem [3; 35.5],
since %77 = M and 77 = L,. By the last part of Theorem 2.2, 7; =
(7Dase S( Hp)ars if D << 0. For any p and for an fe L, that has
compact support, we have

fx Z3C(f*R)N 5 C LN = 7;.

As 7; is closed, ( Z)ase = Lix #7;< 7. Thus 7; = (7 2)as if D <
oo, and S, Mult 7; for all e %7,. The proof of the facts that
for p # 1 every element of Mult 7; is of the form S,, and that Sis a
homeomorphism is entirely analogous to the final part of the proof
of Theorem 4.2 (using 6.1 instead of 3.1).

7. In order to see how the operations ® and # depend on K,
take another nonempty compact set K, that is the closure of its
interior and define

K@) = [¢|(zK) (xeG;pekR),
fi@) = || féux,lle (e G; fe L) -

As K is compact and K, has nonempty interior, there exists a,, +--,
o, such that Kca, K, U--+- Ua,K,. Then we see that

#H = (#llq)al +oeee + (#?)“n (/’!e R) ’

FASE (Do + oo + (M, (fe L) -
From these formulas it will follow directly that the Banach spaces
Py Py N3y Ay F#, are essentially independent of K: A different

choice of K will only lead to a different, but equivalent norm in
the same space.
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In fact the proof shows that we can relax the conditions on K.
We only need to require that K is a relatively compact set with
nonempty interior. Any such K will lead to the same spaces 7,
Py N 3y Ay and %, with equivalent norms. The inequalities in
Theorem 6.1 will no longer be true for such a general K. (The
analogous inequalities in Theorem 3.1 remain valid.)

The results obtained so far can be summarized in the following
table where we use the equality sign to indicate linear homeomor-
phism. In each formula, 1/p + 1/q = 1.

77 =A% =M 1=p< )
(A Dars = A, Mult 2, =4, 1= p= o)
AR 1= p< )
(A ars = 75 1= p<e)
Mult 7; = 97, L=Z2p = )

The equalities in the first and third line clearly do not hold in
general if we put p = «. For the fourth line this is less easy to see.
Take G = R, K =[0,1]. Let j be the function that vanishes on
(— oo, 0] and coincides with nth Rademacher function ¢, on (n — 1,
n] for every positive integer n (see [8; Ch. I, §3]). Then je 7,
but 7¢ ( 72)ws. (It is not hard to prove that, if je(7.)ws, then
lim, ., ||7 — 7.1|% = 0, and that the latter formula is false.)

We do not have an adequate description of Mult 7.

Let us conclude with a table listing 7;, %,, #,, .+, for compact
G and for discrete G.

G compact discrete
7ol =p < ) L, Ly
7 w0 L, Co
Z (1 < p = ) M L,
v, M Lo
Al = p = ) c L,
A1 = p = ) L, Ly
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