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If o/ is a class of open covers of a topological space (X, 7),
then (X, J) is said to be strongly f -stable provided that for each
€ € o there is a homeomorphism 2 mapping X onto X, other
than the identity homeomorphism, such that for each C € €,
h(C)=C. This paper studies strongly o -stable
spaces. Although there are compact connected metric spaces
that are not even strongly ./ -stable with respect to the class </ of
all finite open covers, there is an extremely weak homogeneity
condition that guarantees that a space (X, 7) is strongly ./ -sta-
ble with respect to the class o/ of all locally finite open
covers. If H(X) is the full homeomorphism group of a space
(X, 7) that is strongly .o/ -stable with respect to the class o/ of all
finite open covers, then H(X) is nonabelian and there is a
nondiscrete Hausdorff topology 9 for H(X) such that
(H(X). 7) is a topological group.

There has been longstanding interest in topologizing groups of
homeomorphisms. For example, in [16], B. L. van der Waerden and D.
van Dantzig showed that the group of isometries of a locally compact
metric space with only finitely many components is a locally compact
topological group under a natural topology; and in [1, Theorem 4] R.
Arens showed that the full homeomorphism group of a locally compact,
locally connected Hausdorff space forms a topological group under the
compact open topology. We say that a topology 7 on a group (G, ) is
compatible with (G, °) provided that (G, <, 7) is a nondiscrete Hausdorff
topological group. It has been known for some time that there exist
nondegenerate Hausdorff spaces whose only homeomorphism is the
identity. Such spaces are now called rigid spaces, and there are now
several constructions of rigid spaces in the literature which differ from
the earlier folklore example of a rigid metric continuum [9] and
[13]. These examples show that none of the familiar topological
properties on a space X guarantees that the homeomorphism group
H(X) admits a compatible topology. On the other hand A. Kertesz
and T. Szele have shown that every infinite abelian group admits a
compatible topology [11, Theorem 1]. The corresponding problem for
infinite nonabelian groups is raised in [11] and to our knowledge remains
unsolved.

In section two we define a sequence of increasingly restrictive
topological properties for a space X, each of which is sufficient to
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guarantee that H(X) is an infinite nonabelian group that admits a
compatible topology. These properties are of necessity quite different
from the properties usually studied in general topology; however they
interact with several standard topological properties and are, we be-
lieve, of interest in and of themselves.

In the third section, we introduce a method of constructing
topologies on the homeomorphism group of an arbitrary topological
space. Our construction makes use of quasi-uniformities and may be
considered to be a generalization of a technique of J. Dieudonné; for, in
the case that (X, %) is a uniform space, our method yields the topology
of uniform convergence. The topology constructed always makes
H(X) into a topological group; however, there is no assurance that this
topology will be nondiscrete unless the given space (X, 74 ) satisfies one
of the properties of section two.

Throughout this paper we let i denote the identity element of a
homeomorphism group H(X) and use H*(X) to denote H(X)—{i}. If
€ is a cover of a space X, then Af=N{CE¥€:x €C}.

2. Weak Galois spaces and X-stable spaces.

DEFINITION [6]. A topological space (X, J) is a Galois space if,
for each U € J and each p € U, there is h € H(X) such that h|X —
U=ilX—-U and h(p)#p.

DEFINITION. A topological space (X, 9) is a weak Galois space if
for each nonempty set U € 7, there is h € H(X) and p € U such that
h|X—-U=ilX—-U and h(p) # p.

ProrosITION 2.1. Let (X,9) be a Hausdorff weak Galois
space. Then H(X) is an infinite nonabelain group.

Proof. Since a weak Galois space has no isolated points and since
(X, ) is Hausdorff, it is clear that X is an infinite set. Let p €
X. Then there is h,€EH(X) and x,€X—-{p} such that
hy(x,) # x,. Since X —{p,x,} is open, there is h,€ H(X) and x,€E X —
{p, x,} such that hy(p)=p, h(x,) =x, and hy(x,) # x,. One proves by
induction that H(x) is infinite.

Let U be a nonempty open set. Then there is h € H(X) and
p€E€Usuchthat h|X-U=1i|X—U and h(p)# p. There are neigh-
borhoods K of p and W of h(p) such that K N W = ), and there is a
neighborhood M of p such that hA(M)CW. Let V=
UNkNM. Thenp €V and VNh(V)=. There exists f € H(X)
and y € h(V) such that f| X —h(V)=i|X—h(V) and f(y)#y. Let
x=h"'(y). Then x€V and f(x)=x. Consequently hof(x)=
h(x)=y#f(x)=foh(x).
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DerINITION [3]. An open cover € of a topological space (X, ) is
a Q-cover provided that for each x € X, A{ € 7.

DEerFINITION. Let (X, J) be a topological space and let € be an
open cover of X. Then (X,J) is (strongly) €-stable provided that
there exists h € H*(X) such that for each C€¥ h(C)CC
(h(C)=C). If X is a collection of open covers of X, then (X, 7) is
(strongly) X.-stable if for each € €3, (X, ) is (strongly) €-stable. If
3. is the collection of all finite [locally finite, point finite, Q-] open covers
of (X,7), we say that (X, J) is (strongly) finite [locally finite, point
finite, Q-] stable.

DEFINITION [7]. A collection € of subsets of a topological space
(X, 9) is locally finite somewhere if there exists a nonempty open set U
of X that intersects only finitely many members of €.

The proof of the following theorem is similar to that of [4, Theorem
4].

THEOREM 2.2. Let 3 be a collection of open covers of a weak
Galois space (X, 9) and suppose that for each € € X, € is locally finite
somewhere. Then (X, J) is strongly 3.-stable.

Proof. Let € €. Since € is locally finite somewhere, there
exists an open set V such that V intersects only finitely many members
of €. Let F={C€€:CNVF#J} and let

K={dCF:VN(N A)#}.

The members of K are partially ordered by set inclusion, and since K is
finite, there exists a maximal member ' € K. Clearly VN (N %') is
open. Since (X, 7) is a weak Galois space, there exist h € H(X) and
xEVN(NF) such that h| X -V N(NF =i|X-VN(NF) and
h(x)#x. Let C€¥€. If CZ %', then by maximality of #'.C NV N
(NF)=. Hence CCX-VN(NZ%') and we have that h(C) =
C. Let C € %' and suppose that for some p €C, h(p)#p. Since
R X-VN(NF)=i|X-VN(NF), h(p)EVN(NF')CC. Thus
h(C)CC. Evidently

hX-VANF)=i|X-VN(NF)

so that by an argument similar to that given for h, we have that for each
Ceé h'(C)CC.
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In the above theorem, if we take X to be the collection of all locally
finite open covers or to be the collection of all point finite open covers,
we obtain the following corollaries:

CoroLLARY 2.3. Every weak Galois space is strongly locally finite
stable.

COROLLARY 2.4. Every weak Galois space that is of second cate-
gory is strongly point finite stable.

Proof. A topological space is of second category if and only if
every point finite open cover is locally finite somewhere [5, Theorem 1].

DEFINITION. A topological space (X, J) is locally compact at a
point p € X if there exists an open set U containing p such that U is
compact.

THEOREM 2.5. Let (X, J) be a metrizable weak Galois space that
is locally compact at some point. Then (X, J) is a strongly Q-stable
space.

Proof. Let € bea Q-coverandlet # ={A¥ :x € X}. Inorderto
show that (X, 7) is €-stable, it suffices to show that (X, J) is ¥ -
stable. For if (X, J)is J -stable, then for each C € € and each x € C,
h(x)Eh(AS)CA? CC. Weproceed toshow that (X, 7) is ¥ -stable.

We first claim that there exists x € X such that

xZ UAXEAT.

Assume the contrary. Then for each x € X, there exists a sequence
{Sen}i=1 such that {s,,} converges to x and such that

{satcu{Aaf|xg AT}

Consequently for each positive integer n,x& A%, ..

Let x, be a point at which (X, 9) is locally compact and select an
open ball B, (x,) of radius r, such that r, <1 and B,(x,) is compact. By
the previous argument, there exists a sequence {s,, .} which converges to
s, such that for each positive integer n,x, & A%, ,. Thus there exists
San € B,(x,) such that x&Z A ‘f,f,.. Let x,=s,,,. Let B.(x,) be an open
ball about x, of radius r, such that

Bn(xl) n A ‘f: D Brz(x2)
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and r <3 By the previous argument, there exists x; € B,(x,) with
x, & A¥¢. Let B, (x;) be an open ball about x; of radius r; such that
B.(x) N A%, D B.(x;) and r;<}. Proceeding as above we obtain by
induction a sequence {B, (x;)} such that

Br«(xl) ") Bn(xl) n A fz ) BH(XZ) ) B"z(x2) n A f} D Bn(x3) Do

and such that for each positive integer i, x, € A%, and r. <1/i.

Since B,(x,) is compact, there exists a point a € N5, B, (x;). It
follows that a€ N7, A%, so that AfC N7, A% But {x}nN
(N5, A= Thus{x;}NA¢ = Since A is open and {x;} con-
verges to a, it is impossible that {x,}N A ¢ =

Therefore there exists a point p € X such that

pZ U{AT|pZ AT}

Let U be an open set about p suchthat UN(U{A¢|p& A$) = and
let V=UNA; Since (X,7) is a weak Galois space there exists
h € H¥X) with h|X -V =i|X—-V. Let AY €% and suppose that
pZA% Then VNAY= and so h(A})=A%. If p €AY, then
VCAf CA¥ Foreach x € AY such that h(x) # x, x € V, and there-
fore h(x)EVCA; CA¥. Hence h is % -stable. A similar argument
shows that h~' is also J-stable.

In the proof of Theorem 2.5, the hypothesis that (X, 7) is locally
compact at a point cannot be omitted, for it has been shown in [7] that
the space of rationals with usual topology is not a point finite stable
space. (The condition that (X, J) is a weak Galois space cannot be
omitted either, since there exist rigid compact metric spaces
[9]. Clearly such spaces cannot be Q-stable spaces.)

The results of Theorems 2.2 and 2.5 may be summarized by the
following diagram:

weak Galois

strongly Q-stable

strongly point finite stable

N4
strongly locally finite stable

strongly finite stable
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3. The construction of topologies on homeomorphism
groups.

DEerFINITION. Let X be a nonempty set. A quasi-uniformity on X
is a filter % or X X X such that the following hold.

(i) Foreach Ue U, A={(x,x):x € X}CU.

(i) For each U € %, there exists V€ U with V-V CU.

In this section we assume familiarity with those basic concepts
concerning quasi-uniformities that have natural analogues in the study
of uniform spaces; these concepts are defined and discussed in detail in
[14]. We also make use of the following elementary results.

Let (X,J) be a topological space and let 2 be a collection of
Q-covers of X such that for each A €  and each x € A, there exists
€ €3 such that A CA. For each € €2 let

U, = U{{x}xA¥¢:x € X}.

Then {U, : € € X} is a subbase for a compatible quasi-uniformity %y on
(X, 9).

If 3 is the collection of all Q- [point finite, locally finite, finite] open
covers of X, then %Us is called the fine transitive, [point finite covering,
locally finite covering, Pervin] quasi-uniformity. For each A €T let
Si =(AXA)U[(X—-A)XX]. Then the Pervin quasi-uniformity also
has a subbase {S, : A € J}. If S is any subbase for 7, then {S, : A €
S} is a subbase for a compatible quasi-uniformity on X [14].

DerFINITION. Let (X, %) be a quasi-uniform space and for each
Uea let WU)={(fg)E H(X)x H(X): for each x €X, (f(x),
g(x)€ U}. Then {(W(U):U € U} is a base for W(U), the quasi-
uniformity of quasi-uniform convergence on H(X).

THEOREM 3.1 [2, Proposition 4]. Let (X,U) be a quasi-uniform
space and let G be a subgroup of H(X) such that each member of G is a
U-quasi-uniformly continuous function. Let G have the topology of
quasi-uniform convergence with respect to AU. Then G is a topological
semigroup.

The following two examples show that under the hypotheses of
Theorem 3.1, H(X) need not be a topological group. We omit the
verification of the second example, which, though tedious, is
straightforward.

ExampLE 3.2. A T, weak Galois space (X, J) which is not T,
whose homeomorphism group under the topology of quasi-uniform



TOPOLOGIES COMPATIBLE WITH HOMEOMORPHISM GROUPS 83

convergence with respect to the Pervin quasi-uniformity forms a
topological semigroup that is not a topological group.

Construction. Let X be the set of all real numbers and let the
topology on X be

T ={(a,b)CX :(a,b) is an open interval containing 0} U {, X}.

Then clearly (X,9) is a T, space which is not T,. Let h be a
homeomorphism of E' with the usual topology such that h(0)=0. For
each nonempty G € 7, h'(G) is an open interval containing 0. Hence
h € H(X). Itnow follows easily that (X, 7) is a weak Galois space.

For each GE T let S =G XGU(X —-G)x X. We recall that
S ={S;:G €T} is a subbase for the Pervin quasi-uniformity % on
(X,J). Since every h € H(X) is 9 -quasi-uniformly continuous, by
the previous theorem, H(X) forms a topological semigroup under the
topology of quasi-uniform convergence with respect to 4.

Define f:(X,7)—(X,J) by f(x)= —x. Since f&€ H(E') and
f(0)=0, f€ H(X). Clearly f'=f We claim that the inverse map
& :H(X)— H(X) defined by (h)=h""' is not continuous at
f. Consider the neighborhood W(S_,,)f ' and let W(S.,))f be a basic
neighborhood of f in H(X). Consider the function g : (X, 9)—(X,9)
defined by g(x)= —ix. Then g € H(X). Moreover we now show
that g € W(S.,)f. Let x € X

If —x€(ab), then a<§<—_2—’—‘<§<b. Thus (f(x), g(x)) =
(——x,—?)E(a,b)X(a,b)CS(a‘,,,.
If —x&(a,b), then
(F(), 800 = (= x, S5) €(X = (@.b) X X C S

Therefore g € W(S.»)f. We note that g '(x)= —2x and that
g™ ' & W(Scif', since

(61, g7 Cl) = (32, F) # (=1 Dx(=1.1)

UX (=1, D) XX=S8C..

ExaMPLE 3.3. A quasi-uniformity AU compatible with the usual
topology on the closed interval I =[— 1, 1] which has the property that
every h € H(I) is U-quasi-uniformly continuous and H(I) is not a
topological group under the topology of quasi-uniform convergence with
respect to 9.
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Construction. Let 9 be the quasi-uniformity on I having subbase
S={S;:G=(a,b)or(a,11or[—1,b)} where —1<a <b <1. Itmay
be seen that the inverse map is not continuous at —i.

DEFINITION. A collection 3 of Q-covers of a topological space X
is a topological collection provided that if € € %, then for all h € H(X),
{h(C):Ce6}ex.

LeEMMA. Let (X,J) be a topological space and let 3 be a
topological collection of Q-covers such that if x E A € I, thereis € €%,
with A CA. Then H(X) is a 0-dimensional topological group under
the topology of uniform convergence with respect to the uniformity
Us v U

Proof. We note that every h € H(X) is Us-quasi-uniformly con-
tinuous so that every h€EH(X) is Usv Us'-uniformly
continuous. Thus H(X) is a topological group [2, Proposition
4]. Since for each € €3, Ugo U, = U,, AUsv U5 has a base of
equivalence relations. Thus Ty sz 18 0-dimensional.

THEOREM 3.4. Let (X, J) be a topological space and let 3, be the
collection of all Q- [point finite, locally finite, finite open] covers of
(X,9). Let (X,T) be strongly X.-stable. Then H(X) is a nondiscrete
0-dimensional topological group under the topology of uniform con-
vergence with respect to Usv U3".

Proof. Since one easily sees that 2, is a topological collection of
Q-covers, by the preceding lemma it suffices to show that T (Us v U3")
is nondiscrete.

Let G be an open set about i. Then there exist basic members K
and V of U;s such that W(KNV™)iCG. Let s, j=1,2,---,n, and
B, j=1,2,---,m be members of % such that K= N7}, U, and
V=nN7,Us andlet €,= U}, o, €,= U7, B, Then €, and €, are
members of 3. We have that K= N}, Uy = Unr_ 4 = U, and that
V=nN7,Us = Uyr_a = U, Since (X, J) is strongly 2-stable, there
exists h € H*(X) such that both h and h~' are 4, U %,-stable.

Since h is é,-stable, h is {A ¥ :x € X}-stable. For each x € X,
h(x)CA¥. Therefore for each x €X, (x, h(x))E{x}X A CUg=
K. Hence heW(K)i. Let x&€X and let y=h(x). Then
x €AY Otherwise h'(y)=xZA)> whereas h™' is %,
stable. Therefore (h(x), x)E{y}xA}:CU,=V and (x,h(x))
€ V™. Hence h € W(V™)i. Finally we have that
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he WIK)IiNW((Vi=[WEK)NW(VHli=WKNVHiCG.
Thus H(X) is a nondiscrete topological group.

CoroLLARY. Let (X,J) be a T, weak Galois space. Then H(X)
admits a compatible topology 7' such that (H(X), 9') is a Galois
space.

Proof. Let U be the locally finite covering quasi-uniformity for
(X,9). Then by Corollary 2,3,(X,J) is strongly locally finite
stable. Thus H(X) is a nondiscrete topological group under the
topology of uniform convergence with respect to % va~". Since
(X,7) is T(,,H(X) is a T space with respect to the compact open
topology 9 on H(X). As 9 CIwa, CTwava, and (H(X), Twavan)
is a topological group, w2 is Hausdorff. By Theorem 3.4, H(X) is
0-dimensional and homogeneous so that H(X) is a Galois space [7, Page
529].

CoROLLARY. Let (X,J) be a second countable T, weak Galois
space. Then H(X) admits a compatible metric topology.

Proof. Let 9B be a countable base for J and let % be the
quasi-uniformity on (X, 9) having subbasis

S={(GXG)U(X-G)xX]: G € RB}.

Then % has a countable base and so % v ™' also has a countable
base. Let ¥ be the locally finite covering quasi-uniformity for
(X, ). Since U C¥, the topology of uniform convergence on H(X)
with respect to U v %' is nondiscrete. The argument that Ty 4, 18
Hausdorff is the same as that of the previous corollary.

If (X, 9)is a weak Galois completely regular Hausdorff space, then
the topology of uniform convergence with respect to the fine uniformity
is compatible with H(X) [12]. This result and the first corollary above
motivate the following questions:

Is every infinite nonabelian group isomorphic to the full
homeomorphism group of a T, weak Galois space? If so, can the T,
weak Galois space also be taken to be completely regular?

The result of [8] that every group is isomorphic to the full
homeomorphism group of a complete, connected, locally connected
metric space gives some reason to hope that the questions raised above
can be answered affirmatively. Evidently, however, the techniques
employed in [8] are not applicable here.
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