SOME REMARKS ON HARMONIC MEASURE IN SPACE

WILLIAM P. ZIEMER
SOME REMARKS ON HARMONIC MEASURE
IN SPACE

WILLIAM P. ZIEMER

The purpose of this paper is to examine the relationship between harmonic measure and \(n - 1 \) dimensional Hausdorff measure for a class of domains in \(\mathbb{R}^n \) with irregular boundaries. It is shown for these domains that harmonic measure and Hausdorff measure have the same null sets.

This investigation was motivated in part by the work of Hunt and Wheeden, [5], [6]. In these papers they consider Lipschitz domains, that is, domains whose boundaries are locally representable by graphs of Lipschitz functions. One of their main results is that a positive harmonic function defined on a Lipschitz domain has a nontangential limit at all points of the boundary except possibly those that belong to a set of harmonic measure zero. In the classical case where the domain is taken to be the half-space of \(\mathbb{R}^n \), the nontangential limit is known to exist at \(H^{n-1} \) almost every point of the boundary, c.f., [2], [3]. We will show that for domains \(\Omega \) satisfying a geometric measure theoretic condition, \(H^{n-1} \) (restricted to the boundary of \(\Omega \)) and harmonic measure have the same null sets. Therefore, for these domains, the results of Hunt and Wheeden will represent a generalization of the classical case.

By use of the conformal mapping theorem it is not difficult to prove, for a domain in \(\mathbb{R}^2 \) whose boundary is a simple closed rectifiable curve, that harmonic measure and \(H^1 \) measure have the same null sets. In § 4 it will be shown that the analog of this does not hold in \(\mathbb{R}^3 \). We give an example of a topological 2-sphere whose boundary has finite \(H^2 \) measure and has a tangent plane at each point, but for which \(H^2 \) measure is not absolutely continuous with respect to harmonic measure.

2. Preliminaries. Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^n \) and consider the Banach space \(C(\partial \Omega) \), the space of continuous functions on the compact set \(\partial \Omega \) with the norm given by \(\sup \{|f(y)| : y \in \partial \Omega\} \), \(f \in C(\partial \Omega) \). For each \(x \in \partial \Omega \), let \(\lambda_x : C(\partial \Omega) \to \mathbb{R}^1 \) be the bounded linear functional defined by \(\lambda_x(f) = u_f(x) \), where \(u_f \) is the harmonic function corresponding to the boundary values \(f \). Hence, there is a unit measure \(\mu_x \) on \(\partial \Omega \) called harmonic measure, such that

\[
\lambda_x(f) = u_f(x) = \int_{\partial \Omega} f \, d\mu_x,
\]

\(f \in C(\partial \Omega) \). If \(G \) is a component of \(\Omega \), the class of Borel subsets of
\[\partial \Omega \text{ of } \mu_x \text{ measure zero is independent of } x \in \Omega. \] Moreover, the class of \(\mu_x \) integrable functions is also independent of \(x \).

The domains under consideration in this paper are contained in the class of sets of finite perimeter. A measurable set \(E \subset \mathbb{R}^n \) is said to have finite perimeter if the gradient of its characteristic function, when taken in the sense of distributions, is a totally finite vector-valued measure. A unit vector \(n \) is called the exterior normal (in measure theoretic sense) to \(E \) at \(y \) if the symmetric difference of \(E \) and the half-space

\[\mathbb{R}^n \cap \{ x : (x - y) \cdot n < 0 \} \]

has density 0 at \(y \). The set of points \(y \) where \(n = n(y) \) exists is called the reduced boundary of \(E \) and is denoted by \(\partial^* E \). If \(E \) has finite perimeter, then \(H^{n-1}(\partial^* E) < \infty \) and

\[\int_E \text{div} \, \zeta dL_n(x) = \int_{\partial^* E} \zeta(y) \cdot n(y) dH^{n-1}(y) \tag{1} \]

for every smooth vector field \(\zeta \). Here, \(L_n \) denotes \(n \)-dimensional Lebesgue measure. Proofs of these facts concerning sets of finite perimeter can be found in [4].

Definition 2.1. For a measurable set \(E \subset \mathbb{R}^n \), \(B \subset \partial E \), and \(x \in \mathbb{R}^n \), let the variation of \(B \) at \(x \) be defined by

\[v(B, x) = \int_{\partial^* E \cap B} \frac{|n(y) \cdot (y - x)|}{|y - x|^n} dH^{n-1}(y). \]

If \(v(B, x) < \infty \), then the following is meaningful:

\[s(B, x) = \int_{\partial^* E \cap B} \frac{n(y) \cdot (y - x)}{|x - y|^n} dH^{n-1}(y). \]

In the event \(E \) is a domain with smooth boundary, then \(v(\partial E, x) \) can be regarded as the area of the radial projection

\[p_x : \partial E \longrightarrow S^{n-1}, \]

and \(s(\partial E, x) \) reduces to the notion of the solid angle.

By means of the Gauss-Green Theorem as given in (1), it can be easily verified that in case \(E \) is a bounded open set with finite perimeter, then

\[s(\partial E, x) = \omega_{n-1}, \quad x \in E \]

\[s(\partial E, x) = 0, \quad x \in \mathbb{R}^n - \overline{E}. \]

Where \(\omega_{n-1} \) is the \(H^{n-1} \) measure of the unit sphere in \(\mathbb{R}^n \).

Sets for which \(v(\partial E, x) \) is a bounded function were investigated
by Krai, [7], for the purpose of giving a geometric meaning to the normal derivative (taken in the sense of distributions) of the Newtonian potential.

3. Domains with boundaries having finite variation. Let \(\Omega \subset \mathbb{R}^n \) be an open, bounded, connected set, with \(\partial (\text{int} \, \Omega) = \partial (\mathbb{R}^n - \text{Clos} \, \Omega) \) and let \(p \in \Omega \). Then the Green's function for \(\Omega \) can be written as

\[
G(p, x) = I^*_2 \delta(p) - I^*_\mu_p
\]

where \(I_2(x) = \frac{(n - 2)\omega_{n-1}}{|x|^{n-2}} \) and \(\delta(p) \) denotes the unit measure concentrated at \(p \). For \(p \) fixed in \(\Omega \), \(G_p(x) = G(p, x) \) can be defined for all \(x \in \Omega \) and consequently if \(\varphi \in C^\infty(\mathbb{R}^n) \) with \(p \in \text{spt} \, \varphi \),

\[
\Delta G_p(\varphi) = \mu_p(\varphi),
\]

where \(\Delta \) is the Laplacian taken in the sense of distributions. On the other hand, if \(\Omega_k \) is a sequence of domains with smooth boundaries invading \(\Omega \), we have

\[
\Delta G_p(\varphi) = \int_\Omega G_p \Delta \varphi \, dL_n = \lim_{k \to \infty} \int_{\Omega_k} G_p \Delta \varphi \, dL_n = -\lim_{k \to \infty} \int_{\partial \Omega_k} \varphi \nabla G_p \cdot n \, dH^{n-1} = -\lim_{k \to \infty} \int_{\partial \Omega_k} \nabla \varphi \cdot \nabla G_p \, dL_n = -\int_\Omega \nabla \varphi \cdot \nabla G_p \, dL_n.
\]

Therefore,

\[
(3) \quad \int_\Omega \nabla G_p \cdot \nabla \varphi = -\mu_p(\varphi)
\]

whenever \(p \in \text{spt} \, \varphi \). If \(h \) is a harmonic function in \(\Omega \) whose gradient is integrable over \(\Omega \), then the generalized normal derivative (using the exterior normal) of \(h \) is defined by

\[
Nh(\varphi) = \int_\Omega \nabla h \cdot \nabla \varphi \, dL_n
\]

for all \(\varphi \in C^\infty(\mathbb{R}^n) \). We shall take the generalized normal derivative of the right side of (2).

First, it is elementary that

\[
Nh(\delta(p))(\varphi) = -1/\omega_{n-1} \int_{\mathbb{S}^{n-2}} n(y) \cdot \frac{y - p}{|y - p|^n} \varphi(y) \, dH^{n-1}(y),
\]

and as \(p \in \Omega \), \(Nh(I^*_2 \delta(p)) \) is a measure.
Now in order to consider $N(I^*_2 \mu_p)$ we impose the additional hypothesis

\begin{equation}
\int v(\partial \Omega, y) d\mu_p(y) < \infty .
\end{equation}

Recall that this condition is independent of p. For any $y \in \partial \Omega$, observe that

\begin{equation}
N(I^*_2 \delta(y))(\varphi) = \frac{1}{\omega_{n-1}} \int_{\partial \Omega} \varphi(x) \cdot \frac{(y - x)}{|y - x|^n} dL_n(x) .
\end{equation}

Also, an application of Fubini’s Theorem provides

\begin{equation}
N(I^*_2 \mu_p)(\varphi) = \int N(I^*_2 \delta(y))(\varphi) d\mu_p(y) .
\end{equation}

In [7], Kral investigated conditions under which $N(I^*_2 \mu)$ is a measure whenever μ is a measure supported by $\partial \Omega$. For this purpose he proved

$$\sup \left\{ \frac{1}{\omega_{n-1}} \int_{\partial \Omega} \varphi(x) \cdot \frac{(y - x)}{|y - x|^n} dL_n(x) : \varphi \in C^\infty_c(\mathbb{R}^n), \ |\varphi| \leq 1 \right\}$$

$$\leq \omega_{n-1} + v(\partial \Omega, y) .$$

Therefore, in particular, it follows from (4) and (5) that $N(I^*_2 \mu_p)$ is a measure. In view of the fact that Ω is assumed to be of finite perimeter, it follows from the definition of the measure theoretic exterior normal that the Lebesgue n-dimensional density of Ω is equal to $1/2$ at H^{n-1} almost all points of $\partial \Omega$. This allows us to conclude from [7, Lemma 3.2] that

$$N(I^*_2 \delta(y))(f) = \frac{f(y)}{2} - \frac{1}{\omega_{n-1}} \int_{\partial \Omega} f(x) n(x) \cdot \frac{(x - y)}{|x - y|^n} dH^{n-1}(x)$$

whenever f is a bounded Baire function on $\partial \Omega$. Thus, if $E \subset \partial \Omega$ is a Borel set, it now follows from (6) that

\begin{equation}
N(I^*_2 \mu_p)(E) = \mu_p(E)/2 - 1/\omega_{n-1} \int s(E, y)d\mu_p(y) .
\end{equation}

From (3), (2), and (7) we obtain

$$-\mu_p(E) = -1/\omega_{n-1}s(E, p) - \left[\mu_p(E)/2 - 1/\omega_{n-1} \int s(E, y)d\mu_p(y) \right]$$

or

$$\omega_{n-1}/2\mu_p(E) = s(E, p) - \int s(E, y)d\mu_p(y) .$$
Thus, in summary, we have the following.

Theorem 3.2. Let Ω be a bounded, open, connected set of finite perimeter with $\partial (\operatorname{int} \Omega) = \partial (\mathbb{R}^n - \operatorname{Clos} \Omega)$. If $p \in \Omega$ and

$$\int v(\partial \Omega, y)d\mu_p(y) < \infty ,$$

then

$$\frac{\omega_{n-1}}{2}\mu_p(E) = s(E, p) - \int s(E, y)d\mu_p(y)$$

for every Borel set $E \subset \partial \Omega$.

Corollary 3.3. If $E \subset \partial \Omega$ is a Borel set with $H^{n-1}(\partial^* \Omega \cap E) = 0$, then $\mu_p(E) = 0$.

The proof is obvious since $s(E, x) = 0$ whenever $H^{n-1}(\partial^* \Omega \cap E) = 0$ and $x \in \mathbb{R}^n$.

We will now find conditions under which H^{n-1} restricted to $\partial^* \Omega$ is absolutely continuous with respect to harmonic measure μ_p. To this end we first establish

Lemma 3.4. Suppose Ω is a set of finite perimeter and let $E \subset \partial^* \Omega$ be a Borel set of positive H^{n-1} measure. There is a set $F \subset E$ with $H^{n-1}(E - F) = 0$ satisfying the following conditions: if $\varepsilon > 0$, $y \in F$, and if $p \in \Omega$ is on the interior normal to Ω at y, then there is a set $F_p \subset F$ containing y such that

$$\lim_{p \to y} (\text{diam } F_p) = 0$$

and

$$\lim_{p \to y} s(F_p, p) > \omega_{n-1}/2 - \varepsilon .$$

Proof. We refer the reader to Chapters 3 and 4 of [4] for proofs of the following facts. The set $\partial^* \Omega$ is $(H^{n-1}, n - 1)$ rectifiable and therefore, there is a countable number of class C^1 manifolds of dimension $n - 1$, M_i, such that

$$H^{n-1}(\partial^* \Omega - \bigcup_{i \in \mathbb{N}} M_i) = 0 .$$

Moreover, for H^{n-1} a.e. $y \in \partial^* \Omega$, the exterior normal to Ω at y is orthogonal to the tangent plane of some M_i at y. Finally, for H^{n-1} a.e. $y \in E$,

\begin{align*}
\frac{\omega_{n-1}}{2}\mu_p(E) &= s(E, p) - \int s(E, y)d\mu_p(y) \\
&= s(E, p) - \int s(E, y)d\mu_p(y)
\end{align*}
for some M_i. Here $\alpha(n - 1)$ denotes the volume of the unit ball in \mathbb{R}^{n-1} and $B(y, r)$ is the n-ball of radius r centered at y. Let F denote the complement in E of the union of the three H^{n-1} null sets just described.

Now select $y \in F$ and $\varepsilon > 0$. Then $y \in M_i$ for some i. For convenience, call $M_i = M$, take $y = 0 \in \mathbb{R}^n$, and assume the tangent plane to M at 0 is \mathbb{R}^{n-1}. Let n denote the exterior normal at $y = 0$ and for points p on the interior normal at $y = 0$, write $p = (0, v_p)$, $0 \in \mathbb{R}^{n-1}$, $v_p < 0$. Let $\eta = \eta(\varepsilon)$ be a number to be determined below and consider the cone

$$C = \{x : n \cdot x > \eta |x| \}.$$

For $x \in \mathbb{R}^n$, write $x = (u, v)$, $u \in \mathbb{R}^{n-1}$, $v \in \mathbb{R}^1$ and let

$$C_p = \{(u, v) : v = w + v_p, (u, w) \in C\},$$

the cone with vertex at p. Since M is a manifold of class C^1, it is clear that for η sufficiently small,

$$(8) \quad \lim_{p \to 0} s(M_p, p) > \omega_{n-1}/2 - \varepsilon,$$

where $M_p = M \cap C_p$. Let $A = M - F$, $F_p = F \cap C_p$, and $A_p = A \cap C_p$. Then

$$(9) \quad |s(A_p, p)| \leq \int_{A_p} |y - p|^{1-n} dH^{n-1}(y).$$

If $r_p = \sup \{|y| : y \in A_p\}$, then from (7)

$$(10) \quad \lim_{p \to 0} H^{n-1}(A_p) \cdot r_p^{1-n} = 0.$$

Furthermore, since A is a subset of a class C^1 manifold, there is a constant K such that $|y - p| \geq Kr_p$ whenever $y \in A_p$ and $|p|$ is sufficiently small. The conclusion of the lemma now follows from (8), (9), and (10).

In the following theorem, a condition is given under which H^{n-1} restricted to $\partial^s \Omega$ is absolutely continuous with respect to harmonic measure. This condition is similar, although weaker, to the one introduced by Kral [7, §3] to determine the Fredholm radius of an operator associated with the classical double layer potential.

Theorem 3.5. Let Ω be an open set satisfying the conditions of Theorem 3.2. In addition to the hypotheses of Theorem 3.2, assume that for H^{n-1} a.e. $y_0 \in \partial^s \Omega$, there exists a positive number $r = r(y_0)$ such that
Then $H^{n-1}(E \cap \partial^* \Omega) = 0$ whenever $E \subset \partial \Omega$ is a Borel set with $\mu_p(E) = 0$.

Proof. Let $E \subset \partial \Omega$ be a Borel set with $\mu_p(E) = 0$ and assume that $H^{n-1}(E \cap \partial^* \Omega) > 0$. Let $F \subset E$ be the set associated with E as given by Lemma 3.4, and select $y_0 \in F$ that satisfies the hypotheses of our theorem. Then, with every $\varepsilon > 0$, there is a positive number $\varepsilon < r(y_0)$ such that

$$v[B(y, t) \cap \partial \Omega, y] < \omega_{n-1}/2 - \varepsilon.$$

As $\mu_p(E) = \mu_p(F) = 0$, it follows from Theorem 3.2 that

$$s(F, p) = \int s(F, y) d \mu_p(y).$$

Now let p approach y_0 along the interior normal and observe that Lemma 3.4 implies $F_p \subset B(y_0, t/4)$ for $|p - y_0|$ sufficiently small. Therefore, it follows from (11) that

$$|s(F_p, y)| < \omega_{n-1}/2 - \varepsilon$$

for all $y \in B(y_0, t/2)$. Moreover, $|s(F_p, y)| \to 0$ uniformly on $\partial \Omega - B(y_0, t/2)$ as $|p - y_0| \to 0$. In view of (12) and Lemma 3.4, this produces a contradiction. Therefore, $H^{n-1}(E \cap \partial^* \Omega) = 0$.

4. An example. In §3 we imposed certain regularity conditions on $\partial \Omega$ in order to conclude that harmonic measure and H^{n-1} restricted to $\partial^* \Omega$ have the same null sets. In R^2, harmonic measure and H^1 restricted to $\partial \Omega$ have the same null sets provided Ω is bounded by a simple closed curve of finite H^1 measure. In this section, we will show that the analog of this does not hold in R^3.

For the purpose of constructing this domain in R^3, we first consider a closed arc, C, in R^2 that occupies positive Lebesgue measure (or equivalently, H^2 measure) in R^2. It is not difficult to modify the standard Osgood construction of C in such a way so as to produce a set, S, of points on C of positive H^2 measure such that every point of S cannot be joined to any point interior to C by a rectifiable curve. Now let g be function of class C^1 defined on the interior of C with the properties

(i) $g > 0$, (ii) $|\nabla g|$ is bounded, (iii) $g < \delta$, where $\delta(x) =$ distance from x to C.

Define

$$f(x) = \exp (-1/g(x)), \quad x \in \text{interior } C,$$
and let

$$\Omega = \{(x, y): x \in \text{interior } C, 0 \leq y < f(x)\}. $$

Since C is a closed arc, it follows that $\partial \Omega$ is a topological 2-sphere. Moreover, $\partial \Omega$ has a tangent plane at each of its points and $H^2(\partial \Omega) < \infty$. On the other hand, $S \subset \Omega$ is a set of positive H^2 measure with the property that each of its points cannot be joined to any point of Ω by a rectifiable curve. Consequently, a result of Brelot and Choquet [1] states that the harmonic measure of S is zero.

In conclusion we would like to point out that there is no inclusion relationship between the class of smoothly bounded domains and the class of domains that satisfy the conditions of Theorem 3.5. However, if the normal of a smoothly bounded domain is locally Dini continuous, then Theorem 3.5 applies. We are indebted to Grant Welland for this observation.

To see this, let $f: U \to \mathbb{R}$ be a function of class C^1 defined on the open set $U \subset \mathbb{R}^{n-1}$. Let $S = \{(x, f(x)): x \in K\}$ where $K \subset U$ is a fixed compact set. It will suffice to prove there exists an $r > 0$ such that $v(B(y, r) \cap S, y)$ can be made arbitrarily small for all $y \in S$. Fix $y_0 = (x_0, f(x_0)) \in S$. Then for $r > 0$,

$$v(B(y_0, r) \cap S, y) = \int_S \mathfrak{n}(y) \cdot \frac{(y - y_0)}{|y - y_0|^n} \, dH^{n-1}(y)$$

$$= \int_S \frac{\nabla f(x)}{|\nabla f(x)|^2 + 1} \cdot \frac{(x - x_0, f(x) - f(x_0))}{|y - y_0|^n}$$

$$\times \left(|\nabla f(x)|^2 + 1 \right)^{1/2} \, dL_{n-1}(x)$$

$$= \int_K \frac{\nabla f(x)}{n} \cdot (x - x_0) - \frac{f(x) - f(x_0)}{|y - y_0|^n} \, dL_{n-1}(x).$$

Let $\rho = x - x_0$ and let points on the unit sphere in \mathbb{R}^{n-1} be denoted by θ. Observe that there is a constant M such that

$$|x - x_0| \leq |y - y_0| \leq M |x - x_0|$$

for all $x_0, x \in K$. Then, with $\rho \theta = x - x_0$,

$$v(B(y_0, r) \cap S, y_0) \leq N \int \left| \nabla f(x) \right| - \left| \nabla f(x_0) \right| \frac{d\rho}{\rho} \, d\theta$$

where N is a constant and x_0 is some point on interval between x_0 and x. Hence, if the modulus of continuity of $|\nabla f|$, ω, is required to satisfy

$$\int_0^r \frac{\omega(r)}{r} \, dr < \infty,$$
then the conclusion obviously follows.

REFERENCES

Received July 17, 1974. Research supported in part by a grant from the National Science Foundation.

INDIANA UNIVERSITY
Pacific Journal of Mathematics
Vol. 55, No. 2 October, 1974

Walter Allegretto, On the equivalence of two types of oscillation for elliptic operators .. 319
Edward Arthur Bertram, A density theorem on the number of conjugacy classes in finite groups .. 329
Arne Brøndsted, On a lemma of Bishop and Phelps .. 335
Jacob Burbea, Total positivity and reproducing kernels .. 343
Ed Dubinsky, Linear Pincherle sequences .. 361
Benny Dan Evans, Cyclic amalgamations of residually finite groups .. 371
Barry J. Gardner and Patrick Noble Stewart, A “going down” theorem for certain reflected radicals .. 381
Jonathan Light Gross and Thomas William Tucker, Quotients of complete graphs: revisiting the Heawood map-coloring problem .. 391
Sav Roman Harasymiv, Groups of matrices acting on distribution spaces .. 403
Robert Winship Heath and David John Lutzer, Dugundji extension theorems for linearly ordered spaces .. 419
Chung-Wu Ho, Deforming p. l. homeomorphisms on a convex polygon 2-disk .. 427
Richard Earl Hodel, Metrizability of topological spaces .. 441
Wilfried Imrich and Mark E. Watkins, On graphical regular representations of cyclic extensions of groups .. 461
Jozef Krasinkiewicz, Remark on mappings not raising dimension of curves .. 479
Melven Robert Krom, Infinite games and special Baire space extensions .. 483
S. Leela, Stability of measure differential equations .. 489
M. H. Lim, Linear transformations on symmetric spaces .. 499
Teng-Sun Liu, Arnoud C. M. van Rooij and Ju-Kwei Wang, On some group algebra modules related to Wiener’s algebra M_1 .. 507
Dale Wayne Myers, The back-and-forth isomorphism construction .. 521
Donovan Harold Van Osdol, Extensions of sheaves of commutative algebras by nontrivial kernels .. 531
Alan Rahilly, Generalized Hall planes of even order .. 543
Joylyn Newberry Reed, On completeness and semicompleteness of first countable spaces .. 553
Alan Schwartz, Generalized convolutions and positive definite functions associated with general orthogonal series .. 565
Thomas Jerome Scott, Monotonic permutations of chains .. 583
Eivind Stensholt, An application of Steinberg’s construction of twisted groups .. 595
Yasuji Takeuchi, On strongly radical extensions .. 619
William P. Ziemer, Some remarks on harmonic measure in space .. 629
John Grant, Corrections to: “Automorphisms definable by formulas” .. 639
Peter Michael Rosenthal, Corrections to: “On an inversion for the general Mehler-Fock transform pair” .. 640
Carl Clifton Faith, Corrections to: “When are proper cyclics injective” .. 640