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If si is a class of open covers of a topological space (X, 5"),
then (X, ZΓ) is said to be strongly ^-stable provided that for each
<<? E sd there is a homeomorphism h mapping X onto X, other
than the identity homeomorphism, such that for each C £ <#,
h(C) = C. This paper studies strongly ^-stable
spaces. Although there are compact connected metric spaces
that are not even strongly ^-stable with respect to the class sέ of
all finite open covers, there is an extremely weak homogeneity
condition that guarantees that a space (X, 3") is strongly sέ -sta-
ble with respect to the class si of all locally finite open
covers. If H(X) is the full homeomorphism group of a space
(X, ϊT) that is strongly ^-stable with respect to the class sέ of all
finite open covers, then H{X) is nonabelian and there is a
nondiscrete Hausdorff topology SΓ for H(X) such that
(H(X), J) is a topological group.

There has been longstanding interest in topologizing groups of
homeomorphisms. For example, in [16], B. L. van der Waerden and D.
van Dantzig showed that the group of isometries of a locally compact
metric space with only finitely many components is a locally compact
topological group under a natural topology; and in [1, Theorem 4] R.
Arens showed that the full homeomorphism group of a locally compact,
locally connected Hausdorff space forms a topological group under the
compact open topology. We say that a topology r on a group (G,°) is
compatible with (G, °) provided that (G,°,τ) is a nondiscrete Hausdorff
topological group. It has been known for some time that there exist
nondegenerate Hausdorff spaces whose only homeomorphism is the
identity. Such spaces are now called rigid spaces, and there are now
several constructions of rigid spaces in the literature which differ from
the earlier folklore example of a rigid metric continuum [9] and
[13]. These examples show that none of the familiar topological
properties on a space X guarantees that the homeomorphism group
H(X) admits a compatible topology. On the other hand A. Kertesz
and T. Szele have shown that every infinite abelian group admits a
compatible topology [11, Theorem 1]. The corresponding problem for
infinite nonabelian groups is raised in [11] and to our knowledge remains
unsolved.

In section two we define a sequence of increasingly restrictive
topological properties for a space X, each of which is sufficient to
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guarantee that H(X) is an infinite nonabelian group that admits a
compatible topology. These properties are of necessity quite different
from the properties usually studied in general topology; however they
interact with several standard topological properties and are, we be-
lieve, of interest in and of themselves.

In the third section, we introduce a method of constructing
topologies on the homeomorphism group of an arbitrary topological
space. Our construction makes use of quasi-uniformities and may be
considered to be a generalization of a technique of J. Dieudonne; for, in
the case that (X, °U) is a uniform space, our method yields the topology
of uniform convergence. The topology constructed always makes
H(X) into a topological group; however, there is no assurance that this
topology will be nondiscrete unless the given space (X, 3Όu) satisfies one
of the properties of section two.

Throughout this paper we let / denote the identity element of a
homeomorphism group H(X) and use H*(X) to denote H(X) - {i}. If
^ is a cover of a space X, then AI = Π{C <Ξ<β :x G C}.

2. Weak Galois spaces and Σ-stable spaces.

DEFINITION [6]. A topological space (X, SΓ) is a Galois space if,

for each U G SΓ and each p G [/, there is h G H(X) such that h\X-

U = ί\X-U and h(p)έp.

DEFINITION. A topological space (X, SΓ) is a weak Galois space if
for each nonempty set U G ίΓ, there is h G H(X) and p E l / such that
h\X- U = i\X- U and

PROPOSITION 2.1. Let (X,ZΓ) be a Hausdorff weak Galois
space. Then H(X) is an infinite nonabelain group.

Proof. Since a weak Galois space has no isolated points and since
(X, 3~) is Hausdorff, it is clear that X is an infinite set. Let p G
X. Then there is /z,G//(X) and Jc,GX-{p} such that
hx{xx)τ^ X\. Since X-{p,JCi} is open, there is h2G H(X) and x2E. X —
{p,jc,} such that /ι2(p) = p, h2(x\) = X\ and h2(x2) Φ Xi- One proves by
induction that H(x) is infinite.

Let U be a nonempty open set. Then there is h G H(X) and
p G U such that h \X - U = i |X - U and h(p) / p. There are neigh-
borhoods K of p and W of h(p) such that K Π W = 0, and there is a
neighborhood M of p such that h(M)CW. Let V =
UΠkΠM. Then p G V and V Π h( V) = 0. There exists / G H(X)
and y <Ξh(V) such that f\X- h(V) = i \X - h(V) and f(y)έy. Let
JC = hι(y). Then JC G V and /(JC) = JC. Consequently h<>f(χ) =
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DEFINITION [3]. An open cover ^ of a topological space (X, SΓ) is
a Q-cover provided that for each x G X, A1 G ST.

DEFINITION. Let (X, SΓ) be a topological space and let <€ be an
open cover of X. Then (X, 5") is (strongly) ^-stable provided that
there exists h G H*(X) such that for each CE<€, h(C)CC
(h(C) = C). If Σ is a collection of open covers of X, then (X, SΓ) is
(strongly) ^-stable if for each <g G Σ, (X, SΓ) is (strongly) ^-stable. If
Σ is the collection of all finite [locally finite, point finite, Q-] open covers
of (X, SΓ), we say that (X, SΓ) is (strongly) finite [locally finite, point
finite, Q-] stable.

DEFINITION [7]. A collection <# of subsets of a topological space
(X, SΓ) is locally finite somewhere if there exists a nonempty open set U
of X that intersects only finitely many members of c€.

The proof of the following theorem is similar to that of [4, Theorem
4].

THEOREM 2.2. Let Σ be a collection of open covers of a weak
Galois space (X, SΓ) and suppose that for each % G Σ, % is locally finite
somewhere. Then (X, SΓ) is strongly Ίi-stable.

Proof. Let % G Σ. Since <£ is locally finite somewhere, there
exists an open set V such that V intersects only finitely many members
of «. Let 9 = {C G <g: C Π W 0} and let

K ={sέC&: VΓ)(Γι sd)^0}.

The members of K are partially ordered by set inclusion, and since K is
finite, there exists a maximal member 9' G K. Clearly V Π ( Π ̂ ' ) is
open. Since (X, 5") is a weak Galois space, there exist h G H(X) and
x 6 V n ( Π f ) such that h |X - V Π ( Π ̂ ' = i | X - V Π ( Π 9') and
/τ(x) ^ x. Let C G «. If C £ ^ \ then by maximality o f f ' , C Π V n
( Π ^ ' ) = 0 . Hence C C X - V Π ( Π f ' ) and we have that h(C) =
C. Let CE.SF' and suppose that for some p EC, h(p)j^p. Since
h\X- VΠ(n&') = i\X- VΠ(n&'), h(p)<ΞVn(n&')CC. Thus
h(C)CC. Evidently

h - ι \ x - v n ( n &') = i \ x - v n ( n &')

so that by an argument similar to that given for h, we have that for each
CE%, h\C)CC.
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In the above theorem, if we take Σ to be the collection of all locally
finite open covers or to be the collection of all point finite open covers,
we obtain the following corollaries:

COROLLARY 2.3. Every weak Galois space is strongly locally finite
stable.

COROLLARY 2.4. Every weak Galois space that is of second cate-
gory is strongly point finite stable.

Proof. A topological space is of second category if and only if
every point finite open cover is locally finite somewhere [5, Theorem 1].

DEFINITION. A topological space (X, 9~) is locally compact at a
point p E X if there exists an open set U containing p such that Ό is
compact.

THEOREM 2.5. Let (X, 3~) be a metrizable weak Galois space that
is locally compact at some point. Then (X, 3~) is a strongly Q-stable
space.

Proof. Let ^ be a Q -cover and let 3ίf = {A * : x E X}. In order to
show that (X, SO is <#-stable, it suffices to show that (X, 50 is %-
stable. For if (X, 50 is 3ίf-stable, then for each C E ^ and each J C E C ,

h (x) E h (A I) C A ί C C. We proceed to show that (X, SΓ) is 3ίΓ-stable.

We first claim that there exists x E X such that

x<£ Όd^xZA^.

Assume the contrary. Then for each x E X, there exists a sequence
{sXMTn=\ such that {sXM} converges to Λ: and such that

Consequently for each positive integer n, JC £ A *,.„.
Let JC, be a point at which (X, SΓ) is locally compact and select an

open ball Brj(JCi) of radius r, such that r, < 1 and Bn{xx) is compact. By
the previous argument, there exists a sequence {sXun} which converges to
si such that for each positive integer n,JCι^Λ?Xi,n. Thus there exists
sXιM E βri(.Xι) such that JC£= A * v n . Let JC2 = sxKn. Let B^JC^) be an open
ball about x, of radius f% such that

Bn(xί)ΠAlDBri(x2)



TOPOLOGIES COMPATIBLE WITH HOMEOMORPHISM GROUPS 81

and r < [. By the previous argument, there exists JC3 E Bn{x2) with
x2f£A^. Let BriJXi) be an open ball about JC3 of radius r3 such that
Bn(x2) Γl A *3 D Br,(x3) and r 3 < £ . Proceeding as above we obtain by
induction a sequence {Br,(Xi)} such that

ID Bn(Xι)Γ) A^Ώ Π AID Bn(x3) D

and such that for each positive integer I,JC, ̂  A? l+I and r; < l/i.
Since Bn(xi) is compact, there exists a point a E n7«iBn (*,-)• It

follows that aE n%{Al, so that Λ l C Π ^ . Λ * . But {*,}Π
(Π 7-ι A * ) = 0 . Thus {jcr } Π A ? = 0. Since A« is open and {jtj con-
verges to α, it is impossible that {xjn Aϊ = 0 .

Therefore there exists a point p EX such that

Let U be an open set about p such that 1/ Γι (U {A y | p £ A y}) = 0 and
let V = U Π A p. Since (X, if) is a weak Galois space there exists
h E//*(X) with h\X-V = i\X-V. Let A*E3ίf and suppose that
p&A*. Then V Π A ^ = 0 and so ft (A y) = A *. If p E Ay, then
VCAp CAy. For each JC E Ay such that h(x)^ JC, JC E V, and there-
fore h(x)E V CA^ CAy. Hence h is 3Γ-stable. A similar argument
shows that h~x is also 3Γ-stable.

In the proof of Theorem 2.5, the hypothesis that (X, &) is locally
compact at a point cannot be omitted, for it has been shown in [7] that
the space of rationals with usual topology is not a point finite stable
space. (The condition that (X, 3") is a weak Galois space cannot be
omitted either, since there exist rigid compact metric spaces
[9]. Clearly such spaces cannot be Q-stable spaces.)

The results of Theorems 2.2 and 2.5 may be summarized by the
following diagram:

r\ ^ weak Galois

strongly Q -stable

strongly point finite stable

strongly locally finite stable

strongly finite stable
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3. The construction of topologies on homeomorphism
groups.

DEFINITION. Let X be a nonempty set. A quasi-uniformity on X
is a filter °U o r X x X such that the following hold.

(i) For each UE% Δ = {(x,x): x E X}C U.
(ii) For each UG% there exists V e t with V° V C U.
In this section we assume familiarity with those basic concepts

concerning quasi-uniformities that have natural analogues in the study
of uniform spaces; these concepts are defined and discussed in detail in
[14]. We also make use of the following elementary results.

Let (X, SΓ) be a topological space and let 2 be a collection of
Q -covers of X such that for each A E 2Γ and each xGA, there exists
« E Σ such that A? CA. For each ^ E Σ let

U* = U{{JC}XAI J C E X } .

Then {U<t : *€ E Σ} is a subbase for a compatible quasi-uniformity %Σ on
(X, 3-).

If Σ is the collection of all Q- [point finite, locally finite, finite] open
covers of X, then %Σ is called the jϊne transitive, [point finite covering,
locally finite covering, Pervin] quasi-uniformity. For each A E 2Γ let
5Λ = (A x A) U [(X - A) x X]. Then the Pervin quasi-uniformity also
has a subbase {SA : A E 3"}. If 5 is any subbase for ?f, then {SA : A E
5} is a subbase for a compatible quasi-uniformity on X [14].

DEFINITION. Let (X, %) be a quasi-uniform space and for each
U<Ξ°U let W((7) = {(/,g)EH(X)x//(X): for each x E X , (/(*),
g(jc))E I/}. Then {W(l/): E7 E <%} is a base for W(°U)9 the quasi-
uniformity of quasi-uniform convergence on H(X).

THEOREM 3.1 [2, Proposition 4]. Let (X,°U) be a quasi-uniform
space and let G be a subgroup of H(X) such that each member of G is a
°U-quasi-uniform\y continuous function. Let G have the topology of
quasi-uniform convergence with respect to °ll. Then G is a topological
semigroup.

The following two examples show that under the hypotheses of
Theorem 3.1, H(X) need not be a topological group. We omit the
verification of the second example, which, though tedious, is
straightforward.

EXAMPLE 3.2. A To weak Galois space (X, SΓ) which is not Γ,
whose homeomorphism group under the topology of quasi-uniform
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convergence with respect to the Pervin quasi-uniformity forms a
topological semigroup that is not a topological group.

Construction. Let X be the set of all real numbers and let the
topology on X be

SΓ = {{a, b) C X: (α, b) is an open interval containing 0} U {0, X}.

Then clearly (X, SΓ) is a Γo space which is not Tx. Let h be a
homeomorphism of Eι with the usual topology such that h(0) = 0. For
each nonempty G E SΓ, h~\G) is an open interval containing 0. Hence
h E H(X). It now follows easily that (X, SΓ) is a weak Galois space.

For each G E J let SG = G x G U ( X - G ) x X We recall that
S = {SG : G E SΓ} is a subbase for the Pervin quasi-uniformity °U on
(X, £Γ). Since every & E/ί(X) is %-quasi-uniformly continuous, by
the previous theorem, H(X) forms a topological semigroup under the
topology of quasi-uniform convergence with respect to °lί.

Define / : (X, 5")-^(X, SΓ) by f(x)= - x. Since fGH(E]) and
/(0) = 0, / E H(X). Clearly f~] = f We claim that the inverse map
0:H(X)->H(X) defined by 0(h) = h~l is not continuous at
/. Consider the neighborhood W(S{-U))f~ι and let W(SULh))f be a basic
neighborhood of / in H(X). Consider the function g : (X, SΓ) -* (X, SΓ)
defined by g(x)= -{x. Then gGH(X). Moreover we now show
that g E W(SiaM)f Let JC E X

If -xe(a9b)9 then α < | < ^ < | < & . Thus (/(JC), g(x)) =

(α, fc) x (α, ί>) C S(β,fc).

If - x £ ( α , & ) , then

Therefore g GW(S(aM)f We note that g-J(jc)=-2jc and that
g~ι£ W(S(.U)f~\ since

EXAMPLE 3.3. A quasi-uniformity % compatible with the usual
topology on the closed interval / = [-!, 1] which has the property that
every h E H(I) is °U-quasi-uniformly continuous and H(I) is not a
topological group under the topology of quasi-uniform convergence with
respect to °U.
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Construction. Let °ll be the quasi-uniformity on I having subbase
S = { S G : G = ( a , b ) o r (a, 1 ] o r [ - l , b ) } w h e r e - \ < a < b < \ . I t m a y
be seen that the inverse map is not continuous at - ί.

DEFINITION. A collection X of Q -covers of a topological space X
is a topological collection provided that if <£ G X, then for all ft G H(X),
{ Λ ( C ) : C 6 « } ε l

LEMMA. Let (X, 5") be a topological space and let X be a
topological collection ofQ-covers such that ifx ELAEL3~, there w ^ ε Σ
with Λ^ CA. Then H(X) is a O-dimensional topological group under
the topology of uniform convergence with respect to the uniformity

Proof We note that every h G H(X) is %Σ-quasi-uniformly con-
tinuous so that every ftG//(X) is °ίί1v % ̂ -uniformly
continuous. Thus H(X) is a topological group [2, Proposition
4]. Since for each < # G Σ , E/« ° t/« = t/«, °Uτy °ίίiι has a base of
equivalence relations. Thus SΓW{ΰa^<uV) is O-dimensional.

THEOREM 3.4. Lei (X, 5") be a topological space and let X be the
collection of all Q- [point finite, locally finite, finite open] covers of
(X, SΓ). Let (X, SΓ) be strongly 2,-stable. Then H(X) is a nondiscrete
O-dimensional topological group under the topology of uniform con-
vergence with respect to %xv%χ'.

Proof Since one easily sees that X is a topological collection of
Q-covers, by the preceding lemma it suffices to show that SΓwi0^! v °Ulι)
is nondiscrete.

Let G be an open set about L Then there exist basic members K
and V of <%Σ such that W(K Π V"1)* CG. Let sth j = 1,2, , n, and
33/, j = l,2, ,m be members of X such that K= ΠI^U^, and
V = Π 7=1 l/Λj and let <g, = U ?., dh %2 = U 7=1 9&y. Then «, and ^ 2 are
members of X. We have that K = Π"=1 t/^ = ί/n^,^ = ί/«, and that

V = Π 7-i I/a, = t/uT-.a, = t/«2 Since (X, 5") is strongly X-stable, there
exists ft Gf/*(X) such that both ft and ft'1 are <£, U ^-stable.

Since ft is ^i-stable, ft is {Λ* :JC GX}-stable. For each JC EX,
ft(jc)CΛ^ . Therefore for each JC G X, (jc,ft(x))G{jt}x Λj1 C [/«, =
K. Hence ft G W(K)/. Let x G X and let y = ft(jc). Then
xGΛ]f2. Otherwise Λ"'(y) = x&Ay2 whereas ft"1 is ^ 2 -
stable. Therefore (ft(jc), JC) G {y} x A^2 C ί/«2 = V and (JC, ft(jc))
G V"1. Hence ft G W(V% Finally we have that
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h SW(K)iΠ W(Vι)i = [W(K)Π W(V'ι)]i = W(K Π V'JiCG.

Thus H(X) is a nondiscrete topological group.

COROLLARY. Let (X, 5") be a Γo wα/c Galois space. Then H(X)
admits a compatible topology SΓ' such that (H(X), SΓ') is a Galois
space.

Proof. Let °U be the locally finite covering quasi-uniformity for
(X, SΓ). Then by Corollary 2,3,(X, SΓ) is strongly locally finite
stable. Thus H(X) is a nondiscrete topological group under the
topology of uniform convergence with respect to %v%"1. Since
(X, SΓ) is To, H(X) is a Γo space with respect to the compact open
topology & on H(X). As SΓ C?Γmqi)C9'W{aU^) and (H(X), SΓWWM-*))

is a topological group, SΓW{ϋUyΰu- } is Hausdorff. By Theorem 3.4, //(X) is
O-dimensional and homogeneous so that if (X) is a Galois space [7, Page
529].

COROLLARY. Let (X, SΓ) be a second countable To weak Galois
space. Then H(X) admits a compatible metric topology.

Proof. Let S3 be a countable base for SΓ and let °U be the
quasi-uniformity on (X, SΓ) having subbasis

S = {(G x G) U [(X - G) x X]: G G 39}.

Then % has a countable base and so °U v °li~l also has a countable
base. Let SB be the locally finite covering quasi-uniformity for
(X, SΓ). Since °il CS£, the topology of uniform convergence on H(X)
with respect to °U v °U~X is nondiscrete. The argument that SΓW{JUΊ^) is
Hausdorff is the same as that of the previous corollary.

If (X, SΓ) is a weak Galois completely regular Hausdorff space, then
the topology of uniform convergence with respect to the fine uniformity
is compatible with H(X) [12]. This result and the first corollary above
motivate the following questions:

Is every infinite nonabelian group isomorphic to the full
homeomorphism group of a Γo weak Galois space? If so, can the To

weak Galois space also be taken to be completely regular?
The result of [8] that every group is isomorphic to the full

homeomorphism group of a complete, connected, locally connected
metric space gives some reason to hope that the questions raised above
can be answered affirmatively. Evidently, however, the techniques
employed in [8] are not applicable here.
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