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GENERALIZED HALL PLANES OF EVEN ORDER

ALAN RAHILLY

The theory of generalized Hall planes of odd or zero char-
acteristic has been developed by P. B. Kirkpatrick who has
obtained a characterization of the odd order Hall planes,
within the class of odd order generalized Hall planes, in
terms of their homologies with affine axis. N. L. Johnsen
has pointed out that odd order generalized Hall planes are
derivable and has characterized them in terms of their derived
planes. In this paper the results of Kirkpatrick are estab-
lished in the case of generalised Hall planes of characteristic
two and the results of Johnson in the case of generalized
Hall planes of even order. Also, a characterization of the
even order Hall planes, within the class of even order gen-
eralized Hall planes, in terms of their elations with affine
axis, is obtained.

1. Introduction. Let 7 be a projective plane, I, a line of 7
and 7, a Baer subplane of 7 such that I, is a line of w,., Weecallw
a generalized Hall plane with respect to I., 7, if

(1) = is a translation plane with respect to /., and

(2) = has a group of collineations which is transitive on the
points of [, not in =, and fixes every point in 7,.

We shall denote the point set {P|Pel, and Pem,} by M.

Kirkpatrick [7] has shown that any generalized Hall plane of
odd order may be coordinatized by a certain type of Veblen-Wed-
derburn system (V — W system from now on) which is a right vector
space of dimension two over a subfield. A consequence of this result
is that an odd order generalized Hall plane is derivable (in the sense
of Ostrom [9]) and Johnson [6] has shown that odd order generalized
Hall planes derive translation planes which are in semi-translation
plane class 1-3a of his classification of semi-translation planes (see
[4]). In §2 we shall extend these results to include the case of even
order generalized Hall planes. We shall also show that the derived
planes of finite generalized Hall planes are semifield planes. Our
proofs shall apply to all finite generalized Hall planes and so we shall
not restrict the statement of our results to the even order case.

Section 3 is devoted to proving a result (Lemma 2) on changing
of coordinate quadrangles in generalized Hall planes which will be
used in §4.

Kirkpatrick [8] has given a characterization of Hall planes of
odd order which may be stated as follows: A generalized Hall plane
of odd order is a Hall plane if and only if each point of M is the
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centre of a nontrivial involutory homology with axis in =,. In §4
we shall establish the following analogous characterization of even
order Hall planes: A generalized Hall plane of even order is a Hall
plane if and only if each point of M is the centre of a nontrivial
elation, with exis 5= [_, fixing M. We note at this point that all
elations in an even order translation plane are involutory.

2. Properties of generalized Hall planes. The following theorem
was proved by Kirkpatrick ([7], Theorem 1) in the case of planes
of odd or zero characteristic.

THEOREM 1. If w is a generalized Hall plane with respect to
l., my and T is coordinatized over a quadrangle 0, I, X, Y in x,
such that XY =1, by a V — W system F possessing a subsystem
F, which coordinatizes «,, then F, is a skew field and F is a right
vector space over Fi.

Proof. It is not difficult to prove that (zp)o = z(0o) + g for all
ze F\F, and p, o € F,, where 8 depends only on o and ¢ (Kirkpatrick
[7D.

Now choose z, we F\F, such that z + we F\F,. This can be
done unless | F,| = 2. It follows that ((z + w)p)o = z(00) + w(po) +
B = z(po) + B + w(po) + B, so 8 = 0 and (z0)0 = 2(p0) for all ze F\F,,
0, 0€ F,.

A similar argument establishes z(0 + 0) = 20 + zo for all ze€ F\F},
o, o€ F,.

It is easy (see Kirkpatrick [7]) to prove that F|, is a skew field
and that F is a right vector space of dimension two over Fi.

COROLLARY. 7, 8 desarguesian.

The multiplication operation in F' may be described as follows if
F is finite:

F' is a right vector space of dimension two over a field F|, em-
bedded in it in the usual way, with multiplication operation

(3) z-a = xa (multiplication by a scalar) for all ze F, ac F,

(4) (a+ B)-z ==zA(a, B) + B(a, B) for all ze F\F,, a, e F,
where A and B are mappings of F, X F, onto F, which have the
properties:

(5) A and B are additive homomorphisms with A(0, 1) = 1 and
B(0,1) = 0.

(6) for any given v and 6 € F,, the equation (A(«, B), B(a, B)) =
(7, 0) has exactly one solution («, 8) and

(7) the equation (A(a, B), B(a, B)) = (a7, 8v + 0) has exactly
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one solution (a, B), given v, d € F,; also, for this solution, a« = 0 if
and only if 0 = 0.

For this see Kirkpatrick [7]. Conversely, it is easy to see that
such a V — W system coordinatizes a generalized -Hall plane. We
shall call such a V — W system a generalized Hall system. From
now on we shall consider only finite generalized Hall planes.

Because of (5) we can write A(a, B) = f(a@) + h(B) and B(a, B) =
g(@) + k(B) for all @, Be F,, where f, g, h, and k are additive endo-
morphisms of F, which we shall call the defining functions of F.
Now gz =z h(B) + k(B) for all ze F\F, and ge F,. So, if h(B) =
h(B') then (B — B)z = k(B — B') which implies 8 = g’. Thus % is an
additive automorphism of Fj.

THEOREM 2. (i) Finite generalized Hall planes are derivable
and the derived planes are semifield planes in semi-translation class
1-3a of Johmson’s classtfication.

(ii) Finite semifield planes in class 1-3a are derivable and the
derived planes are generalized Hall planes.

Proof. (i) Johnson [6] (Theorem 3.1) shows that generalized
Hall planes of odd order are derivable and derive translation planes
in class 1-3a. His proof rests on a theorem in Kirkpatrick [7] (Theo-
rem 1) for odd order planes. In virtue of Theorem 1 of this paper
we can say that Johnson’s argument applies to the even order case
as well.

It is possible to apply Theorem 11 of [9] to find a coordinate
system F” in the derived plane of a generalized Hall system F defined
by functions f, ¢, k, and k. F' has multiplication o given by

(28, + 1) o (EM + Ny) = th7(h(N) — F(R(M)E) + h(K))
+ v — BO\)) + g(R(M)E)
=+ kh_l(mho\q) - f(h()"l)éx)

where £ = (A, — E(\))E,. Because f, g, h, and %k are additive endo-
morphisms of F), the multiplication o is fully distributive and so F"”
is a semifield since it is necessarily a V — W system, the derived
system of a ¥V — W system under Theorem 11 of [9] being always a
V — W system.

(i) This part is proved in Johnson [6] (Theorem 2.1).

Kirkpatrick [7] gives a class of generalized Hall planes of odd
order which contains the class of Hall planes of odd order and some
other planes. The following two classes (which appear in Johnson
[5] in another form) contain all the finite Hall planes as well as some
others of both odd and even orders. The planes are those coordi-
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natized by the generalized Hall systems:

(1) (a+ B)z=2(B"" + ¢ 'a) + va’® where 6 € Aut (F,) and z’z —
px — v is irreducible over F,, and

() (za + B)z = 2(8 + pa)’™ + va’" where 6 € Aut (F}) and 2’z —
px — v is irreducible over F.

NoTE (added November 9, 1973). It has recently come to the
author’s attention that Theorems 1 and 2 have been proved by
Vikram Jha in his thesis “On Automorphism Groups of Quasifields”,
University of London, 1973.

3. Change of coordinates. Suppose (F, +, o) is a finite V— W
system coordinatizing a translation plane 7. Let us write yox =
(y)o, for all xe F* = F\{0}, ye F. Then o, is an automorphism of
(F, +) and we observe that I' = {0, |x e F*} is sharply transitive on
F* and that o, — ¢, is nonsingular if x == z, since (F'*, o) is a loop.

LEMMA 1. If the finite V — W system F, = (F, +, o) coordinatiz-
ing the plane © over the quadrangle @0, I, X, Y has multiplication
given by yox = (y)o, for all xe F* and yo0 =0 for all ye F, then
T may be coordinatized over the quadrangle Q' 10,1, X, Y' = (v) (r %
0,1) by a« V — W system F, = (F, +, =) such that

Y or — Y)O, — Ou) ™ o ¥(®) for all we F*\{1 — 7}

Yyrx = .
Yy—yorife=1—7r

for all ye F, where (x + r — Doy ov(x) = & for all xe F*\{1 — r}.

Proof. Leave the coordinates of points on the line Of unchanged.
It is not difficult to show that addition is unchanged. Note that we
shall use primes to distinguish point coordinates over @ from point
coordinates over Q.

Consider the line OY. The point T, = (0,1 — r) lies on OY.
The line Y'T, has equation ¥y = xor + 1 — » and since Y'T, N OI =
(1,1)=(@1,1)Y we have T, = (1,1 — r)’, whence OY has equation y =
2+(1 — 7). (The multiplication makes clear which coordinatization
we are referring to.) The point T, = (0, 7) lies on OY for arbitrary
geF. Y'T, has equationy =xor + %. Y'T,NOI = (7)o, — 0,)7,
()0, — 0,)7"). Hence, T, = (7).~ 0,)",¥). So (§,J— yor) lies
on OY for all ye F' and thus (1 —r) =¥ — yor for all ye F.

Next, consider the line ! whose equation is y = x*¢ where
te F*\{L — r}. The line [ has equation y = x o m(t) for some m(t) € F.
Now R, = (1, t) lies on I, and Y'R, has equation y =xor 4+ 1— 17,
since I and Y’ = (r) lie on it. The point R, is clearly ((¢ + r — 1)o7, 1),



GENERALIZED HALL PLANES OF EVEN ORDER 547

whence m(t) = v(t). Now R, = (¥, y=t) lies on [ and Y'R, is the
line y =acr + 4§ — yor, since (r) and (7, ¥) lieonit. Thus Y'R, N
! has abscissa Z such that Zowv{t) =%or + 4y — yor, that is T =
(or —y)o, — 0.,)7" Whence B, = (For — Y)N0, — 0,0) ", (Tor — ¥)
(0, —0u) o) = (¥, Y+t) and so Y=t = (Yor — y)o, — 0,0)" o v(t)
for all ye F.

Lemma 1 appears in [10] along with a number of analogous re-
sults for some other shifts of coordinates in a finite translation plane.

LEMMA 2. Let w be a generalized Hall plane with respect to l.,
T, Suppose F, = (F, +, ) is a generalized Hall system (with subfield
F, coordinatizing w,) coordinatizing @ over 0, I, X, Y in wy, yox =
W)o, for all xe F'* and ye F and f, g, h, and % arve the defining
functions of F,. @ may be coordinatized over Q|0, I, X, Y = (\)
(e FNO, 1}) by a generalized Hall system F, with defining function
h, such that

ki) = ML — ML — N)7F for all pe By,
and where M) = g(®) + kh™'(\y) — kh™f (1) — N (\NG) + MTF(7)
for all ne F,.
Proof. From Lemma 1, # may be coordinatized over Q' by F, =
(F, +, %), where

_ @O = )01 = 04) 7 o w(@) for all xe FH\{1 — )}

Yrx =
y@d — ) for x =1 -

and
(@ +»N—DNYow(x) =2 for all xe FF*\{1 —\}.

Firstly, we consider the action of v(x) for each x. This is easy
to discover if xe FF\{1 — A} because then v(x)e F,. (In fact, it fol-
lows that y*2x = yox in this case.) Suppose x¢e F\F,, then v(x)e
F\F,, for if v(x)e F|, then ((x + » — )N cv(x) = @ implies » =1, a
contradiction. Now suppose v(x) = z«a, + B, wWhere «,, B,€ F,. The
equation ((x + A — DN ow(x) = & implies

(e, + BJaz V" + (v — DN — Boag'\N ) e (v, + B.) =
and so
(8) f(0) + W) = o\,
and

(9) 9(0) + k() =+ 1 —N),
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where 0 = a;'V and 7 = (AW — DA — gar A
The solution of (8) and (9) for o is p = M7'(1 — \) where M,(n) =
9()) + k') — kb f () — MR OM)) + AMRTf (). Note that Mi' ex-
ists since (8) and (9) are uniquely solvable for o, = by (7) and also
that «, and B, are independent of £ so we may drop the subscripts.
Next we consider the action of (¢, — 0,,)7": (@Y + 0)(0; — Opy) =
YN + O — (27 + 0) o (xax + B). It follows that

(xE + 77)(0'1 - o-v(x))‘l =x7 + 0 ’

where
fla™) + k(0 — Ba™7) = a™*vn — &a™t
and
ga ™) + k(0 — pa™) = (0 — Ba ')+ pa ¢ — 7.
So,

yxe =@ — D)0s — Oux) o v(x)
= @& — 1) + 7(n — D)(0; — 0o) " 2 0(R)
putting y = £ + n. Hence,
yxx = @y + 0)o (xax + B),
where v and ¢ satisfy
(10) fla™) + b6 — pa~'v) = a~'yn — o' (M — 1)
and

gla™) + k(6 — pa™'v)

(11) =0 — Ba '\ + paé(v — 1) — (v — 1) .

Thus y 2 = x("A — EN — 1)) + dn — (A — 1), where 7 and ¢ satisfy
(10) and (11). Putting £ =0 in (10) and (11), we see that A;() =
TN = aAM7 (L — N) = M7 (9L — MYMTA — N) 7

4. Characterization of Hall planes of even order. The purpose
of this section is to prove the following theorem.

THEOREM 3. A generalized Hall plane © with respect to 1., m,
of even order is a Hall plane if and only if each point of M is the
centre of a nontrivial elation (with axis 1~ 1) fixing M.

Proof. If m is an even order Hall plane, Hughes [3] has shown
that each point of M is the centre of a nontrivial elation (with axis
l+#1,) fixing M.
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Suppose 7 is a generalized Hall plane of even order such that
each point of M is the centre of a nontrivial elation (with axis ! + [.,)
fixing M. Let us coordinatize = over the quadrangle O, I, X, Y in
7, (where XY = [) by a generalized Hall system F' with subfield F,
coordinatizing 7w, and defining functions f, g, k, and k. There is a
nontrivial (Y, OY)-elation @ which fixes M because there is a non-
trivial elation with centre Y and axis [ == 1., fixing M, and 7 is a
translation plane with respect to [..

Suppose @ takes X to (d) where de F,. Now d belongs to the
distributor of F. Thus,

(12) 2(d + y) =ad + a2y for all o, yc F.
Putting © = za + 8 and y = 2z, where z¢€ F\F,, in (12) we have

(za + B)d + 2) = (za + B)d + (za + B)z
= (F+ d)a + 8+ da)(z + d) = (za + B)d + (za + B)z
= (z + d)(f(@®) + (B + da)) + g(a) + k(B + da)
=zad + Bd + 2(f(a) + k(B)) + g(a) + k(B) .

It follows readily that A(¢) = & for all £ F,. We note here that
this is true whatever our original choice of quadrangle O, I, X, Y in
7, might be (provided XY = [, of course).

Congider a nontrivial elation + fixing M with centre Pec M and
axis I(=1,)exw,. Suppose Qe M\{P} and Q¥ = R. If we choose
coordinate quadrangle such that @ =Y, R=X, P= (1), and O€ln
7,, then (x, ¥)¥ = (y, ). Suppose (2)¥ = (w) where z¢ F\F,. Then
we F\F, and (w)¥ = (2). So (z, z2)¥ = (¢, x’w), since 0¥ = 0. Hence
2’ = xz and we have

(13) (xz)w = x for all xe F.

Now there is an automorphism p of F' fixing F) pointwise and taking
z tow and w to (say) ». Thus, (xw)v = = for all xe F. But (w)¥ =
(2), so (xw)z = x for all xe€ F and so we have v = z.

Suppose w = 2, + #¢, where A, and g,€ F,. The automorphism
o taking z to w takes w toz. So (2\, + )\, - ¢, = 2, whence ), =
1 for all ze F\F,. Thus w =2z + p,. Substituting for w in (13)
gives (xz)(z + ) =« for all xe F. So, a fortiori, (zz)(z + ) ==
for all € F|, and it follows that (z + )(f(x) + px + k() + 9(x) +
k(e + k(x)) = « for all xe F,. Hence, f(x) + p.x + k(x) = 0 for all
ze F, and we see that p, is independent of z. Writing g, = ¢ we
have

(14) f(x) + px + k(x) =0 for all ze Fy,
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and
(15) g®) + kf(x) + =0 for all xe F}.

From Lemma 2 we see that h,(x) = M7 ((1 — M) MT'A — N7,
where M(x) = g(x) + k(O\x) + kf(®) + Mz + Af(x) for all xe Fy and
Ne Fy, = F\0, 1}. But h,(x) = « for all A e F, as we have seen. This
means that M,(x) = Xz where X = (1 — M)(M;*Q — \))™* forallze F,
re F,. So we have

(18) g(x) + k() + kf(x) + N + Af(x) = X for all xe F,, ve F, .

Now (14), (15), and (16) imply k(\x) + Me(x) = N where M = X +
1+ 2 4+ 2. We can state this as

(17) km; -+ mlk = M, for all XGFO .

(In (17) m, stands for the endomorphism of (F,, +) given by m.(x) =
ax.)
But ¥ may be uniquely written

(18) k=my+ m, T+ oo +m,, T,

where the a,’s lie in F, = GF(2") and T is the automorphism of Fj
given by T(x) = «*.
Substituting (18) in (17) gives

My + Mpu T + <00 + Mppg, 0y T* =0

where (i, \) = a,(T*(A) + ) for all i =1, ---, n — 1 and ve F,. So
N=p8¢1N=0forall i=1 +--,n —1and neF,. But T°(\) + » =
0 for some neF, for each ¢ =1, ---,n — 1 and thus k = m,. But
k(1) =0 and so a, = 0 and %k = 0 (the zero map). From (14) and (15)
we have f(x) = px and g(x) = x. It follows that F'is a Hall system
([2]) and 7 is a Hall plane.

Theorem 3 of this paper and the characterization of the odd
order Hall planes given in [8] allow us to assert the following result:

THEOREM 4. A finite generalized Hall plane with respect to l.,
7, is a Hall plane if and only if each point of M =1,N=x, is the
centre of a montrivial involutory central collineation which has axis
+ 1, in 7w, and which fixes M.

There are other characterizations of the finite Hall planes amongst
the finite generalized Hall planes. Of these we mention: A general-
ized Hall plane 7 of order ¢® = 4 is a Hall plane if and only if the
kernel of 7 is of order gq.
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