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ON STRONGLY RADICIAL EXTENSIONS

YASUJI TAKEUCHI

Let A be a commutative ring and C a commutative
ring-extension of A such that the canonical morphism: Spec (C)
-> Spec (A) induced by the inclusion map: A ->C is radicial. In
this paper a Galois theory of such extension C/A is given,
with certain additional assumptions.

Let A be a commutative ring with an identity such that for each
prime ideal p in A the residue ring A/p is of prime characteristic.
We say that a commutative ring-extension C of A is strongly radicial1

if C is finitely generated projective as an A-module and the Kernel
of the multiplication map: C(x)^C—>C is a nil-ideal. In this paper,
we shall study a Galois theory of strongly radicial extensions. The
main tool used here is higher order derivations, which have been
studied in [5], [6], and [7]. The reader should consult them, especially
[5], [6]> ί ° r relevant definitions and basic properties.

In § 1 we introduce difϊerentiably simple rings and exhibit a
structure theorem. We shall later apply this to study the structure
of strongly radicial extensions.

In § 2 we give criteria for strongly radiciality. We also gener-
alize some of the results about purely inseparable field-extensions to
our case. Moreover, we show a structure theorem of strongly radicial
extensions.

In § 3 we give a Galois correspondence theorem for a strongly
radicial extension.

In all that follows all rings are commutative with an identity,
and all homomorphisms and all modules are unitary. Unadorned ®
will mean ® 4 . If A is a subring of a ring C, both A and C are
assumed to have the same identity.

!• Different!ably simple rings* Let C be a commutative ring.
For any qth order derivation D on C and any αeC, [D, a] denotes a
(q — l)th order derivation on C which is defined by [D, a](x) — D(ax) —
aD(x) — D(a)x for xeC. Let 3ίf be any nonempty set of higher
order derivations on C with [D, a] e £ίf for all DzSΐf, all a e C. In
this case, the set {aeC\ D(a) = 0 for all De έ%f) forms a subring
of C, denoted by Ker (Sίf). If C has no nontrivial ^-stable ideal,
C will be called an ^^-simple ring. For an <^-simple ring C, let A
denote Ker (<&?). Then the following properties hold:

(1) A is a field.
1 For the definition of radicial, see [Grothendieck: E. G. A. I (3.5.4)].
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(2) The exponent of C over A is finite if A is of prime charac-
teristic and C is finite dimensional over A.

The proof is omitted, because it is quite similar to the proof of
Lemma 2.1 in [12].

PROPOSITION 1. Let C be a commutative ring of prime charac-
teristic p and §Z? any nonempty set of higher order derivations on
C with [D9 a] e έ%f for all D e 3ίf, all aeC. Suppose that the orders
of the derivations in £ίf are bounded and C is Sίf-simple. Then C
is a local ring whose radical Q is a nil-ideal. Moreover, we have
C = F + Q for a sub field F of C containing Ker

Proof. Let q be the supremum of orders of the derivations in
For any xeC, we have D(xpβ) = 0 for D e ^ 7 where pe > g,

and so xpe belongs to Ker {£!?) [c.f., 5, Chap. I, Prop. 10]. Since
Ker {Sίf) is a field, we obtain xpe = 0 for any nonunit x in C. This
shows the radical Q of C is a nil-ideal and is a uniquely maximal
ideal. Now we shall show the second statement. Let Eί(S) denote
a set {xpι I x e S} for a subset S of C. Let s be the minimal positive
integer with ES(C) S Ker (JST). Then ES(C) is a field. We shall
show E\C) = Ft + E*(Q) for i = 0, 1, , s where F, are a subfield
of E^C), respectively. Assume we have already proved this fact
for i = r + 1, , s. Let Fr be a maximal field contained in Er(C)
with Fr+1 S Fr. Suppose Fr + Er(Q) Φ Er(C). Then there is an
x e Er(C) not belonging to Fr + Er(Q). We can write xp = a + y for
a e Fr+ί, y e Er+1(Q). Since Er+1(Q) = E^E^Q)), we obtain (x - yQ)p = a
for yoeEr(Q). Then x ~ y0 does not belong to Fr + Er{Q), which is
denoted by xQ. Since π(Fr)[π(x0)] is a field properly containing τc(Fr)
where π is the canonical map of Er(C) onto the field Er(C)/Er(Q), a
polynomial Xp — α is irreducible in i^JX]. So Fr[a;o] is a field, which
is a contradiction. So we have C = Fo + Q. Unless Fo contains
Ker {^yΐf)> take a maximal subfield F of FQ Ker ( ^ ) containing
Kerί,^"7). Then we claim C = F + Q. Assume this is not the case.
Then there is an element x in Fo not belonging to F + Q. Let t be
the minimal positive integer with xpt e F. Then a polynomial Xpt — xpt

in F[X] is irreducible. Hence F[x] is isomorphic to a residue field
F[X]/(Xpt - xpί), that is a contradiction to the maximality of F. This
completes the proof.

2* Strongly radicial extensions* Let A be a commutative ring
and C a commutative ring-extension of A. Let J ^ denote the Kernel
of the multiplication map μ: C (x) C—>C.

DEFINITION. Let A and C be as above. Suppose the integral
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domain A/p is of prime characteristic for each p e Spec (A). We shall
call C a strongly radicial extension of A if the following conditions are
satisfied:

( 1 ) C is finitely generated and protective as an A-module.
( 2 ) The ideal JcU is nilpotent.
The C-module of gth order A-derivations on C is denoted by

Derq(C/A). We shall set Der(C/A) = \J7=iDerq(C/A). Then there are
C-module isomorphisms φq: Ή.omc(Ω{

A

q)(C)2, C)->Derq(C/A) by φq(f) =
f δ'q) and <p:ΈLomo(Jcu, C)~+Der(C/A) by φ(f) = f-δ where δ is an
A-module map: C~+JcU by δ(c) = 1® e — c (x) 1 for ceC and δ{q) is

an A-module m a p : C-+ΩA

q)(C) by δ{q)(c) = {the class of δ(c) modulo

(Jcu)9+1}- The map δ{q) is called the canonical qth order derivation

of C/A.
Let v be the map: C-+Hom^(C, C) by v(c)(x) = ex for c,xeC.

We shall put &q(C/A) = v(C) + Derq(C/A) and &(C/A) = v(C) +
Der(C/A). Then 3r{β\A) forms an A-algebra [c.f., 5].

PROPOSITION 2. Lβί A δβ α commutative ring such that the
domain A/p is of prime characteristic for each p e Spec (A). Let C
be a commutative ring-extension of A which is finitely generated
protective as an A-module. Then the necessary and sufficient condition
that C is a strongly radicial extension of A is 2?(C/A) — Hom^(C, C).

Proof. The necessity is obvious. Suppose &(C/A) = Hom^(C, C).
Then the C-module Der(C/A) is generated by finitely many derivations,
because it is a C-module direct summand of the finitely generated
C-module Hom4(C, C). So &rq(C/A) = Hom^(C, C) for the supremum q
of orders of their derivations. In order to show Jc/A is nilpotent, it is
sufficient to observe the canonical epimorphism: Jc!A —»OΛ

q)(C) is
injective, accordingly so is the canonical epimorphism: JCpu$—*Ώ{Jl(C))
for each p e Spec (A). This is obvious from the following lemma,
because {1 ® ut — ut (x) 11 i = 1, 2, , m} form a CΓmodule basis for

where {1, uu u2, , um} is an A^-module basis for Cr

LEMMA 3. Let A be a commutative ring and C a commutative
A-algebra which is a finitely generated free A-module with a basis
{1, ul9 u2, , um}. If 3fq(C/A) = Hom4(C, C) for some positive integer
q, then Ωf{C) is a free C-module with a basis {δ(g)(^), δiq)(u2), •••,
^(?)(^m)} where δ{q) is the canonical qth order derivation of C/A.

Proof. From the hypothesis, we have a C-module isomorphism
ψ: C 0 Komc(ΩT(C), C) — Hom^(C, C) by ψ{c + f) = Cχ + (/ δίff))(a?)

(C) denotes the module of qth order differentials JG/A!(JC/A)Q+1 [c.f., 5].
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for c, x e C, fe ΈLomdΩ^iC), C). Let Dt(i = 1, 2, , m) be elements
of Hom^(C, C) such that Dt(l) = 0 for all i and A(%) = hi f ° r
i, i — 1, 2, , m. Moreover, let ft be elements of ΈLomc(Ω{f(C), C)
with f{f) = D,. Then we have fi{δ{q){u3)) = <SU. Since the set
{δ(ff)(i0, <5(g)(O, ••, <5(g)(iθl forms a set of generators of Ω[2\C) as a
C-module, ^ ( C ) is a free C-module with {8{q)(uύ, δ{q)(u2), •••, d<q)(um)}
as a basis.

We obtain a following corollary to Proposition 2.

COROLLARY. Lei A be a commutative ring of prime characteristic
p and C a commutative ring-extension of A which is finitely generated
protective as an A-module. Then C is a strongly radicial extension
of A if and only if C has a finite exponent over A.

Proof. If C has a finite exponent over A, then JoU is a nil-ideal.
This shows the "if" part, because JcU is finitely generated as a
C-module. Conversely assume C is a strongly radicial extension of
A. Then &q(C/A) ~ Hom^(C, C) for some positive integer g. Since
A = Ker (Derq(C/A))f it follows from [5, Chap. I, Prop. 10] that Ee(C)
is contained in A for a positive integer e with pe > q. This completes
the proof.

Now we give a structure theorem of strongly radicial extensions.

THEOREM 4. Let Abe a commutative ring such that the domain
A/p is of prime characteristic for each peSpec(A). Then, for a
strongly radicial extension C of A, the followings hold:

(1) The map ai: Spec (C) —> Spec (A) induced canonically by the
inclusion map i: A—>C is bijective.

(2) For each prime ideal p in A we have C (x) A{pf — Fp + Q9

where Fp is a sub field of C® Ά(W being purely inseparable over A{p)
and Qp is a nilpotent maximal ideal in C (& A(p).

Proof. For simplicity of notation set A = A(p) for any p ejϊpec (A),
and set C=C®A. Then we have ^(C/A) (g) A = Homi(C, C) and
so D(C/A) = Homi(C, C). Hence C is a jDer(C/J)-simple ring and
Ker (Der(C/A)) is equal to i . So (2) follows from Proposition 1.
Since C(g)A(p) is local for any £eSpec(A), the map ai is injective.
Since C is integral over A, the map ai is surjective. This completes
the proof.

COROLLARY. Let A and C be as above. Then an A/RA-auto-
morphism of C/Rc induced canonically by any A-automorphism of

3 A(p) usually denotes the residue field
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C reduces always to the identity map on C/Rc where RAj Rc are the
nil-radical of A, C, respectively.

Proof. Let σ be any A-automorphism of C. For any prime ideal
5β of C, we have σ(φ) = 5β, because ai(σ(?β)) = ai(?β) where αi is as
above. So σ induces canonically an automorphism of C/Sβ, which
reduces to the identity map on C/*β. This shows x - σ(x) e Sβ for all
a? e C and so a; = σ(x) mod. iϋ^.

PROPOSITION 5. Let A be a commutative ring such that the
domain A/p is of prime characteristic for each prime ideal p in
A. Let C be a commutative ring-extension of A which is a finitely
generated protective A-module. Then C is a strongly radicial extension
of A if and only if Cp is a strongly radicial extension of Ap for each
t>eSpec(A).

Proof. The "only if" part is obvious. In order to show the
"if" part, it is sufficient to prove the fact that the canonical injection:
C φ Der(C/A) —> Hom^(C, C) is an epimorphism, accordingly so is the
canonical injection: C9®Der(C/A)p —>ΈLomA(C, C)p for each t>eSpec(A).
Let φ be the composition of the following canonical maps

C, 0 Der(C/A)p -> HomA(C, C), - Hom^C,, C,) - Cp φ Der(CJAv) .

Then we have φ(Der(C/A)p) S Der(CJAp). We shall show φ maps
Der(C/A)p onto Der(CJAp). By the above isomorphisms any element
Dp of Der(CJAp) can be identified with an element of form (l/s)D in
Hom^C, C)p for seA - p, DeΉ.omA(C, C). If Dp is of order g, we
have finitely many equalities in Cp

xikβ-)D(x,

where xt(i = 0, 1, , g) range over a finite set of generators for the
A-module C. So there is an element t in A — p such that tD is a
gth order A-derivation on C. Hence we have (l/s)D = (l/st)'tDe
Der(CIA)p and

COROLLARY. If C is a strongly radicial extension of a commuta-
tive ring B and B is a strongly radicial extension of a commutative
ring A, then C is also a strongly radicial extension of A.

Proof. By the above proposition we may assume, without loss
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of generality, that A and B are local. Hence C is B-free and B is
A-free. Then we have a C-module exact sequence 0 —• (C (x) C)JBjA —•
Jcu—*JciB—*0 Since both JclB and (C®C)JB/A are nilpotent, J c M is
also nilpotent.

We conclude this section, showing a converse to Theorem 4 under
certain assumption on the basic ring.

PROPOSITION 6. Let A be a commutative ring such that, for each
p e Spec (A), Ap is artinian and A(p) is of prime characteristic. Let
C be a commutative ring-extension of A which is finitely generated
projective as an A-module. Then C is a strongly radicial extension
of A if, for each p e Spec (A), we have C(x) A{p) = Fp + Qp where Qp

is the nil-radical ofC(κ) A(p) and Fp is a subfield of C® A{p) which
is purely inseparable over A(p).

Proof. From Proposition 5 if suffices to prove when A is local.
Let m be the maximal ideal of A. Then m is nilpotent. Now we
have a commutative diagram

0 0

C > C(m) (g) C(m) > 0

C(g)m > C > C(m) > 0

0 0 0

whose all the vertical and horizontal sequence are exact where μ is
the multiplication map: C(x) C—>C and the other maps are also canonical.
From this diagram, we obtain an exact sequence 0 —> Ker (μ (x) 1) —>
Jcu -> Jew/Aim). Since Keΐ (μ®ΐ) = JclA Θ nt, Ker (μ (x) 1) is nilpotent.
So JcU is nilpotent. This completes the proof.

3* The Galois correspondence theorem* An aim in this section
is to show a Galois correspondence theorem on strongly radical ex-
tensions as follows.

THEOREM 7. Let C be a strongly radicial extension of a com-
mutative ring A. Let A be the set of C-module direct summands i?
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of Der(C/A) with ΏΌf e if and [D, x]eif for all D,D'eϊf and all
xeC. Let Γ be the set of intermediate rings between A and C, over
which C is projective. Then correspondences d: J~+ Γ, 7: Γ-* A given
respectively by §(&) = Ker (if), Ύ(B) = Der(C/B) are inverse to each
other.

In order to prove this theorem two lemmas are necessary.

LEMMA 8. Let A, C be as above and B an intermediate ring
between A and C. If C is projective as a B-module, then C is a
strongly radicial extension of B and B is also a strongly radicial
extension of A. In this case, the C-module Der(C/B) is a C-module
direct summand of Der(C/A).

Proof. In order to show the first statement, it suffices to observe
Homβ(C, C) is contained in &(C\B). For any / e ΈLomB(C, C), we have
/ = c + D for c e C, D e Der(C/A). Then cbx + D(bx) = f(bx) = bf(x) =
cbx + bD(x) for any b e B, any xeC. This shows D belongs to
Der(C/B). The second assertion follows obviously from the fact that
B is an A-module direct summand of C and JBjA is contained in the
nilpotent ideal JcU. Now we shall prove the last statement. For
any :peSpee(^4), a sequence of canonical C-module homomorphisms

0 > (C, 0Ap Cp)JBplAp > JCplAp > JCplBp > 0

is exact, because both Bp and Cp a r e A Γ f r e e . Hence a sequence of
canonical C-module homomorphisms

0 > (C (x) C)JBU > Jcu > JC1B > 0

is exact and so is split, since JclB is C-projective. So we have a
C-module isomorphism:

Hom^J^, C) > Έίomc(JclB, C) 0 Homσ((C (x) C)JSU, C) .

Since Der(C/A) ~ Ή.omc(JclA, C) and Der(C/B) ~ Komc(JcjB, C), our
requirement is obtained.

LEMMA 9. Let C be strongly radicial extension of a local ring
A. Let i f be a C-module direct summand of Hom^(C, C) which is
finitely generated free. Then there exist elements clf c2, •••, cw in C
and a C-module basis Du D2, -- ,Dn for IP with D^c,) = δit3- for
i, j = 1, 2, •••, n.

Proof. In this case C is local by Theorem 4. Let m be the
maximal ideal in A and Q the maximal ideal in C. Put A — A/m
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and C = C/mC. Since &(C/A) = Homi(C, C), C is a £ter(C/A)-simple
ring. Let D0Λ, A,2, •••, A,n be a C-module basis for if. We show
first DOti(C) ςt Q for all ί. Assume this is not the case. For the minimal
positive integer e with Qe £ mC, we have xD0>i = 0 mod. mC where
x ranges over the elements of Qe~\ Since DOti is free mod. mC, we
obtain xemC, which is a contradiction. Suppose we have already
found cίf c2i , cx in C and a basis A,i, A,2, , A,* f o r a C-module
gf with A.ifo) = δ̂ y for 1 ̂  i ^ w, 1 k j k I. If I < r, there is an
element cι+1 in C such that A,z+ife+i) is a unit in C. Set A+i,z+i =
ί7), T ίV ^ - 1 D flnrl D — D T) (o \T) for 7 Φ. I 4- 1
V'̂ '̂ i Z+l\ Z4-1// •'-'fr Z+l Λ l l v l JL/7J_2 i — I i -*-^l %\^/l-\-'l)'*-'l-\-l Z+l Λ.\JL V ~τ~ v \ Λ.

Then we have Dι+hi(c3) = δi>3 for 1 <: i <. n, 1 ̂  i ^ i + 1 and the
A+i./s are a basis for g7. Proceeding in this fashion, we find clf c2,
• , cn and A, A, , Dn as desired.

Now we can prove Theorem 7.

Proof of Theorem 7. It follows from Lemma 8 that 7 is well-
defined. We have to show δ is well-defined. For any g7 e Λ, put
JS = Ker (g7). In the case of any local ring A, we shall first observe
C is free over B. From the above lemma there are elements cl9 c2,
• , cr in C and a C-module basis A, A, , A for g" with Afe) = ^u
(i, i = 1, 2, , r). Then we have A A = 0 for i, j , = 1, 2, , r.
In fact, we can write A A = #iA + + ̂ r A for α̂  e C. Then we
have fljΛ = (Σ?=i %iDi)(ck) = AA(^*) = 0 for & = 1, 2, , r and so
A A = 0. Since D(δa?) = 6D(a?) + a?D(δ) + [A a?](6) for any fleg7,
any b e B, any x e C, any element of g7 is a 5-homomorphism. Set
d = -B + JBCi + + Bcr. Then d is B-fτee. We shall show C = d
Assume this is not the case. Then there is an element u in C not
belonging to d Suppose inductively that we have already found an
element ut in C not belonging to d with Dk{u%) — 0 for all k ̂  i.

does not belong to d ^nd we have Dk(ui+1) = 0 for all k ̂  i + 1,
because A A — 0 for i, j = 1, 2, , r. Repeating this construction,
we can obtain an element ur in C with ur ί d 3,n(i A(^r) — 0 f ° r

i = 1, 2, , r. Then ^ r belongs to B, which is absurd. Hence we
have C = d and so C is a free J5-module when A is local. In the
case of any general ring A, g^ is a C -̂module direct summand of
Der(CJAp) for each ί)GSpec(A). Moreover, we have B9 = Ker (g7^).
So, from the result above, Cp is a free i^-module of rank equal to
rank^ίif,) + 1. Since g7 is a finitely generated protective C-module,
the map of Spec (A) into the domain of rational integers by p H->
rank^(g^) + 1 is locally constant [2, Chap. II, § 5, No 2, Theorem 1].
On the other hand, by Theorem 4, we have Spec (C) = Spec (B) =
Spec (A) as the topological spaces and rank^( g%) + 1 = rank^g^) + 1
for any !β e Spec (5), p = 5β Π A. By [2, ibid], C is protective over J5
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and so δ is well-defined. Hence we have Der(CJBp) ~ KomCp(JcJBp, Cp)
for each £eSpec(A). This shows Der(CJBp) is generated by such a
C-module basis Du D2j — , Dr for g^ as the above augument. So we
obtain gf, = Der(CJBp) for each £eSpee(A) and so g* = Der(C/B).
This shows y-δ is the identity map on Λ. It is obvious that δ 7 is
the identity map on Γ. This completes the proof.
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